UT1553BRTR [ETC]

Remote Terminal with RAM; 与RAM远程终端
UT1553BRTR
型号: UT1553BRTR
厂家: ETC    ETC
描述:

Remote Terminal with RAM
与RAM远程终端

文件: 总44页 (文件大小:1147K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
UT1553B RTR Remote Terminal with RAM  
Table I of MIL-STD-883, Method 5004, Class B, also  
Standard Military Drawing available  
FEATURES  
Complete MIL-STD-1553B remote terminal interface  
Available in 68-pin pingrid array package  
1K x 16 of on-chip static RAM for message data,  
completely accessible to host  
INTRODUCTION  
Self-test capability, including continuous loop-back  
The UT1553B RTR is a monolithic CMOS VLSI solution  
totherequirementsofthedual-redundantMIL-STD-1553B  
interface. Designed to reduce cost and space, the RTR  
integrates the remote terminal logic with a user-configured  
1K x 16 static RAM. In addition, the RTR has a flexible  
subsystem interface to permit use with most processors or  
controllers.  
compare  
Programmable memory mapping via pointers for  
efficient use of internal memory, including buffering  
multiple messages per subaddress  
RT-RT Terminal Address Compare  
Command word stored with incoming data for  
enhanced data management  
The RTR provides all protocol, data handling, error  
checking, and memory control functions, as well as  
comprehensive self-test capabilities. The RTR’s memory  
meets all of MIL-STD-1553B message storage needs  
through user-defined memory mapping. This memory-  
mapped architecture allows multiple message buffering at  
User selectable RAM Busy (RBUSY) signal for slow  
or fast processor interfacing  
Full military operating temperature range, -55°C to  
+125°C, screened to the specific test methods listed in  
RTA(4:0)  
REMOTE TERMINAL  
ADDRESS  
MCSA(4:0)  
MODE CODE/  
SUBADDRESS  
CONTROL  
INPUTS  
OUT  
STATUS  
OUTPUTS  
COMMAND  
RECOGNITION  
CONTROL AND  
DECODER  
DECODER  
ERROR LOGIC  
IN  
1K X 16 RAM  
ADDR(9:0)  
OUT  
MUX  
PTR REGISTER  
ENCODER  
IN  
12MHz  
RESET  
DATA(15:0)  
2MHz  
Figure 1. UT1553B RTR Functional Block Diagram  
RTR-1  
Table of Contents  
1.0 ARCHITECTURE AND OPERATION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3  
1.1 Memory Map and Host Memory Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . .3  
1.2 RTR RAM Pointer Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4  
1.3 Internal Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5  
1.4 Mode Code and Subaddress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8  
1.5 MIL-STD-1553B Subaddress and Mode Codes . . . . . . . . . . . . . . . . . . . . . . . . .9  
1.6 Terminal Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
1.7 Internal Self-Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
1.8 Power-up and Master Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
1.9 Encoder and Decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
1.10 RT-RT Transfer Compare . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
1.11 Illegal Command Decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
2.0  
3.0  
4.0  
5.0  
6.0  
7.0  
MEMORY MAP EXAMPLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
PIN IDENTIFICATION AND DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
MAXIMUM AND RECOMMENDED OPERATING CONDITIONS. . . . . . . . . . . . . . . . . 19  
DC ELECTRICAL CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
AC ELECTRICAL CHARACTERISTICS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
PACKAGE OUTLINE DRAWING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
RTR-2  
alert the host. The RBUSY signal is programmable via the  
internal Control Register to be asserted either 5.7ms or  
2.7ms prior to the RTR needing access to its internal RAM.  
1.0 ARCHITECTURE AND OPERATION  
The UT1553B RTR is an interface device linking a MIL-  
STD-1553serialdatabusandahostmicroprocessorsystem.  
The RTR’s MIL-STD-1553B interface includes encoding/  
decoding logic, error detection, command recognition, 1K  
x 16 of SRAM, pointer registers, clock, and reset circuits.  
The RTR stores MIL-STD-1553B messages in 1K x 16 of  
on-chip RAM. For efficient use of the 1K x 16 memory on  
the RTR, the host programs a set of pointers to map where  
the 1553B message is stored. The RTR uses the upper 64  
words (address 3C0 (hex) through 3FF (hex)) as pointers.  
The RTR provides pointers for all 30 receive subaddresses,  
all 30 transmit subaddresses, and four mode code  
commands with associated data words as defined in MIL-  
STD-1553B. The remaining 960 words of memory  
contain receive, transmit, and mode code data in a  
host-defined structure.  
1.1 Memory Map and Host Memory Interface  
The host can access the 1K x 16 RAM memory like a  
standard RAM device through the 10-bit address and 16-bit  
data buses. The host uses the Chip Select (CS), Read/Write  
(RD/WR), and Output Enable (OE) signals to control data  
transfertoandfrommemory.WhentheRTRrequiresaccess  
to its own internal RAM, it asserts the RBUSY signal to  
RTR Memory Map  
000 (hex)  
Message  
Storage  
Locations  
3BF(hex)  
15 MSB  
0 LSB  
0 LSB  
0 LSB  
XMIT VECTOR WORD MODE CODE (W/DATA)  
3C0 (hex)  
3C1 (hex)  
Receive  
Message  
Pointers  
RCV SUBADDRESS 01  
(3C1 TO 3DE)  
RCV SUBADDRESS 30  
SYNCHRONIZE MODE CODE (W/DATA)  
3DE (hex)  
3DF (hex)  
15 MSB  
XMIT LAST COMMAND MODE CODE (W/DATA)  
XMT SUBADDRESS 01  
3E0 (hex)  
3E1 (hex)  
Transmit  
Message  
Pointers  
(3E1 TO 3FE)  
XMT SUBADDRESS 30  
3FE (hex)  
3FF (hex)  
XMT BIT WORD MODE CODE (W/DATA)  
15 MSB  
Figure 2. RTR Memory Map  
RTR-3  
MESSAGE INDEX  
15 (MSB)  
MESSAGE DATA ADDRESSES  
Message Data Address:  
10  
9
0 (LSB)  
Message index: Defines the  
maximummessagesbufferedfor  
the given subaddresses.  
Indicates the starting memory address for incoming  
message storage.  
Figure 3. Message Pointer Structure  
1.2 RTR RAM Pointer Structure  
Address Field = 03F (hex)  
Index Field = 00 (hex)  
The RAM 16-bit pointers have a 6-bit index field and a  
10-bit address field. The 6-bit index field allows for the  
storage of up to 64 messages per subaddress. A message  
consists of the 1553 command word and its associated data  
words.  
TheTransmit Last Command Mode Code hasAddressField  
boundary conditions for the location of command word  
buffers. The host can allocate a maximum 63 sequential  
locations following the Address Field starting address. For  
proper operation, the Address Field must start on an I x 40  
(hex) address boundary, where I is greater than or equal to  
zero and less than or equal to 14. A list of valid Index and  
Address Fields follows:  
The 16-bit pointer for Transmit Last Command Mode Code  
is located at memory location 3E0 (hex). The Transmit Last  
Command Mode Code pointer buffers up to 63 command  
words. An example of command word storage follows:  
Example:  
I
Valid Index Fields  
3F (hex) to 00 (hex)  
3F (hex) to 00 (hex)  
3F (hex) to 00 (hex)  
3F (hex) to 00 (hex)  
3F (hex) to 00 (hex)  
3F (hex) to 00 (hex)  
3F (hex) to 00 (hex)  
3F (hex) to 00 (hex)  
3F (hex) to 00 (hex)  
3F (hex) to 00 (hex)  
Valid Address Fields  
000 (hex) to 03F (hex)  
040 (hex) to 07F (hex)  
080 (hex) to 0BF (hex)  
0C0 (hex) to 0FF (hex)  
100 (hex) to 13F (hex)  
140 (hex) to 17F (hex)  
180 (hex) to 1BF (hex)  
1C0 (hex) to 1FF (hex)  
200 (hex) to 23F (hex)  
240 (hex) to 27F (hex)  
280 (hex) to 2BF (hex)  
2C0 (hex) to 2FF (hex  
300 (hex) to 33F (hex)  
340 (hex) to 37F (hex)  
380 (hex) to 3BF (hex)  
3E0 (hex)  
Contents = FC00 (hex)  
11 1111 00 0000 0000  
0
1
2
3
4
5
6
7
8
9
Address Field = 000 (hex)  
Index Field = 3F (hex)  
First command word storage location (3E0=F801):  
Address Field = 001 (hex)  
Index Field = 3E (hex)  
Sixty-third command word storage location (3E0=003F):  
Address Field = 03F (hex)  
Index Field = 00 (hex)  
Sixty-fourth command word storage location (3E0=003F)  
(previous command word overwritten):  
10 3F (hex) to 00 (hex)  
11 3F (hex) to 00 (hex)  
12 3F (hex) to 00 (hex)  
13 3F (hex) to 00 (hex)  
14 3F (hex) to 00 (hex)  
RTR-4  
Subaddress/Mode Code  
RAM Location Subaddress/Mode Code  
Transmit Last Command Mode Code  
RAM Location  
3E0 (hex)  
3E1 (hex)  
3E2 (hex)  
3E3 (hex)  
3E4 (hex)  
3E5 (hex)  
3E6 (hex)  
3E7 (hex)  
3E8 (hex)  
3E9 (hex)  
3EA (hex)  
3EB (hex)  
3EC (hex)  
3ED (hex)  
3EE (hex)  
3EF (hex)  
3F0 (hex)  
3F1 (hex)  
3F2 (hex)  
3F3 (hex)  
3F4 (hex)  
3F5 (hex)  
3F6 (hex)  
3F7 (hex)  
3F8 (hex)  
3F9 (hex)  
3FA (hex)  
3FB (hex)  
3FC (hex)  
3FD (hex)  
3FE (hex)  
3FF (hex)  
Transmit Vector Word Mode Code  
3C0 (hex)  
3C1 (hex)  
3C2 (hex)  
3C3 (hex)  
3C4 (hex)  
3C5 (hex)  
3C6 (hex)  
3C7 (hex)  
3C8 (hex)  
3C9 (hex)  
3CA (hex)  
3CB (hex)  
3CC (hex)  
3CD (hex)  
3CE (hex)  
3CF (hex)  
3D0 (hex)  
3D1 (hex)  
3D2 (hex)  
3D3 (hex)  
3D4 (hex)  
3D5 (hex)  
3D6 (hex)  
3D7 (hex)  
3D8 (hex)  
3D9 (hex)  
3DA (hex)  
3DB (hex)  
3DC (hex)  
3DD (hex)  
3DE (hex)  
3DF (hex)  
Receive Subaddress  
Receive Subaddress  
Receive Subaddress  
Receive Subaddress  
Receive Subaddress  
Receive Subaddress  
Receive Subaddress  
Receive Subaddress  
Receive Subaddress  
Receive Subaddress  
Receive Subaddress  
Receive Subaddress  
Receive Subaddress  
Receive Subaddress  
Receive Subaddress  
Receive Subaddress  
Receive Subaddress  
Receive Subaddress  
Receive Subaddress  
Receive Subaddress  
Receive Subaddress  
Receive Subaddress  
Receive Subaddress  
Receive Subaddress  
Receive Subaddress  
Receive Subaddress  
Receive Subaddress  
Receive Subaddress  
Receive Subaddress  
Receive Subaddress  
01  
02  
03  
04  
05  
06  
07  
08  
09  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
Transmit Subaddress  
Transmit Subaddress  
Transmit Subaddress  
Transmit Subaddress  
Transmit Subaddress  
Transmit Subaddress  
Transmit Subaddress  
Transmit Subaddress  
Transmit Subaddress  
Transmit Subaddress  
Transmit Subaddress  
Transmit Subaddress  
Transmit Subaddress  
Transmit Subaddress  
Transmit Subaddress  
Transmit Subaddress  
Transmit Subaddress  
Transmit Subaddress  
Transmit Subaddress  
Transmit Subaddress  
Transmit Subaddress  
Transmit Subaddress  
Transmit Subaddress  
Transmit Subaddress  
Transmit Subaddress  
Transmit Subaddress  
Transmit Subaddress  
Transmit Subaddress  
Transmit Subaddress  
Transmit Subaddress  
Transmit Bit Word Mode Code  
01  
02  
03  
04  
05  
06  
07  
08  
09  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
Synchronize w/Data Word Mode Code  
1.3 Internal Registers  
The Control Register toggles bits in the MIL-STD-1553B  
status word, enables the biphase inputs, recognizes  
broadcast commands, determines RAM Busy (RBUSY)  
timing, selects terminal active flag, and puts the part in self-  
test mode. The Status Register supplies operational status  
of the UT1553B RTR to the host. These registers must be  
initialized before attempting RTR operation. Internal  
registers can be accessed while RBUSY is active.  
The RTR uses two internal registers to allow the host to  
control the RTR operation and monitor its status. The host  
usestheControl(CTRL)signalalongwithChipSelect(CS),  
Read/Write (RD/WR), and Output Enable (OE) to read the  
16-bitStatusRegisterorwritetothe11-bitControlRegister.  
No address data is needed to select a register.  
RTR-5  
Control Register (Write Only)  
The 11-bit write-only Control Register manages the operation of the RTR. Write to the Control Register by applying a logic  
one to OE, and a logic zero to CTRL, CS, and RD/WR. Data is loaded into the Control Register via I/O pins DATA(12:0).  
Control register write must occur 50ns before the rising edge of COMSTR to latch data into outgoing status word.  
Bit  
Initial  
Number  
Condition  
Description  
Bit 0  
Bit 1  
Bit 2  
[1]  
[1]  
[0]  
Channel A Enable. A logic 1 enables Channel A biphase inputs.  
Channel B Enable. A logic 1 enables Channel B biphase inputs.  
Terminal Flag. A logic 1 sets the Terminal Flag bit of the Status Word.  
System Busy. A logic 1 sets the Busy bit of the Status Word and limits RTR access to the  
memory. No data words can be retrieved or stored; command words will be stored.  
Bit 3  
Bit 4  
Bit 5  
[1]  
[0]  
[0]  
Subsystem Busy. A logic 1 sets the Subsystem Flag bit of the Status Word.  
Self-Test Channel Select. This bit selects which channel the self-test checks; a logic 1 selects  
Channel A and a logic 0 selects Channel B.  
Self-Test Enable. A logic 1 places the RTR in the internal self-test mode and inhibits normal  
operation. Channels A and B should be disabled if self-test is chosen.  
Bit 6  
[0]  
Bit 7  
[0]  
[0]  
[1]  
[X]  
[X]  
Service Request. A logic 1 sets the Service Request bit of the Status Word.  
Instrumentation. A logic 1 sets the Instrumentation bit of the Status Word.  
Broadcast Enable. A logic 1 enables the RTR to recognize broadcast commands.  
Don’t care.  
Bit 8  
Bit 9  
Bit 10  
Bit 11  
Don’t care.  
RBUSY Time Select. A logic 1 selects a 5.7µs RBUSY alert; a logic 0 selects a 2.7µs  
RBUSY alert.  
Bit 12  
[1]  
[] - Values in parentheses indicate the initialized values of these bits.  
CONTROL REGISTER (WRITE ONLY):  
X
X
X
RBUSY  
TS  
X
X
BCEN INS SRQ ITST  
ITCS SUBS BUSY TF CH B CH A  
EN  
EN  
[1]  
[1] [0] [0] [0]  
[0]  
[0]  
[1]  
[0]  
[1]  
[1]  
MSB  
LSB  
[ ] defines reset state  
X don’t care  
Figure 4a. Control Register  
RTR-6  
Status Register (Read Only)  
The 16-bit read-only Status Register provides the RTR system status. Read the Status Register by applying a logic  
0 to CTRL, CS, and OE, and a logic 1 to RD/WR. The 16-bit contents of the Status Register are read from data  
I/O pins DATA(15:0).  
Bit  
Initial  
Number  
Condition  
Description  
Bit 0  
Bit 1  
Bit 2  
Bit 3  
Bit 4  
Bit 5  
[0]  
[0]  
[0]  
[0]  
[0]  
[0]  
MCSA0. The LSB of the mode code or subaddress as indicated by the logic state of bit 5.  
MCSA1. Mode code or subaddress as indicated by the logic state of bit 5.  
MCSA2. Mode code or subaddress as indicated by the logic state of bit 5.  
MCSA3. Mode code or subaddress as indicated by the logic state of bit 5.  
MCSA4. Mode code or subaddress as indicated by the logic state of bit 5.  
MC/SA. A logic 1 indicates that bits 4 through 0 are the subaddress of the transmit or  
receive command. A logic 0 indicates that bits 4 through 0 are a mode code, and that the  
last command was a mode command.  
Bit 6  
[1]  
Channel A/B. A logic 1 indicates that the most recent command arrived on Channel A; a  
logic 0 indicates that it arrived on Channel B.  
Bit 7  
Bit 8  
[1]  
[1]  
Channel B Enabled. A logic 1 indicates that Channel B is available for both  
Channel A Enabled. A logic 1 indicates that Channel A is available for both reception  
and transmission.  
Bit 9  
[1]  
[1]  
Terminal Flag Enabled. A logic 1 indicates that the Bus Controller has not Bus Control-  
ler, via the above mode code, is overriding the host system’s ability to set the Terminal  
Flag bit of the status word.  
Bit 10  
Busy. A logic 1 indicates the Busy bit is set. This bit is reset when the System Busy bit in  
the Control Register is reset.  
Bit 11  
Bit 12  
[0]  
[0]  
Self-Test. A logic 1 indicates that the chip is in the internal self-test mode.  
TA Parity Error. A logic 1 indicates the wrong Terminal Address parity; it Error bit being  
set to a logic one, and Channels A and B become disabled.  
Bit 13  
[0]  
Message Error. A logic 1 indicates that a message error has occurred since has been  
examined. Message error condition must be removed before reading the Status Register  
to reset the Message Error bit.  
Bit 14  
Bit 15  
[0]  
[0]  
Valid Message. A logic 1 indicates that a valid message has been received  
Terminal Active. A logic 1 indicates the device is executing a transmit or  
[] - Values in parentheses indicate the initialized values of these bits.  
STATUS REGISTER (READ ONLY):  
TERM VAL MESS TAPA SELF BUSY TFEN CH A CH B CHNL MC/ MCSA MCSA MCSA MCSA MCSA  
ACTV MESS ERR ERR TEST  
EN  
EN  
A/B SA  
4
3
2
1
0
[0]  
[0]  
[0]  
[0]  
[0]  
[1]  
[1]  
[1]  
[1]  
[1] [0]  
[0]  
[0]  
[0]  
[0]  
[0]  
MSB  
LSB  
[] defines reset state  
Figure 4b. Status Register  
RTR-7  
1.4 Mode Code and Subaddress  
contain the same information as pins MCSA(4:0) and MC/  
SA.  
The UT1553B RTR provides subaddress and mode code  
decoding meetingMIL-STD-1553B. Inaddition, the device  
has automatic internal illegal command decoding for  
reserved MIL-STD-1553B mode codes. Upon command  
word validation and decode, status pins MCSA(4:0) and  
MC/SA become valid. Status pin MC/SA will indicate  
whether the data on pins MCSA(4:0) is mode code or  
subaddress information. Status Register bits 0 through 5  
The system designer can use signals MCSA(4:0), MC/SA,  
BRDCST, RTRT, etc. to illegalize mode codes,  
subaddresses, and other message formats (broadcast and  
RT-to-RT) via the Illegal Command (ILLCOM) input to the  
part (see figure 21 on page 31).  
RTR MODE CODE HANDLING PROCEDURE  
T/R  
Mode Code  
Function  
Operation  
2
1. Command word stored  
2. MERR pin asserted  
3. MERR bit set in Status Register  
4. Status word transmitted  
Selected Transmitter Shutdown  
0
10100  
2
1. Command word stored  
Override Selected Transmitter Shutdown  
Synchronize (w/Data)  
0
10101  
2. MERR pin asserted  
3. MERR bit set in Status Register  
4. Status word transmitted  
1. Command word stored  
2. Data word stored  
3. Status word transmitted  
1. Command word stored  
2. MERR pin asserted  
3. MERR bit set in Status Register  
4. Status word transmitted  
0
1
10001  
00000  
2
Dynamic Bus Control  
1
1. Command word stored  
2. Status word transmitted  
1. Command word stored  
2. Status word transmitted  
1. Command word stored  
2. Status word transmitted  
1. Command word stored  
2. Alternate bus shutdown  
3. Status word transmitted  
Synchronize  
1
1
1
1
00001  
00010  
00011  
00100  
3
Transmit Status Word  
1
Initiate Self-Test  
Transmitter Shutdown  
1. Command word stored  
2. Alternate bus enabled  
3. Status word transmitted  
1. Command word stored  
2. Terminal Flag bit set to zero and disabled  
3. Status word transmitted  
Override Transmitter Shutdown  
Inhibit Terminal Flag Bit  
Override Inhibit Terminal Flag  
1
1
1
00101  
00110  
00111  
1. Command word stored  
2. Terminal Flag bit enabled, but not  
set to logic one  
3. Status word transmitted  
1
1. Command word stored  
2. Status word transmitted  
1. Command word transmitted  
2. Last command word transmitted  
1. Command word stored  
2. Status word transmitted  
3. Data word transmitted  
1. Command word stored  
2. Status word transmitted  
3. Data word transmitted  
Reset Remote Terminal  
1
1
1
01000  
10010  
10000  
3
Transmit Last Command Word  
Transmit Vector Word  
Transmit BIT Word  
1
10011  
Notes:  
1. Further host interaction required for mode code operation  
2. Reserved mode code; A) MERR pin asserted, B) MESS ERR bit set, C) status word transmitted (ME bit set to logic one).  
3. Status word not affected.  
4. Undefined mode codes are treated as reserved mode codes.  
RTR-8  
1.5 MIL-STD-1553B Subaddress and Mode Code Definitions  
Table 1: Subaddress and Mode Code Definitions Per MIL-STD-1553B  
Subaddress Field  
Binary (Decimal)  
Message Format  
Description  
Receive  
Transmit  
1
1
00000 (00)  
00001 (01)  
00010 (02)  
00011 (03)  
00100 (04)  
00101 (05)  
00110 (06)  
00111 (07)  
01000 (08)  
01001 (09)  
01010 (10)  
01011 (11)  
01100 (12)  
01101 (13)  
01110 (14)  
01111 (15)  
10000 (16)  
10001 (17)  
10010 (18)  
10011 (19)  
10100 (20)  
10101 (21)  
10110 (22)  
10111 (23)  
11000 (24)  
11001 (25  
11010 (26)  
11011 (27)  
11100 (28)  
11101 (29)  
11110 (30)  
11111 (31)  
Notes:  
Mode Code Indicator  
User Defined  
User Defined  
User Defined  
User Defined  
User Defined  
User Defined  
User Defined  
User Defined  
User Defined  
User Defined  
User Defined  
User Defined  
User Defined  
User Defined  
User Defined  
User Defined  
User Defined  
User Defined  
User Defined  
User Defined  
User Defined  
User Defined  
User Defined  
User Defined  
User Defined  
User Defined  
User Defined  
User Defined  
User Defined  
User Defined  
User Defined  
User Defined  
User Defined  
User Defined  
User Defined  
User Defined  
User Defined  
User Defined  
User Defined  
User Defined  
User Defined  
User Defined  
User Defined  
User Defined  
User Defined  
User Defined  
User Defined  
User Defined  
User Defined  
User Defined  
User Defined  
User Defined  
User Defined  
User Defined  
User Defined  
User Defined  
User Defined  
User Defined  
User Defined  
1
User Defined  
1
Mode Code Indicator  
1. Refer to mode code assignments per MIL-STD-1553B  
1.6 Terminal Address  
indicates incorrect Terminal Address parity. An  
example follows:  
The Terminal Address of the RTR is programmed via five  
input pins: RTA(4:0) and RTPTY. Asserting MRST latches  
the RTR’s TerminalAddress from pins RTA(4:0) and parity  
bit RTPTY. The address and parity cannot change until the  
next assertion of the MRST. The parity of the Terminal  
Address is odd; input pin RTPTY is set to a logic state to  
satisfy this requirement. A logic 1 on Status Register bit 12  
RTA(4:0) = 05 (hex) = 00101  
RTPTY = 1 (hex) = 1  
Sum of 1’s = 3 (odd), Status Register bit 12 = 0  
RTA(4:0) = 04 (hex) = 00100  
RTPTY = 0 (hex) = 0  
Sum of 1’s = 1 (odd), Status Register bit 12 = 0  
RTR-9  
RTA(4:0) = 04 (hex) = 00100  
power-up if the terminal address parity (odd) is incorrect,  
the biphase inputs are disabled and the message error pin  
(MERR) is asserted. This condition can also be monitored  
via bit 12 of the Status Register. The MERR pin is negated  
on reception of first valid command.  
RTPTY = 1 (hex) = 1  
Sum of 1’s = 2 (even), Status Register bit 12 = 1  
The RTR checks the TerminalAddress and parity on Master  
Reset.WithBroadcastdisabled, RTA(4:0)=11111operates  
as a normal RT address.  
1.9 Encoder and Decoder  
The RTR interfaces directly to a bus transmitter/ receiver  
via the RTR Manchester II encoder/decoder. The UT1553B  
RTR receives the command word from the MIL-STD-  
1553B bus and processes it either by the primary or  
secondarydecoder. Eachdecoderchecksforthepropersync  
pulseandManchesterwaveform,edgeskew,correctnumber  
of bits, and parity. If the command is a receive command,  
the RTR processes each incoming data word for correct  
format and checks the control logic for correct word count  
and contiguous data. If an invalid message error is detected,  
the message error pinisasserted, the RTR ceasesprocessing  
the remainder (if any) of the message, and it then suppresses  
status word transmission. Upon command validation  
recognition, the external status outputs are enabled.  
Reception of illegal commands does not suppress status  
word transmission.  
1.7 Internal Self-Test  
Setting bit 6 of the Control Register to a logic one enables  
the internal self-test. Disable ChannelsA and B at this time  
to prevent bus activity during self-test by setting bits 0 and  
1 of the Control Register to a logic zero. Normal operation  
is inhibited when internal self-test is enabled. The self-test  
capability of the RTR is based on the fact that the MIL-STD-  
1553B status word sync pulse is identical to the command  
word sync pulse. Thus, if the status word from the encoder  
is fed back to the decoder, the RTR will recognize the  
incoming status word as a command word and thus cause  
the RTR to transmit another status word. After the host  
invokesself-test, theRTRself-testlogicforcesastatusword  
transmission even though the RTR has not received a valid  
command. The status word is sent to decoder A or B  
depending on the channel the host selected for self-test. The  
self-test is controlled by the host periodically changing the  
bit patterns in the status word being transmitted. Writing to  
the Control Register bits 2, 3, 4, 7, and 8 changes the status  
word. Monitor the self-test by sampling either the Status  
Register or the external status pins (i.e., Command Strobe  
(COMSTR), Transmit/Receive (T/R)). For more detailed  
explanation of internal self-test, consult UTMC publication  
RTR/RTS Internal Self-Test Routine.  
The RTR automatically compares the transmitted word  
(encoder word) to the reflected decoder word by way of the  
continuous loop-back feature. If the encoder word and  
reflected word do not match, the transmitter error pin  
(TXERR) is asserted. In addition to the loop-back compare  
test, a timer precludes a transmission greater than 760µs by  
the assertion of Fail-safe Timer (TIMERON). This timer is  
reset upon receipt of another command.  
1.8 Power-up and Master Reset  
1.10 RT-RT Transfer Compare  
After power-up, reset initializes the part with its biphase  
ports enabled, latches the Terminal Address, and turns on  
the busy option. The device is ready to accept commands  
from the MIL-STD-1553B bus. The busy flag is asserted  
whilethehostisloadingthemessagepointersandmessages.  
After this task is completed, the host removes the busy  
condition via a Control Register write to the RTR. On  
The RT-to-RT TerminalAddress compare logic makes sure  
that the incoming status word’s Terminal Address matches  
the TerminalAddress of the transmitting RT specified in the  
command word. An incorrect match results in setting the  
MessageErrorbitandsuppressingtransmissionofthestatus  
word. (RT-to-RT transfer time-out = 54µs)  
RTR-10  
1.11 Illegal Command Decoding  
2.0 MEMORY MAP EXAMPLE  
The host has the option of asserting the ILLCOM pin to  
illegalize a received command word. On receipt of an illegal  
command, the RTR sets the Message Error bit in the status  
word, sets the message error output, and sets the message  
error latch in the Status Register.  
Figures 5 and 6 illustrate the UT1553B RTR buffering three  
receive command messages to Subaddress 4. The receive  
message pointer for Subaddress 4 is located at 03C4 (hex)  
in the 1K x 16 RAM. The 16-bit contents of location 03C4  
(hex) point to the memory location where the first receive  
message is stored. The Address Field defined as bits 0  
through 9 of address 03C4 (hex) contain address  
information. The Index Field defined as bits 10 through 15  
ofaddress03C4(hex)containthemessagebufferindex(i.e.,  
number of messages buffered).  
The following RTR outputs may be used to externally  
decode an illegal command, Mode Code or Subaddress  
indicator (MC/SA), Mode Code or Subaddress bus  
MCSA(4:0), Command Strobe (COMSTR), Broadcast  
(BRDCST), and Remote Terminal to Remote Terminal  
transfer (RTRT) (see figure 21 on page 31).  
Figure 5 demonstrates the updating of the message pointer  
aseachmessageisreceivedandstored.Thememorystorage  
of these three messages is shown in figure 6.After receiving  
the third message for Subaddress 4 (i.e., Index Field equals  
zero) the Address Field of the message pointer is not  
incremented. Ifthehostdoesnotupdatethereceivemessage  
pointer for Subaddress 4 before the next receive command  
for Subaddress 4 is accepted, the third message will  
be overwritten.  
To illegalize a transmit command, the ILLCOM pin must  
be asserted within 3.3µs after VALMSG goes to a logic 1 if  
the RTR is to respond with the Message Error bit of the  
status word at a logic 1. If the illegal command is mode code  
2, 4, 5, 6, 7, or 18, the ILLCOM pin must be asserted within  
664ns after Command Strobe (COMSTR) transitions to  
logic0.AssertingtheILLCOMpinwithinthe664nsinhibits  
themodecodefunction. Formodecodeillegalization, assert  
the ILLCOM pin until the VALMSG signal is asserted.  
Figures 7 and 8 show an example of multiple message  
retrieval from Subaddress 16 upon reception of a MIL-STD-  
1553Btransmitcommand.Themessagepointerfortransmit  
Subaddress 16 is located at 03F0 (hex) in the 1K x 16 RAM.  
The 16-bit contents of location 03F0 (hex) point to the  
memory location where the first message data words  
are stored.  
Foranillegalreceivecommand,theILLCOMpinisasserted  
within 18.2µs after the COMSTR transitions to a logic 0 in  
order to suppress data words from being stored. In addition,  
the ILLCOM pin must be at a logic 1 throughout the  
reception of the message until VALMSG is asserted. This  
does not apply to illegal transmit commands since the status  
word is transmitted first.  
Figure 7 demonstrates the updating of the message pointer  
as each message is received and stored. The data memory  
for these three messages is shown in figure 8.  
The above timing conditions also apply when the host  
externally decodes an illegal broadcast command. The host  
must remove the illegal command condition so that the next  
command is not falsely decoded as illegal.  
RTR-11  
Example:  
Remote terminal will receive and buffer three MIL-STD-1553 receive commands of various word  
lengths to Subaddress 4.  
MIL-STD-1553 Bus Activity:  
DW0 DW1 DW2 DW3  
CMD WORD #1  
SA = 4  
CMD WORD #2 DW0DW1  
T/R = 0  
WC = 4  
SA = 4  
T/R = 0  
WC = 2  
DW2  
CMD WORD #3 DW0 DW1  
DW3  
SA = 4  
T/R = 0  
WC = 4  
Receive Subaddress 4;  
data pointer at 03C4  
(hex). (Initial condition)  
After message #1,  
4 data words plus  
command word.  
After message #2,  
2 data words plus  
command word.  
After message #3,  
4 data words plus  
command word.  
INDEX= 0000 10  
ADDRESS= 00 0100 0000  
03C4 (hex)  
03C4 (hex)  
03C4 (hex)  
03C4 (hex)  
0840 (hex)  
0445 (hex)  
0048 (hex)  
0048 (hex)  
INDEX= 0000 01  
ADDRESS= 00 0100 0101  
INDEX= 0000 00  
ADDRESS= 00 0100 1000  
INDEX= 0000 00  
ADDRESS= 00 0100 1000  
Figure 5. RTR Message Handling  
03C4 (hex)  
0840 (hex)  
COMMAND WORD #1  
DATA WORD 0  
040 (hex)  
041 (hex)  
042 (hex)  
043 (hex)  
044 (hex)  
045 (hex)  
046 (hex)  
047 (hex)  
048 (hex)  
049 (hex)  
04A (hex)  
04B (hex)  
04C (hex)  
DATA WORD 1  
DATA WORD 2  
DATA WORD 3  
03C4 (hex)  
03C4 (hex)  
0445 (hex)  
0048 (hex)  
COMMAND WORD #2  
DATA WORD 0  
DATA WORD 1  
COMMAND WORD #3  
DATA WORD 0  
DATA WORD 1  
DATA WORD 2  
DATA WORD 3  
03C4 (hex)  
0048 (hex)  
Figure 6. Memory Storage Subaddress 4  
RTR-12  
Example:  
Remote terminal will transmit and buffer three MIL-STD-1553 transmit commands of various word lengths to  
Subaddress 16.  
MIL-STD-1553 Bus Activity:  
CMD WORD #1 SW  
DW2  
DW3  
DW0 DW1  
SA= 16  
CMD WORD #2 SW DW0 DW1  
SA= 16  
T/R=1  
WC= 4  
DW2 DW3  
DW0 DW1  
CMD WORD #3 SW  
T/R=1  
WC= 2  
SA= 16  
T/R=1  
WC= 4  
Transmit Subaddress 16; 03F0 (hex)  
data pointer at 03F0  
(hex). (Initial condition)  
0830 (hex)  
INDEX= 0000 10  
ADDRESS= 00 0011 0000  
After message #1,  
4 data words.  
03F0 (hex)  
0434 (hex)  
INDEX= 0000 01  
ADDRESS= 00 0011 0100  
After message #2,  
2 data words.  
03F0 (hex)  
03F0 (hex)  
0036 (hex)  
0036 (hex)  
INDEX= 0000 00  
ADDRESS= 00 0011 0110  
After message #3,  
4 data words.  
INDEX= 0000 00  
ADDRESS= 00 0011 0110  
Figure 7. RTR Message Handling  
DATA WORD 0  
DATA WORD 1  
DATA WORD 2  
DATA WORD 3  
DATA WORD 0  
DATA WORD 1  
DATA WORD 0  
DATA WORD 1  
DATA WORD 2  
DATA WORD 3  
0830 (hex)  
030 (hex)  
031 (hex)  
032 (hex)  
033 (hex)  
034 (hex)  
035 (hex)  
036 (hex)  
037 (hex)  
038 (hex)  
039 (hex)  
0434 (hex)  
0036 (hex)  
0036(hex)  
Note:  
The example is valid only if message structure is known in advance.  
Figure 8. Memory Storage Subaddress 16  
RTR-13  
3.0 PIN IDENTIFICATION AND DESCRIPTION  
BIPHASE OUT  
TAZ  
TAO  
ADDR0  
ADDR1  
ADDR2  
ADDR3  
ADDR4  
ADDR5  
ADDR6  
ADDR7  
ADDR8  
ADDR9  
ADDRESS  
BUS  
ADDR(9:0)  
A10  
B10  
J2  
H1  
H2  
G1  
G2  
F1  
E2  
D1  
D2  
C1  
TBZ  
TBO  
A9  
B9  
BIPHASE IN  
RAZ  
RAO  
RBZ  
RBO  
L7  
K8  
L6  
K7  
TERMINAL  
ADDRESS  
RTA0  
RTA1  
RTA2  
RTA3  
RTA4  
RTPTY  
L5  
K5  
L4  
K4  
L3  
K6  
DATA0  
DATA1  
DATA2  
DATA3  
DATA4  
DATA5  
DATA6  
DATA7  
DATA8  
DATA9  
DATA10  
DATA11  
DATA12  
DATA13  
DATA14  
DATA15  
DATA BUS  
DATA(15:0)  
L10  
K10  
K11  
J10  
J11  
H10  
H11  
G10  
F11  
E10  
E11  
D10  
D11  
C10  
C11  
B11  
MODE/CODE  
SUBADDRESS  
MCSA0  
MCSA1  
MCSA2  
MCSA3  
MCSA4  
B2  
A2  
A3  
B3  
A4  
UT1553B  
RTR  
STATUS  
SIGNALS  
MERR  
TERACT  
TXERR  
TIMERON  
COMSTR  
MC/SA  
A5  
A6  
B5  
B6  
B8  
B1  
A7  
B4  
B7  
L8  
C2  
BRDCST  
T/R  
V
F10  
E1  
DD  
POWER  
V
DD  
RTRT  
V
GROUND  
SS  
F2  
G11  
VALMSG  
RBUSY  
V
SS  
12MHZ  
2MHZ  
CLOCK  
RES  
L2  
A8  
CONTROL  
SIGNALS  
CS  
RD/WR  
CTRL  
K2  
K1  
J1  
L9  
K9  
MRST  
E
K3  
OE  
ILLCOM  
Figure 9. UT1553B RTR Pin Description  
RTR-14  
Legend for TYPE and ACTIVE fields:  
TTO = Three-state TTL output  
TTB = Three-state TTL bidirectional  
AL = Active low  
TI = TTL input  
TUI = TTL input (pull-up)  
TDI = TTL input (pull-down)  
TO = TTL output  
AH = Active high  
[] - Value in parentheses indicates initial state of pins.  
DATA BUS  
NAME  
PIN NUMBER  
(PGA)  
TYPE  
ACTIVE  
DESCRIPTION  
DATA15  
DATA14  
DATA13  
DATA12  
DATA11  
DATA10  
DATA9  
DATA8  
DATA7  
DATA6  
DATA5  
DATA4  
DATA3  
DATA2  
DATA1  
DATA0  
B11  
C11  
C10  
D11  
D10  
E11  
E10  
F11  
G10  
H11  
H10  
J11  
TTB  
TTB  
TTB  
TTB  
TTB  
TTB  
TTB  
TTB  
TTB  
TTB  
TTB  
TTB  
TTB  
TTB  
TTB  
TTB  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
Bit 15 (MSB) of the bidirectional Data bus.  
Bit 14 of the bidirectional Data bus.  
Bit 13 of the bidirectional Data bus.  
Bit 12 of the bidirectional Data bus.  
Bit 11 of the bidirectional Data bus.  
Bit 10 of the bidirectional Data bus.  
Bit 9 of the bidirectional Data bus.  
Bit 8 of the bidirectional Data bus.  
Bit 7 of the bidirectional Data bus.  
Bit 6 of the bidirectional Data bus.  
Bit 5 of the bidirectional Data bus.  
Bit 4 of the bidirectional Data bus.  
Bit 3 of the bidirectional Data bus.  
Bit 2 of the bidirectional Data bus.  
Bit 1 of the bidirectional Data bus.  
Bit 0 (LSB) of the bidirectional Data bus.  
J10  
K11  
K10  
L10  
ADDRESS BUS  
NAME  
PIN NUMBER  
(PGA)  
TYPE  
ACTIVE  
DESCRIPTION  
C1  
D2  
D1  
E2  
F1  
G2  
G1  
H2  
H1  
J2  
TI  
TI  
TI  
TI  
TI  
TI  
TI  
TI  
TI  
TI  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
ADDR9  
ADDR8  
ADDR7  
ADDR6  
ADDR5  
ADDR4  
ADDR3  
ADDR2  
ADDR1  
ADDR0  
Bit 9 (MSB) of the Address bus.  
Bit 8 of the Address bus.  
Bit 7 of the Address bus.  
Bit 6 of the Address bus.  
Bit 5 of the Address bus.  
Bit 4 of the Address bus.  
Bit 3 of the Address bus.  
Bit 2 of the Address bus.  
Bit 1 of the Address bus.  
Bit 0 (LSB) of the Address bus.  
RTR-15  
CONTROL INPUTS  
NAME  
PIN NUMBER  
(PGA)  
TYPE  
TI  
ACTIVE  
DESCRIPTION  
CS  
K2  
AL  
Chip Select. The host processor uses the CS signal for RTR  
Status Register reads, Control Register writes, or host  
access to the RTR internal RAM.  
RD/WR  
K1  
TI  
--  
Read/Write. The host processor uses a high level on this  
input in conjunction with CS to read the RTR Status  
Register or the RTR internal RAM. A low level on this  
input is used in conjunction with CS to write to the RTR  
Control Register or the RTR internal RAM.  
CTRL  
OE  
J1  
TI  
AL  
AL  
AH  
Control. The host processor uses the active low CTRL  
input signal in conjunction with CS and  
RD/WR to access the RTR registers. A high level on this  
input means access is to RTR internal RAM only.  
L9  
K9  
TI  
Output Enable. The active low OE signal is used to control  
the direction of data flow from the RTR. For OE = 1, the  
RTR Data bus is three-state; for  
OE = 0, the RTR Data bus is active.  
ILLCOM  
TDI  
Illegal Command. The host processor uses the  
ILLCOM input to inform the RTR that the present  
command is illegal.  
STATUS INPUTS  
NAME  
PIN NUMBER  
(PGA)  
TYPE  
ACTIVE  
DESCRIPTION  
MERR  
[0]  
Message Error. The active high MERR output  
signals that the Message Error bit in the Status  
Register has been set due to receipt of an illegal command,  
or an error during message sequence. MERR will reset to  
logic zero on the receipt of the next valid command.  
A5  
B5  
B6  
TO  
TO  
TO  
AH  
TXERR  
[0]  
Transmission Error. The active high TXERR output is  
asserted when the RTR detects an error in the reflected  
word versus the transmitted word, using the continuous  
loop-back compare feature. Reset on next COMSTR  
assertion.  
AH  
AL  
TIMERON  
[1]  
Fail-safe Timer. The TIMERON output pulses low for  
760µs when the RTR begins transmitting (i.e., rising edge  
of VALMSG) to provide a fail-safe timer meeting the  
requirements of MIL-STD-1553B. This pulse is reset when  
COMSTR goes low or during a Master Reset.  
COMSTR  
[1]  
Command Strobe. COMSTR is an active low output of  
500ns duration identifying receipt of a valid command.  
B8  
A6  
TO  
TO  
AL  
AL  
TERACT  
Terminal Active. The active low TERACT output is  
asserted at the beginning of the RTR access to internal  
RAM for a given command and negated after the last  
access for that command.  
RTR-16  
STATUS INPUTS  
Continued from page 16.  
NAME  
PIN NUMBER  
TYPE  
ACTIVE  
DESCRIPTION  
(PGA)  
Broadcast. BRDCST is an active low output that identifies  
receipt of a valid broadcast command.  
BRDCST  
[1]  
TO  
AL  
A7  
Transmit/Receive. A high level on this pin indicates a  
transmit command message transfer is being or was  
processed, while a low level indicates a receive command  
message transfer is being or was processed.  
T/R  
[0]  
TO  
TO  
--  
B4  
B7  
Valid Message. VALMSG is an active high output  
indicating a valid message (including Broadcast) has been  
received. VALMSG goes high prior to transmitting the  
1553 status word and is reset upon receipt of the next  
command.  
RTRT  
[1]  
AH  
RTR Busy. RBUSY is asserted high while the RTR is  
accessing its own internal RAM either to read or update the  
pointers or to store or retrieve data words. RBUSY  
becomes active either 2.7µs or 5.7µs before RTR requires  
RAM access. This timing is controlled by Control Register  
bit 12 (see section 1.3).  
RBUSY  
[0]  
TO  
AH  
C2  
MODE CODE/SUBADDRESS OUTPUTS  
NAME  
PIN NUMBER  
(PGA)  
TYPE  
ACTIVE  
DESCRIPTION  
Mode Code/Subaddress Indicator. If MC/SA is low, it  
indicates that the most recent command word is a mode  
code command. If MC/SA is high, it indicates that the most  
recent command word is for a subaddress. This output  
indicates whether the mode code/subaddress ouputs (i.e.,  
MCSA(4:0)) contain mode code or subaddress  
information.  
B1  
MC/SA  
[0]  
TO  
--  
Mode Code/Subaddress Output 0. If MC/SA is low, this  
pin represents the least significant bit of the most recent  
command word (the LSB of the mode code). If MC/SA is  
high, this pin represents the LSB of the subaddress.  
B2  
MCSA0  
[0]  
TO  
--  
Mode Code/Subaddress Output 1.  
Mode Code/Subaddress Output 2.  
Mode Code/Subaddress Output 3.  
A2  
A3  
B3  
A4  
MCSA1  
[0]  
TO  
TO  
TO  
TO  
--  
--  
--  
--  
MCSA2  
[0]  
MCSA3  
[0]  
Mode Code/Subaddress Output 4. If MC/SA is low, this  
pin represents the most significant bit of the mode code. If  
MC/SA is high, this pin represents the MSB of the  
subaddress.  
MCSA4  
[0]  
RTR-17  
REMOTE TERMINAL ADDRESS INPUTS  
NAME  
PIN NUMBER  
(PGA)  
TYPE  
ACTIVE  
DESCRIPTION  
Remote Terminal Address bit 4 (MSB).  
Remote Terminal Address bit 3.  
Remote Terminal Address bit 2.  
Remote Terminal Address bit 1.  
Remote Terminal Address bit 0 (LSB).  
RTA4  
RTA3  
RTA2  
RTA1  
RTA0  
RTPTY  
L3  
K4  
L4  
K5  
L5  
K6  
TUI  
TUI  
TUI  
TUI  
TUI  
TUI  
--  
--  
--  
--  
--  
--  
Remote Terminal Address Parity. This input must provide  
odd parity for the Remote Terminal Address.  
1
BIPHASE INPUTS  
NAME  
PIN NUMBER  
TYPE  
ACTIVE  
DESCRIPTION  
(PGA)  
Receiver - Channel A, Zero Input. Idle low Manchester  
input form the 1553 bus receiver.  
L7  
RAZ  
RAO  
RBZ  
RBO  
TI  
TI  
TI  
TI  
--  
--  
--  
--  
Receiver - Channel A, One Input. This input is the  
complement of RAZ.  
K8  
L6  
K7  
Receiver - Channel B, Zero Input. Idle low Manchester  
input from the 1553 bus receiver.  
Receiver - Channel B, One Input. This input is the  
complement of RBZ.  
Note:  
1. For uniphase operation, tie RAZ (or RBZ) to VDD and apply true uniphase input signal to RAO (or RBO).  
BIPHASE OUTPUTS  
NAME  
PIN NUMBER  
(PGA)  
TYPE  
ACTIVE  
DESCRIPTION  
Transmitter - Channel A, Zero Output. This idle low  
Manchester encoded data output is connected to the 1553  
bus transmitter input. The output is idle low.  
A10  
TAZ  
[0]  
TO  
--  
Transmitter - Channel A, One Output. This output is the  
complement of TAZ. The output is idle low.  
B10  
A9  
TAO  
[0]  
TO  
TO  
--  
--  
Transmitter - Channel B, Zero Output. This idle low  
Manchester encoded data output is connected to the 1553  
bus transmitter input. The output is idle low.  
TBZ  
[0]  
Transmitter - Channel B, One Output. This input is the  
complement of TBZ. The output is idle low.  
B9  
TBO  
[0]  
TO  
--  
RTR-18  
MASTER RESET AND CLOCK  
NAME  
PIN NUMBER  
(PGA)  
TYPE  
ACTIVE  
DESCRIPTION  
MRST  
TUI  
--  
Master Reset. Initializes all internal functions of the RTR.  
MRST must be asserted 500ns before normal RTR  
operation (500ns minimum). Does not reset RAM.  
K3  
L2  
A8  
12MHz  
2MHz  
TI  
--  
--  
12 MHz Input Clock. This is the RTR system clock that  
requires an accuracy greater than 0.01% with a duty cycle  
of 50% ± 10%.  
TO  
2MHz Clock Output. This is a 2MHz clock output  
generated by the 12MHz input clock. This clock is stopped  
when MRST is low.  
POWER AND GROUND  
NAME  
PIN NUMBER  
TYPE  
ACTIVE  
DESCRIPTION  
(PGA)  
VDD  
+5 V Power. Power supply must be +5 V  
± 10%.  
F10  
E1  
PWR  
PWR  
--  
--  
DC  
DC  
VSS  
Reference ground. Zero V logic ground.  
F2  
G11  
GND  
GND  
--  
--  
DC  
4.0 OPERATING CONDITIONS  
ABSOLUTE MAXIMUM RATINGS*  
(referenced to V  
)
SS  
SYMBOL  
PARAMETER  
DC supply voltage  
LIMITS  
UNIT  
V
V
V
-0.3 to +7.0  
DD  
IO  
Voltage on any pin  
DC input current  
Storage temperature  
0.3 to V +0.3  
V
DD  
I
±10  
mA  
°C  
I
T
-65 to +150  
300  
STG  
D
1
P
mW  
Maximum power dissipation  
T
Maximum junction temperature  
+175  
20  
°C  
J
Θ
Thermal resistance, junction-to-case  
°C/W  
JC  
Note:  
1. Does not reflect the added PD due to an output short-circuited.  
*
Stresses outside the listed absolute maximum ratings may cause permanent damage to the device. This is a stress rating only, and  
functional operation of the device at these or any other conditions beyond limits indicated in the operational sections of this specification  
is not recommended. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.  
RECOMMENDED OPERATING CONDITIONS  
SYMBOL  
PARAMETER  
DC supply voltage  
LIMITS  
4.5 to 5.5  
0 to V  
UNIT  
V
V
V
DD  
IN  
C
DC input voltage  
Temperature range  
Operating frequency  
V
DD  
T
-55 to +125  
12 ± .01%  
°C  
F
MHz  
O
RTR-19  
5.0 DC ELECTRICAL CHARACTERISTICS  
(VDD = 5.0V ±10%; -55°C < TC < +125°C)  
SYMBOL  
PARAMETER  
Low-level input voltage  
High-level input voltage  
CONDITION  
MINIMUM  
MAXIMUM  
UNIT  
V
V
IL  
0.8  
V
V
IH  
2.0  
I
Input leakage current  
TTL inputs  
Inputs with pull-down resistors  
Inputs with pull-up resistors  
V
V
V
= V or V  
DD SS  
IN  
IN  
IN  
IN  
-1  
1110  
-2000  
1
µA  
µA  
µA  
= V  
= V  
DD  
SS  
-2000  
-110  
V
V
Low-level output voltage  
I
I
= 3.2mA  
OL  
OL  
OH  
0.4  
V
High-level output voltage  
Three-state output  
leakage current  
= -400µA  
O DD SS  
OH  
2.4  
-10  
+10  
V
µA  
I
V = V or V  
OZ  
1, 2  
I
Short-circuit output current  
V
V
= 5.5V, V = V  
DD O DD  
OS  
-90  
90  
10  
mA  
mA  
= 5.5V V = 0V  
DD  
O
3
C
Input capacitance  
ƒ = 1MHz @ 0V  
IN  
pF  
3
C
C
Output capacitance  
ƒ = 1MHz @ 0V  
ƒ = 1MHz @ 0V  
OUT  
IO  
15  
20  
pF  
pF  
3
Bidirect I/O capacitance  
1, 4  
I
Average operating current  
ƒ = 12MHz, CL = 50pF  
Note 5  
DD  
50  
mA  
mA  
QI  
Quiescent current  
DD  
1.5  
Notes:  
1. Supplied as a design limit but not guaranteed or tested.  
2. Not more than one output may be shorted at a time for a maximum duration of one second.  
3. Measured only for initial qualification, and after process or design changes that could affect input/output capacitance.  
4. Includes current through input pull-ups. Instantaneous surge currents on the order of 1 ampere can occur during output switching.  
Voltage supply should be adequately sized and decoupled to handle a large surge current.  
5. All inputs with internal pull-ups or pull-downs should be left open circuit. All other inputs tied high or low.  
BIT TIMES  
1 2 3  
4 5 6 7 8  
5
9
10 11 12 13 14  
5
15 16 17 18 19  
5
20  
1
1
COMMAND  
WORD  
P
T/R  
DATA WORD COUNT/  
MODE CODE  
SYNC REMOTE TERMINAL  
ADDRESS  
SUBADDRESS/MODE  
CODE  
1
P
1
DATA WORD  
16  
SYNC  
DATA  
1
1
1
1
1
1
5
1
1
STATUS WORD  
REMOTE TERMINAL  
SYNC  
ADDRESS  
Figure 10. MIL-STD-1553B Word Formats  
RTR-20  
6.0 AC ELECTRICAL CHARACTERISTICS  
(Over recommended operating conditions)  
VIH MIN  
VIL MAX  
V
V
MIN  
MAX  
IH  
IL  
1
INPUT  
1
t
b
t
VOH MIN  
VOL MAX  
a
2
2
2
IN-PHASE  
OUTPUT  
OUT-OF-PHASE  
OUTPUT  
t
d
VOH MIN  
VOL MAX  
2
t
c
t
e
VOH MIN  
VOL MAX  
BUS  
t
f
t
g
t
h
SYMBOL  
PARAMETER  
t
t
a
INPUT to response  
INPUT to response ↓  
b
t
t
INPUTto response  
c
d
INPUT to response  
t
INPUT to data valid  
e
f
t
t
INPUT to high Z  
g
h
INPUTto high Z  
t
INPUT to data valid  
Notes:  
1. Timing measurements made at (V MIN + V MAX)/2.  
IH  
IL  
MAX + V  
2. Timing measurements made at (V  
3. Based on 50pF load.  
MIN)/2.  
OL  
OH  
4. Unless otherwise noted, all AC electrical characteristics are guaranteed by design or characterization.  
Figure 11a. Typical Timing Measurements  
5V  
I
I
(source)  
REF  
3V  
90%  
90%  
V
REF  
10%  
10%  
50pF  
< 2ns  
0V  
< 2ns  
(sink)  
REF  
Input Pulses  
Note:  
50pF including scope probe and test socket  
Figure 11b. AC Test Loads and Input Waveforms  
RTR-21  
12MHz  
CS  
t
12i  
t
12j  
t
t
t
12a  
12b  
12c  
t
12f  
CTRL  
RD/WR  
t
t
12k  
12g  
ADDR(9:0)  
t
12d  
t
12l  
DATA(15:0)  
OE  
DATA VALID  
t
12h  
t
12e  
t
12m  
Figure 12. Microprocessor RAM Read  
SYMBOL  
PARAMETER  
MIN  
MAX  
UNITS  
1
t
t
t
t
t
t
t
t
t
t
t
t
t
CTRLset up wrt CS↓  
10  
10  
10  
--  
--  
--  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
12a  
12b  
12c  
12d  
12e  
12f  
RD/WR set up wrt CS↓  
ADDR(9:0) Valid to CS(Address Set up)  
CSto DATA(15:0) Valid  
--  
155  
65  
--  
OEto DATA(15:0) Don’t Care (Active)  
CSto CTRL Don’t Care  
--  
0
CSto ADDR(9:0) Don’t Care  
OEto DATA(15:0) High Impedance  
0
--  
12g  
12h  
12i  
--  
40  
5500  
--  
2
CSto CS↑  
220  
85  
0
CSto CS↓  
12j  
CSto RD/WR Don’t Care  
--  
12k  
12l  
3
CSto DATA(15:0) Invalid  
25  
65  
--  
OEto OE↑  
--  
12m  
Notes:  
1. “wrt” defined as “with respect to.”  
2. The maximum amount of time that CS can be held low is 5500ns if the user has selected the 5.7µs RBUSY option. For the 2.7µs  
RBUSY option, the maximum CS low time is 2500ns.  
3. Assumes OE is asserted.  
RTR-22  
12MHz  
CS  
t
13i  
t
13j  
t
13a  
t
13k  
CTRL  
t
13b  
RD/WR  
ADDR(9:0)  
DATA(15:0)  
OE  
t
t
t
13f  
t
t
13c  
13d  
13g  
13h  
VALID DATA  
t
13e  
Figure 13. Microprocessor RAM Write  
SYMBOL  
PARAMETER  
MIN  
10  
MAX  
UNITS  
ns  
t
CTRLset up wrt CS↓  
--  
13a  
t
t
t
t
t
t
t
t
t
t
RD/WRset up wrt CS↓  
10  
10  
0
--  
--  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
13b  
13c  
13d  
13e  
13f  
ADDR(9:0) Valid to CS(Address set up)  
DATA(15:0) Valid to CS(DATA set up)  
OEto DATA(15:0) High Impedance  
CSto RD/WR Don’t Care  
--  
40  
0
--  
--  
CSto ADDR(9:0) Don’t Care  
0
--  
13g  
13h  
13i  
CSto DATA(15:0) Don’t Care (Hold-time)  
20  
180  
85  
0
--  
1
CSto CS↑  
5500  
--  
CSto CS↓  
13j  
CSto CTRL Don’t Care  
--  
13k  
Note:  
1. The maximum amount of time that CS can be held low is 5500ns if the user has selected the 5.7ms RBUSY option. For the 2.7ms  
RBUSY option, the maximum CS low time is 2500ns.  
RTR-23  
12MHz  
CS  
t
14c  
t
14a  
t
14e  
CTRL  
t
14b  
RD/WR  
t
14f  
t
14h  
DATA(15:0)  
VALID DATA  
t
14d  
OE  
t
14g  
Figure 14. Control Register Write  
SYMBOL  
PARAMETER  
MIN  
0
MAX  
--  
UNITS  
ns  
t
CTRLset up wrt CS↓  
RD/WRset up wrt CS↓  
14a  
t
t
t
t
t
t
t
0
50  
0
--  
5500  
--  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
14b  
14c  
14d  
14e  
14f  
1
CSto CS↑  
CSto DATA(15:0) Don’t Care (Hold-time)  
CSto CTRL Don’t Care  
0
--  
CSto RD/WR Don’t Care  
0
--  
OEto DATA(15:0) High Impedance  
DATA(15:0) Valid to CS(DATA set up)  
40  
0
--  
14g  
14h  
--  
Note:  
1. The maximum amount of time that CS can be held low is 5500ns if the user has selected the 5.7µs RBUSY option. For the 2.7µs  
RBUSY option, the maximum CS low time is 2500ns.  
RTR-24  
12MHz  
CS  
t
15b  
t
15a  
t
15e  
CTRL  
t
15c  
RD/WR  
DATA(15:0)  
OE  
t
t
15f  
t
15d  
15j  
VALID DATA  
t
t
15h  
15g  
t
15i  
Figure 15. Status Register Read  
SYMBOL  
PARAMETER  
MIN  
MAX  
UNITS  
t
t
t
t
t
t
t
t
t
t
CTRLset up wrt CS↓  
0
65  
0
--  
5500  
--  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
15a  
15b  
15c  
15d  
15e  
15f  
1
CSto CS↑  
RD/WRset up wrt CS↓  
CSto DATA(15:0) Valid  
--  
65  
--  
CSto CTRL Don’t Care  
5
CSto RD/WR Don’t Care  
OEto DATA(15:0) Don’t Care (Active)  
OEto DATA(15:0) High Impedance  
OEto OE↑  
5
--  
--  
65  
40  
--  
15g  
15h  
15i  
--  
65  
25  
CSto DATA(15:0) Don’t Care (Active)  
--  
15j  
Note:  
1. The maximum amount of time that CS can be held low is 5500ns if the user has selected the 5.7ms RBUSY option. For the 2.7ms  
RBUSY option, the maximum CS low time is 2500ns.  
RTR-25  
VALMSG  
TIMERON  
t
16a  
t
16c  
A/B  
BIPHASE  
OUTPUT ZERO  
t
16b  
COMSTR  
ILLCOM  
t
16d  
t
16g  
t
16e  
t
16f  
Figure 16. RT Fail-Safe Timer Signal Relationships  
SYMBOL  
PARAMETER  
MIN  
MAX  
UNITS  
t
t
VALMSGbefore TIMERON↓  
TIMERONbefore first  
BIPHASE OUT O↑  
0
35  
--  
µs  
µs  
16a  
16b  
1.2  
t
t
t
t
t
t
TIMERON low pulse width (time-out)  
727.3  
--  
727.4  
25  
µs  
µs  
µs  
µs  
µs  
µs  
16c  
16d  
16e  
16f  
COMSTRto TIMERON↑  
VALMSGto ILLCOM↑  
--  
3.3  
1
COMSTRto ILLCOM↑  
--  
664  
18.2  
--  
2
COMSTRto ILLCOM↑  
--  
16f  
3
ILLCOMto ILLCOM↓  
500  
16g  
Notes:  
1. Mode code 2, 4, 5, 6, 7, or 18 received.  
2. To suppress data word storage.  
3. For transmit command illegalization.  
RTR-26  
12MHz  
CS COMMAND WORD  
P
1
BIPHASE IN  
t
17a  
MC/SA  
and MCSA(4:0)  
t
t
17b  
17c  
t
17l  
COMSTR  
BRDCST  
T/R  
t
t
17d  
17e  
t
t
17f  
17g  
t
t
17h  
17i  
VALMSG  
t
17j  
t
17k  
MERR  
Note:  
1. Measured from the mid-bit parity crossing.  
Figure 17. Status Output Timing  
SYMBOL  
PARAMETER  
MIN  
MAX  
UNITS  
4
t
t
t
t
t
t
t
t
t
t
t
t
12MHzto MC/SA Valid  
0
2.1  
0
14  
2.8  
17  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
17a  
17b  
17c  
17d  
17e  
17f  
3
Command Word to MC/SA Valid  
4
4
4
12MHzto COMSTR↓  
3
Command Word to COMSTR↓  
12MHzto BRDCST↓  
3.2  
0
3.7  
32  
3
Command Word to BRDCST↓  
12MHzto T/R Valid  
2.6  
0
3.2  
57  
17g  
17h  
17i  
3
Command Word to T/R Valid  
12MHzto VALMSG↑  
2.2  
0
2.7  
32  
4
1, 2, 3  
Command Word to VALMSG↑  
12MHzto MERR↑  
6.2  
0
6.7  
37  
17j  
4
17k  
17l  
COMSTRto COMSTR↑  
485  
500  
Notes:  
1. Receive last data word to Valid Message active (VALMSG).  
2. Transmit command word to Valid Message active (VALMSG).  
3. Command word measured from mid-bit crossing.  
4. Guaranteed by test.  
RTR-27  
12MHz  
CS COMMAND WORD  
P
t
BIPHASE IN  
18a  
t18i  
t
RBUSY  
18h  
t
t
18b  
18c  
TERACT  
t
18d  
t
t
18e  
RTRT  
18f  
t
MRST  
18g  
Note:  
1. Measured from mid-bit parity crossing.  
Figure 18. Status Output Timing  
SYMBOL  
PARAMETER  
MIN  
MAX  
UNITS  
t
t
t
t
t
t
t
12MHzto RBUSY↑  
--  
3.2  
0
37  
3.8  
37  
ns  
µs  
ns  
µs  
ns  
µs  
ns  
18a  
18b  
18c  
18d  
18e  
18f  
2
Command Word to RBUSY↑  
12MHzto TERACT↓  
1
1
2
Command Word to TERACT↓  
12MHzto RTRT↑  
3.1  
0
3.7  
32  
2
Command Word to RTRT↑  
21.0  
500  
22.0  
--  
MRSTto MRST↑  
18g  
RBUSYto RBUSY(2.7ms)  
(5.7ms)  
--  
--  
5.5  
8.5  
µs  
µs  
t
t
18h  
RBUSYto RBUSY(2.7ms)  
(5.7ms)  
3.10  
240  
--  
--  
µs  
µs  
18i  
Notes:  
1. Guaranteed by test.  
2. Command word measured from mid-bit crossing.  
RTR-28  
BIPHASE IN  
COMSTR  
DATA WORD  
CSCOMMAND WORD DATA WORD P DS  
P
T/R  
1
2
3
RBUSY  
TERACT  
SS STATUS  
P
BIPHASE OUT  
VALMSG  
Notes:  
1. Burst of 5 DMAs: read command pointer, store command word, update command pointer, read data word pointer, store  
command word.  
2. Burst of 1 DMA: store data word.  
3. Burst of 2 DMAs: store data word, update data word pointer.  
4.Approximately 560ns per DMA access.  
Figure 19a. Receive Command with Two Data Words  
BIPHASE IN  
CS COMMAND  
P
COMSTR  
T/R  
1
2
3
RBUSY  
TERACT  
BIPHASE OUT  
VALMSG  
SS STATUS  
P
DS DATA  
P
DS DATA  
P
CS = Command sync  
SS = Status sync  
DS = Data sync  
P = Parity  
Notes:  
1. Burst of 4 DMAs: read command pointer, store command word, update command pointer, read data word pointer.  
2. Burst of 1 DMA: read data word.  
3. Burst of 2 DMAs: read data word, update data word pointer.  
4. Approximately 560ns per DMA access.  
Figure 19b. Transmit Command with Two Data Words  
RTR-29  
ADDR(9:0)  
DATA(15:0)  
CONTROL  
HOST  
SUBSYSTEM  
UT1553B  
RTR  
UT63M125  
1553 TRANSCEIVER  
1553 BUS A  
1553 BUS B  
Figure 20a. RTR General System Diagram (Idle low interface)  
RAO  
RXOUT  
RXOUT  
RAZ  
CHANNEL A  
CHANNEL A  
RTR  
TXINHB  
TXIN  
TAO  
TAZ  
TXIN  
UTMC  
63M125  
RXOUT  
RXOUT  
RBO  
RBZ  
CHANNEL B  
TXINHB  
TXIN  
CHANNEL B  
TBO  
TBZ  
TXIN  
TIMERON  
Figure 20b. RTR Transceiver Interface Diagram  
RTR-30  
MC/SA  
MCSA0  
MCSA1  
MCSA2  
MCSA3  
MCSA4  
ILLEGAL  
COMMAND  
DECODER  
RTR  
COMSTR  
BRDCST  
RTRT  
T/R  
ILLCOM  
Figure 21. Mode Code/Subaddress Illegalization Circuit  
RTR-31  
Package Selection Guide  
Product  
RTI RTMP RTR BCRT BCRTM BCRTMP RTS XCVR  
X
24-pin DIP  
(single cavity)  
36-pin DIP  
X
(dual cavity)  
68-pin PGA  
84-pin PGA  
144-pin PGA  
84-lead LCC  
36-lead FP  
(dual cavity)  
(50-mil ctr)  
X
X
1
1
X
X
X
X
X
X
X
X
X
X
84-lead FP  
132-lead FP  
X
X
X
NOTE:  
1. 84LCC package is not available radiation-hardened.  
Packaging-1  
A
D
0.130 MAX.  
1.565 ± 0.025  
-A-  
Q
0.040 REF.  
0.050 ± 0.010  
A
0.080 REF.  
(2 Places)  
L
0.130 ±0.010  
0.100 REF.  
(4 Places)  
E
1.565 ± 0.025  
-B-  
PIN 1 I.D.  
(Geometry Optional)  
-C-  
(Base Plane)  
A
e
b
TOP VIEW  
0.100  
TYP.  
0.018 ± 0.002  
0.030 C A  
1
B
0.010  
C
2
R
SIDE VIEW  
P
N
M
L
K
J
D1/E1  
1.400  
H
G
F
E
D
1
2
3
4 5 6 7 8 9 10 11 12 13 14 15  
PIN 1 I.D.  
(Geometry Optional)  
0.003 MIN. TYP.  
BOTTOM VIEW  
Notes:  
1. True position applies to pins at base plane (datum C).  
2. True position applies at pin tips.  
3. All package finishes are per MIL-M-38510.  
4. Letter designations are for cross-reference to MIL-M-38510.  
144-Pin Pingrid Array  
Packaging-2  
D/E  
A
0.110  
0.006  
1.525 ± 0.015 SQ.  
D1/E1  
0.950 ± 0.015 SQ.  
PIN 1 I.D.  
A
(Geometry  
Optional)  
e
0.025  
SEE DETAIL A  
A
LEAD KOVAR  
TOP VIEW  
C
0.005  
+ 0.002  
- 0.001  
L
S1  
0.250  
MIN.  
REF.  
SIDE VIEW  
0.005 MIN. TYP.  
0.018 MAX. REF.  
0.014 MAX. REF.  
(At Braze Pads)  
DETAIL A  
BOTTOM VIEW A-A  
Notes:  
1. All package finishes are per MIL-M-38510.  
2. Letter designations are for cross-reference to MIL-M-38510.  
132-Lead Flatpack (25-MIL Lead Spacing)  
Packaging-3  
A
0.115 MAX.  
D/E  
1.150 ± 0.015 SQ.  
A1  
A
0.080 ± 0.008  
A
PIN 1 I.D.  
(Geometry Optional)  
TOP VIEW  
SIDE VIEW  
L/L1  
0.050 ± 0.005 TYP.  
h
0.040 x 45_  
REF. (3 Places)  
B1  
0.025 ± 0.003  
e
0.050  
e1  
0.015 MIN.  
J
0.020 X 455 REF.  
PIN 1 I.D.  
(Geometry Optional)  
BOTTOM VIEW A-A  
Notes:  
1. All package finishes are per MIL-M-38510.  
2. Letter designations are for cross-reference to MIL-M-38510.  
84-LCC  
Packaging-4  
D/E  
A
1.810 ± 0.015 SQ.  
0.110  
0.060  
D1/E1  
1.150 ± 0.012 SQ.  
PIN 1 I.D.  
(Geometry  
Optional)  
A
e
0.050  
b
0.016 ± 0.002  
SEE DETAIL A  
LEAD KOVAR  
A
C
TOP VIEW  
0.007 ± 0.001  
L
SIDE VIEW  
0.260  
MIN.  
REF.  
S1  
0.005 MIN. TYP.  
0.018 MAX. REF.  
0.014 MAX.  
REF.  
(At Braze Pads)  
DETAIL A  
BOTTOM VIEW A-A  
Notes:  
1. All package finishes are per MIL-M-38510.  
2. Letter designations are for cross-reference to MIL-M-38510.  
84-Lead Flatpack (50-MIL Lead Spacing)  
Packaging-5  
A
D
0.130 MAX.  
-A-  
1.100 ± 0.020  
Q
A
0.050 ± 0.010  
L
0.130 ± 0.010  
E
1.100 ± 0.020  
PIN 1 I.D.  
(Geometry Optional)  
-B-  
-C-  
TOP VIEW  
(Base Plane)  
A
b
0.018 ± 0.002  
e
0.100  
TYP.  
1
0.030 C A  
B
0.010  
C
2
L
SIDE VIEW  
K
J
H
G
F
E
D
D1/  
1.000  
1
2
3
4
5
6
7
8 9 10 11  
PIN 1 I.D.  
(Geometry Optional)  
0.003 MIN.  
BOTTOM VIEW A-A  
Notes:  
1. True position applies to pins at base plane (datum C).  
2. True position applies at pin tips.  
3. All packages finishes are per MIL-M-38510.  
4. Letter designations are for cross-reference to MIL-M-38510.  
84-Pin Pingrid Array  
Packaging-6  
A
0.130 MAX.  
Q
D
0.050 ± 0.010  
-A-  
1.100 ± 0.020  
A
L
0.130 ± 0.010  
E
1.100 ± 0.020  
-B-  
PIN 1 I.D.  
(Geometry Optional)  
A
-C-  
(Base Plane)  
TOP  
b
0.010 ± 0.002  
e
0.100  
1
0.030  
0.010  
Æ
Æ
A
2
C
C
B
TYP.  
SIDE VIEW  
L
K
J
H
G
F
E
D
C
B
A
D1/E1  
1.00  
1
2
3
4
5
6
7
8
9
10 11  
PIN 1 I.D.  
(Geometry Optional)  
0.003 MIN. TYP.  
BOTTOM VIEW A-A  
Notes:  
1
2
True position applies to pins at base plane (datum C).  
True position applies at pin tips.  
3. All packages finishes are per MIL-M-38510.  
4. Letterdesignationsareforcross-referencetoMIL-M-38510.  
68-Pin Pingrid Array  
Packaging-7  
L
E
0.490  
MIN.  
0.750 ± 0.015  
b
0.015 ± 0.002  
D
1.800 ± 0.025  
e
0.10  
PIN 1 I.D.  
(Geometry Optional)  
TOP VIEW  
c
+ 0.002  
- 0.001  
0.008  
A
0.130 MAX.  
Q
END VIEW  
0.080 ± 0.010  
(At Ceramic Body)  
Notes:  
All package finishes are per MIL-M-38510.  
1
2. It is recommended that package ceramic be mounted to  
aheatremovalraillocatedontheprintedcircuitboard.  
A thermally conductive material such as MERECO XLN-589 or  
equivalent should be used.  
3. Letter designations are for cross-reference to MIL-M-38510.  
36-Lead Flatpack, Dual Cavity (100-MIL Lead Spacing)  
Packaging-8  
E
L
0.700 + 0.015  
0.330  
MIN.  
b
0.016 + 0.002  
D
1.000 ± 0.025  
e
0.050  
PIN 1 I.D  
(Geometry Optional)  
TOP  
+ 0.002  
c
- 0.001  
0.007  
A
0.100 MAX.  
Q
0.070 + 0.010  
(At Ceramic Body)  
END  
Notes:  
1. All package finishes are per MIL-M-38510.  
2. It is recommended that package ceramic be mounted to  
a heat removal rail located on the printed circuit board.  
A thermally conductive material such as MERECO XLN-589  
or equivalent should be used.  
3. Letter designations are for cross-reference to MIL-M-38510.  
36-Lead Flatpack, Dual Cavity (50-MIL Lead Spacing)  
Packaging-9  
E
S1  
0.005 MIN.  
S2  
0.590 ± 0.012  
e
0.005 MAX.  
0.100  
D
1.800 ± 0.025  
b
0.018 ± 0.002  
PIN 1 I.D.  
(Geometry Optional)  
A
L/L1  
0.150 MIN.  
0.155 MAX.  
TOP VIEW  
SIDE VIEW  
Notes:  
1. All package finishes are per MIL-M-38510.  
2. It is recommended that package ceramic be mounted to  
a heat removal rail located on the printed circuit board.  
A thermally conductive material such as MERECO XLN-589  
or equivalent should be used.  
C
+ 0.002  
0.010  
- 0.001  
E1  
0.600 + 0.010  
(At Seating Plane)  
3. Letter designations are for cross-reference to MIL-M-38510.  
END VIEW  
36-Lead Side-Brazed DIP, Dual Cavity  
Packaging-10  
E
S1  
0.005 MIN.  
S2  
0.590 ± 0.015  
0.005 MAX.  
e
0.100  
D
1.200 ± 0.025  
b
0.018 ± 0.002  
L/L1  
0.150 MIN.  
PIN 1 I.D.  
(Geometry Optional)  
A
0.140 MAX.  
SIDE VIEW  
TOP VIEW  
Notes:  
1. All package finishes are per MIL-M-38510.  
2. It is recommended that package ceramic be mounted to  
a heat removal rail located on the printed circuit board.  
A thermally conductive material such as MERECO XLN-589 or  
equivalent should be used.  
+ 0.002  
- 0.001  
C
0.010  
E1  
0.600 + 0.010  
(At Seating Plane)  
3. Letter designations are for cross-reference to MIL-M-38510.  
END VIEW  
24-Lead Side-Brazed DIP, Single Cavity  
Packaging-11  
ORDERING INFORMATION  
UT1553B RTR Remote Terminal with RAM: S  
5962  
*
*
*
*
*
Lead Finish:  
(A)  
(C)  
(X)  
=
=
=
Solder  
Gold  
Optional  
Case Outline:  
(X) 68 pin PGA  
=
Class Designator:  
(-) Blank or No field is QML Q  
=
Drawing Number: 8957601  
Total Dose:  
(-)  
=
None  
Federal Stock Class Designator: No options  
Notes:  
1. Lead finish (A, C, or X) must be specified.  
2. If an "X" is specified when ordering, part marking will match the lead finish and will be either "A" (solder) or "C" (gold).  
3. For QML Q product, the Q designator is intentionally left blank in the SMD number (e.g. 5962-8957601XC).  
UT1553B RTR Remote Terminal with RAM  
No UT Part  
Number-  
*
*
Lead Finish:  
(A)  
(C)  
(X)  
=
=
=
Solder  
Gold  
Optional  
Package Type:  
(G) 68 pin PGA  
=
UTMC Core Part Number  
Notes:  
1. Lead finish (A, C, or X) must be specified.  
2. If an "X" is specified when ordering, part marking will match the lead finish and will be either "A" (solder) or "C" (gold).  

相关型号:

UT1553BRTR-GA

Remote Terminal with RAM
ETC

UT1553BRTR-GC

Remote Terminal with RAM
ETC

UT1553BRTR-GX

Remote Terminal with RAM
ETC

UT1553BRTR-GXA

Remote Terminal with RAM
ETC

UT1553BRTR-GXC

Remote Terminal with RAM
ETC

UT16N10G-K08-3030-R

Power Field-Effect Transistor,
UTC

UT16N10G-TA3-R

Power Field-Effect Transistor,
UTC

UT16N10G-TN3-R

Power Field-Effect Transistor,
UTC

UT16N10L-K08-3030-R

Power Field-Effect Transistor,
UTC

UT16N10L-TN3-R

Power Field-Effect Transistor,
UTC

UT16RD

Modular Terminal Block,
PHOENIX

UT1701-7

500 Watt AC-DC Converters
POWER-ONE