UPD16770 [ETC]

UPD16770 Data Sheet | Data Sheet[06/2001] ; UPD16770数据表|数据表[ 06/2001 ]\n
UPD16770
型号: UPD16770
厂家: ETC    ETC
描述:

UPD16770 Data Sheet | Data Sheet[06/2001]
UPD16770数据表|数据表[ 06/2001 ]\n

光电二极管
文件: 总20页 (文件大小:130K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATA SHEET  
MOS INTEGRATED CIRCUIT  
µ PD16770  
420-OUTPUT TFT-LCD SOURCE DRIVER  
(COMPATIBLE WITH 64-GRAY SCALES)  
DESCRIPTION  
The µ PD16770 is a source driver for TFT-LCDs capable of dealing with displays with 64-gray scales. Data input is  
based on digital input configured as 6 bits by 6 dots (2 pixels), which can realize a full-color display of 260,000 colors  
by output of 64 values γ -corrected by an internal D/A converter and 5-by-2 external power modules.  
Because the output dynamic range is as large as VSS2 + 0.1 V to VDD2 – 0.1 V, level inversion operation of the  
LCD’s common electrode is rendered unnecessary. Also, to be able to deal with dot-line inversion, n-line inversion  
and column line inversion when mounted on a single side, this source driver is equipped with a built-in 6-bit D/A  
converter circuit whose odd output pins and even output pins respectively output gray scale voltages of differing  
polarity. Assuring a clock frequency of 45 MHz when driving at 2.3 V, this driver is applicable to SXGA+ standard  
TFT-LCD panels.  
FEATURES  
• CMOS level input (2.3 to 3.6 V)  
• 420 Outputs  
• Input of 6 bits (gray scale data) by 6 dots  
• Capable of outputting 64 values by means of 5-by-2 external power modules (10 units) and a D/A converter  
• Logic power supply voltage (VDD1): 2.3 to 3.6 V  
• Driver power supply voltage (VDD2): 8.5 V ± 0.5 V  
• High-speed data transfer: fCLK = 45 MHz (internal data transfer speed when operating at VDD1 = 2.3 V)  
• Output dynamic range VSS2 + 0.1 V to VDD2 – 0.1 V  
• Apply for dot-line inversion, n-line inversion and column line inversion  
• Output Voltage polarity inversion function (POL)  
• Display data inversion function (Capable of controlling by each input port) (POL21, POL22)  
• Current consumption control function (LPC, HPC, Bcont)  
• Slim chip  
ORDERING INFORMATION  
Part Number  
Package  
µ PD16770N -×××  
TCP (TAB package)  
Remark The TCP’s external shape is customized. To order the required shape, please contact one of our sales  
representatives.  
The information in this document is subject to change without notice. Before using this document, please  
confirm that this is the latest version.  
Not all devices/types available in every country. Please check with local NEC representative for  
availability and additional information.  
Document No. S14413EJ1V1DS00 (1st edition)  
Date Published June 2001 NS CP(K)  
Printed in Japan  
The mark shows major revised points.  
1999  
©
µ PD16770  
1. BLOCK DIAGRAM  
STHR  
R,/L  
CLK  
STHL  
V
DD1  
70-bit bidirectional shift register  
V
SS1  
STB  
C1  
C2  
C69  
C70  
D
D
D
D
D
D
00 -  
D
D
D
D
D
D
05  
10 -  
15  
20 -  
25  
30 -  
40 -  
50 -  
35  
45  
55  
Data register  
POL21,  
POL22  
Latch  
POL  
V
V
DD2  
SS2  
Level shifter  
V
0 -  
V
9
D/A converter  
HPC  
LPC  
Voltage follower output  
Bcont  
S
1
S
2
S
3
S
420  
Remark /xxx indicates active low signal.  
2. RELATIONSHIP BETWEEN OUTPUT CIRCUIT AND D/A CONVERTER  
S
1
S
2
S
419  
S
420  
5
5
V
0
V
4
Multi-  
plexer  
6-bit D/A converter  
V
5
V
9
POL  
2
Data Sheet S14413EJ1V1DS  
µ PD16770  
3. PIN CONFIGURATION (µ PD16770N-xxx : Copper Foil Surface, Face-up)  
S420  
S419  
S418  
S417  
STHL  
D55  
D54  
D53  
D52  
D51  
D50  
D45  
D44  
D43  
D42  
D41  
D40  
D35  
D34  
D33  
D32  
D31  
D30  
VDD1  
R,/L  
V9  
V8  
V7  
V6  
V5  
VDD2  
Copper Foil  
Surface  
VSS2  
Bcont  
V4  
V3  
V2  
V1  
V0  
HPC  
VSS1  
LPC  
CLK  
STB  
POL  
POL21  
POL22  
D25  
D24  
D23  
D22  
D21  
D20  
D15  
D14  
D13  
D12  
D11  
D10  
D05  
D04  
D03  
S4  
S3  
S2  
S1  
D02  
D01  
D00  
STHR  
Remark This figure does not specify the TCP package.  
3
Data Sheet S14413EJ1V1DS  
µ PD16770  
4. PIN FUNCTIONS  
(1/2)  
Pin Symbol  
S1 to S420  
D00 to D05  
D10 to D15  
D20 to D25  
D30 to D35  
D40 to D45  
D50 to D55  
R,/L  
Pin Name  
I/O  
O
I
Description  
Driver  
The D/A converted 64-gray-scale analog voltage is output.  
Display data  
The display data is input with a width of 36 bits, viz., the gray scale data (6 bits)  
by 6 dots (2 pixels).  
DX0: LSB, DX5: MSB  
Shift direction control  
I
Refers to the shift direction control. The shift directions of the shift registers  
are as follows.  
R,/L = H: STHR input, S1 S420, STHL output  
R,/L = L: STHL input, S420 S1, STHR output  
These refer to the start pulse I/O pins when driver ICs are connected in  
cascade. Loading of display data starts when H is read at the rising edge of  
CLK.  
STHR  
STHL  
CLK  
Right shift start pulse  
Left shift start pulse  
Shift clock  
I/O  
I/O  
I
R,/L = H (right shift): STHR input, STHL output  
R,/L = L (left shift): STHL input, STHR output  
The start pulse width (H level) for next-level drivers is 1CLK.  
Refers to the shift register’s shift clock input. The display data is loaded into  
the data register at the rising edge.  
At the rising edge of the 70th clock after the start pulse input, the start pulse  
output reaches the high level, thus becoming the start pulse of the next-level  
driver. If 72-clock pulses are input after input of the start pulse, input of display  
data is halted automatically. The contents of the shift register are cleared at  
the STB’s rising edge.  
STB  
POL  
Latch  
I
I
The contents of the data register are transferred to the latch circuit at the rising  
edge. And, at the falling edge, the gray scale voltage is supplied to the driver.  
It is necessary to ensure input of one pulse per horizontal period.  
POL = L: The S2n–1 output uses V0 to V4 as the reference supply. The S2n output  
uses V5 to V9 as the reference supply.  
Polarity  
POL = H: The S2n–1 output uses V5 to V9 as the reference supply. The S2n  
output uses V0 to V4 as the reference supply.  
S2n-1 indicates the odd output: and S2n indicates the even output. Input of the  
POL signal is allowed the setup time (tPOL-STB) with respect to STB’s rising  
edge.  
POL21, POL22 Data inversion  
I
Data inversion can invert when display data is loaded.  
POL21: Invert/not invert of display data D00 to D05, D10 to D15, D20 to D25.  
POL22: Invert/not invert of display data D30 to D35, D40 to D45, D50 to D55.  
POL21, POL22 = H : Display data is inverted.  
POL21, POL22 = L : Display data is not inverted.  
LPC  
HPC  
Low power control  
High power control  
I
I
Controls the write function of the driver section by digitally controlling the bypass  
current of the output amplifier.  
This pin is pulled up to the VDD1 power supply inside the IC.  
Refer to 9. BIAS CURRENT CONTROL PIN.  
4
Data Sheet S14413EJ1V1DS  
µ PD16770  
(2/2)  
Pin Symbol  
Bcont  
Pin Name  
Bias control  
I/O  
I
Description  
This pin can be used to finely control the bias current inside the output  
amplifier. When this fine-control function is not required, leave this pin open.  
Refer to 9. BIAS CURRENT CONTROL PIN.  
V0 to V9  
γ -corrected power  
Input the γ -corrected power supplies from outside by using operational  
supplies  
amplifier. Make sure to maintain the following relationships. During the gray  
scale voltage output, be sure to keep the gray scale level power supply at a  
constant level.  
VDD2 – 0.1 V V0 > V1 > V2 > V3 > V4 > 0.5 VDD2 > V5 > V6 > V7 > V8 > V9 VSS2 + 0.1 V  
VDD1  
VDD2  
VSS1  
VSS2  
Logic power supply  
Driver power supply  
Logic ground  
2.3 to 3.6 V  
8.5 V ± 0.5 V  
Grounding  
Grounding  
Driver ground  
Cautions 1. The power start sequence must be VDD1, logic input, and VDD2 & V0 to V9 in that order.  
Reverse this sequence to shut down.  
2. To stabilize the supply voltage, please be sure to insert a 0.1 µF bypass capacitor between  
V
DD1-VSS1 and VDD2-VSS2. Furthermore, for increased precision of the D/A converter, insertion of a  
bypass capacitor of about 0.01 µF is also advised between the γ -corrected power supply  
terminals (V , V , V , ···, V ) and VSS2.  
0
1
2
9
5
Data Sheet S14413EJ1V1DS  
µ PD16770  
5. RELATIONSHIP BETWEEN INPUT DATA AND OUTPUT VOLTAGE VALUE  
This product incorporates a 6-bit D/A converter whose odd output pins and even output pins output respectively  
gray scale voltages of differing polarity with respect to the LCD’s counter electrode (common electrode) voltage. The  
D/A converter consists of ladder resistors and switches.  
The ladder resistors (r0 to r62) are designed so that the ratio of LCD panel γ -compensated voltages to V0’ to V63’  
and V0” to V63” is almost equivalent. For the 2 sets of five γ -compensated power supplies, V0 to V4 and V5 to V9,  
respectively, input gray scale voltages of the same polarity with respect to the common voltage. When fine gray  
scale voltage precision is not necessary, there is no need to connect a voltage follower circuit to the γ -compensated  
power supplies V1 to V3 and V6 to V8.  
Figure 5-1 shows the relationship between the driving voltages such as liquid-crystal driving voltages VDD2 and  
VSS2, common electrode potential VCOM, and γ -corrected voltages V0 to V9 and the input data.  
Be sure to maintain the voltage relationships as follows:  
VDD2 – 0.1 V V0 > V1 > V2 > V3 > V4 > 0.5 VDD2 > V  
5
> V  
6
> V  
7
> V  
8
> V VSS2 + 0.1 V.  
9
Figures 52 and 53 show the relationship between the input data and the output data and the resistance values of  
the resistor strings.  
Figure 51. Relationship between Input Data and γ - corrected Power Supply  
V
DD2  
Split interval  
0.1 V  
V
0
16  
V
1
16  
16  
V
V
2
3
15  
V
4
V
COM  
0.5 VDD2  
V
5
15  
16  
V
6
V
7
16  
V
8
16  
V
9
0.1 V  
V
SS2  
00  
10  
20  
30  
3F  
Input Data (HEX)  
6
Data Sheet S14413EJ1V1DS  
µ PD16770  
Figure 52. Relationship between Input Data and Output voltage  
VDD2 – 0.1 V V0 > V1 > V2 > V3 > V4 0.5 VDD2, POL21, POL22 = L  
DX5 DX4 DX3 DX2 DX1 DX0  
DATA  
Output Voltage  
r n( )  
V
0
V
0
'
00H  
01H  
02H  
03H  
04H  
05H  
06H  
07H  
08H  
09H  
0AH  
0BH  
0CH  
0DH  
0EH  
0FH  
10H  
11H  
12H  
13H  
14H  
15H  
16H  
17H  
18H  
19H  
1AH  
1BH  
1CH  
1DH  
1EH  
1FH  
20H  
21H  
22H  
23H  
24H  
25H  
26H  
27H  
28H  
29H  
2AH  
2BH  
2CH  
2DH  
2EH  
2FH  
30H  
31H  
32H  
33H  
34H  
35H  
36H  
37H  
38H  
39H  
3AH  
3BH  
3CH  
3DH  
3EH  
3FH  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
V0' V0  
r0  
800  
750  
700  
650  
600  
550  
550  
500  
500  
400  
r
r
r
r
0
1
2
3
V1' V1+(V0-V1)×  
V2' V1+(V0-V1)×  
V3' V1+(V0-V1)×  
V4' V1+(V0-V1)×  
V5' V1+(V0-V1)×  
V6' V1+(V0-V1)×  
V7' V1+(V0-V1)×  
V8' V1+(V0-V1)×  
V9' V1+(V0-V1)×  
7250 /  
6500 /  
5800 /  
5150 /  
4550 /  
4000 /  
3450 /  
2950 /  
2450 /  
2050 /  
1650 /  
1300 /  
950 /  
8050  
8050  
8050  
8050  
8050  
8050  
8050  
8050  
8050  
8050  
8050  
8050  
8050  
8050  
8050  
r1  
r2  
r3  
r4  
r5  
r6  
r7  
r8  
r9  
V
V
V
1
'
'
'
2
3
V
10' V1+(V0-V1)×  
r10 400  
r11 350  
r12 350  
r13 350  
r14 300  
r15 300  
r16 300  
r17 250  
r18 250  
r19 250  
r20 200  
r21 200  
r22 200  
r23 150  
r24 150  
r25 150  
r26 150  
r27 100  
r28 100  
r29 100  
r30 100  
r31 100  
r32 100  
r33 100  
r34 100  
r35 100  
r36 100  
r37 100  
r38 100  
r39 100  
r40 100  
r41 100  
r42 100  
r43 100  
r44 100  
r45 100  
r46 100  
r47 100  
r48 100  
r49 100  
r50 100  
r51 100  
r52 100  
r53 150  
r54 150  
r55 150  
r56 200  
r57 200  
r58 250  
r59 250  
r60 300  
r61 500  
r62 800  
rtotal 15850  
V11' V1+(V0-V1)×  
V
V
12' V1+(V0-V1)×  
13' V1+(V0-V1)×  
r
r
14  
15  
V
V
15  
'
'
V14' V1+(V0-V1)×  
15' V1+(V0-V1)×  
V16' V1  
17' V2+(V1-V2)×  
V18' V2+(V1-V2)×  
19' V2+(V1-V2)×  
V20' V2+(V1-V2)×  
21' V2+(V1-V2)×  
V22' V2+(V1-V2)×  
600 /  
300 /  
V
V
1
16  
V
2450 /  
2200 /  
1950 /  
1700 /  
1500 /  
1300 /  
1100 /  
950 /  
800 /  
650 /  
500 /  
400 /  
2750  
2750  
2750  
2750  
2750  
2750  
2750  
2750  
2750  
2750  
2750  
2750  
2750  
2750  
2750  
r
r
16  
17  
V
17  
'
V
V
V
V
23' V2+(V1-V2)×  
24' V2+(V1-V2)×  
V25' V2+(V1-V2)×  
26' V2+(V1-V2)×  
V27' V2+(V1-V2)×  
28' V2+(V1-V2)×  
V29' V2+(V1-V2)×  
30' V2+(V1-V2)×  
V31' V2+(V1-V2)×  
V
V
300 /  
200 /  
100 /  
V
V
V
32' V2  
33' V3+(V2-V3)×  
1500 /  
1400 /  
1300 /  
1200 /  
1100 /  
1000 /  
900 /  
800 /  
700 /  
600 /  
500 /  
400 /  
300 /  
200 /  
100 /  
1600  
1600  
1600  
1600  
1600  
1600  
1600  
1600  
1600  
1600  
1600  
1600  
1600  
1600  
1600  
V34' V3+(V2-V3)×  
35' V3+(V2-V3)×  
V36' V3+(V2-V3)×  
37' V3+(V2-V3)×  
V38' V3+(V2-V3)×  
39' V3+(V2-V3)×  
V40' V3+(V2-V3)×  
V
V
V
V
V
41' V3+(V2-V3)×  
42' V3+(V2-V3)×  
r
r
r
46  
47  
48  
V43' V3+(V2-V3)×  
44' V3+(V2-V3)×  
V45' V3+(V2-V3)×  
46' V3+(V2-V3)×  
V47' V3+(V2-V3)×  
48' V3  
V49' V4+(V3-V4)×  
V
V
V
47  
'
'
'
V
V
3
48  
V
49  
V
r49  
3350 /  
3250 /  
3150 /  
3050 /  
2950 /  
2800 /  
2650 /  
2500 /  
2300 /  
2100 /  
1850 /  
1600 /  
1300 /  
800 /  
3450  
3450  
3450  
3450  
3450  
3450  
3450  
3450  
3450  
3450  
3450  
3450  
3450  
3450  
V
V
50' V4+(V3-V4)×  
51' V4+(V3-V4)×  
V52' V4+(V3-V4)×  
53' V4+(V3-V4)×  
V54' V4+(V3-V4)×  
55' V4+(V3-V4)×  
V56' V4+(V3-V4)×  
57' V4+(V3-V4)×  
V58' V4+(V3-V4)×  
V
r
r
60  
61  
V
V
61  
'
V
V
V
62  
'
r
62  
V
V
59' V4+(V3-V4)×  
60' V4+(V3-V4)×  
V
4
63  
'
V61' V4+(V3-V4)×  
62' V4+(V3-V4)×  
V63' V4  
V
Caution There is no connection between V4 and V5 terminal in the chip.  
7
Data Sheet S14413EJ1V1DS  
µ PD16770  
Figure 53. Relationship between Input Data and Output voltage  
0.5 VDD2 V4 > V5 > V6 > V7 > V8 > V9 VSS2 + 0.1 V, POL21, POL22 = L  
DX5 DX4 DX3 DX2 DX1 DX0  
( )  
DATA  
rn  
r0  
r1  
r2  
r3  
r4  
r5  
r6  
r7  
r8  
r9  
Output Voltage  
V
V
63''  
62''  
V
5
00H  
01H  
02H  
03H  
04H  
05H  
06H  
07H  
08H  
09H  
0AH  
0BH  
0CH  
0DH  
0EH  
0FH  
10H  
11H  
12H  
13H  
14H  
15H  
16H  
17H  
18H  
19H  
1AH  
1BH  
1CH  
1DH  
1EH  
1FH  
20H  
21H  
22H  
23H  
24H  
25H  
26H  
27H  
28H  
29H  
2AH  
2BH  
2CH  
2DH  
2EH  
2FH  
30H  
31H  
32H  
33H  
34H  
35H  
36H  
37H  
38H  
39H  
3AH  
3BH  
3CH  
3DH  
3EH  
3FH  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
V0'' V9  
800  
750  
700  
650  
600  
550  
550  
500  
500  
400  
r
r
62  
61  
V1'' V9+(V8-V9)×  
V2'' V9+(V8-V9)×  
V3'' V9+(V8-V9)×  
V4'' V9+(V8-V9)×  
V5'' V9+(V8-V9)×  
V6'' V9+(V8-V9)×  
V7'' V9+(V8-V9)×  
V8'' V9+(V8-V9)×  
V9'' V9+(V8-V9)×  
V10'' V9+(V8-V9)×  
V11'' V9+(V8-V9)×  
V12'' V9+(V8-V9)×  
V13'' V9+(V8-V9)×  
V14'' V9+(V8-V9)×  
V15'' V9+(V8-V9)×  
V16'' V8  
800 /  
1550 /  
2250 /  
2900 /  
3500 /  
4050 /  
4600 /  
5100 /  
5600 /  
6000 /  
6400 /  
6750 /  
7100 /  
7450 /  
7750 /  
8050  
8050  
8050  
8050  
8050  
8050  
8050  
8050  
8050  
8050  
8050  
8050  
8050  
8050  
8050  
V
61''  
60''  
r
r
60  
59  
V
r10 400  
r11 350  
r12 350  
r13 350  
r14 300  
r15 300  
r16 300  
r17 250  
r18 250  
r19 250  
r20 200  
r21 200  
r22 200  
r23 150  
r24 150  
r25 150  
r26 150  
r27 100  
r28 100  
r29 100  
r30 100  
r31 100  
r32 100  
r33 100  
r34 100  
r35 100  
r36 100  
r37 100  
r38 100  
r39 100  
r40 100  
r41 100  
r42 100  
r43 100  
r44 100  
r45 100  
r46 100  
r47 100  
r48 100  
r49 100  
r50 100  
r51 100  
r52 100  
r53 150  
r54 150  
r55 150  
r56 200  
r57 200  
r58 250  
r59 250  
r60 300  
r61 500  
r62 800  
rtotal 15850  
r
49  
V
V
V
49''  
48''  
47''  
r
r
48  
47  
V
6
V17'' V8+(V7-V8)×  
V18'' V8+(V7-V8)×  
V19'' V8+(V7-V8)×  
V20'' V8+(V7-V8)×  
V21'' V8+(V7-V8)×  
V22'' V8+(V7-V8)×  
V23'' V8+(V7-V8)×  
V24'' V8+(V7-V8)×  
V25'' V8+(V7-V8)×  
V26'' V8+(V7-V8)×  
V27'' V8+(V7-V8)×  
V28'' V8+(V7-V8)×  
V29'' V8+(V7-V8)×  
V30'' V8+(V7-V8)×  
V31'' V8+(V7-V8)×  
V32'' V7  
300 /  
550 /  
800 /  
2750  
2750  
2750  
2750  
2750  
2750  
2750  
2750  
2750  
2750  
2750  
2750  
2750  
2750  
2750  
r
46  
1050 /  
1250 /  
1450 /  
1650 /  
1800 /  
1950 /  
2100 /  
2250 /  
2350 /  
2450 /  
2550 /  
2650 /  
V33'' V7+(V6-V7)×  
V34'' V7+(V6-V7)×  
V35'' V7+(V6-V7)×  
V36'' V7+(V6-V7)×  
V37'' V7+(V6-V7)×  
V38'' V7+(V6-V7)×  
V39'' V7+(V6-V7)×  
V40'' V7+(V6-V7)×  
V41'' V7+(V6-V7)×  
V42'' V7+(V6-V7)×  
V43'' V7+(V6-V7)×  
V44'' V7+(V6-V7)×  
V45'' V7+(V6-V7)×  
V46'' V7+(V6-V7)×  
V47'' V7+(V6-V7)×  
V48'' V6  
100 /  
200 /  
300 /  
400 /  
500 /  
600 /  
700 /  
800 /  
900 /  
1000 /  
1100 /  
1200 /  
1300 /  
1400 /  
1500 /  
1600  
1600  
1600  
1600  
1600  
1600  
1600  
1600  
1600  
1600  
1600  
1600  
1600  
1600  
1600  
r
r
r
r
17  
16  
15  
14  
V
17''  
16''  
V
V
8
V
15''  
V49'' V6+(V5-V6)×  
V50'' V6+(V5-V6)×  
V51'' V6+(V5-V6)×  
V52'' V6+(V5-V6)×  
V53'' V6+(V5-V6)×  
V54'' V6+(V5-V6)×  
V55'' V6+(V5-V6)×  
V56'' V6+(V5-V6)×  
V57'' V6+(V5-V6)×  
V58'' V6+(V5-V6)×  
V59'' V6+(V5-V6)×  
V60'' V6+(V5-V6)×  
V61'' V6+(V5-V6)×  
V62'' V6+(V5-V6)×  
100 /  
200 /  
300 /  
400 /  
500 /  
650 /  
800 /  
950 /  
1150 /  
1350 /  
1600 /  
1850 /  
2150 /  
2650 /  
3450  
3450  
3450  
3450  
3450  
3450  
3450  
3450  
3450  
3450  
3450  
3450  
3450  
3450  
r
2
V
2
''  
r
r
1
0
V
1
''  
V
0
''  
V
9
V
63'' V5  
Caution There is no connection between V4 and V5 terminal in the chip.  
8
Data Sheet S14413EJ1V1DS  
µ PD16770  
6. RELATIONSHIP BETWEEN INPUT DATA AND OUTPUT PIN  
Data format: 6 bits × 2 RGBs (6 dots)  
Input width: 36 bits (2-pixel data)  
R,/L = H (Right shift)  
Output  
Data  
S1  
S2  
S3  
S4  
xxx  
xxx  
S419  
S420  
D00 to D05  
D10 to D15  
D20 to D25  
D30 to D35  
D40 to D45  
D50 to D55  
R,/L = L (Left shift)  
Output  
Data  
S1  
S2  
S3  
S4  
xxx  
xxx  
S419  
S420  
D00 to D05  
D10 to D15  
D20 to D25  
D30 to D35  
D40 to D45  
D50 to D55  
Note  
Note  
POL  
L
S2n–1  
S2n  
V0 to V4  
V5 to V9  
V5 to V9  
V0 to V4  
H
Note S2n-1 (Odd output), S2n (Even output)  
7. RELATIONSHIP BETWEEN STB, POL AND OUTPUT WAVEFORM  
The output voltage is written to the LCD panel synchronized with the STB falling edge.  
STB  
POL  
S
2n-1  
Selected voltage V  
0
toV  
4
Selected voltage V  
5
toV  
9
Selected voltage V  
0
toV  
4
S
2n  
Selected voltage V  
0
toV  
4
Selected voltage V  
5
toV  
9
Selected voltage V  
5
toV  
9
Hi-Z  
Hi-Z  
Hi-Z  
9
Data Sheet S14413EJ1V1DS  
µ PD16770  
8. RELATIONSHIP BETWEEN STB, CLK, AND OUTPUT WAVEFORM  
The output voltage is written to the LCD panel synchronized with the STB falling edge.  
Figure 81. Output Circuit Block Diagram  
Output Amp  
-
+
DAC  
SW1  
Sn (VOUT)  
VAMP(IN)  
Figure 82. Output Circuit Timing Waveform  
[1]  
[2]  
CLK  
(External Input)  
STB  
(External Input)  
SW1 : ON  
SW1 : OFF  
SW1 : ON  
V
AMP(IN)  
S
n
(VOUT:External Output)  
Output  
Hi-Z  
Output  
Remarks 1. STB = L : SW1 = ON, STB = H : SW1 = OFF  
2. STB = “H” is acknowledged at timing [1].  
3. The display data latch is completed at timing [2] and the input voltage  
(Vamp (in) : gray-scale level voltage) of the output amplifier changes.  
10  
Data Sheet S14413EJ1V1DS  
µ PD16770  
9. BIAS CURRENT CONTROL PIN  
The µ PD16770 has a power control function which can switch the bias current of the output amplifier between four  
levels and a bias control function (Bcont) which can be used to finely control the bias current.  
<Power control function>  
The bias current of the output amplifier can be switched between four levels using LPC (Low Power Control) pins  
and HPC (High Power Control) pins.  
Power mode  
High  
LPC  
HPC  
L
L
Mid  
H or open  
L
L
Normal  
Low  
H or open  
H or open  
H or open  
Following graph shows the relationship between each power modes and bias current.  
HIGH  
MID  
NOMAL  
LOW  
6.00  
7.00  
8.00  
9.00  
V
DD2  
Remark This relationship is founded on results of simulation and don’t assuring a characteristics of this  
product.  
11  
Data Sheet S14413EJ1V1DS  
µ PD16770  
<Bias Current Control Function (Bcont)>  
It is possible to fine-control the current consumption by using the bias current of the output amplifier control  
function (Bcont pin). When using this function, connect this pin to the stabilized ground potential (VSS2) via an  
external resistor (REXT). When not using this function, leave this pin open.  
Figure91. Bias Current Control Function (Bcont)  
H/L  
H/L  
HPC  
LPC  
PD16770  
µ
Bcont  
REXT  
Refer to the table below for the percentage of current regulation when using the bias current control function.  
Table91. Current Consumption Regulation Percentage Compared to Normal Mode  
Current Consumption Regulation Percentage  
REXT  
LPC = H, HPC = H/open  
LPC = H/open, HPC = H/open  
VDD1 = 3.3 V  
VDD2 = 8.7 V  
(open)  
50 kΩ  
100%  
110%  
115%  
120%  
65%  
70%  
80%  
85%  
20 kΩ  
10 kΩ  
Remark The above current consumption regulation percentages are founded on results of  
simulation and don’t assuring a characteristics of this product.  
Caution Because the power and bias-current control functions control the bias current in the output  
amplifier and regulate the over-all current consumption of the driver IC, when this occurs, the  
characteristics of the output amplifier will simultaneously change. Therefore, when using these  
functions, be sure to sufficiently evaluate the picture quality.  
12  
Data Sheet S14413EJ1V1DS  
µ PD16770  
10. ELECTRICAL SPECIFICATIONS  
Absolute Maximum Ratings (TA = 25°C, VSS1 = VSS2 = 0 V)  
Parameter  
Logic Part Supply Voltage  
Driver Part Supply Voltage  
Logic Part Input Voltage  
Driver Part Input Voltage  
Logic Part Output Voltage  
Driver Part Output Voltage  
Operating Ambient Temperature  
Storage Temperature  
Symbol  
VDD1  
VDD2  
VI1  
Rating  
Unit  
V
–0.5 to +4.0  
–0.5 to +10.0  
–0.5 to VDD1 + 0.5  
–0.5 to VDD2 + 0.5  
–0.5 to VDD1 + 0.5  
–0.5 to VDD2 + 0.5  
–10 to +75  
V
V
VI2  
V
VO1  
V
VO2  
V
TA  
°C  
°C  
Tstg  
–55 to +125  
Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any  
parameter. That is, the absolute maximum ratings are rated values at which the product is on the  
verge of suffering physical damage, and therefore the product must be used under conditions that  
ensure that the absolute maximum ratings are not exceeded.  
Recommended Operating Range (TA = –10 to +75°C, VSS1 = VSS2 = 0 V)  
Parameter  
Symbol  
VDD1  
VDD2  
VIH  
Conditions  
MIN.  
2.3  
TYP.  
8.5  
MAX.  
3.6  
Unit  
V
Logic Part Supply Voltage  
Driver Part Supply Voltage  
High-Level Input Voltage  
Low-Level Input Voltage  
γ -Corrected Voltage  
8.0  
9.0  
V
0.7 VDD1  
0
VDD1  
V
VIL  
0.3 VDD1  
VDD2 0.1  
VDD2 0.1  
45  
V
V0 to V9  
VO  
VSS2 + 0.1  
VSS2 + 0.1  
V
Driver Part Output Voltage  
Maximum Clock Frequency  
V
fCLK  
VDD1 = 2.3 V  
MHz  
13  
Data Sheet S14413EJ1V1DS  
µ PD16770  
Electrical Characteristics (TA = –10 to +75°C, VDD1 = 2.3 to 3.6 V, VDD2 = 8.5 V ± 0.5 V, VSS1 = VSS2 = 0 V,  
Unless otherwise specified, power mode = normal, Bcont = open)  
Parameter  
Symbol  
IIL  
Conditions  
MIN.  
TYP.  
MAX.  
Unit  
µA  
V
Input Leak Current  
High-Level Output Voltage  
Low-Level Output Voltage  
γ -Corrected Supply  
Current  
±1.0  
VOH  
VOL  
Iγ  
STHR (STHL), IOH = 0 mA  
STHR (STHL), IOL = 0 mA  
VDD1 0.1  
0.1  
V
VDD2 = 8.5 V  
V0 to V4 =  
V0 pin, V5 pin  
126  
252  
504  
µA  
V4 pin, V9 pin  
504  
252  
126  
30  
µA  
V5 to V9 = 4.0 V  
Note  
Driver Output Current  
IVOH  
IVOL  
VX = 7.0 V, VOUT = 6.5 V  
VX = 1.0 V, VOUT = 1.5 V  
TA = 25°C  
µA  
µA  
Note  
30  
Output Voltage Deviation  
Output swing difference  
deviation  
VO  
±7  
±2  
±20  
±15  
mV  
mV  
VDD1 = 3.3 V, VDD2 = 8.5 V,  
VOUT = 2.0 V, 4.25 V, 6.5 V  
VP–P  
Logic Part Dynamic  
Current Consumption  
Driver Part Dynamic  
Current Consumption  
IDD1  
VDD1  
1.0  
3.0  
6.5  
6.5  
mA  
mA  
IDD2  
VDD2, with no load  
Note VX refers to the output voltage of analog output pins S1 to S420. VOUT refers to the voltage applied to analog  
output pins S1 to S420.  
Cautions 1. fSTB = 64 kHz, fCLK = 40 MHz.  
2. The TYP. values refer to an all black or all white input pattern. The MAX. value refers to the  
measured values in the dot checkerboard input pattern.  
3. Refers to the current consumption per driver when cascades are connected under the assumption  
of SXGA+ single-sided mounting (10 units).  
Switching Characteristics (TA = –10 to +75°C, VDD1 = 2.3 to 3.6 V, VDD2 = 8.5 V ± 0.5 V, VSS1 = VSS2 = 0 V,  
Unless otherwise specified, power mode = normal, Bcont = open)  
Parameter  
Symbol  
tPLH1  
tPHL1  
tPLH2  
tPLH3  
tPHL2  
tPHL3  
CI1  
Conditions  
MIN.  
TYP.  
10  
10  
2.5  
5
MAX.  
20  
20  
5
Unit  
ns  
Start Pulse Delay Time  
CL = 10 pF  
ns  
Driver Output Delay Time  
Input Capacitance  
CL = 75 pF,  
µs  
µs  
µs  
µs  
pF  
RL = 5 kΩ  
8
2.5  
5
5
8
STHR (STHL) excluded,  
TA = 25°C  
10  
CI2  
STHR (STHL),TA = 25°C  
10  
pF  
14  
Data Sheet S14413EJ1V1DS  
µ PD16770  
Timing Requirement (TA = –10 to +75°C, VDD1 = 2.3 to 3.6 V, VSS1 = 0 V, tr = tf = 5.0 ns)  
Parameter  
Clock Pulse Width  
Symbol  
PWCLK  
PWCLK(H)  
PWCLK(L)  
tSETUP1  
tHOLD1  
Conditions  
MIN.  
22  
4
TYP.  
MAX.  
Unit  
ns  
Clock Pulse High Period  
Clock Pulse Low Period  
Data Setup Time  
ns  
4
ns  
4
ns  
Data Hold Time  
0
ns  
Start Pulse Setup Time  
Start Pulse Hold Time  
POL21/22 Setup Time  
POL21/22 Hold Time  
Start Pulse Low Period  
STB Pulse Width  
tSETUP2  
tHOLD2  
tSETUP3  
tHOLD3  
4
ns  
0
ns  
4
ns  
0
ns  
tSPL  
1
CLK  
CLK  
CLK  
ns  
PWSTB  
tLDT  
2
Last Data Timing  
2
CLK-STB Time  
tCLK-STB  
tSTB-CLK  
tSTB-STH  
CLK ↑ → STB ↑  
6
STB-CLK Time  
STB ↑ → CLK ↑  
9
ns  
Time Between STB and Start  
Pulse  
STB ↑ → STHR(STHL) ↑  
2
CLK  
POL-STB Time  
STB-POL Time  
tPOL-STB  
tSTB-POL  
POL or ↓ → STB ↑  
STB ↓ → POL or ↑  
–5  
6
ns  
ns  
Remark Unless otherwise specified, the input level is defined to be VIH = 0.7 VDD1, VIL = 0.3 VDD1.  
15  
Data Sheet S14413EJ1V1DS  
PWCLK(L) PWCLK  
PWCLK(H)  
t
r
t
f
1
2
V
V
DD1  
SS1  
90%  
1
2
3
70  
71  
72  
701  
702  
CLK  
10%  
t
SETUP2  
t
HOLD2  
t
STB-CLK  
t
SPL  
t
CLK-STB  
V
V
DD1  
SS1  
STHR  
(1st Dr.)  
t
SETUP1  
t
HOLD1  
t
STB-STH  
V
V
DD1  
SS1  
D
D
409 to  
D
D
415 to  
D
D
421 to  
D
D
4195 to  
INVALID  
D
n0 to Dn5  
INVALID  
INVALID  
D1  
to D  
6
D
7
to D12  
D1  
to D  
6
D7 to D12  
414  
420  
426  
4200  
t
SETUP3  
t
HOLD3  
V
DD1  
SS1  
POL21,  
POL22  
INVALID  
V
t
PLH1  
t
PHL1  
V
V
DD1  
SS1  
STHL  
(1st Dr.)  
t
LDT  
PWSTB  
V
V
DD1  
SS1  
STB  
POL  
t
POL-STB  
t
STB-POL  
V
V
DD1  
SS1  
t
PLH3  
PLH2  
Hi-Z  
t
+
Target Voltage 0.1 VDD2  
6-bit accuracy  
Sn (VOUT)  
µ
µ
t
t
PHL2  
PHL3  
µ PD16770  
11. RECOMMENDED SOLDERING CONDITIONS  
The following conditions must be met for soldering conditions of the µ PD16770.  
For more details, refer to the Semiconductor Device Mounting Technology Manual (C10535E).  
Please consult with our sales offices in case other soldering process is used, or in case the soldering is done  
under different conditions.  
µ PD16770N -××× : TCP (TAB package)  
Mounting Condition  
Thermocompression  
Mounting Method  
Soldering  
Condition  
Heating tool 300 to 350°C: heating for 2 to 3 seconds: pressure 100g (per  
solder)  
ACF  
Temporary bonding 70 to 100°C: pressure 3 to 8 kg/cm2 : time 3 to 5  
(Adhesive Conductive  
Film)  
seconds.  
Real bonding 165 to 180°C: pressure 25 to 45 kg/cm2 : time 30 to 40  
seconds. (When using the anisotropy conductive film SUMIZAC1003 of  
Sumitomo Bakelite, Ltd.)  
Caution To find out the detailed conditions for packaging the ACF part, please contact the ACF manufacturing  
company. Be sure to avoid using two or more packaging methods at a time.  
17  
Data Sheet S14413EJ1V1DS  
µ PD16770  
[MEMO]  
18  
Data Sheet S14413EJ1V1DS  
µ PD16770  
NOTES FOR CMOS DEVICES  
1
PRECAUTION AGAINST ESD FOR SEMICONDUCTORS  
Note:  
Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and  
ultimately degrade the device operation. Steps must be taken to stop generation of static electricity  
as much as possible, and quickly dissipate it once, when it has occurred. Environmental control  
must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using  
insulators that easily build static electricity. Semiconductor devices must be stored and transported  
in an anti-static container, static shielding bag or conductive material. All test and measurement  
tools including work bench and floor should be grounded. The operator should be grounded using  
wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need  
to be taken for PW boards with semiconductor devices on it.  
2
HANDLING OF UNUSED INPUT PINS FOR CMOS  
Note:  
No connection for CMOS device inputs can be cause of malfunction. If no connection is provided  
to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence  
causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels  
of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused  
pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of  
being an output pin. All handling related to the unused pins must be judged device by device and  
related specifications governing the devices.  
3
STATUS BEFORE INITIALIZATION OF MOS DEVICES  
Note:  
Power-on does not necessarily define initial status of MOS device. Production process of MOS  
does not define the initial operation status of the device. Immediately after the power source is  
turned ON, the devices with reset function have not yet been initialized. Hence, power-on does  
not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the  
reset signal is received. Reset operation must be executed immediately after power-on for devices  
having reset function.  
19  
Data Sheet S14413EJ1V1DS  
µ PD16770  
Reference Documents  
NEC Semiconductor Device Reliability / Quality Control System (C10983E)  
Quality Grades to NEC’s Semiconductor Devices (C11531E)  
The information in this document is current as of May, 2001. The information is subject to change  
without notice. For actual design-in, refer to the latest publications of NEC's data sheets or data  
books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all products  
and/or types are available in every country. Please check with an NEC sales representative for  
availability and additional information.  
No part of this document may be copied or reproduced in any form or by any means without prior  
written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.  
NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of  
third parties by or arising from the use of NEC semiconductor products listed in this document or any other  
liability arising from the use of such products. No license, express, implied or otherwise, is granted under any  
patents, copyrights or other intellectual property rights of NEC or others.  
Descriptions of circuits, software and other related information in this document are provided for illustrative  
purposes in semiconductor product operation and application examples. The incorporation of these  
circuits, software and information in the design of customer's equipment shall be done under the full  
responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third  
parties arising from the use of these circuits, software and information.  
While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers  
agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize  
risks of damage to property or injury (including death) to persons arising from defects in NEC  
semiconductor products, customers must incorporate sufficient safety measures in their design, such as  
redundancy, fire-containment, and anti-failure features.  
NEC semiconductor products are classified into the following three quality grades:  
"Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products  
developed based on a customer-designated "quality assurance program" for a specific application. The  
recommended applications of a semiconductor product depend on its quality grade, as indicated below.  
Customers must check the quality grade of each semiconductor product before using it in a particular  
application.  
"Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio  
and visual equipment, home electronic appliances, machine tools, personal electronic equipment  
and industrial robots  
"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster  
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed  
for life support)  
"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life  
support systems and medical equipment for life support, etc.  
The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's  
data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not  
intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness  
to support a given application.  
(Note)  
(1) "NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries.  
(2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for  
NEC (as defined above).  
M8E 00. 4  

相关型号:

UPD16770A

UPD16770A Data Sheet | Data Sheet[05/2001]
ETC

UPD16770B

UPD16770B Data Sheet | Data Sheet[05/2001]
ETC

UPD16770N-XXX

Liquid Crystal Driver, 420-Segment, MOS, TCP
NEC

UPD16772

480-OUTPUT TFT-LCD SOURCE DRIVER COMPATIBLE WITH 64-GRAY SCALES
NEC

UPD16772A

480-OUTPUT TFT-LCD SOURCE DRIVER COMPATIBLE WITH 64-GRAY SCALES
NEC

UPD16772AN

480-OUTPUT TFT-LCD SOURCE DRIVER COMPATIBLE WITH 64-GRAY SCALES
NEC

UPD16772B

UPD16772B Data Sheet | Data Sheet[07/2002]
ETC

UPD16772BN-XXX

Liquid Crystal Driver, 480-Segment, MOS, TCP
NEC

UPD16772N

480-OUTPUT TFT-LCD SOURCE DRIVER COMPATIBLE WITH 64-GRAY SCALES
NEC

UPD16772N-XXX

Liquid Crystal Driver, 480-Segment, MOS, TCP-540
NEC

UPD16780

288/300 OUTPUT TFT-LCD SOURCE DRIVER
NEC

UPD16780A

UPD16780A Data Sheet | Data Sheet[11/2000]
ETC