UPD16738N-XXX [ETC]

Interface IC ; 接口IC\n
UPD16738N-XXX
型号: UPD16738N-XXX
厂家: ETC    ETC
描述:

Interface IC
接口IC\n

文件: 总16页 (文件大小:121K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATA SHEET  
MOS INTEGRATED CIRCUIT  
µPD16738  
384-OUTPUT TFT-LCD SOURCE DRIVER  
(COMPATIBLE WITH 64-GRAY SCALES )  
DESCRIPTION  
The µPD16738 is a source driver for TFT-LCDs capable of dealing with displays with 64-gray scales. Data input is based  
on digital input configured as 6 bits by 6 dots (2 pixels), which can realize a full-color display of 260,000 colors by output of 64  
values γ -corrected by an internal D/A converter and 5-by-2 external power modules. Because the output dynamic range is as  
large as VSS2+0.1 V to VDD2–0.1 V, level inversion operation of the LCD’s common electrode is rendered unnecessary. Also,  
to be able to deal with dot-line inversion, n-line inversion and column line inversion when mounted on a single side, this  
source driver is equipped with a built-in 6-bit D/A converter circuit whose odd output pins and even output pins respectively  
output gray scale voltages of differing polarity. Assuring a maximum clock frequency of 45 MHz when driving at 2.7 V, this  
driver is applicable to XGA-standard TFT-LCD panels.  
FEATURES  
• CMOS level input  
• 384 Outputs  
• Input of 6 bits (gradation data) by 6 dots  
• Capable of outputting 64 values by means of 5-by-2 external power modules (10 units) and  
a D/A converter  
+0.3  
–0.6  
+0.5  
• Logic power supply voltage (VDD1) : 3.3 V  
• Driver power supply voltage (VDD2) : 8.5 V  
V
V
–1.0  
• High-speed data transfer : fCLK = 45 MHz MAX. (internal data transfer speed when operating at VDD1 = 2.7 V)  
• Output dynamic range : VSS2 + 0.1 V to VDD2 – 0.1 V  
• Apply for dot-line inversion, n-line inversion and column line inversion  
• Output Voltage polarity inversion function (POL)  
• Display data inversion function (POL2)  
• Single bank arrangement is possible (Loaded with slim or bending TCP)  
ORDERING INFORMATION  
Part Number  
Package  
µPD16738N -×××  
TCP (TAB package)  
Remark The TCP’s external shape is customized. To order your TCP’s external shape, please contact a  
NEC salesperson.  
The information in this document is subject to change without notice. Before using this document, please  
confirm that this is the latest version.  
Not all devices/types available in every country. Please check with local NEC representative for  
availability and additional information.  
The mark shows major revised points.  
Document No. S13813EJ1V0DS00 (1st edition)  
Data Published January 2000 NS CP(K)  
Printed in Japan  
NEC Corporation 1999  
µ PD16738  
BLOCK DIAGRAM  
STHR  
R,/L  
CLK  
STB  
STHL  
VDD1  
64-bit bidirectional shift register  
VSS1  
C1  
C2  
C63  
C64  
D
D
D
D
D
D
00 -  
D
D
D
D
D
D
05  
10 -  
15  
20 -  
25  
Data register  
30 -  
40 -  
50 -  
35  
45  
55  
POL2  
Latch  
POL  
V
DD2  
SS2  
Level shifter  
V
V0 -  
V9  
D/A converter  
Voltage follower output  
VSEL  
S1  
S2  
S3  
S384  
Remark /xxx indicates active low signal.  
RELATIONSHIP BETWEEN OUTPUT CIRCUIT AND D/A CONVERTER  
S1  
S2  
S383  
S384  
5
5
V
0
V
4
Multi-  
plexer  
6-bit D/A converter  
V
5
V
9
POL  
2
Data Sheet S13813EJ1V0DS00  
µ PD16738  
PIN CONFIGURATION (µPD16738N-××× : TCP (TAB package) )  
SS2  
384  
383  
382  
381  
V
S
S
S
S
DD2  
V
R,/L  
POL  
STB  
55  
D
54  
D
53  
D
52  
D
51  
D
50  
D
45  
D
44  
D
43  
D
42  
D
41  
D
40  
D
35  
D
34  
D
33  
D
Copper Foil  
Surface  
32  
D
31  
D
30  
D
STHL  
9
V
8
V
7
V
6
V
5
V
4
V
3
V
2
V
1
V
0
V
DD1  
V
CLK  
SEL  
V
SS1  
V
STHR  
25  
D
24  
D
23  
D
22  
D
21  
D
20  
D
15  
D
14  
D
13  
D
12  
D
11  
D
10  
D
05  
D
04  
D
03  
D
02  
D
01  
D
4
S
00  
D
3
S
2
1
POL2  
S
S
SS1  
V
DD2  
V
SS2  
V
Remark This figure does not specify the TCP package.  
3
Data Sheet S13813EJ1V0DS00  
µ PD16738  
1. PIN FUNCTIONS  
(1/2)  
Pin Symbol  
Pin Name  
Description  
S1 to S384  
D00 to D05  
D10 to D15  
D20 to D25  
D30 to D35  
D40 to D45  
D50 to D55  
R,/L  
Driver output  
The D/A converted 64-gray scale analog voltage is output.  
Display data input  
The display data is input with a width of 36 bits, viz., the gray scale data (6 bits)  
by 6 dots (2 pixels).  
DX0 : LSB, DX5: MSB  
Shift direction control  
input  
These refer to the start pulse input/output pins when driver ICs are connected in  
cascade. The shift directions of the shift registers are as follows.  
R,/L = H : STHR input, S1 S384, STHL output  
R,/L = L : STHL input, S384 S1, STHR output  
STHR  
STHL  
CLK  
Right shift start pulse  
input/output  
R,/L = H : Becomes the start pulse input pin.  
R,/L = L : Becomes the start pulse output pin.  
Left shift start pulse  
input/output  
R,/L = H : Becomes the start pulse output pin.  
R,/L = L : Becomes the start pulse input pin.  
Shift clock input  
Refers to the shift register’s shift clock input. The display data is incorporated into  
the data register at the rising edge.  
At the rising edge of the 64th clock after the start pulse input, the start pulse  
output reaches the high level, thus becoming the start pulse of the next-level  
driver.  
STB  
POL  
Latch input  
The contents of the data register are transferred to the latch circuit at the rising  
edge. And, at the falling edge, the gray scale voltage is supplied to the driver. It  
is necessary to ensure input of one pulse per horizontal period.  
Polarity input  
POL = L : The S2n–1 output uses V0 to V4 as the reference supply. The S2n output  
uses V5 to V9 as the reference supply.  
POL = H: The S2n–1 output uses V5 to V9 as the reference supply. The S2n output  
uses V0 to V4 as the reference supply.  
S2n-1 indicates the odd output: and S2n indicates the even output. Input of the POL  
signal is allowed the setup time (tPOL-STB) with respect to STB’s rising edge.  
POL2  
VSEL  
Data inversion  
POL2 = H : Display data is inverted.  
POL2 = L : Display data is not inverted  
Selects driver voltage.  
Driver voltage selection  
VSEL = H or open : VDD2 = 8.5 V (TYP.)  
VSEL = L : VDD2 = 7.5 V ± 0.5 V  
4
Data Sheet S13813EJ1V0DS00  
µ PD16738  
(2/2)  
Pin Symbol  
V0 to V9  
Pin Name  
Description  
γ -corrected power  
Input the γ -corrected power supplies from outside by using operational amplifier.  
Make sure to maintain the following relationships. During the gray scale voltage  
output, be sure to keep the gray scale level power supply at a constant level.  
VDD2 – 0.1 V > V0 > V1 > V2 > V3 > V4 > 0.5 VDD2  
supplies  
0.5 VDD2 – 0.3 V > V5 > V6 > V7 > V8 > V9 > VSS2 + 0.1 V  
+ 0.3  
VDD1  
VDD2  
VSS1  
VSS2  
Logic power supply  
Driver power supply  
Logic ground  
3.3 V  
8.5 V  
V
V
0.6  
+ 0.5  
1.0  
Grounding  
Grounding  
Driver ground  
Cautions 1. The power start sequence must be VDD1, logic input, and VDD2 & V0 to V9 in that order.  
Reverse this sequence to shut down. (Simultaneous power application to VDD2 and V0 to V9 is  
possible.)  
2. To stabilize the supply voltage, please be sure to insert a 0.1 µF bypass capacitor between  
VDD1-VSS1 and VDD2-VSS2. Furthermore, for increased precision of the D/A converter, insertion of  
a bypass capacitor of about 0.01 µF is also advised between the γ -corrected power supply  
terminals (V  
0, V1, V2, ···, V9) and VSS2.  
5
Data Sheet S13813EJ1V0DS00  
µ PD16738  
2. RELATIONSHIP BETWEEN INPUT DATA AND OUTPUT VOLTAGE VALUE  
This product incorporates a 6-bit D/A converter whose odd output pins and even output pins output respectively  
gray scale voltages of differing polarity with respect to the LCD’s counter electrode (common electrode) voltage. The  
D/A converter consists of ladder resistors and switches.  
The ladder resistors (r0 to r62) are designed so that the ratio of LCD panel γ -compensated voltages to V0’ to V63’  
and V0” to V63” is almost equivalent. For the 2 sets of five γ -compensated power supplies, V0 to V4 and V5 to V9,  
respectively, input gray scale voltages of the same polarity with respect to the common voltage. When fine-gray  
scale voltage precision is not necessary, there is no need to connect a voltage follower circuit to the γ -compensated  
power supplies V1 to V3 and V6 to V8.  
Figure 21 shows the relationship between the driving voltages such as liquid-crystal driving voltages VDD2 and  
VSS2, common electrode potential VCOM, and γ -corrected voltages V0 to V9 and the input data. Be sure to maintain  
the voltage relationships of  
VDD2 – 0.1 V > V0 > V1 > V2 > V3 > V4 > 0.5 VDD2  
0.5 VDD2 – 0.3 V > V5 > V6 > V7 > V8 > V9 > VSS2 + 0.1 V  
Figures 22 and 23 show the relationship between the input data and the output data and the resistance values  
of the resistor strings.  
This driver IC is designed for only single-sided mounting. Therefore, please do not use it for γ -corrected power  
supply level inversion in double-sided mounting.  
Figure 21. Relationship Between Input Data and γ - corrected Power Supply  
VDD2  
Split interval  
0.1 V  
V0  
16  
V
1
16  
V
2
3
16  
15  
V
V4  
0.5 VDD2  
0.3 V  
V5  
15  
16  
16  
V
6
V
7
8
V
16  
V9  
0.1 V  
V
SS2  
00  
10  
20  
30  
3F  
Input Data (HEX)  
6
Data Sheet S13813EJ1V0DS00  
µ PD16738  
Figure 22. Relationship between Input Data and Output Voltage (1/2)  
VDD2 – 0.1 V > V0 > V1 > V2 > V3 > V4 > 0.5 VDD2  
Output Voltage  
( )  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
450  
450  
400  
370  
330  
330  
330  
320  
300  
280  
270  
260  
250  
240  
230  
220  
210  
200  
190  
180  
175  
175  
170  
170  
165  
165  
165  
165  
170  
170  
170  
175  
175  
175  
180  
200  
210  
220  
230  
240  
250  
260  
270  
290  
300  
310  
320  
340  
340  
340  
340  
Data  
00H  
01H  
02H  
03H  
04H  
05H  
06H  
07H  
08H  
09H  
0AH  
0BH  
0CH  
0DH  
0EH  
0FH  
10H  
11H  
12H  
13H  
14H  
15H  
16H  
17H  
18H  
19H  
1AH  
1BH  
1CH  
1DH  
1EH  
1FH  
20H  
21H  
22H  
23H  
24H  
25H  
26H  
27H  
28H  
29H  
2AH  
2BH  
2CH  
2DH  
2EH  
2FH  
30H  
31H  
32H  
33H  
34H  
35H  
36H  
37H  
38H  
39H  
3AH  
3BH  
3CH  
3DH  
3EH  
3FH  
DX5  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
DX4  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
DX3  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
DX2  
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
DX1  
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
DX0  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
r n  
r0  
V0'  
V1'  
V2'  
V3'  
V4'  
V5'  
V6'  
V7'  
V8'  
V9'  
V0  
V0’  
V1’  
V2’  
V3’  
V0  
V1+(V0-V1) ×  
V1+(V0-V1) ×  
V1+(V0-V1) ×  
V1+(V0-V1) ×  
V1+(V0-V1) ×  
V1+(V0-V1) ×  
V1+(V0-V1) ×  
V1+(V0-V1) ×  
V1+(V0-V1) ×  
7170  
6670  
6170  
5670  
5170  
4670  
4170  
3670  
3170  
2670  
2170  
1670  
1220  
770  
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
7670  
7670  
7670  
7670  
7670  
7670  
7670  
7670  
7670  
7670  
7670  
7670  
7670  
7670  
7670  
r1  
r0  
r1  
r2  
r3  
r2  
r3  
r4  
r5  
r6  
r7  
r8  
r9  
V10' V1+(V0-V1) ×  
V11' V1+(V0-V1) ×  
V12' V1+(V0-V1) ×  
V13' V1+(V0-V1) ×  
V14' V1+(V0-V1) ×  
V15' V1+(V0-V1) ×  
r10  
r11  
r12  
r13  
r14  
r15  
r16  
r17  
r18  
r19  
r20  
r21  
r22  
r23  
r24  
r25  
r26  
r27  
r28  
r29  
r30  
r31  
r32  
r33  
r34  
r35  
r36  
r37  
r38  
r39  
r40  
r41  
r42  
r43  
r44  
r45  
r46  
r47  
r48  
r49  
r50  
r51  
r52  
r53  
r54  
r55  
r56  
r57  
r58  
r59  
r60  
r61  
r62  
r14  
r15  
r16  
r17  
V15’  
V16’  
V17’  
370  
V1  
V16' V1  
V17'  
V2+(V1-V2) ×  
3810  
3480  
3150  
2830  
2530  
2250  
1980  
1720  
1470  
1230  
1000  
780  
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
4140  
4140  
4140  
4140  
4140  
4140  
4140  
4140  
4140  
4140  
4140  
4140  
4140  
4140  
4140  
V18' V2+(V1-V2) ×  
V19' V2+(V1-V2) ×  
V20'  
V2+(V1-V2) ×  
V21' V2+(V1-V2) ×  
V22' V2+(V1-V2) ×  
V23' V2+(V1-V2) ×  
V24' V2+(V1-V2) ×  
V25' V2+(V1-V2) ×  
V26' V2+(V1-V2) ×  
V27' V2+(V1-V2) ×  
V28' V2+(V1-V2) ×  
V29' V2+(V1-V2) ×  
V30' V2+(V1-V2) ×  
570  
370  
180  
V31'  
V2+(V1-V2) ×  
V32' V2  
V33'  
V3+(V2-V3) ×  
2590  
2415  
2245  
2075  
1910  
1745  
1580  
1415  
1245  
1075  
905  
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
2765  
2765  
2765  
2765  
2765  
2765  
2765  
2765  
2765  
2765  
2765  
2765  
2765  
2765  
2765  
V34' V3+(V2-V3) ×  
r46  
r47  
r48  
r49  
V35'  
V3+(V2-V3) ×  
V47’  
V48’  
V49’  
V36' V3+(V2-V3) ×  
V37'  
V3+(V2-V3) ×  
V3  
V38' V3+(V2-V3) ×  
V39' V3+(V2-V3) ×  
V40'  
V3+(V2-V3) ×  
V41' V3+(V2-V3) ×  
V42' V3+(V2-V3) ×  
V43' V3+(V2-V3) ×  
V44' V3+(V2-V3) ×  
V45' V3+(V2-V3) ×  
730  
555  
V46'  
V3+(V2-V3) ×  
380  
V47' V3+(V2-V3) ×  
V48' V3  
200  
r60  
r61  
r62  
V61’  
V62’  
V63’  
V49' V5+(V3-V4) ×  
V50' V5+(V3-V4) ×  
4050  
3830  
3600  
3360  
3110  
2850  
2580  
2290  
1990  
1680  
1360  
1020  
680  
/
/
/
/
/
/
/
/
/
/
/
/
/
/
4260  
4260  
4260  
4260  
4260  
4260  
4260  
4260  
4260  
4260  
4260  
4260  
4260  
4260  
V51'  
V5+(V3-V4) ×  
V52' V5+(V3-V4) ×  
V53' V5+(V3-V4) ×  
V54' V5+(V3-V4) ×  
V55' V5+(V3-V4) ×  
V56' V5+(V3-V4) ×  
V4  
V57'  
V5+(V3-V4) ×  
V58' V5+(V3-V4) ×  
V59' V5+(V3-V4) ×  
V60'  
V5+(V3-V4) ×  
V61' V5+(V3-V4) ×  
V62' V5+(V3-V4) ×  
V63' V4  
340  
r total 18835  
Caution Between V4 and V5 terminal is not connected in the chip.  
7
Data Sheet S13813EJ1V0DS00  
µ PD16738  
Figure 23. Relationship between Input Data and Output Voltage (2/2)  
0.5 VDD2 – 0.3 V > V5 > V6 > V7 > V8 > V9 > VSS2 + 0.1 V  
Output voltage  
500  
( )  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
450  
450  
400  
370  
330  
330  
330  
320  
300  
280  
270  
260  
250  
240  
230  
220  
210  
200  
190  
180  
175  
175  
170  
170  
165  
165  
165  
165  
170  
170  
170  
175  
175  
175  
180  
200  
210  
220  
230  
240  
250  
260  
270  
290  
300  
310  
320  
340  
340  
340  
340  
Data  
00H  
01H  
02H  
03H  
04H  
05H  
06H  
07H  
08H  
09H  
0AH  
0BH  
0CH  
0DH  
0EH  
0FH  
10H  
11H  
12H  
13H  
14H  
15H  
16H  
17H  
18H  
19H  
1AH  
1BH  
1CH  
1DH  
1EH  
1FH  
20H  
21H  
22H  
23H  
24H  
25H  
26H  
27H  
28H  
29H  
2AH  
2BH  
2CH  
2DH  
2EH  
2FH  
30H  
31H  
32H  
33H  
34H  
35H  
36H  
37H  
38H  
39H  
3AH  
3BH  
3CH  
3DH  
3EH  
3FH  
DX5  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
DX4  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
DX3  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
DX2  
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
DX1  
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
DX0  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
r n  
r0  
V0"  
V9  
/
7670  
r1  
V1"  
V9+(V8-V9) ×  
V9+(V8-V9) ×  
V9+(V8-V9) ×  
V9+(V8-V9) ×  
V9+(V8-V9) ×  
V9+(V8-V9) ×  
V9+(V8-V9) ×  
V9+(V8-V9) ×  
V9+(V8-V9) ×  
V9+(V8-V9) ×  
V9+(V8-V9) ×  
V9+(V8-V9) ×  
V9+(V8-V9) ×  
V9+(V8-V9) ×  
V9+(V8-V9) ×  
V8  
V
5
V
V
V
V
63’’  
62’’  
61’’  
60’’  
r
r
r
r
62  
61  
60  
59  
1000 / 7670  
1500 / 7670  
2000 / 7670  
2500 / 7670  
3000 / 7670  
3500 / 7670  
4000 / 7670  
4500 / 7670  
5000 / 7670  
5500 / 7670  
6000 / 7670  
6450 / 7670  
6900 / 7670  
r2  
V2"  
r3  
V3"  
r4  
V4"  
r5  
V5"  
r6  
V6"  
r7  
V7"  
r8  
V8"  
r9  
V9"  
r10  
r11  
r12  
r13  
r14  
r15  
r16  
r17  
r18  
r19  
r20  
r21  
r22  
r23  
r24  
r25  
r26  
r27  
r28  
r29  
r30  
r31  
r32  
r33  
r34  
r35  
r36  
r37  
r38  
r39  
r40  
r41  
r42  
r43  
r44  
r45  
r46  
r47  
r48  
r49  
r50  
r51  
r52  
r53  
r54  
r55  
r56  
r57  
r58  
r59  
r60  
r61  
r62  
V10"  
V11"  
V12"  
V13"  
V14"  
V15"  
V16"  
V17"  
V18"  
V19"  
V20"  
V21"  
V22"  
V23"  
V24"  
V25"  
V26"  
V27"  
V28"  
V29"  
V30"  
V31"  
V32"  
V33"  
V34"  
V35"  
V36"  
V37"  
V38"  
V39"  
V40"  
V41"  
V42"  
V43"  
V44"  
V45"  
V46"  
V47"  
V48"  
V49"  
V50"  
V51"  
V52"  
V53"  
V54"  
V55"  
V56"  
V57"  
V58"  
V59"  
V60"  
V61"  
V62"  
V63"  
r49  
r48  
r47  
r46  
V49’’  
V48’’  
V47’’  
V
6
7300  
7670  
330  
660  
990  
/
/
/
4140  
4140  
4140  
V8+(V7-V8) ×  
V8+(V7-V8) ×  
V8+(V7-V8) ×  
V8+(V7-V8) ×  
V8+(V7-V8) ×  
V8+(V7-V8) ×  
V8+(V7-V8) ×  
V8+(V7-V8) ×  
V8+(V7-V8) ×  
V8+(V7-V8) ×  
V8+(V7-V8) ×  
V8+(V7-V8) ×  
V8+(V7-V8) ×  
V8+(V7-V8) ×  
V8+(V7-V8) ×  
V7  
1310 / 4140  
1610 / 4140  
1890 / 4140  
2160 / 4140  
2420 / 4140  
2670 / 4140  
2910 / 4140  
3140 / 4140  
3360 / 4140  
3570 / 4140  
3770 / 4140  
3960  
4140  
175  
350  
520  
690  
855  
1020 / 2765  
1185 / 2765  
1350 / 2765  
1520 / 2765  
1690 / 2765  
1860 / 2765  
2035 / 2765  
2210 / 2765  
2385 / 2765  
2565 / 2765  
/
/
/
/
/
2765  
2765  
2765  
2765  
2765  
r17  
r16  
r15  
r14  
V7+(V6-V7) ×  
V7+(V6-V7) ×  
V7+(V6-V7) ×  
V7+(V6-V7) ×  
V7+(V6-V7) ×  
V7+(V6-V7) ×  
V7+(V6-V7) ×  
V7+(V6-V7) ×  
V7+(V6-V7) ×  
V7+(V6-V7) ×  
V7+(V6-V7) ×  
V7+(V6-V7) ×  
V7+(V6-V7) ×  
V7+(V6-V7) ×  
V7+(V6-V7) ×  
V6  
V17’’  
V16’’  
V15’’  
V
8
r2  
r1  
r0  
V2  
V1  
V0  
’’  
’’  
’’  
210  
430  
660  
900  
1150 / 4260  
1410 / 4260  
1680 / 4260  
1970 / 4260  
2270 / 4260  
2580 / 4260  
2900 / 4260  
3240 / 4260  
3580 / 4260  
3920 / 4260  
/
/
/
/
4260  
4260  
4260  
4260  
V6+(V5-V6) ×  
V6+(V5-V6) ×  
V6+(V5-V6) ×  
V6+(V5-V6) ×  
V6+(V5-V6) ×  
V6+(V5-V6) ×  
V6+(V5-V6) ×  
V6+(V5-V6) ×  
V6+(V5-V6) ×  
V6+(V5-V6) ×  
V6+(V5-V6) ×  
V6+(V5-V6) ×  
V6+(V5-V6) ×  
V6+(V5-V6) ×  
V5  
V
9
r total 18835  
Caution Between V4 and V5 terminal is not connected in the chip.  
8
Data Sheet S13813EJ1V0DS00  
µ PD16738  
3. RELATIONSHIP BETWEEN INPUT DATA AND OUTPUT PIN  
Data format: 6 bits × 2 RGBs (6 dots)  
Input width: 36 bits (2-pixel data)  
R,/L = H (Right shift)  
Output  
Data  
S1  
S2  
S3  
S4  
xxx  
xxx  
S383  
S384  
D00 to D05  
D10 to D15  
D20 to D25  
D30 to D35  
D40 to D45  
D50 to D55  
R,/L = L (Left shift)  
Output  
Data  
S1  
S2  
S3  
S4  
xxx  
xxx  
S383  
S384  
D00 to D05  
D10 to D15  
D20 to D25  
D30 to D35  
D40 to D45  
D50 to D55  
S
2n–1Note  
S2nNote  
POL  
L
V0 to V4  
V5 to V9  
V5 to V9  
V0 to V4  
H
Note S2n-1 (Odd output), S2n (Even output)  
4. RELATIONSHIP BETWEEN STB, POL, AND OUTPUT WAVEFORM  
The output voltage is written to the LCD panel synchronized with the STB falling edge.  
STB  
POL  
S
2n-1  
SelectedvoltageofV  
0
toV  
4
SelectedvoltageofV  
5
toV  
9
SelectedvoltageofV  
0
toV  
4
S
2n  
SelectedvoltageofV  
5
toV  
9
SelectedvoltageofV  
0
toV  
4
SelectedvoltageofV  
5
toV  
9
Hi-Z  
Hi-Z  
Hi-Z  
9
Data Sheet S13813EJ1V0DS00  
µ PD16738  
5. ELECTRICAL SPECIFICATIONS  
Absolute Maximum Ratings (TA = 25 °C, VSS1 = VSS2 = 0 V)  
Parameter  
Logic Part Supply Voltage  
Driver Part Supply Voltage  
Logic Part Input Voltage  
Driver Part Input Voltage  
Logic Part Output Voltage  
Driver Part Output Voltage  
Operating Ambient Temperature  
Storage Temperature  
Symbol  
VDD1  
VDD2  
VI1  
Ratings  
Unit  
V
–0.5 to +4.0  
–0.5 to +10.0  
–0.5 to VDD1 + 0.5  
–0.5 to VDD2 + 0.5  
–0.5 to VDD1 + 0.5  
–0.5 to VDD2 + 0.5  
–10 to +75  
V
V
VI2  
V
VO1  
V
VO2  
V
TA  
°C  
°C  
Tstg  
–55 to +125  
Caution If the absolute maximum rating of even one of the above parameters is exceeded even momentarily,  
the quality of the product may be degraded. Absolute maximum ratings, therefore, specify the values  
exceeding which the product may be physically damaged. Be sure to use the product within the  
range of the absolute maximum ratings.  
Recommended Operating Range (TA = –10 to +75 °C, VSS1 = VSS2 = 0 V)  
Parameter  
Logic Part Supply Voltage  
Driver Part Supply Voltage  
Symbol  
VDD1  
Conditions  
MIN.  
2.7  
TYP.  
3.3  
MAX.  
3.6  
Unit  
V
VSEL = H or open  
VSEL = L  
7.5  
8.5  
9.0  
V
VDD2  
7.0  
7.5  
8.0  
V
High-Level Input Voltage  
Low-Level Input Voltage  
γ -Corrected Voltage  
VIH  
VIL  
0.7 VDD1  
0
VDD1  
V
0.3 VDD1  
VDD2 0.1  
0.5 VDD20.3  
VDD2 0.1  
45  
V
V0 to V4  
V5 to V9  
VO  
0.5 VDD2  
VSS2 + 0.1  
VSS2 + 0.1  
V
V
Driver Part Output Voltage  
Clock Frequency  
V
fCLK  
MHz  
10  
Data Sheet S13813EJ1V0DS00  
µ PD16738  
+0.3  
–0.6  
+0.5  
–1.0  
Electrical Characteristics (TA = –10 to +75 °C, VDD1 = 3.3 V  
VSS1 = VSS2 = 0 V)  
V, VDD2 = 8.5 V  
V (VSEL = H or open),  
Parameter  
Symbol  
IIL  
Condition  
MIN.  
TYP.  
MAX.  
±1.0  
VDD1  
0.1  
Unit  
µA  
V
Input Leak Current  
High-Level Output Voltage  
Low-Level Output Voltage  
γ -Corrected Supply Current  
VOH  
VOL  
Iγ  
STHR (STHL), IOH = 0 mA  
STHR (STHL), IOL = 0 mA  
VDD1 0.1  
0
V
V0 to V4 =  
V0 pin, V5 pin  
V4 pin, V9 pin  
80  
160  
–160  
–0.17  
320  
µA  
µA  
mA  
V5 to V9 = 3.0 V  
–320  
–80  
Note  
Driver Output Current  
IVOH  
IVOL  
VO  
VX = 7.5 V, VOUT = 7.0 V  
VDD2 = 8.0 V  
,
–0.1  
Note  
VX = 0.5 V, VOUT = 1.0 V  
VDD2 = 8.0 V  
,
0.1  
0.23  
mA  
mV  
Output Voltage Deviation  
Input  
data  
V0 = 0.1 V to 1.2 V,  
±20  
±30  
±20  
±30  
±20  
±10  
V0 = VDD2 – 1.2 V to VDD2 – 0.1 V  
V0 = 1.2 V to 0.5 VDD2 – 0.3 V,  
V0 = 0.5 VDD2 to VDD2 – 1.2 V  
V0 = 0.1 V to 0.8 V,  
±10  
±20  
±10  
± 3  
mV  
mV  
mV  
mV  
Output Swing Voltage  
Difference Deviation  
Vp–p1  
Vp–p2  
Vp–p3  
V0 = VDD2 – 0.8 V to VDD2 – 0.1 V  
V0 = 0.8 V to 1.2 V,  
V0 = VDD2 – 1.2 V to VDD2 – 0.8 V  
V0 = 1.2 V to 0.5 VDD2 – 0.3 V ,  
V0 = 0.5 VDD2 to VDD2 –1.2 V  
Output Voltage Range  
VO  
All Input data  
0.1  
VDD2 – 0.1  
4.5  
V
Logic Part Dynamic Current  
Consumption  
IDD1  
VDD1, with no load  
0.8  
5.5  
mA  
Driver Part Dynamic Current  
Consumption  
IDD2  
VDD2 = 9.0 V, with no load  
12  
mA  
Note VX refers to the output voltage of analog output pins S1 to S384. VOUT refers to the voltage applied to analog  
output pins S1 to S384.  
Cautions 1. The STB cycle is defined to be 20 µs at fCLK = 45 MHz.  
2. The TYP. values refer to an all black or all white input pattern. The MAX. value refers to the  
measured values in the dot checkerboard input pattern.  
3. Refers to the current consumption per driver when cascades are connected under the  
assumption of XGA single-sided mounting (8 units).  
11  
Data Sheet S13813EJ1V0DS00  
µ PD16738  
+0.3  
–0.6  
+0.5  
–1.0  
Switching Characteristics (TA = –10 to +75 °C, VDD1 = 3.3 V  
VSS1 = VSS2 = 0 V)  
V, VDD2 = 8.5 V  
V (VSEL = H or open),  
Parameter  
Symbol  
tPLH1  
tPLH2  
tPLH3  
tPHL2  
tPHL3  
CI1  
Condition  
CL = 25 pF  
MIN.  
TYP.  
MAX.  
20  
8
Unit  
ns  
Start Pulse Delay Time  
Driver Output Delay Time  
8
4
VDD2 = 8.5 V ± 0.5 V  
µs  
RL = 10 k,CL = 80 pF  
5.5  
4
11  
8
µs  
µs  
5.5  
4.8  
11  
10  
µs  
Input Capacitance  
STHR (STHL) excluded,  
TA = 25°C  
pF  
CI2  
STHR (STHL),TA = 25°C  
8.6  
15  
pF  
+0.3  
–0.6  
Timing Requirement (TA = –10 to +75 °C, VDD1 = 3.3 V  
V, VSS1 = VSS2 = 0 V, tr = tf = 8.0 ns)  
Parameter  
Clock Pulse Width  
Clock Pulse High Period  
Clock Pulse Low Period  
Data Setup Time  
Symbol  
PWCLK  
PWCLK(H)  
PWCLK(L)  
tSETUP1  
tHOLD1  
Condition  
MIN.  
22  
4
TYP.  
MAX.  
Unit  
ns  
ns  
4
ns  
0
ns  
Data Hold Time  
4
ns  
Start Pulse Setup Time  
Start Pulse Hold Time  
POL2 Setup Time  
POL2 Hold Time  
tSETUP2  
tHOLD2  
tSETUP3  
tHOLD3  
2
ns  
2
ns  
0
ns  
4
ns  
Start Pulse Low Period  
STB Pulse Width  
tSPL  
1
CLK  
CLK  
CLK  
ns  
PWSTB  
tINV  
3
Data Invalid Period  
CLK-STB Time  
1
tCLK-STB  
tSTB-CLK  
tSTB-STH  
CLK ↑ → STB ↑  
STB ↑ → CLK ↑  
0
STB-CLK Time  
10  
3
ns  
Time Between STB and Start  
Pulse  
STB ↑ → STHR(STHL) ↑  
CLK  
POL-STB Time  
STB-POL Time  
tPOL-STB  
tSTB-POL  
POL or ↓ → STB ↑  
STB ↓ → POL or ↑  
6
3
ns  
CLK  
Remark Unless otherwise specified, the input level is defined to be VIH = 0.7 VDD1, VIL = 0.3 VDD1.  
12  
Data Sheet S13813EJ1V0DS00  
µ PD16738  
6. SWITCHING CHARACTERISTICS WAVEFORM (R,/L = H)  
Unless otherwise specified, the input level is defined to be VIH = 0.7 VDD1, VIL = 0.3 VDD1.  
13  
Data Sheet S13813EJ1V0DS00  
µ PD16738  
7. RECOMMENDED SOLDERING CONDITIONS  
The following conditions must be met for soldering conditions of the µPD16738.  
For more details, refer to the Semiconductor Device Mounting Technology Manual (C10535E).  
Please consult with our sales offices in case other soldering process is used, or in case the soldering is done  
under different conditions.  
Type of Surface Mount Device  
µ PD16738N-××× : TCP (TAB package)  
Mounting Condition  
Thermocompression  
Mounting Method  
Soldering  
Condition  
Heating tool 300 to 350°C, heating for 2 to 3 seconds: pressure 100g  
(per solder)  
ACF  
Temporary bonding 70 to 100°C: pressure 3 to 8 kg/cm2 : time 3 to 5  
seconds.  
Real bonding 165 to 180°C: pressure 25 to 45 kg/cm2 : time 30 to 40  
seconds. (When using the anisotropy conductive film SUMIZAC1003 of  
Sumitomo Bakelite, Ltd.)  
(Adhesive  
Conductive Film)  
Caution To find out the detailed conditions for packaging the ACF part, please contact the ACF  
manufacturing company. Be sure to avoid using two or more packaging methods at a time.  
14  
Data Sheet S13813EJ1V0DS00  
µ PD16738  
NOTES FOR CMOS DEVICES  
1
PRECAUTION AGAINST ESD FOR SEMICONDUCTORS  
Note:  
Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and  
ultimately degrade the device operation. Steps must be taken to stop generation of static electricity  
as much as possible, and quickly dissipate it once, when it has occurred. Environmental control  
must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using  
insulators that easily build static electricity. Semiconductor devices must be stored and transported  
in an anti-static container, static shielding bag or conductive material. All test and measurement  
tools including work bench and floor should be grounded. The operator should be grounded using  
wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need  
to be taken for PW boards with semiconductor devices on it.  
2
HANDLING OF UNUSED INPUT PINS FOR CMOS  
Note:  
No connection for CMOS device inputs can be cause of malfunction. If no connection is provided  
to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence  
causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels  
of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused  
pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of  
being an output pin. All handling related to the unused pins must be judged device by device and  
related specifications governing the devices.  
3
STATUS BEFORE INITIALIZATION OF MOS DEVICES  
Note:  
Power-on does not necessarily define initial status of MOS device. Production process of MOS  
does not define the initial operation status of the device. Immediately after the power source is  
turned ON, the devices with reset function have not yet been initialized. Hence, power-on does  
not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the  
reset signal is received. Reset operation must be executed immediately after power-on for devices  
having reset function.  
15  
Data Sheet S13813EJ1V0DS00  
µ PD16738  
Reference Documents  
NEC Semiconductor Device Reliability / Quality Control System (C10983E)  
Quality Grades to NEC’s Semiconductor Devices (C11531E)  
The information in this document is subject to change without notice. Before using this document, please  
confirm that this is the latest version.  
No part of this document may be copied or reproduced in any form or by any means without the prior written  
consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in  
this document.  
NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property  
rights of third parties by or arising from use of a device described herein or any other liability arising from use  
of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other  
intellectual property rights of NEC Corporation or others.  
Descriptions of circuits, software, and other related information in this document are provided for illustrative  
purposes in semiconductor product operation and application examples. The incorporation of these circuits,  
software, and information in the design of the customer's equipment shall be done under the full responsibility  
of the customer. NEC Corporation assumes no responsibility for any losses incurred by the customer or third  
parties arising from the use of these circuits, software, and information.  
While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices,  
the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or  
property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety  
measures in its design, such as redundancy, fire-containment, and anti-failure features.  
NEC devices are classified into the following three quality grades:  
"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a  
customer designated "quality assurance program" for a specific application. The recommended applications of  
a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device  
before using it in a particular application.  
Standard: Computers, office equipment, communications equipment, test and measurement equipment,  
audio and visual equipment, home electronic appliances, machine tools, personal electronic  
equipment and industrial robots  
Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster  
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed  
for life support)  
Specific: Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life  
support systems or medical equipment for life support, etc.  
The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books.  
If customers intend to use NEC devices for applications other than those specified for Standard quality grade,  
they should contact an NEC sales representative in advance.  
M7 98. 8  

相关型号:

UPD16740N-XXX

LCD Display Driver
ETC

UPD16742N-XXX

LCD Display Driver
ETC

UPD16750

384-OUTPUT TFT-LCD SOURCE DRIVER COMPATIBLE WITH 256-GRAY SCALES
NEC

UPD16750N

384-OUTPUT TFT-LCD SOURCE DRIVER COMPATIBLE WITH 256-GRAY SCALES
NEC

UPD16750N-XXX

LCD Display Driver
NEC

UPD16753

UPD16753 Data Sheet | Data Sheet[02/2002]
ETC

UPD16753N-XXX

Liquid Crystal Driver, 384-Segment, MOS
NEC

UPD16754

UPD16754 Data Sheet | Data Sheet[04/2003]
ETC

UPD16754N-XXX

Liquid Crystal Driver, 384-Segment, MOS, TCP
NEC

UPD16770

UPD16770 Data Sheet | Data Sheet[06/2001]
ETC

UPD16770A

UPD16770A Data Sheet | Data Sheet[05/2001]
ETC

UPD16770B

UPD16770B Data Sheet | Data Sheet[05/2001]
ETC