UPD16732E [ETC]

UPD16732E Data Sheet | Data Sheet[06/2002] ; UPD16732E数据表|数据表[ 06/2002 ]\n
UPD16732E
型号: UPD16732E
厂家: ETC    ETC
描述:

UPD16732E Data Sheet | Data Sheet[06/2002]
UPD16732E数据表|数据表[ 06/2002 ]\n

光电二极管
文件: 总20页 (文件大小:155K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATA SHEET  
MOS INTEGRATED CIRCUIT  
µPD16732E  
384-OUTPUT TFT-LCD SOURCE DRIVER  
(COMPATIBLE WITH 64-GRAY SCALES)  
DESCRIPTION  
The µPD16732E is a source driver for TFT-LCDs capable of dealing with displays with 64-gray scales. Data input is  
based on digital input configured as 6 bits by 6 dots (2 pixels), which can realize a full-color display of 260,000 colors  
by output of 64 values γ -corrected by an internal D/A converter and 5-by-2 external power modules. Because the  
output dynamic range is as large as VSS2 + 0.1 V to VDD2 – 0.1 V, level inversion operation of the LCD’s common  
electrode is rendered unnecessary. Also, to be able to deal with dot-line inversion, n-line inversion and column line  
inversion when mounted on a single side, this source driver is equipped with a built-in 6-bit D/A converter circuit  
whose odd output pins and even output pins respectively output gray scale voltages of differing polarity. Assuring a  
maximum clock frequency of 65 MHz when driving at 3.0 V, 45 MHz when driving at 2.3 V, this driver is applicable to  
XGA-standard TFT-LCD panels and SXGA-standard TFT-LCD panels.  
FEATURES  
CMOS level input (2.3 to 3.6 V)  
384 outputs  
Input of 6 bits (gray-scale data) by 6 dots  
Capable of outputting 64 values by means of 5-by-2 external power modules (10 units) and a D/A converter  
Logic power supply voltage (VDD1): 2.3 to 3.6 V  
Driver power supply voltage (VDD2): 8.0 to 9.0 V  
Output dynamic range: VSS2 + 0.1 V to VDD2 – 0.1 V  
High-speed data transfer: fCLK = 65 MHz (internal data transfer speed when operating at VDD1 = 3.0 V)  
Apply for dot-line inversion, n-line inversion and column line inversion  
Output voltage polarity inversion function (POL)  
Display data inversion function (capable of controlling by each input port) (POL21, POL22)  
Current consumption reduction function (LPC, Bcont)  
Succession of µPD16732B driver  
ORDERING INFORMATION  
Part Number  
Package  
µPD16732EN-xxx  
TCP (TAB package)  
Remark The TCP’s external shape is customized. To order the required shape, so please contact one of our  
sales representatives.  
The information in this document is subject to change without notice. Before using this document, please  
confirm that this is the latest version.  
Not all devices/types available in every country. Please check with local NEC representative for  
availability and additional information.  
Document No. S15187EJ2V0DS00 (2nd edition)  
Date Published June 2002 NS CP (K)  
The mark shows major revised points.  
2001  
©
Printed in Japan  
µPD16732E  
1. BLOCK DIAGRAM  
STHR  
R,/L  
CLK  
STB  
STHL  
V
V
DD1  
64-bit bidirectional shift register  
SS1  
C1  
C2  
C63  
C64  
D
D
D
D
D
D
00 to  
10 to  
20 to  
30 to  
40 to  
50 to  
D
D
D
D
D
D
05  
15  
25  
Data register  
35  
45  
55  
POL21,  
POL22  
Latch  
POL  
V
V
DD2  
SS2  
Level shifter  
V
0
to  
V
9
D/A converter  
Voltage follower output  
LPC  
Bcont  
S
1
S
2
S
3
S
384  
Remark /xxx indicates active low signal.  
2. RELATIONSHIP BETWEEN OUTPUT CIRCUIT AND D/A CONVERTER  
S
1
S
2
S
383  
S
384  
5
5
V
0
V
4
Multi-  
plexer  
6-bit D/A converter  
V
5
V
9
POL  
2
Data Sheet S15187EJ2V0DS  
µPD16732E  
3. PIN CONFIGURATION (Top of copper foil surface, face-up)  
µPD16732EN-xxx: TCP (TAB package)  
S384  
S383  
S382  
S381  
STHL  
D55  
D54  
D53  
D52  
D51  
D50  
D45  
D44  
D43  
D42  
D41  
D40  
D35  
D34  
D33  
D32  
D31  
D30  
VDD1  
R,/L  
V9  
V8  
V7  
V6  
V5  
VDD2  
Copper foil  
surface  
VSS2  
Bcont  
V4  
V3  
V2  
V1  
V0  
VSS1  
LPC  
CLK  
STB  
POL  
POL21  
POL22  
D25  
D24  
D23  
D22  
D21  
D20  
D15  
D14  
D13  
D12  
D11  
D10  
D05  
D04  
S4  
S3  
S2  
S1  
D03  
D02  
D01  
D00  
STHR  
Remark This figure does not specify the TCP package.  
3
Data Sheet S15187EJ2V0DS  
µPD16732E  
4. PIN FUNCTIONS  
(1/2)  
Pin Symbol  
S1 to S384  
D00 to D05  
D10 to D15  
D20 to D25  
D30 to D35  
D40 to D45  
D50 to D55  
R,/L  
Pin Name  
I/O  
Description  
Driver output  
Output The D/A converted 64-gray-scale analog voltage is output.  
Display data input  
Input The display data is input with a width of 36 bits, viz., the gray scale data (6 bits) by 6  
dots (2 pixels).  
DX0: LSB, DX5: MSB  
Shift direction control Input The shift direction control pin of the shift register. The shift directions of the shift  
registers are as follows.  
R,/L = H (right shift): STHR (input), S1 S384, STHL (output)  
R,/L = L (left shift) : STHL (input), S384 S1, STHR (output)  
STHR  
STHL  
CLK  
Right shift start pulse  
Left shift start pulse  
Shift clock  
I/O  
I/O  
These refer to the start pulse I/O pins when the IC is connected in cascade.  
Loading of display data starts when a high level is read at the rising edge of CLK.  
A high level should be input as the pulse of one cycle of the clock signal.  
If the start pulse input is more than 2CLK, the first 1CLK of the high-level input is valid.  
R,/L = H (right shift): STHR input, STHL output  
R,/L = L (left shift): STHL input, STHR output  
Input This pi refers to the shift register’s shift clock input. The display data is incorporated  
into the data register at the rising edge. At the rising edge of the 64th after the start  
pulse input, the start pulse output reaches the high level, thus becoming the start pulse  
of the next-level driver. When the 66 clock pulses are input after input of the start  
pulse, input of display data is halted automatically. The contents of the shift register  
are cleared at the STB’s rising edge.  
STB  
POL  
Latch  
Input The contents of the data register are transferred to the latch circuit at the rising edge.  
And, at the falling edge, the gray scale voltage is supplied to the driver.  
It is necessary to ensure input of one pulse per horizontal period.  
Input POL = L: The S2n–1 output uses V0 to V4 as the reference supply. The S2n output uses  
V5 to V9 as the reference supply.  
Polarity  
POL = H: The S2n–1 output uses V5 to V9 as the reference supply. The S2n output uses  
V0 to V4 as the reference supply.  
S2n-1 indicates the odd output: and S2n indicates the even output. Input of the POL  
signal is allowed the setup time (tPOL-STB) with respect to STB’s rising edge.  
Input Data inversion can invert when display data is loaded.  
POL21,  
POL22  
Data inversion  
POL21: D00 to D05, D10 to D15, D20 to D25 Data inversion or no inversion of Port1  
POL22: D30 to D35, D40 to D45, D50 to D55 Data inversion or no inversion of Port2  
POL21,POL22 = H: Data inversion loads display data inside the IC.  
POL21,POL22 = L: Data inversion does not invert input data.  
LPC  
Low power control  
Input The current consumption is lowered by controlling the constant current source of the  
output amplifier. In low power mode (LPC = L), the VDD2 of static current consumption  
can be reduced to two thirds of the normal current consumption. This pin is pulled up to  
the VDD1 power supply inside the IC.  
LPC = H or open: Normal power mode  
LPC = L: Low power mode  
Bcont  
Bias control  
Input This pin can be used to finely control the bias current inside the output amplifier. In  
cases when fine-control is necessary, connect this pin to the stabilized ground potential  
(VSS2) via an external resistor of 10 to 100 k(per IC).  
When this fine-control function is not required, leave this pin open.  
Refer to 9. CURRENT CONSUMPTION REDUCTION FUNCTION  
4
Data Sheet S15187EJ2V0DS  
µPD16732E  
(2/2)  
Pin Symbol  
V0 to V9  
Pin Name  
I/O  
Description  
γ -corrected power  
Input the γ -corrected power supplies from outside by using operational amplifier.  
supplies  
Make sure to maintain the following relationships. During the gray scale voltage output,  
be sure to keep the gray scale level power supply at a constant level.  
VDD2 0.1 V V0 > V1 > V2 > V3 > V4 0.5 VDD2  
0.5 VDD2 V5 > V6 > V7 > V8 > V9 VSS2 + 0.1 V  
VDD1  
VDD2  
VSS1  
VSS2  
Logic power supply  
Driver power supply  
Logic ground  
2.3 to 3.6 V  
8.0 to 9.0 V  
Grounding  
Grounding  
Driver ground  
Cautions 1. The power start sequence must be VDD1, logic input, and VDD2 & V0 to V9 in that order.  
Reverse this sequence to shut down (Simultaneous power application to VDD2 and V0 to V9 is  
possible.).  
2. To stabilize the supply voltage, please be sure to insert a 0.1 µF bypass capacitor between  
VDD1-VSS1 and VDD2-VSS2. Furthermore, for increased precision of the D/A converter, insertion  
of a bypass capacitor of about 0.01 µF is also recommended between the γ -corrected power  
supply terminals (V0, V1, V2,....., V9) and VSS2.  
5
Data Sheet S15187EJ2V0DS  
µPD16732E  
5. RELATIONSHIP BETWEEN INPUT DATA AND OUTPUT VOLTAGE VALUE  
The µPD16732E incorporates a 6-bit D/A converter whose odd output pins and even output pins output respectively  
gray scale voltages of differing polarity with respect to the LCD’s counter electrode voltage. The D/A converter  
consists of ladder resistors and switches. The ladder resistors (r0 to r62) are designed so that the ratio of LCD panel  
γ -compensated voltages to V0’ to V63’ and V0” to V63” is almost equivalent as shown in Figure 5-2. For the 2 sets of  
five γ -compensated power supplies, V0 to V4 and V5 to V9, respectively, input gray scale voltages of the same polarity  
with respect to the common voltage. When fine-gray scale voltage precision is not necessary, there is no need to  
connect voltage follower circuit to the γ –corrected power supplies V1 to V3 and V6 to V8.  
Figure 5–1 shows the relationship between the driving voltages such as liquid-crystal driving voltages VDD2, VSS2 and  
γ -corrected voltages V0 to V9 and the input data. Be sure to maintain the voltage relationships as follows.  
V
DD2 – 0.1 V V  
0
> V  
1
> V  
2
> V  
3
> V  
4
0.5 VDD2,  
0.5 VDD2 V > V  
5
6
> V  
7
> V  
8
> V  
9
VSS2 + 0.1 V  
Figures 5–2 indicates γ -corrected voltages and ladder resistors ratio. Figures 5–3 indicates the relationship  
between the input data and output voltage and the resistance values of the resistor string.  
Figure 5–1. Relationship between Input Data and γ -corrected Power Supplies  
VDD2  
0.1 V  
V0  
16  
V1  
16  
V2  
16  
V3  
15  
V4  
0.5 VDD2  
V5  
Split interval  
15  
V6  
16  
16  
V7  
V8  
16  
V9  
0.1 V  
VSS2  
00  
10  
20  
30  
3F  
Input Data (HEX)  
6
Data Sheet S15187EJ2V0DS  
µPD16732E  
Figure 5–2. γ -corrected Voltages and Ladder Resistor’s Ratio  
rn  
r0  
r1  
r2  
r3  
r4  
r5  
r6  
Ratio1  
11.62  
4.84  
3.72  
3.35  
2.61  
2.24  
1.86  
1.86  
1.49  
1.49  
1.12  
1.12  
1.12  
1.12  
1.12  
1.12  
1.00  
1.00  
1.00  
1.00  
1.00  
1.00  
1.00  
1.00  
1.00  
1.00  
1.00  
1.00  
1.00  
1.00  
1.00  
1.00  
1.03  
1.03  
1.03  
1.03  
1.03  
1.03  
1.03  
1.03  
1.03  
1.03  
1.03  
1.03  
1.03  
1.03  
1.03  
1.03  
1.15  
1.15  
1.15  
1.15  
1.15  
1.53  
1.53  
1.53  
1.53  
1.90  
2.27  
2.64  
2.64  
3.02  
5.74  
Ratio2  
0.1114  
0.0464  
0.0357  
0.0321  
0.0250  
0.0214  
0.0179  
0.0179  
0.0143  
0.0143  
0.0107  
0.0107  
0.0107  
0.0107  
0.0107  
0.0107  
0.0096  
0.0096  
0.0096  
0.0096  
0.0096  
0.0096  
0.0096  
0.0096  
0.0096  
0.0096  
0.0096  
0.0096  
0.0096  
0.0096  
0.0096  
0.0096  
0.0098  
0.0098  
0.0098  
0.0098  
0.0098  
0.0098  
0.0098  
0.0098  
0.0098  
0.0098  
0.0098  
0.0098  
0.0098  
0.0098  
0.0098  
0.0098  
0.0110  
0.0110  
0.0110  
0.0110  
0.0110  
0.0146  
0.0146  
0.0146  
0.0146  
0.0182  
0.0218  
0.0254  
0.0254  
0.0290  
0.0550  
Value ()  
1766  
736  
566  
509  
396  
340  
283  
283  
226  
226  
170  
170  
170  
170  
170  
170  
152  
152  
152  
152  
152  
152  
152  
152  
152  
152  
152  
152  
152  
152  
152  
152  
156  
156  
156  
156  
156  
156  
156  
156  
156  
156  
156  
156  
156  
156  
156  
156  
175  
175  
175  
175  
175  
232  
232  
232  
232  
289  
345  
402  
402  
459  
872  
V
0
V
0
'
V
V
V
V
63''  
62''  
61''  
60''  
V
5
r
62  
r
r
r
r
0
1
2
3
V
V
V
1
'
'
'
r
61  
60  
2
3
r
r59  
r7  
r8  
r9  
r10  
r11  
r12  
r13  
r14  
r15  
r16  
r17  
r18  
r19  
r20  
r21  
r22  
r23  
r24  
r25  
r26  
r27  
r28  
r29  
r30  
r31  
r32  
r33  
r34  
r35  
r36  
r37  
r38  
r39  
r40  
r41  
r42  
r43  
r44  
r45  
r46  
r47  
r48  
r49  
r50  
r51  
r52  
r53  
r54  
r55  
r56  
r57  
r58  
r59  
r60  
r61  
r62  
r
14  
15  
r
49  
V
49''  
48''  
V
15  
'
'
r
r48  
r47  
r46  
V
1
V
16  
V
V
6
r
16  
17  
V
17  
'
V47''  
r
r46  
r47  
r48  
r17  
r16  
r15  
r14  
V
17''  
16''  
V
V
V
47  
'
'
'
V
V
3
48  
V8  
V
15''  
49  
r49  
r
60  
61  
r
2
V
61  
'
V2''  
r
r
1
V62  
'
V
1
''  
r62  
r0  
V
4
V9  
V63  
'
V0  
''  
Caution There is no connection between V4 and V5 terminal in the IC.  
Remark The resistance ratio1 is a relative ratio in the case of setting the minimum resistance value to 1.  
The resistance ratio2 is a relative ratio in the case of setting the total resistance to 1.  
7
Data Sheet S15187EJ2V0DS  
µPD16732E  
Figure 5–3. Relationship between Input Data and Output Voltage (POL21, POL22 = L)  
(Output Voltage 1) VDD2 – 0.1 V V5 > V6 > V7 > V8 > V9 0.5 VDD2,  
(Output Voltage 2) 0.5 VDD2 V5 > V6 > V7 > V8 > V9 VSS2 + 0.1 V  
Input Data  
00H  
01H  
02H  
03H  
04H  
05H  
06H  
07H  
08H  
09H  
0AH  
0BH  
0CH  
0DH  
0EH  
0FH  
10H  
11H  
12H  
13H  
14H  
15H  
16H  
17H  
18H  
19H  
1AH  
1BH  
1CH  
1DH  
1EH  
1FH  
20H  
21H  
22H  
23H  
24H  
25H  
26H  
27H  
28H  
29H  
2AH  
2BH  
2CH  
2DH  
2EH  
2FH  
30H  
31H  
32H  
33H  
34H  
35H  
36H  
37H  
38H  
39H  
3AH  
3BH  
3CH  
3DH  
3EH  
3FH  
Output Voltage1  
Output Voltage2  
V0' V0  
V0'' V9  
V1' V1+(V0-V1)× 4585/6351  
V2' V1+(V0-V1)× 3849/6351  
V3' V1+(V0-V1)× 3283/6351  
V4' V1+(V0-V1)× 2774/6351  
V5' V1+(V0-V1)× 2378/6351  
V6' V1+(V0-V1)× 2038/6351  
V7' V1+(V0-V1)× 1755/6351  
V8' V1+(V0-V1)× 1472/6351  
V9' V1+(V0-V1)× 1246/6351  
V1'' V9+(V8-V9)× 1766/6351  
V2'' V9+(V8-V9)× 2502/6351  
V3'' V9+(V8-V9)× 3068/6351  
V4'' V9+(V8-V9)× 3577/6351  
V5'' V9+(V8-V9)× 3973/6351  
V6'' V9+(V8-V9)× 4313/6351  
V7'' V9+(V8-V9)× 4596/6351  
V8'' V9+(V8-V9)× 4879/6351  
V9'' V9+(V8-V9)× 5105/6351  
V10' V1+(V0-V1)× 1020/6351 V10'' V9+(V8-V9)× 5331/6351  
V11' V1+(V0-V1)× 850/6351  
V12' V1+(V0-V1)× 680/6351  
V13' V1+(V0-V1)× 510/6351  
V14' V1+(V0-V1)× 340/6351  
V15' V1+(V0-V1)× 170/6351  
V16' V1  
V11'' V9+(V8-V9)× 5501/6351  
V12'' V9+(V8-V9)× 5671/6351  
V13'' V9+(V8-V9)× 5841/6351  
V14'' V9+(V8-V9)× 6011/6351  
V15'' V9+(V8-V9)× 6181/6351  
V16'' V8  
V17' V2+(V1-V2)× 2280/2432 V17'' V8+(V7-V8)× 152/2432  
V18' V2+(V1-V2)× 2128/2432 V18'' V8+(V7-V8)× 304/2432  
V19' V2+(V1-V2)× 1976/2432 V19'' V8+(V7-V8)× 456/2432  
V20' V2+(V1-V2)× 1824/2432 V20'' V8+(V7-V8)× 608/2432  
V21' V2+(V1-V2)× 1672/2432 V21'' V8+(V7-V8)× 760/2432  
V22' V2+(V1-V2)× 1520/2432 V22'' V8+(V7-V8)× 912/2432  
V23' V2+(V1-V2)× 1368/2432 V23'' V8+(V7-V8)× 1064/2432  
V24' V2+(V1-V2)× 1216/2432 V24'' V8+(V7-V8)× 1216/2432  
V25' V2+(V1-V2)× 1064/2432 V25'' V8+(V7-V8)× 1368/2432  
V26' V2+(V1-V2)× 912/2432  
V27' V2+(V1-V2)× 760/2432  
V28' V2+(V1-V2)× 608/2432  
V29' V2+(V1-V2)× 456/2432  
V30' V2+(V1-V2)× 304/2432  
V31' V2+(V1-V2)× 152/2432  
V32' V2  
V26'' V8+(V7-V8)× 1520/2432  
V27'' V8+(V7-V8)× 1672/2432  
V28'' V8+(V7-V8)× 1824/2432  
V29'' V8+(V7-V8)× 1976/2432  
V30'' V8+(V7-V8)× 2128/2432  
V31'' V8+(V7-V8)× 2280/2432  
V32'' V7  
V33' V3+(V2-V3)× 2340/2496 V33'' V7+(V6-V7)× 156/2496  
V34' V3+(V2-V3)× 2184/2496 V34'' V7+(V6-V7)× 312/2496  
V35' V3+(V2-V3)× 2028/2496 V35'' V7+(V6-V7)× 468/2496  
V36' V3+(V2-V3)× 1872/2496 V36'' V7+(V6-V7)× 624/2496  
V37' V3+(V2-V3)× 1716/2496 V37'' V7+(V6-V7)× 780/2496  
V38' V3+(V2-V3)× 1560/2496 V38'' V7+(V6-V7)× 936/2496  
V39' V3+(V2-V3)× 1404/2496 V39'' V7+(V6-V7)× 1092/2496  
V40' V3+(V2-V3)× 1248/2496 V40'' V7+(V6-V7)× 1248/2496  
V41' V3+(V2-V3)× 1092/2496 V41'' V7+(V6-V7)× 1404/2496  
V42' V3+(V2-V3)× 936/2496  
V43' V3+(V2-V3)× 780/2496  
V44' V3+(V2-V3)× 624/2496  
V45' V3+(V2-V3)× 468/2496  
V46' V3+(V2-V3)× 312/2496  
V47' V3+(V2-V3)× 156/2496  
V48' V3  
V42'' V7+(V6-V7)× 1560/2496  
V43'' V7+(V6-V7)× 1716/2496  
V44'' V7+(V6-V7)× 1872/2496  
V45'' V7+(V6-V7)× 2028/2496  
V46'' V7+(V6-V7)× 2184/2496  
V47'' V7+(V6-V7)× 2340/2496  
V48'' V6  
V49' V4+(V3-V4)× 4397/4572 V49'' V6+(V5-V6)× 175/4572  
V50' V4+(V3-V4)× 4222/4572 V50'' V6+(V5-V6)× 350/4572  
V51' V4+(V3-V4)× 4047/4572 V51'' V6+(V5-V6)× 525/4572  
V52' V4+(V3-V4)× 3872/4572 V52'' V6+(V5-V6)× 700/4572  
V53' V4+(V3-V4)× 3697/4572 V53'' V6+(V5-V6)× 875/4572  
V54' V4+(V3-V4)× 3465/4572 V54'' V6+(V5-V6)× 1107/4572  
V55' V4+(V3-V4)× 3233/4572 V55'' V6+(V5-V6)× 1339/4572  
V56' V4+(V3-V4)× 3001/4572 V56'' V6+(V5-V6)× 1571/4572  
V57' V4+(V3-V4)× 2769/4572 V57'' V6+(V5-V6)× 1803/4572  
V58' V4+(V3-V4)× 2480/4572 V58'' V6+(V5-V6)× 2092/4572  
V59' V4+(V3-V4)× 2135/4572 V59'' V6+(V5-V6)× 2437/4572  
V60' V4+(V3-V4)× 1733/4572 V60'' V6+(V5-V6)× 2839/4572  
V61' V4+(V3-V4)× 1331/4572 V61'' V6+(V5-V6)× 3241/4572  
V62' V4+(V3-V4)× 872/4572  
V63' V4  
V62'' V6+(V5-V6)× 3700/4572  
V63'' V5  
Caution There is no connection between V4 and V5 terminal in the IC.  
8
Data Sheet S15187EJ2V0DS  
µPD16732E  
6. RELATIONSHIP BETWEEN INPUT DATA AND OUTPUT PIN  
Data format : 6 bits x 2 RGBs (6 dots)  
Input width : 36 bits (2-pixel data)  
(1) R,/L = H (Right shift)  
Output  
Data  
S1  
S2  
S3  
S4  
...  
S383  
S384  
D00 to D05  
D10 to D15  
D20 to D25  
D30 to D35  
...  
D40 to D45  
D50 to D55  
(2) R,/L = L (Left shift)  
Output  
Data  
S1  
S2  
S3  
S4  
...  
...  
S383  
S384  
D00 to D05  
D10 to D15  
D20 to D25  
D30 to D35  
D40 to D45  
D50 to D55  
Note  
Note  
POL  
L
S2n–1  
S2n  
V0 to V4  
V5 to V9  
V5 to V9  
V0 to V4  
H
Note S2n–1 (Odd output), S2n (Even output)  
7. RELATIONSHIP BETWEEN STB, POL AND OUTPUT WAVEFORM  
The output voltage is written to the LCD panel synchronized with the STB falling edge.  
STB  
POL  
S
2n-1  
Selected voltage V  
0
toV  
4
Selected voltage V  
5
toV  
9
Selected voltage V  
0
toV  
4
S
2n  
Selected voltage V  
0
toV  
4
Selected voltage V  
5
toV  
9
Selected voltage V  
5
toV  
9
Hi-Z  
Hi-Z  
Hi-Z  
9
Data Sheet S15187EJ2V0DS  
µPD16732E  
8. RELATIONSHIP BETWEEN STB, CLK, AND OUTPUT WAVEFORM  
The output voltage is written to the LCD panel synchronized with the STB falling edge.  
Figure 8–1. Output Circuit Block Diagram  
Output Amp  
-
+
DAC  
SW1  
Sn  
(V  
x
)
V
AMP(IN)  
Figure 8–2. Output Circuit Block Diagram  
[1]  
[2]  
CLK  
(External Input)  
STB  
(External Input)  
SW1 : ON  
SW1 : OFF  
SW1 : ON  
V
AMP(IN)  
S
n
(Vx  
)
Output  
Hi-Z  
Output  
Remarks 1. STB = L: SW1 = ON  
STB = H: SW1 = OFF  
2. STB = H is acknowledged at timing [1].  
3. The display data latch is completed at timing [2] and the input voltage  
(VAMP(IN): gray-scale level voltage) of the output amplifier changes.  
10  
Data Sheet S15187EJ2V0DS  
µPD16732E  
9. CURRENT CONSUMPTION REDUCTION FUNCTION  
The µPD16732E has a low power control function (LPC) which can switch the bias current of the output amplifier  
between two levels and a bias control function (Bcont) which can be used to finely control the bias current.  
<Low power control function (LPC)>  
The bias current of the output amplifier can be switched between two levels using this pin. (Bcont: open)  
LPC = H or open: normal power mode  
LPC = L: low power mode  
The VDD2 of static current consumption can be reduced to two thirds of that in normal mode, input a stable DC  
current (VDD1/VSS1) to this pin.  
<Bias current control function (Bcont)>  
It is possible to fine-control the current consumption by using the bias current control function (Bcont pin). When  
using this function, connect this pin to the stabilized ground potential (VSS2) via an external resistor (REXT). When not  
using this function, leave this pin open.  
Figure 9–1. Bias Current Control Function (Bcont)  
PD16732E  
µ
B
cont  
LPC  
REXT  
H/L  
V
SS2  
Refer to the table below for the percentage of current regulation when using the bias current control-function.  
Table 9–1. Current Consumption Regulation Percentage Compared to Normal Mode  
(VDD1 = 3.3 V, VDD2 = 8.7 V, LPC = 3.3 V/ 0 V)  
REXT (k)  
Current Consumption Regulation Percentage (%)  
LPC = H  
100  
LPC = L  
65  
(Open)  
50  
20  
10  
110  
70  
115  
80  
120  
85  
Remark Be aware that the above current consumption regulation percentages are not  
product-characteristic guaranteed as they are based on the results of simulation.  
Caution Because the low-power and bias-current control functions control the bias current in the output  
amplifier and regulate the over-all current consumption of the driver IC, when this occurs, the  
characteristics of the output amplifier will simultaneously change. Therefore, when using these  
functions, be sure to sufficiently evaluate the picture quality.  
11  
Data Sheet S15187EJ2V0DS  
µPD16732E  
Figure92. Output Wave Form (LPC = L)  
Bcont = 1.0 k  
Bcont = Open  
µs / div)  
Time (4  
Bcont = 10 k  
Bcont = 50 kΩ  
[1]  
[2]  
<Test Condition>  
[1]  
R
[2]  
RL  
RL  
L
RL  
RL  
R
L
L
= 1 kΩ  
-
+
V
IN  
C
= 15 pF  
CL  
CL  
CL  
CL  
CL  
12  
Data Sheet S15187EJ2V0DS  
µPD16732E  
Figure93. Output Wave Form (LPC = H)  
Bcont = Open  
Bcont = 1.0 kΩ  
µs / div)  
Time (4  
Bcont = 10 kΩ  
Bcont = 50 kΩ  
13  
Data Sheet S15187EJ2V0DS  
µPD16732E  
10. ELECTRICAL SPECIFICATIONS  
Absolute Maximum Ratings (TA = 25°C, VSS1 = VSS2 = 0 V)  
Parameter  
Symbol  
VDD1  
Rating  
Unit  
V
Logic Part Supply Voltage  
Driver Part Supply Voltage  
Logic Part Input Voltage  
Driver Part Input Voltage  
Logic Part Output Voltage  
Driver Part Output Voltage  
Operating Ambient Temperature  
Storage Temperature  
–0.5 to +4.0  
VDD2  
VI1  
–0.5 to +10.0  
–0.5 to VDD1 + 0.5  
–0.5 to VDD2 + 0.5  
–0.5 to VDD1 + 0.5  
–0.5 to VDD2 + 0.5  
–10 to +75  
V
V
VI2  
V
VO1  
VO2  
TA  
V
V
°C  
°C  
Tstg  
–55 to +125  
Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any  
parameter. That is, the absolute maximum ratings are rated values at which the product is on the  
verge of suffering physical damage, and therefore the product must be used under conditions that  
ensure that the absolute maximum ratings are not exceeded.  
Recommended Operating Range (TA = –10 to +75°C, VSS1 = VSS2 = 0 V)  
Parameter  
Logic Part Supply Voltage  
Driver Part Supply Voltage  
High-Level Input Voltage  
Low-Level Input Voltage  
γ -Corrected Voltage  
Symbol  
VDD1  
Condition  
MIN.  
2.3  
TYP.  
8.5  
MAX.  
3.6  
Unit  
V
VDD2  
VIH  
8.0  
9.0  
V
0.7 VDD1  
0
VDD1  
V
VIL  
0.3 VDD1  
VDD2 – 0.1  
0.5 VDD2  
VDD2 – 0.1  
45  
V
V0 to V4  
V5 to V9  
VO  
0.5 VDD2  
VSS2 + 0.1  
VSS2 + 0.1  
V
V
Driver Part Output Voltage  
Clock Frequency  
V
fCLK  
2.3 VDD1 < 3.0 V  
3.0 VDD1 3.6 V  
MHz  
MHz  
65  
14  
Data Sheet S15187EJ2V0DS  
µPD16732E  
Electrical Characteristics (TA = –10 to +75°C, VDD1 = 2.3 to 3.6 V, VDD2 = 8.0 to 9.0 V, VSS1 = VSS2 = 0 V,  
Unless otherwise specified, LPC = H or open, Bcont = open)  
Parameter  
Input Leak Current  
Symbol  
IIL  
Condition  
MIN.  
TYP.  
MAX.  
Unit  
µA  
V
±1.0  
High-Level Output Voltage  
Low-Level Output Voltage  
γ -Corrected Resistance  
Driver Output Current  
VOH  
VOL  
Rγ  
STHR (STHL), IOH = 0 mA  
STHR (STHL), IOL = 0 mA  
V0 to V4 = V5 to V9 = 4.0 V  
VX = 7.0 V, VOUT = 6.5 V Note  
VX = 1.0 V, VOUT = 1.5 V Note  
VDD1 = 3.3 V, VDD2 = 8.5 V  
VOUT = 2.0 V, 4.25 V, 6.5 V  
VDD1 – 0.1  
0.1  
32  
V
8
16  
IVOH  
IVOL  
VO  
VP–P  
–30  
µA  
µA  
mV  
mV  
30  
Output Voltage Deviation  
Output Swing Difference  
Deviation  
±7  
±2  
±20  
±15  
Output Voltage Range  
Logic Part Dynamic Current  
Consumption  
VO  
All input data  
0.1  
VDD2 – 0.1  
6.0  
V
IDD1  
VDD1, with no load  
3.0  
1.0  
2.0  
mA  
Driver Part Dynamic Current  
Consumption  
IDD21  
VDD2 = 8.0 to 9.0 V, with no load,  
LPC =H, Bcont = open  
6.0  
4.0  
mA  
mA  
IDD22  
VDD2 = 8.0 to 9.0 V, with no load,  
LPC =L, Bcont = open  
Note VX refers to the output voltage of analog output pins S1 to S384.  
VOUT refers to the voltage applied to analog output pins S1 to S384.  
Cautions 1. STB cycle is 20 µs, fCLK = 40 MHz  
2. The TYP. values refer to an all black or all white input pattern. The MAX. value refers to the  
measured values in the dot checkerboard input pattern.  
3. Refers to the current consumption per driver when cascades are connected under the  
assumption of XGA single-sided mounting (8 units).  
15  
Data Sheet S15187EJ2V0DS  
µPD16732E  
Switching Characteristics (TA = –10 to +75°C, VDD1 = 2.3 to 3.6 V, VDD2 = 8.0 to 9.0 V, VSS1 = VSS2 = 0 V,  
Unless otherwise specified, LPC = H or open, Bcont = open)  
Parameter  
Symbol  
tPLH1  
Condition  
CL = 10 pF, 2.3 VDD1 < 3.0 V  
CL = 10 pF, 3.0 VDD1 3.6 V  
CL = 75 pF, RL = 5 kΩ  
MIN.  
TYP.  
10  
7
MAX.  
17  
10.5  
5
Unit  
ns  
ns  
µs  
µs  
µs  
µs  
pF  
pF  
Start Pulse Delay Time  
Driver Output Delay Time  
tPLH2  
tPLH3  
tPHL2  
tPHL3  
CI1  
2.5  
5
8
2.5  
5
5
8
Input Capacitance  
Exclude STHR (STHL), TA = 25°C  
STHR (STHL),TA = 25°C  
5
10  
10  
CI2  
8
<Test Condition>  
RL1  
RL2  
RL4  
RL3  
RL5  
R
Ln = 1 kΩ  
Ln = 15 pF  
C
Output  
CL5  
CL4  
CL2  
CL3  
CL1  
Timing Requirements (TA = –10 to +75°C, VDD1 = 2.3 to 3.6 V, VSS1 = 0 V, tr = tf = 8.0 ns)  
Parameter  
Clock Pulse Width  
Symbol  
PWCLK  
Condition  
2.3 VDD1 < 3.0 V  
3.0 VDD1 3.6 V  
MIN.  
22  
15  
4
TYP.  
MAX.  
Unit  
ns  
ns  
Clock Pulse High Period  
Clock Pulse Low Period  
PWCLK(H)  
PWCLK(L)  
ns  
2.3 VDD1 < 3.0 V  
3.0 VDD1 3.6 V  
6
ns  
4
ns  
Data Setup Time  
Data Hold Time  
tSETUP1  
tHOLD1  
tSETUP2  
tHOLD2  
tSETUP3  
tHOLD3  
PWSTB  
tLDT  
4
ns  
0
ns  
Start Pulse Setup Time  
Start Pulse Hold Time  
POL21/22 Setup Time  
POL21/22 Hold Time  
STB Pulse Width  
Last Data Timing  
CLK-STB Time  
4
ns  
0
ns  
4
ns  
0
ns  
2
CLK  
CLK  
ns  
2
tCLK-STB  
tSTB-CLK  
CLK ↑ → STB ↑  
6
STB-CLK Time  
STB ↑ → CLK ,  
9
ns  
VDD1 = 2.3 to 3.6 V  
STB ↑ → CLK ,  
6
ns  
VDD1 = 3.0 to 3.6 V  
STB ↑ → STHR(STHL) ↑  
POL or ↓ → STB ↑  
STB ↓ → POL or ↑  
Time Between STB and Start Pulse  
POL-STB Time  
tSTB-STH  
tPOL-STB  
tSTB-POL  
2
–5  
6
CLK  
ns  
STB-POL Time  
ns  
Remark Unless otherwise specified, the input level is defined to be VIH = 0.7 VDD1, VIL = 0.3 VDD1.  
16  
Data Sheet S15187EJ2V0DS  
PWCLK(L) PWCLK  
PWCLK(H)  
t
r
t
f
1
2
V
V
DD1  
SS1  
90%  
1
2
3
64  
65  
66  
513  
514  
CLK  
10%  
t
SETUP2  
t
HOLD2  
t
STB-CLK  
t
CLK-STB  
V
V
DD1  
SS1  
STHR  
(1st Dr.)  
t
SETUP1  
t
HOLD1  
t
STB-STH  
V
V
DD1  
SS1  
D
D
373 to  
D
D
379 to  
D
D
385 to  
D
D
3067 to  
D1  
to D  
6
D7 to D12  
D
n0 to Dn5  
INVALID  
INVALID  
D1  
to D  
6
D
7
to D12  
INVALID  
378  
384  
390  
3072  
t
SETUP3  
t
HOLD3  
V
DD1  
SS1  
POL21,  
POL22  
INVALID  
V
t
PLH1  
V
V
DD1  
SS1  
STHL  
(1st Dr.)  
t
LDT  
PWSTB  
V
V
DD1  
SS1  
STB  
POL  
t
POL-STB  
t
STB-POL  
V
V
DD1  
SS1  
t
t
PLH3  
Hi-Z  
PLH2  
Target Voltage +0.1 VDD2  
6-bit accuracy  
Sn  
(Vx)  
µ
µ
t
t
PHL2  
PHL3  
µPD16732E  
11. RECOMMENDED MOUNTING CONDITIONS  
The following conditions must be met for mounting conditions of the µPD16732E.  
For more details, refer to the Semiconductor Device Mounting Technology Manual (C10535E).  
Please consult with our sales offices in case other mounting process is used, or in case the mounting is done under  
different conditions.  
µPD16732EN-xxx : TCP (TAB Package)  
Mounting Condition  
Thermocompression  
Mounting Method  
Soldering  
Condition  
Heating tool 300 to 350°C, heating for 2 to 3 seconds : pressure 100g  
(per solder)  
ACF  
Temporary bonding 70 to 100°C : pressure 3 to 8 kg/cm2: time 3 to 5  
sec. Real bonding 165 to 180°C: pressure 25 to 45 kg/cm2: time 30 to  
40 sec. (When using the anisotropy conductive film SUMIZAC1003 of  
Sumitomo Bakelite,Ltd).  
(Adhesive  
Conductive Film)  
Caution To find out the detailed conditions for mounting the ACF part, please contact the ACF  
manufacturing company. Be sure to avoid using two or more mounting methods at a time.  
18  
Data Sheet S15187EJ2V0DS  
µPD16732E  
NOTES FOR CMOS DEVICES  
1
PRECAUTION AGAINST ESD FOR SEMICONDUCTORS  
Note:  
Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and  
ultimately degrade the device operation. Steps must be taken to stop generation of static electricity  
as much as possible, and quickly dissipate it once, when it has occurred. Environmental control  
must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using  
insulators that easily build static electricity. Semiconductor devices must be stored and transported  
in an anti-static container, static shielding bag or conductive material. All test and measurement  
tools including work bench and floor should be grounded. The operator should be grounded using  
wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need  
to be taken for PW boards with semiconductor devices on it.  
2
HANDLING OF UNUSED INPUT PINS FOR CMOS  
Note:  
No connection for CMOS device inputs can be cause of malfunction. If no connection is provided  
to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence  
causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels  
of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused  
pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of  
being an output pin. All handling related to the unused pins must be judged device by device and  
related specifications governing the devices.  
3
STATUS BEFORE INITIALIZATION OF MOS DEVICES  
Note:  
Power-on does not necessarily define initial status of MOS device. Production process of MOS  
does not define the initial operation status of the device. Immediately after the power source is  
turned ON, the devices with reset function have not yet been initialized. Hence, power-on does  
not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the  
reset signal is received. Reset operation must be executed immediately after power-on for devices  
having reset function.  
19  
Data Sheet S15187EJ2V0DS  
µPD16732E  
Reference Documents  
NEC Semiconductor Device Reliability/Quality Control System (C10983E)  
Quality Grades On NEC Semiconductor Devices (C11531E)  
The information in this document is current as of June, 2002. The information is subject to change  
without notice. For actual design-in, refer to the latest publications of NEC's data sheets or data  
books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all products  
and/or types are available in every country. Please check with an NEC sales representative for  
availability and additional information.  
No part of this document may be copied or reproduced in any form or by any means without prior  
written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.  
NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of  
third parties by or arising from the use of NEC semiconductor products listed in this document or any other  
liability arising from the use of such products. No license, express, implied or otherwise, is granted under any  
patents, copyrights or other intellectual property rights of NEC or others.  
Descriptions of circuits, software and other related information in this document are provided for illustrative  
purposes in semiconductor product operation and application examples. The incorporation of these  
circuits, software and information in the design of customer's equipment shall be done under the full  
responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third  
parties arising from the use of these circuits, software and information.  
While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers  
agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize  
risks of damage to property or injury (including death) to persons arising from defects in NEC  
semiconductor products, customers must incorporate sufficient safety measures in their design, such as  
redundancy, fire-containment, and anti-failure features.  
NEC semiconductor products are classified into the following three quality grades:  
"Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products  
developed based on a customer-designated "quality assurance program" for a specific application. The  
recommended applications of a semiconductor product depend on its quality grade, as indicated below.  
Customers must check the quality grade of each semiconductor product before using it in a particular  
application.  
"Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio  
and visual equipment, home electronic appliances, machine tools, personal electronic equipment  
and industrial robots  
"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster  
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed  
for life support)  
"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life  
support systems and medical equipment for life support, etc.  
The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's  
data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not  
intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness  
to support a given application.  
(Note)  
(1) "NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries.  
(2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for  
NEC (as defined above).  
M8E 00. 4  

相关型号:

UPD16732N-XXX

LCD Display Driver
ETC

UPD16738-XXX

Liquid Crystal Driver, 384-Segment, CMOS, DIE
NEC

UPD16738-XXX

LIQUID CRYSTAL DISPLAY DRIVER, UUC, DIE
RENESAS

UPD16738N-XXX

Interface IC
ETC

UPD16740N-XXX

LCD Display Driver
ETC

UPD16742N-XXX

LCD Display Driver
ETC

UPD16750

384-OUTPUT TFT-LCD SOURCE DRIVER COMPATIBLE WITH 256-GRAY SCALES
NEC

UPD16750N

384-OUTPUT TFT-LCD SOURCE DRIVER COMPATIBLE WITH 256-GRAY SCALES
NEC

UPD16750N-XXX

LCD Display Driver
NEC

UPD16753

UPD16753 Data Sheet | Data Sheet[02/2002]
ETC

UPD16753N-XXX

Liquid Crystal Driver, 384-Segment, MOS
NEC

UPD16754

UPD16754 Data Sheet | Data Sheet[04/2003]
ETC