VS1002D [ETC]

MP3 AUDIO CODEC; MP3音频编解码器
VS1002D
型号: VS1002D
厂家: ETC    ETC
描述:

MP3 AUDIO CODEC
MP3音频编解码器

解码器 编解码器
文件: 总54页 (文件大小:517K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
VS1002D  
VS1002d  
VS1002d - MP3 AUDIO CODEC  
Features  
Description  
Decodes MPEG 1.0 & 2.0 audio layer III (CBR  
VS1002d is a single-chip MP3 audio decoder. It  
contains a high-performance, low-power DSP pro-  
cessor core VS DSP4, working data memory, 5  
KiB instruction RAM and 2.5 KiB data RAM for  
user applications, serial control and input data in-  
terfaces, 4 general purpose I/O pins, an UART, as  
well as a high-quality variable-sample-rate mono  
ADC and stereo DAC, followed by an earphone  
amplifier and a ground buffer.  
+ VBR); WAV and PCM files  
Encodes ADPCM from microphone input  
Streaming support for MP3 and WAV  
Bass control  
Operates with single a clock 12..13 MHz or  
24..26 MHz.  
Internal clock doubler  
Low-power operation  
High-quality on-chip stereo DAC with no  
phase error between channels  
VS1002d receives its input bitstream through a  
serial input bus, which it listens to as a system  
slave. The input stream is decoded and passed  
through a digital volume control to an 18-bit over-  
sampling, multi-bit, sigma-delta DAC. The decod-  
ing is controlled via a serial control bus. In addi-  
tion to the basic decoding, it is possible to add  
application specific features, like DSP effects, to  
the user RAM memory.  
Stereo earphone driver capable of driving a  
30 load  
Separate 2.5 V..3.6 V operating voltages for  
analog and digital  
7.5 KiB On-chip RAM for user code / data  
Serial control and data interfaces  
Can be used as a slave co-processor  
SPI flash boot for special applications  
UART for debugging purposes  
New functions may be added with software  
and 4 GPIO pins  
Lead-free RoHS-compliant packages  
audio  
VS1002  
L
audio  
Mono  
ADC  
Stereo  
DAC  
Stereo Ear−  
phone Driver  
MIC AMP  
R
4
output  
GPIO  
GPIO  
X ROM  
X RAM  
Y ROM  
Y RAM  
DREQ  
SO  
SI  
Serial  
Data/  
4
SCLK  
XCS  
XDCS  
Control  
Interface  
VSDSP  
RX  
UART  
TX  
Instruction  
RAM  
Instruction  
ROM  
Version 1.0, 2005-04-27  
1
VS1002D  
VLSI  
VS1002d  
y
Solution  
CONTENTS  
Contents  
1
2
3
4
License  
9
9
Disclaimer  
Definitions  
9
Characteristics & Specifications  
10  
4.1 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
4.2 Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
4.3 Analog Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
4.4 Power Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
4.5 Digital Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
4.6 Switching Characteristics - Boot Initialization . . . . . . . . . . . . . . . . . . . . . . . 12  
5
Packages and Pin Descriptions  
13  
5.1 Packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
5.1.1 LQFP-48 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
5.1.2 BGA-49 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
5.2 LQFP-48 and BGA-49 Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
6
7
Connection Diagram, LQFP-48  
SPI Buses  
15  
16  
7.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
7.2 SPI Bus Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
7.2.1 VS1002 Native Modes (New Mode) . . . . . . . . . . . . . . . . . . . . . . . . 16  
Version 1.0, 2005-04-27  
2
VS1002D  
VLSI  
VS1002d  
y
Solution  
CONTENTS  
7.2.2 VS1001 Compatibility Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
7.3 Data Request Pin DREQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
7.4 Serial Protocol for Serial Data Interface (SDI) . . . . . . . . . . . . . . . . . . . . . . . 17  
7.4.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
7.4.2 SDI in VS1002 Native Modes (New Mode) . . . . . . . . . . . . . . . . . . . . 17  
7.4.3 SDI in VS1001 Compatibility Mode . . . . . . . . . . . . . . . . . . . . . . . . 18  
7.5 Serial Protocol for Serial Command Interface (SCI) . . . . . . . . . . . . . . . . . . . . 18  
7.5.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
7.5.2 SCI Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
7.5.3 SCI Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
7.6 SPI Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
7.7 SPI Examples with SM SDINEW and SM SDISHARED set . . . . . . . . . . . . . . . 21  
7.7.1 Two SCI Writes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
7.7.2 Two SDI Bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
7.7.3 SCI Operation in Middle of Two SDI Bytes . . . . . . . . . . . . . . . . . . . . 21  
8
Functional Description  
22  
8.1 Main Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
8.2 Supported Audio Codecs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
8.2.1 Supported MP3 (MPEG layer III) Formats . . . . . . . . . . . . . . . . . . . . 22  
8.2.2 Supported RIFF WAV Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
8.3 Data Flow of VS1002d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
8.4 Serial Data Interface (SDI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
8.5 Serial Control Interface (SCI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
8.6 SCI Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Version 1.0, 2005-04-27  
3
VS1002D  
VLSI  
VS1002d  
y
Solution  
CONTENTS  
8.6.1 SCI MODE (RW) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
8.6.2 SCI STATUS (RW) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
8.6.3 SCI BASS (RW) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
8.6.4 SCI CLOCKF (RW) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
8.6.5 SCI DECODE TIME (RW) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
8.6.6 SCI AUDATA (RW) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
8.6.7 SCI WRAM (RW) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
8.6.8 SCI WRAMADDR (RW) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
8.6.9 SCI HDAT0 and SCI HDAT1 (R) . . . . . . . . . . . . . . . . . . . . . . . . . 30  
8.6.10 SCI AIADDR (RW) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
8.6.11 SCI VOL (RW) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
8.6.12 SCI AICTRL[x] (RW) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
9
Operation  
33  
9.1 Clocking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
9.2 Hardware Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
9.3 Software Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
9.4 SPI Boot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
9.5 Play/Decode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
9.6 Feeding PCM data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
9.7 SDI Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
9.7.1 Sine Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
9.7.2 Pin Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
9.7.3 Memory Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
9.7.4 SCI Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Version 1.0, 2005-04-27  
4
VS1002D  
VLSI  
VS1002d  
y
Solution  
CONTENTS  
10 VS1002d Registers  
37  
10.1 Who Needs to Read This Chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
10.2 The Processor Core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
10.3 VS1002d Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
10.4 SCI Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
10.5 Serial Data Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
10.6 DAC Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
10.7 GPIO Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
10.8 Interrupt Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
10.9 A/D Modulator Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
10.10Watchdog v1.0 2002-08-26 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
10.10.1 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
10.11UART v1.0 2002-04-23 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
10.11.1 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
10.11.2 Status UARTx STATUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
10.11.3 Data UARTx DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
10.11.4 Data High UARTx DATAH . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
10.11.5 Divider UARTx DIV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
10.11.6 Interrupts and Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
10.12Timers v1.0 2002-04-23 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
10.12.1 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
10.12.2 Configuration TIMER CONFIG . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
10.12.3 Configuration TIMER ENABLE . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
10.12.4 Timer X Startvalue TIMER Tx[L/H] . . . . . . . . . . . . . . . . . . . . . . . 47  
Version 1.0, 2005-04-27  
5
VS1002D  
VLSI  
VS1002d  
y
Solution  
CONTENTS  
10.12.5 Timer X Counter TIMER TxCNT[L/H] . . . . . . . . . . . . . . . . . . . . . . 47  
10.12.6 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
10.13System Vector Tags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
10.13.1 AudioInt, 0x20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
10.13.2 SciInt, 0x21 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
10.13.3 DataInt, 0x22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
10.13.4 ModuInt, 0x23 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
10.13.5 TxInt, 0x24 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
10.13.6 RxInt, 0x25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
10.13.7 Timer0Int, 0x26 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
10.13.8 Timer1Int, 0x27 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
10.13.9 UserCodec, 0x0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
10.14System Vector Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
10.14.1 WriteIRam(), 0x2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
10.14.2 ReadIRam(), 0x4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
10.14.3 DataBytes(), 0x6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
10.14.4 GetDataByte(), 0x8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
10.14.5 GetDataWords(), 0xa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
10.14.6 Reboot(), 0xc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
11 VS1002 Version Changes  
52  
11.1 Changes Between VS1002c and VS1002d, 2004-05-13 . . . . . . . . . . . . . . . . . . 52  
12 Document Version Changes  
53  
12.1 Version 1.0 for VS1002d, 2005-04-27 . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
12.2 Version 0.71 for VS1002d, 2004-07-20 . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Version 1.0, 2005-04-27  
6
VS1002D  
VLSI  
VS1002d  
y
Solution  
CONTENTS  
12.3 Version 0.70 for VS1002d, 2004-05-13 . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
12.4 Version 0.62 for VS1002c, 2004-03-24 . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
12.5 Version 0.61 for VS1002c, 2004-03-11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
12.6 Version 0.6 for VS1002c, 2004-02-13 . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
13 Contact Information  
54  
Version 1.0, 2005-04-27  
7
VS1002D  
VLSI  
VS1002d  
y
Solution  
LIST OF FIGURES  
List of Figures  
1
2
3
4
5
6
7
8
9
Pin Configuration, LQFP-48. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Pin Configuration, BGA-49. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Typical Connection Diagram Using LQFP-48. . . . . . . . . . . . . . . . . . . . . . . . 15  
BSYNC Signal - one byte transfer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
BSYNC Signal - two byte transfer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
SCI Word Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
SCI Word Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
SPI Timing Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Two SCI Operations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
10 Two SDI Bytes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
11 Two SDI Bytes Separated By an SCI Operation. . . . . . . . . . . . . . . . . . . . . . . 21  
12 Data Flow of VS1002d. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
13 ADPCM Frequency Responses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
14 User’s Memory Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
15 RS232 Serial Interface Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Version 1.0, 2005-04-27  
8
VS1002D  
VLSI  
VS1002d  
y
Solution  
1. LICENSE  
1 License  
MPEG Layer-3 audio decoding technology licensed from Fraunhofer IIS and Thomson.  
2 Disclaimer  
This is a preliminary datasheet. All properties and figures are subject to change.  
3 Definitions  
ASIC Application Specific Integrated Circuit.  
B Byte, 8 bits.  
b Bit.  
IC Integrated Circuit.  
Ki “Kibi” = 10 = 1024 (IEC 60027-2).  
Mi “Mebi” = 20 = 1048576 (IEC 60027-2).  
VS DSP VLSI Solution’s DSP core.  
W Word. In VS DSP, instruction words are 32-bit and data words are 16-bit wide.  
Version 1.0, 2005-04-27  
9
VS1002D  
VLSI  
VS1002d  
y
Solution  
4. CHARACTERISTICS & SPECIFICATIONS  
4 Characteristics & Specifications  
4.1 Absolute Maximum Ratings  
Parameter  
Symbol Min  
Max  
Unit  
Analog Positive Supply  
Digital Positive Supply  
Current at Any Digital Output  
Voltage at Any Digital Input 2  
Operating Temperature  
Storage Temperature  
AVDD -0.3  
DVDD -0.3  
3.6  
3.6  
±50  
V
V
mA  
V
C  
C  
-0.3 DVDD+0.31  
-40  
-65  
+85  
+150  
1 Must not exceed 3.6 V  
2 Current must be limited to ± mA  
4.2 Recommended Operating Conditions  
Parameter  
Symbol  
Min  
Typ  
Max Unit  
Ambient Operating Temperature  
Analog and Digital Ground 1  
Positive Analog  
-40  
+85  
C  
AGND DGND  
AVDD  
0.0  
2.7  
2.7  
V
2.5  
2.3  
3.6  
3.6  
26  
13  
26  
V
V
MHz  
MHz  
MHz  
Positive Digital  
DVDD  
Input Clock Frequency  
Input Clock Frequency, with clock doubler  
Internal Clock Frequency  
Internal Clock Frequency, DVDD  
Master Clock Duty Cycle  
XTALI  
XTALI  
CLKI  
24 24.576  
12 12.288  
242 24.576  
242  
V
CLKI  
28.636 MHz  
60  
40  
50  
%
1 Must be connected together as close to the device as possible for latch-up immunity.  
2 The maximum sample rate that can be played with correct speed is CLKI/512.  
Thus, if CLKI is 24 MHz, 48 kHz is played 2.5% off-pitch.  
Version 1.0, 2005-04-27  
10  
VS1002D  
VLSI  
VS1002d  
y
Solution  
4. CHARACTERISTICS & SPECIFICATIONS  
4.3 Analog Characteristics  
Unless otherwise noted: AVDD=2.5..3.6V, DVDD=2.3..3.6V, TA=-40..+85C, XTALI=12..13MHz,  
internal Clock Doubler active. DAC tested with 1307.894 Hz full-scale output sinewave, measurement  
bandwidth 20..20000 Hz, analog output load: LEFT to GBUF 30 , RIGHT to GBUF 30 . Microphone  
test amplitude 100 mVpp, f=1 kHz.  
Parameter  
Symbol Min Typ Max Unit  
DAC Resolution  
Total Harmonic Distortion  
18  
0.1  
90  
85  
75  
40  
bits  
%
dB  
dB  
dB  
dB  
THD  
IDR  
SNR  
0.2  
Dynamic Range (DAC unmuted, A-weighted)  
S/N Ratio (full scale signal)  
Interchannel Isolation (Cross Talk), AC-coupled  
Interchannel Isolation (Cross Talk), with GBUF  
Interchannel Gain Mismatch  
Frequency Response 20 Hz..15000 Hz  
Frequency Response 15000 Hz..19000 Hz  
Full Scale Output Voltage (Peak-to-peak)  
Deviation from Linear Phase  
Analog Output Load Resistance  
Analog Output Load Capacitance  
Microphone input impedance  
70  
50  
-0.5  
-0.2  
-1.0  
0.5 dB  
0.2 dB  
-0.2 dB  
2.0 Vpp  
1.4 1.61  
5
AOLR  
16  
302  
100 pF  
k
100  
Microphone input amplitude  
1003 280 mVpp AC  
Microphone Total Harmonic Distortion  
Microphone S/N Ratio  
MTHD  
MSNR  
0.03 0.10  
82  
%
dB  
70  
1 3.2 volts can be achieved with +-to-+ wiring for mono difference sound.  
2 AOLR may be much lower, but below Typical distortion performance may be compromised.  
3 100 mVpp is optimum level. Above typical amplitude the Harmonic Distortion increases.  
4.4 Power Consumption  
Average current tested with an MPEG 1.0 Layer III 128 kbit/s sample and generated sine, output at full  
volume, XTALI = 12.288 MHz, internal clock doubler enabled, DVDD = 2.7 V, AVDD = 2.7 V.  
Parameter  
Min Typ Max Unit  
Power Supply Consumption AVDD, Reset  
Power Supply Consumption DVDD, Reset  
0.6  
3.7 10.0  
5.0  
A
A
Power Supply Consumption AVDD, sine test, 30 + GBUF  
Power Supply Consumption DVDD, sine test  
22  
9
30  
18  
mA  
mA  
Power Supply Consumption AVDD, no load  
Power Supply Consumption AVDD, output load 30  
Power Supply Consumption AVDD, 30 + GBUF  
Power Supply Consumption DVDD  
6
mA  
mA  
mA  
mA  
10  
16  
19  
Version 1.0, 2005-04-27  
11  
VS1002D  
VLSI  
VS1002d  
y
Solution  
4. CHARACTERISTICS & SPECIFICATIONS  
4.5 Digital Characteristics  
Parameter  
Symbol  
Min  
Typ  
Max  
DVDD+0.31  
Unit  
High-Level Input Voltage  
Low-Level Input Voltage  
High-Level Output Voltage at I = -2.0 mA  
Low-Level Output Voltage at I = 2.0 mA  
Input Leakage Current  
SPI Input Clock Frequency 2  
×DVDD  
V
V
V
V
A
MHz  
ns  
-0.2  
×DVDD  
×DVDD  
×DVDD  
-1.0  
1.0  
6
50  
Rise time of all output pins, load = 50 pF  
1 Must not exceed 3.6V  
2 Value for SCI reads. SCI and SDI writes allow  
.
4
4.6 Switching Characteristics - Boot Initialization  
Parameter  
Symbol Min  
Max  
Unit  
XTALI  
XRESET active time  
XRESET inactive to software ready  
Power on reset, rise time of DVDD  
2
500001 XTALI  
V/s  
10  
1 DREQ rises when initialization is complete. You should not send any data or commands before that.  
Version 1.0, 2005-04-27  
12  
VS1002D  
VLSI  
VS1002d  
y
Solution  
5. PACKAGES AND PIN DESCRIPTIONS  
5 Packages and Pin Descriptions  
5.1 Packages  
Both LPQFP-48 and BGA-49 are lead (Pb) free and also RoHS compliant packages. RoHS is a short  
name of Directive 2002/95/EC on the restriction of the use of certain hazardous substances in electrical  
and electronic equipment.  
5.1.1 LQFP-48  
48  
1
Figure 1: Pin Configuration, LQFP-48.  
LQFP-48 package dimensions are at http://www.vlsi.fi/ .  
5.1.2 BGA-49  
A1 BALL PAD CORNER  
4
5
3
6
7
1
2
A
B
C
D
E
F
G
1.10 REF  
0.80 TYP  
4.80  
7.00  
TOP VIEW  
Figure 2: Pin Configuration, BGA-49.  
BGA-49 package dimensions are at http://www.vlsi.fi/ .  
Version 1.0, 2005-04-27  
13  
VS1002D  
VLSI  
VS1002d  
y
Solution  
5. PACKAGES AND PIN DESCRIPTIONS  
5.2 LQFP-48 and BGA-49 Pin Descriptions  
Pin Name  
LQFP- BGA49 Pin  
48 Pin Ball Type  
Function  
MICP2  
1
2
3
4
6
8
9
C3  
C2  
B1  
D2  
D3  
E2  
E1  
AI  
AI  
DI  
PWR  
PWR  
DO  
DI  
microphone input, use pull-down resistor if not used  
microphone input, use pull-down resistor if not used  
active low asynchronous reset  
digital ground  
digital power supply  
data request output  
general purpose IO 2 / serial input data bus clock, use  
pull-down resistor if not used  
general purpose IO 3 / serial data input, use pull-down  
resistor if not used  
MICN2  
XRESET  
DGND0  
DVDD0  
DREQ  
GPIO22 / DCLK1  
GPIO32 / SDATA1 10  
F2  
DI  
XDCS / BSYNC1  
DVDD1  
DGND1  
XTALO  
XTALI  
DVDD2  
DGND2  
DGND3  
DGND4  
XCS  
13  
14  
16  
17  
18  
19  
20  
21  
22  
23  
26  
27  
28  
29  
30  
32  
E3  
F3  
F4  
G3  
E4  
F5  
F6  
F6  
F6  
G6  
E6  
F7  
D6  
E7  
D5  
C6  
C7  
B6  
C5  
B5  
A6  
B4  
A5  
C4  
A4  
B3  
A3  
B2  
A2  
DI  
data chip select / byte sync  
digital power supply  
digital ground  
crystal output  
crystal input  
digital power supply  
digital ground (in BGA-49, DGND2, 3, 4 conn. together)  
digital ground  
PWR  
PWR  
AO  
AI  
PWR  
PWR  
PWR  
PWR  
DI  
DI  
DO  
DI  
DI  
digital ground  
chip select input (active low)  
UART receive, use pull-up resistor if not used  
UART transmit  
clock for serial bus  
serial input  
RX  
TX  
SCLK  
SI  
SO  
TEST  
DO3  
DI  
serial output  
reserved for test, connect to DVDD  
general purpose IO 0, use 100 k pull-down resistor  
general purpose IO 1, use pull-down resistor if not used  
analog ground, low-noise reference  
analog power supply  
right channel output  
analog ground  
analog ground  
virtual ground for audio output, 1.23 V nominal  
analog power supply  
SPIBOOT / GPIO03 33  
DIO  
DIO  
PWR  
PWR  
AO  
PWR  
PWR  
AO  
PWR  
AIO  
PWR  
AO  
GPIO12  
AGND0  
AVDD0  
RIGHT  
AGND1  
AGND2  
GBUF  
34  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
AVDD1  
RCAP  
AVDD2  
LEFT  
filtering capacitance for reference  
analog power supply  
left channel output  
AGND3  
PWR  
analog ground  
1
2
3
First pin function is active in New Mode, latter in Compatibility Mode.  
If not used, use 100 kpull-down resistor.  
Unless pull-down resistor is used, SPI Boot is tried. See Chapter 9.4 for details.  
Type Description  
Type Description  
DI  
Digital input, CMOS Input Pad  
AI  
Analog input  
DO  
DIO  
Digital output, CMOS Input Pad  
Digital input/output  
AO  
AIO  
Analog output  
Analog input/output  
DO3 Digital output, CMOS Tri-stated Output Pad  
PWR Power supply pin  
In BGA-49, no-connect balls are A1, A7, B7, C1, D1, D4, D7, E5, F1, G1, G2, G7.  
In LQFP-48, no-connect pins are 5, 7, 11, 12, 15, 24, 25, 31, 35, 36, 48.  
Version 1.0, 2005-04-27  
14  
VS1002D  
VLSI  
VS1002d  
y
Solution  
6. CONNECTION DIAGRAM, LQFP-48  
6 Connection Diagram, LQFP-48  
Figure 3: Typical Connection Diagram Using LQFP-48.  
The ground buffer GBUF can be used for common voltage (1.23 V) for earphones. This will eliminate  
the need for large isolation capacitors on line outputs, and thus the audio output pins from VS1002d may  
be connected directly to the earphone connector.  
If GBUF is not used, LEFT and RIGHT must be provided with 1-100 F capacitors depending load  
resistance.  
If UART is not used, RX should connect to DVDD and TX be unconnected.  
Note: This connection assumes SM SDINEW is active (see Chapter 8.6.1). If also SM SDISHARE is  
used, xDCS should have a pull-up resistor (see Chapter 7.2.1).  
Version 1.0, 2005-04-27  
15  
VS1002D  
VLSI  
VS1002d  
y
Solution  
7. SPI BUSES  
7 SPI Buses  
7.1 General  
The SPI Bus - that was originally used in some Motorola devices - has been used for both VS1002d’s  
Serial Data Interface SDI (Chapters 7.4 and 8.4) and Serial Control Interface SCI (Chapters 7.5 and 8.5).  
7.2 SPI Bus Pin Descriptions  
7.2.1 VS1002 Native Modes (New Mode)  
These modes are active when SM SDINEW is set to 1 (default at startup). DCLK, SDATA and BSYNC  
are replaced with GPIO2, GPIO3 and XDCS, respectively.  
SDI Pin SCI Pin Description  
XDCS  
XCS  
Active low chip select input. A high level forces the serial interface into  
standby mode, ending the current operation. A high level also forces serial  
output (SO) to high impedance state. If SM SDISHARE is 1, pin  
XDCS is not used, but the signal is generated internally by inverting  
XCS.  
SCK  
Serial clock input. The serial clock is also used internally as the master  
clock for the register interface.  
SCK can be gated or continuous. In either case, the first rising clock edge  
after XCS has gone low marks the first bit to be written.  
Serial input. If a chip select is active, SI is sampled on the rising CLK edge.  
Serial output. In reads, data is shifted out on the falling SCK edge.  
In writes SO is at a high impedance state.  
SI  
-
SO  
7.2.2 VS1001 Compatibility Mode  
This mode is active when SM SDINEW is set to 0. In this mode, DCLK, SDATA and BSYNC are active.  
SDI Pin SCI Pin Description  
-
XCS  
Active low chip select input. A high level forces the serial interface into  
standby mode, ending the current operation. A high level also forces serial  
output (SO) to high impedance state. There is no chip select for SDI, which  
is always active.  
BSYNC  
DCLK  
-
SDI data is synchronized with a rising edge of BSYNC.  
Serial clock input. The serial clock is also used internally as the master  
clock for the register interface.  
SCK  
SCK can be gated or continuous. In either case, the first rising clock edge  
after XCS has gone low marks the first bit to be written.  
Serial input. SI is sampled on the rising SCK edge, if XCS is low.  
Serial output. In reads, data is shifted out on the falling SCK edge.  
In writes SO is at a high impedance state.  
SDATA  
-
SI  
SO  
Version 1.0, 2005-04-27  
16  
VS1002D  
VLSI  
VS1002d  
y
Solution  
7. SPI BUSES  
7.3 Data Request Pin DREQ  
The DREQ pin/signal is used to signal if VS1002d’s FIFO is capable of receiving data. If DREQ is high,  
VS1002d can take at least 32 bytes of SDI data or one SCI command. When these criteria are not met,  
DREQ is turned low, and the sender should stop transferring new data.  
Because of the 32-byte safety area, the sender may send upto 32 bytes of SDI data at a time without  
checking the status of DREQ, making controlling VS1002d easier for low-speed microcontrollers.  
Note: DREQ may turn low or high at any time, even during a byte transmission. Thus, DREQ should  
only be used to decide whether to send more bytes. It should not abort a transmission that has already  
started.  
7.4 Serial Protocol for Serial Data Interface (SDI)  
7.4.1 General  
The serial data interface operates in slave mode so the DCLK signal must be generated by an external  
circuit.  
Data (SDATA signal) can be clocked in at either the rising or falling edge of DCLK (Chapter 8.6).  
VS1002d assumes its data input to be byte-sychronized. SDI bytes may be transmitted either MSb or  
LSb first, depending of contents of SCI MODE (Chapter 8.6.1).  
The firmware is able to accept the maximum bitrate the SDI supports.  
7.4.2 SDI in VS1002 Native Modes (New Mode)  
In VS1002 native modes, byte synchronization is achieved by XDCS (or XCS if SM SDISHARE is 1).  
The state of XDCS (or XCS) may not change while a data byte transfer is in progress. To always maintain  
data synchronization even if there may be glitches in the boards using VS1002d, it is recommended to  
turn XDCS (or XCS) every now and then, for instance once after every flash data block or a few kilobytes,  
just to keep sure the host and VS1002d are in sync.  
If SM SDISHARE is 1, the XDCS signal is internally generated by inverting the XCS input.  
For new designs, using VS1002 native modes are recommended.  
Version 1.0, 2005-04-27  
17  
VS1002D  
VLSI  
VS1002d  
y
Solution  
7. SPI BUSES  
7.4.3 SDI in VS1001 Compatibility Mode  
BSYNC  
SDATA  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
DCLK  
Figure 4: BSYNC Signal - one byte transfer.  
When VS1002d is running in VS1001 compatibility mode, a BSYNC signal must be generated to ensure  
correct bit-alignment of the input bitstream. The first DCLK sampling edge (rising or falling, depending  
on selected polarity), during which the BSYNC is high, marks the first bit of a byte (LSB, if LSB-first  
order is used, MSB, if MSB-first order is used). If BSYNC is ’1’ when the last bit is received, the receiver  
stays active and next 8 bits are also received.  
BSYNC  
SDATA  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
DCLK  
Figure 5: BSYNC Signal - two byte transfer.  
7.5 Serial Protocol for Serial Command Interface (SCI)  
7.5.1 General  
The serial bus protocol for the Serial Command Interface SCI (Chapter 8.5) consists of an instruction  
byte, address byte and one 16-bit data word. Each read or write operation can read or write a single  
register. Data bits are read at the rising edge, so the user should update data at the falling edge. Bytes are  
always send MSb firrst.  
The operation is specified by an 8-bit instruction opcode. The supported instructions are read and write.  
See table below.  
Instruction  
Name  
Opcode  
Operation  
READ  
0b0000 0011 Read data  
WRITE 0b0000 0010 Write data  
Note: After sending an SCI command, it is not allowed to send SCI or SDI data for 5 microseconds.  
Version 1.0, 2005-04-27  
18  
VS1002D  
VLSI  
VS1002d  
y
Solution  
7. SPI BUSES  
7.5.2 SCI Read  
VS1002d registers are read by the following sequence, as shown in Figure 6. First, XCS line is pulled  
low to select the device. Then the READ opcode (0x3) is transmitted via the SI line followed by an 8-bit  
word address. After the address has been read in, any further data on SI is ignored. The 16-bit data  
corresponding to the received address will be shifted out onto the SO line.  
XCS should be driven high after data has been shifted out.  
XCS  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17  
30 31  
SCK  
3
2
1
0
SI  
don’t care  
data out  
don’t care  
0
0
0
0
0
0
1
1
0
0
0
0
instruction (read)  
address  
15 14  
1
0
SO  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
X
Figure 6: SCI Word Read  
7.5.3 SCI Write  
VS1002d registers are written to using the following sequence, as shown in Figure 7. First, XCS line is  
pulled low to select the device. Then the WRITE opcode (0x2) is transmitted via the SI line followed by  
an 8-bit word address.  
After the word has been shifted in and the last clock has been sent, XCS should be pulled high to end the  
WRITE sequence.  
XCS  
0
0
0
1
2
3
4
5
6
1
0
7
0
0
8
0
0
9
0
0
10 11 12 13 14 15 16 17  
30 31  
SCK  
15 14  
1
0
3
2
1
0
X
SI  
0
0
0
0
0
0
0
data out  
instruction (write)  
address  
X
SO  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Figure 7: SCI Word Write  
Version 1.0, 2005-04-27  
19  
VS1002D  
VLSI  
VS1002d  
y
Solution  
7. SPI BUSES  
7.6 SPI Timing Diagram  
tWL tWH  
tXCSH  
tXCSS  
XCS  
tXCS  
30  
0
1
14  
15  
16  
31  
SCK  
SI  
tH  
tSU  
SO  
tZ  
tV  
tDIS  
Figure 8: SPI Timing Diagram.  
Symbol Min  
Max Unit  
tXCSS  
tSU  
tH  
5
-26  
2
ns  
ns  
XTALI cycles  
tZ  
0
2
2
ns  
XTALI cycles  
XTALI cycles  
2 (+ 25ns1) XTALI cycles  
ns  
tWL  
tWH  
tV  
tXCSH  
tXCS  
tDIS  
-26  
2
XTALI cycles  
10 ns  
1 25ns is when pin loaded with 100pF capacitance. The time is shorter with lower capacitance.  
Note: As tWL and tWH, as well as tH require at least 2 clock cycles, the maximum speed for the SPI  
bus that can easily be used is 1/6 of VS1011’s external clock speed XTALI. Slightly higher speed can be  
achieved with very careful timing tuning. For details, see Application Notes for VS10XX.  
Note: Negative numbers mean that the signal can change in different order from what is shown in the  
diagram.  
Version 1.0, 2005-04-27  
20  
VS1002D  
VLSI  
VS1002d  
y
Solution  
7. SPI BUSES  
7.7 SPI Examples with SM SDINEW and SM SDISHARED set  
7.7.1 Two SCI Writes  
SCI Write 1  
SCI Write 2  
XCS  
0
1
2
3
30  
31  
32  
33  
61  
62  
63  
SCK  
1
0
2
1
0
SI  
0
0
0
0
X
0
0
X
Figure 9: Two SCI Operations.  
Figure 9 shows two consecutive SCI operations. Note that xCS must be raised to inactive state between  
the writes.  
7.7.2 Two SDI Bytes  
SDI Byte 1  
SDI Byte 2  
XCS  
0
1
2
3
6
7
8
9
13  
14  
15  
SCK  
7
6
5
4
3
1
0
7
6
5
2
1
0
SI  
X
Figure 10: Two SDI Bytes.  
SDI data is synchronized with a raising edge of xCS as shown in Figure 10. However, every byte doesn’t  
need separate synchronization.  
7.7.3 SCI Operation in Middle of Two SDI Bytes  
SDI Byte  
SDI Byte  
SCI Operation  
XCS  
0
1
6
7
8
9
38  
39  
40  
41  
46  
47  
SCK  
7
6
5
1
0
1
0
7
6
5
1
0
X
SI  
0
0
Figure 11: Two SDI Bytes Separated By an SCI Operation.  
Figure 11 shows how an SCI operation is embedded in between SDI operations. The changes in xCS are  
used to synchronize both SDI and SCI.  
Version 1.0, 2005-04-27  
21  
VS1002D  
VLSI  
VS1002d  
y
Solution  
8. FUNCTIONAL DESCRIPTION  
8 Functional Description  
8.1 Main Features  
VS1002d is based on a proprietary digital signal processor, VS DSP. It contains all the code and data  
memory needed for MP3 and WAV PCM + ADPCM audio decoding, together with serial interfaces, a  
multirate stereo audio DAC and analog output amplifiers and filters. Also ADPCM audio encoding is  
supported using a microphone amplifier and A/D converter. A UART is provided for debugging purposes.  
VS1002d can play all MPEG 1.0 and 2.0 layer III files, with all sample rates and bitrates, including  
variable bitrate (VBR).  
8.2 Supported Audio Codecs  
Conventions  
Mark Description  
+
-
Format is supported  
Format exists but is not supported  
Format doesn’t exist  
8.2.1 Supported MP3 (MPEG layer III) Formats  
MPEG 1.01:  
Samplerate / Hz  
Bitrate / kbit/s  
32  
40  
48  
56  
64  
80  
96  
112 128 160 192 224 256 320  
3
3
48000  
44100  
32000  
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
3
MPEG 2.01:  
Samplerate / Hz  
Bitrate / kbit/s  
8
16  
24  
32  
40  
48  
56  
64  
80  
96  
112 128 144 160  
24000  
22050  
16000  
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
MPEG 2.51 2  
:
Samplerate / Hz  
Bitrate / kbit/s  
8
16  
24  
32  
40  
48  
56  
64  
80  
96  
112 128 144 160  
12000  
11025  
8000  
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
1 Also all variable bitrate (VBR) formats are supported.  
2 Incompatibilities may occur because MPEG 2.5 is not a standard format.  
3 Nominal CLKI=24.576 MHz may be too little for glitchless playback.  
Version 1.0, 2005-04-27  
22  
VS1002D  
VLSI  
VS1002d  
y
Solution  
8. FUNCTIONAL DESCRIPTION  
8.2.2 Supported RIFF WAV Formats  
The most common RIFF WAV subformats are supported.  
Format Name  
Supported Comments  
0x01  
0x02  
0x03  
0x06  
0x07  
0x10  
0x11  
0x15  
0x16  
0x30  
0x31  
0x3b  
0x3c  
0x40  
0x41  
0x50  
0x55  
0x64  
0x65  
PCM  
ADPCM  
IEEE FLOAT  
ALAW  
MULAW  
OKI ADPCM  
IMA ADPCM  
DIGISTD  
DIGIFIX  
DOLBY AC2  
GSM610  
ROCKWELL ADPCM  
ROCKWELL DIGITALK  
G721 ADPCM  
G728 CELP  
MPEG  
MPEGLAYER3  
G726 ADPCM  
G722 ADPCM  
+
-
-
-
-
-
+
-
-
-
-
-
-
-
-
-
+
-
-
16 and 8 bits, any sample rate 48kHz  
Any sample rate 48kHz, mono only  
For supported MP3 modes, see Chapter 8.2.1  
8.3 Data Flow of VS1002d  
SCI_BASS = 0  
A1ADDR = 0  
L
SDI  
MP3/PlusV/  
WAV/ADPCM  
decoding  
Bitstream  
FIFO  
Bass  
enhancer  
User  
application  
Volume  
control  
Audio  
FIFO  
S.rate.conv.  
and DAC  
R
16384 bits  
SCI_BASS != 0  
A1ADDR != 0  
SCI_VOL  
512 stereo  
samples  
SM_ADPCM=0  
Figure 12: Data Flow of VS1002d.  
First, depending on the audio data, and provided ADPCM encoding mode is not set, MP3, PCM WAV or  
mono IMA ADPCM WAV data is received and decoded from the SDI bus.  
After decoding, data may be sent to the Bass Enhancer depending on SCI BASS.  
Then, if SCI AIADDR is non-zero, application code is executed from the address pointed to by that  
register. For more details, see Application Notes for VS10XX.  
After the optional user application, the signal is fed to the volume control unit, which also copies the  
data to the Audio FIFO.  
The Audio FIFO holds the data, which is read by the Audio interrupt (Chapter 10.13.1) and fed to the  
sample rate converter and DACs. The size of the audio FIFO is 512 stereo (2×16-bit) samples.  
The sample rate converter converts all different sample rates to CLKI/512 and feeds the data to the DAC,  
Version 1.0, 2005-04-27  
23  
VS1002D  
VLSI  
VS1002d  
y
Solution  
8. FUNCTIONAL DESCRIPTION  
which in order creates a stereo in-phase analog signal. This signal is then forwarded to the earphone  
amplifier.  
8.4 Serial Data Interface (SDI)  
The serial data interface is meant for transferring compressed MP3 audio data as well as WAV PCM and  
ADPCM data.  
If the input of the decoder is invalid or it is not received fast enough, analog outputs are automatically  
muted.  
Also several different tests may be activated through SDI as described in Chapter 9.  
Version 1.0, 2005-04-27  
24  
VS1002D  
VLSI  
VS1002d  
y
Solution  
8. FUNCTIONAL DESCRIPTION  
8.5 Serial Control Interface (SCI)  
The serial control interface is compatible with the SPI bus specification. Data transfers are always 16  
bits. VS1002d is controlled by writing and reading the registers of the interface.  
The main controls of the control interface are:  
control of the operation mode  
uploading user programs  
access to header data  
status information  
access to encoded digital data  
8.6 SCI Registers  
SCI registers, prefix SCI , offset 0xC000  
Reg Type Reset Abbrev[bits]  
Description  
0x0  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
0x8  
0x9  
0xA  
0xB  
0xC  
0xD  
0xE  
0xF  
rw  
rw  
rw  
rw  
r
rw  
rw  
rw  
r
0x800 MODE  
0x2C1 STATUS  
Mode control.  
Status of VS1002d.  
Built-in bass enhancer.  
Clock freq + doubler.  
Decode time in seconds.  
Misc. audio data.  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
BASS  
CLOCKF  
DECODE TIME  
AUDATA  
WRAM  
WRAMADDR  
HDAT0  
HDAT1  
AIADDR  
VOL  
AICTRL0  
AICTRL1  
AICTRL2  
AICTRL3  
RAM write.  
Base address for RAM write.  
Stream header data 0.  
Stream header data 1.  
Start address of application.  
Volume control.  
Application control register 0.  
Application control register 1.  
Application control register 2.  
Application control register 3.  
r
rw  
rw  
rw  
rw  
rw  
rw  
1 Firmware changes the value of this register immediately to 0x28, and in less than 100 ms to 0x20.  
Version 1.0, 2005-04-27  
25  
VS1002D  
VLSI  
VS1002d  
y
Solution  
8. FUNCTIONAL DESCRIPTION  
8.6.1 SCI MODE (RW)  
SCI MODE is used to control operation of VS1002d. Note that this register is not reset to 0, but to  
0x0800 (i.e. SM SDINEW is set).  
Bit Name  
SM DIFF  
Function  
Value Description  
normal in-phase audio  
0
1
2
3
4
5
6
7
8
9
Differential  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
left channel inverted  
right  
wrong  
no reset  
reset  
SM SETTOZERO Set to zero  
SM RESET  
Soft reset  
SM OUTOFWAV Jump out of WAV decoding  
no  
yes  
SM PDOWN  
SM TESTS  
SM STREAM  
SM PLUSV  
SM DACT  
Powerdown  
power on  
powerdown  
not allowed  
allowed  
no  
yes  
no  
yes  
rising  
falling  
MSb first  
MSb last  
no  
yes  
no  
yes  
no  
Allow SDI tests  
Stream mode  
MP3+V active  
DCLK active edge  
SDI bit order  
SM SDIORD  
10 SM SDISHARE  
11 SM SDINEW  
12 SM ADPCM  
Share SPI chip select  
VS1002 native SPI modes  
ADPCM recording active  
ADPCM high-pass filter active  
yes  
no  
yes  
13 SM ADPCM HP  
When SM DIFF is set, the player inverts the left channel output. For a stereo input this creates a virtual  
surround, and for a mono input this effectively creates a differential left/right signal.  
By setting SM RESET to 1, the player is software reset. This bit clears automatically.  
When the user decoding a WAV le wants to get out of the file without playing it to the end, set  
SM OUTOFWAV, and send zeros to VS1002d until SM OUTOFWAV is again zero. If the user doesn’t  
want to check SM OUTOFWAV, send 128 zeros.  
Bit SM PDOWN sets VS1002d into software powerdown mode. During powerdown, no audio is played  
and no SDI operations are performed. For best results, set SCI VOL to 0xFFFF before activating soft-  
ware powerdown. Note that software powerdown is not nearly as power efficient as hardware powerdown  
activated with the XRESET pin.  
Version 1.0, 2005-04-27  
26  
VS1002D  
VLSI  
VS1002d  
y
Solution  
8. FUNCTIONAL DESCRIPTION  
If SM TESTS is set, SDI tests are allowed. For more details on SDI tests, look at Chapter 9.7.  
SM STREAM activates VS1002d’s stream mode. In this mode, data should be sent with as even intervals  
as possible (and preferable with data blocks of less than 512 bytes), and VS1002d makes every attempt  
to keep its input buffer half full by changing its playback speed upto 5%. For best quality sound, the  
average speed error should be within 0.5%, the bitrate should not exceed 160 kbit/s and VBR should not  
be used. For details, see Application Notes for VS10XX.  
SM PLUSV activates MP3+V decoding. Without this bit set, only MP3 decoding is performed even for  
files with additional PlusV data.  
SM DACT defines the active edge of data clock for SDI. If clear data is read at the rising edge, and if set  
data is read at the falling edge.  
When SM SDIORD is clear, bytes on SDI are sent as a default MSb first. By setting SM SDIORD, the  
user may reverse the bit order for SDI, i.e. bit 0 is received first and bit 7 last. Bytes are, however, still  
sent in the default order. This register bit has no effect on the SCI bus.  
Setting SM SDISHARE makes SCI and SDI share the same chip select, as explained in Chapter 7.2, if  
also SM SDINEW is set.  
Setting SM SDINEW will activate VS1002 native serial modes as described in Chapters 7.2.1 and 7.4.2.  
Note, that this bit is set as a default when VS1002d is started up.  
By activating SM ADPCM and SM RESET at the same time, the user will activate IMA ADPCM record-  
ing mode. More information is available in document Application Notes for VS10XX.  
If SM ADPCM HP is set at the same time as SM ADPCM and SM RESET, ADPCM mode will start  
with a high-pass filter. This may help intelligibility of speech when there is lots of background noise.  
The difference created to the ADPCM encoder frequency response is as shown in Figure 13.  
VS1002 AD Converter with and Without HP Filter  
5
No High−Pass  
High−Pass  
0
−5  
−10  
−15  
−20  
0
500  
1000  
1500  
2000  
2500  
3000  
3500  
4000  
Frequency / Hz  
Figure 13: ADPCM Frequency Responses.  
Version 1.0, 2005-04-27  
27  
VS1002D  
VLSI  
VS1002d  
y
Solution  
8. FUNCTIONAL DESCRIPTION  
8.6.2 SCI STATUS (RW)  
SCI STATUS contains information on the current status of VS1002d and lets the user shutdown the chip  
without audio glitches.  
Name  
Bits Description  
SS VER  
6..4 Version  
SS APDOWN2  
SS APDOWN1  
SS AVOL  
3
2
Analog driver powerdown  
Analog internal powerdown  
1..0 Analog volume control  
SS VER is 0 for VS1001, 1 for VS1011, 2 for VS1002 and 3 for vs1003.  
SS APDOWN2 controls analog driver powerdown. Normally this bit is controlled by the system firmware.  
However, if the user wants to powerdown VS1002d with a minimum power-off transient, turn this bit to  
1, then wait for at least a few milliseconds before activating reset.  
SS APDOWN1 controls internal analog powerdown. This bit is meant to be used by the system firmware  
only.  
SS AVOL is the analog volume control: 0 = -0 dB, 1 = -6 dB, 3 = -12 dB. This register is meant to be  
used automatically by the system firmware only.  
8.6.3 SCI BASS (RW)  
Name  
SB AMPLITUDE 7..4 Enhancement in 1 dB steps (0..15)  
SB FREQLIMIT 3..0 Lower limit frequency in 10 Hz steps (2..15)  
Bits Description  
The Bass Enhancer VSBE is a powerful bass boosting DSP algorithm, which tries to take the most out  
of the users earphones without causing clipping.  
VSBE is activated when SB AMPLITUDE is set to non-zero. SB AMPLITUDE should be set to the  
user’s preferences, and SB FREQLIMIT to roughly 1.5 times the lowest frequency the user’s audio  
system can reproduce.  
Note: Because VSBE tries to avoid clipping, it gives the best bass boost with dynamical music material,  
or when the playback volume is not set to maximum.  
8.6.4 SCI CLOCKF (RW)  
SCI CLOCKF is used to tell if the input clock XTALI is running at something else than 24.576 MHz.  
XTALI is set in 2 kHz steps. Thus, the formula for calculating the correct value for this register is  
2000  
(XTALI is in Hz). Values may be between 0..32767, although hardware limits the highest allowed speed.  
Version 1.0, 2005-04-27  
28  
VS1002D  
VLSI  
VS1002d  
y
Solution  
8. FUNCTIONAL DESCRIPTION  
Also, with speeds lower than 24.576 MHz all sample rates and bitstream widths are no longer available.  
Setting the MSB of SCI CLOCKF to 1 activates internal clock-doubling. A clock of upto 15 MHz may  
be doubled depending on the voltage provided to the chip.  
Note: SCI CLOCKF must be set before beginning decoding audio data; otherwise the sample rate will  
not be set correctly.  
Note: Unlike with VS1011, SCI CLOCKF only needs to be written to after a hardware reset.  
26000000  
2000  
Example 1: For a 26 MHz clock the value would be  
.
Example 2: For a 13 MHz external clock and using internal clock-doubling for a 26 MHz internal  
13000000  
2000  
frequency, the value would be  
.
24576000  
2000  
Example 3: For a 24.576 MHz clock the value would be either  
, or just the default  
value . For this clock frequency, SCI CLOCKF doesn’t need to be set.  
8.6.5 SCI DECODE TIME (RW)  
When decoding correct data, current decoded time is shown in this register in full seconds.  
The user may change the value of this register. However, in that case the new value should be written  
twice.  
SCI DECODE TIME is reset at every software reset.  
8.6.6 SCI AUDATA (RW)  
When decoding correct data, the current sample rate and number of channels can be found in bits 15..1  
and 0 of SCI AUDATA, respectively. Bits 15..1 contain the sample rate divided by two, and bit 0 is 0 for  
mono data and 1 for stereo. Writing to this register will change the sample rate on the run to the number  
given.  
Example: 44100 Hz stereo data reads as 0xAC45 (44101).  
8.6.7 SCI WRAM (RW)  
SCI WRAM is used to upload application programs and data to instruction and data RAMs. The start  
address must be initialized by writing to SCI WRAMADDR prior to the first call of SCI WRAM. As 16  
bits of data can be transferred with one SCI WRAM write, and the instruction word is 32 bits long, two  
consecutive writes are needed for each instruction word. The byte order is big-endian (i.e. MSBs first).  
After each full-word write, the internal pointer is autoincremented.  
Version 1.0, 2005-04-27  
29  
VS1002D  
VLSI  
VS1002d  
y
Solution  
8. FUNCTIONAL DESCRIPTION  
SM WRAMADDR Dest. addr.  
Bits/  
Description  
Start... End  
Start... End  
Word  
0x1380... 0x13FF  
0x4780... 0x47FF  
0x8030... 0x84FF  
0x1380... 0x13FF 16  
0x0780... 0x07FF 16  
0x0030... 0x04FF 32  
X data RAM  
Y data RAM  
Instruction RAM  
8.6.8 SCI WRAMADDR (RW)  
SCI WRAMADDR is used to set the program address for following SCI WRAM writes.  
8.6.9 SCI HDAT0 and SCI HDAT1 (R)  
For WAV les, SPI HDAT0 and SPI HDAT1 read as 0x7761, and 0x7665, respectively.  
For MP3 files, SCI HDAT[0... 1] have the following content:  
Version 1.0, 2005-04-27  
30  
VS1002D  
VLSI  
VS1002d  
y
Solution  
8. FUNCTIONAL DESCRIPTION  
Bit  
Function  
Value Explanation  
2047 stream valid  
HDAT1[15:5]  
HDAT1[4:3]  
syncword  
ID  
3
2
1
0
3
2
1
0
1
0
ISO 11172-3 1.0  
MPG 2.0 (1/2-rate)  
MPG 2.5 (1/4-rate)  
MPG 2.5 (1/4-rate)  
I
II  
III  
HDAT1[2:1]  
HDAT1[0]  
layer  
reserved  
No CRC  
protect bit  
CRC protected  
ISO 11172-3  
reserved  
32/16/8 kHz  
48/24/12 kHz  
44/22/11 kHz  
additional slot  
normal frame  
not defined  
mono  
HDAT0[15:12] bitrate  
HDAT0[11:10] sample rate  
3
2
1
0
1
0
HDAT0[9]  
pad bit  
HDAT0[8]  
HDAT0[7:6]  
private bit  
mode  
3
2
1
0
dual channel  
joint stereo  
stereo  
HDAT0[5:4]  
HDAT0[3]  
extension  
copyright  
ISO 11172-3  
copyrighted  
free  
original  
copy  
CCITT J.17  
reserved  
50/15 microsec  
none  
1
0
1
0
3
2
1
0
HDAT0[2]  
original  
HDAT0[1:0]  
emphasis  
When read, SCI HDAT0 and SCI HDAT1 contain header information that is extracted from MP3 stream  
being currently being decoded. Right after resetting VS1002d, 0 is automatically written to both registers,  
indicating no data has been found yet.  
The “sample rate” field in SCI HDAT0 is interpreted according to the following table:  
“sample rate” ID=3 / Hz ID=2 / Hz ID=0,1 / Hz  
3
2
1
0
-
32000  
48000  
44100  
-
16000  
24000  
22050  
-
8000  
12000  
11025  
The “bitrate” field in HDAT0 is read according to the following table:  
Version 1.0, 2005-04-27  
31  
VS1002D  
VLSI  
VS1002d  
y
Solution  
8. FUNCTIONAL DESCRIPTION  
“bitrate” ID=3 / kbit/s ID=0,1,2 / kbit/s  
15  
14  
13  
12  
11  
10  
9
forbidden  
320  
256  
224  
192  
160  
128  
112  
96  
forbidden  
160  
144  
128  
112  
96  
80  
64  
56  
8
7
6
80  
48  
5
64  
40  
4
56  
32  
3
48  
24  
2
40  
16  
1
32  
8
0
-
-
8.6.10 SCI AIADDR (RW)  
SCI AIADDR indicates the start address of the application code written earlier with SCI WRAMADDR  
and SCI WRAM registers. If no application code is used, this register should not be initialized, or it  
should be initialized to zero. For more details, see Application Notes for VS10XX.  
8.6.11 SCI VOL (RW)  
SCI VOL is a volume control for the player hardware. For each channel, a value in the range of 0 .. 255  
may be defined to set its attenuation from the maximum volume level (in 0.5 dB steps). The left channel  
value is then multiplied by 256 and the values are added. Thus, maximum volume is 0 and total silence if  
0xFFFF. Example: for a volume of -2.0 dB for the left channel and -3.5 dB for the right channel: (4*256)  
+ 7 = 0x407. Note, that at startup volume is set to full volume. Resetting the software does not reset the  
volume setting.  
Note: Setting the volume to total silence (255 for both left and right channels) will turn analog power  
off.  
8.6.12 SCI AICTRL[x] (RW)  
SCI AICTRL[x] registers ( x=[0 .. 3] ) can be used to access the user’s application program.  
Version 1.0, 2005-04-27  
32  
VS1002D  
VLSI  
VS1002d  
y
Solution  
9. OPERATION  
9 Operation  
9.1 Clocking  
VS1002d operates on a single, nominally 24.576 MHz fundamental frequency master clock. This clock  
can be generated by external circuitry (connected to pin XTALI) or by the internal clock chrystal interface  
(pins XTALI and XTALO). This clock is sufficient to support a high quality audio output for almost all  
standard sample rates and bit-rates (see Application Notes for VS10XX).  
9.2 Hardware Reset  
When the XRESET -signal is driven low, VS1002d is reset and all the control registers and internal  
states are set to the initial values. XRESET-signal is asynchronous to any external clock. The reset mode  
doubles as a full-powerdown mode, where both digital and analog parts of VS1002d are in minimum  
power consumption stage, and where clocks are stopped. Also XTALO and XTALI are grounded.  
After a hardware reset (or at power-up), the user should set such basic software registers as SCI VOL  
for volume (and SCI CLOCKF if the input clock is anything else than 24.576 MHz) before starting  
decoding.  
9.3 Software Reset  
In some cases the decoder software has to be reset. This is done by activating bit 2 in SCI MODE register  
(Chapter 8.6.1). Then wait for at least 2 s, then look at DREQ. DREQ will stay down for at least 6000  
clock cycles, which means an approximate 250 s delay if VS1002d is run at 24.576 MHz. After DREQ  
is up, you may continue playback as usual.  
If you want to make sure VS1002d doesn’t cut the ending of low-bitrate data streams and you want to do  
a software reset, it is recommended to feed 2048 zeros to the SDI bus after the file and before the reset.  
Version 1.0, 2005-04-27  
33  
VS1002D  
VLSI  
VS1002d  
y
Solution  
9. OPERATION  
9.4 SPI Boot  
If GPIO0 is set with a pull-up resistor to 1 at boot time, VS1002d tries to boot from external SPI memory.  
SPI boot redefines the following pins:  
Normal Mode SPI Boot Mode  
GPIO0  
GPIO1  
DREQ  
GPIO2  
xCS  
CLK  
MOSI  
MISO  
The memory has to be an SPI Bus Serial EEPROM with 16-bit addresses (i.e. at least 1 KiB). The serial  
speed used by VS1002d is 490 kHz with the nominal 24.576 MHz clock. The first three bytes in the  
memory have to be 0x50 0x26, 0x48. The exact record format is explained in the Application Notes for  
VS10XX.  
9.5 Play/Decode  
This is the normal operation mode of VS1002d. SDI data is decoded. Decoded samples are converted  
to analog domain by the internal DAC. If there bad problems in the decoding process, the error flags of  
SCI HDAT0 and SCI HDAT1 are set to 0 and analog outputs are muted.  
When there is no input for decoding, VS1002d goes into idle mode (lower power consumption than  
during decoding) and actively monitors the serial data input for valid data.  
9.6 Feeding PCM data  
VS1002d can be used as a PCM decoder by sending to it a WAV le header. If the length sent in the  
WAV le is 0 or 0xFFFFFFF, VS1002d will stay in PCM mode indefinitely. 8-bit linear and 16-bit linear  
audio is supported in mono or stereo.  
Version 1.0, 2005-04-27  
34  
VS1002D  
VLSI  
VS1002d  
y
Solution  
9. OPERATION  
9.7 SDI Tests  
There are several test modes in VS1002d, which allow the user to perform memory tests, SCI bus tests,  
and several different sine wave tests.  
All tests are started in a similar way: VS1002d is hardware reset, SM TESTS is set, and then a test  
command is sent to the SDI bus. Each test is started by sending a 4-byte special command sequence,  
followed by 4 zeros. The sequences are described below.  
9.7.1 Sine Test  
Sine test is initialized with the 8-byte sequence 0x53 0xEF 0x6E 0 0 0 0, where defines the sine test  
to use. is defined as follows:  
bits  
Name Bits Description  
7:5 Sample rate index  
4:0 Sine skip speed  
0
1
2
3
4
5
6
7
44100 Hz  
48000 Hz  
32000 Hz  
22050 Hz  
24000 Hz  
16000 Hz  
11025 Hz  
12000 Hz  
The frequency of the sine to be output can now be calculated from  
×
.
128  
Example: Sine test is activated with value 126, which is 0b01111110. Breaking to its components,  
and thus  
.
, and thus the final sine frequency  
30  
128  
×
.
To exit the sine test, send the sequence 0x45 0x78 0x69 0x74 0 0 0 0.  
Note: Sine test signals go through the digital volume control, so it is possible to test channels separately.  
9.7.2 Pin Test  
Pin test is activated with the 8-byte sequence 0x50 0xED 0x6E 0x54 0 0 0 0. This test is meant for chip  
production testing only.  
Version 1.0, 2005-04-27  
35  
VS1002D  
VLSI  
VS1002d  
y
Solution  
9. OPERATION  
9.7.3 Memory Test  
Memory test mode is initialized with the 8-byte sequence 0x4D 0xEA 0x6D 0x54 0 0 0 0. After this  
sequence, wait for 200000 clock cycles. The result can be read from the SCI register SCI HDAT0, and  
’one’ bits are interpreted as follows:  
Bit(s) Meaning  
15  
Test finished  
14..7 Unused  
6
5
4
3
2
1
0
Mux test succeeded  
Good I RAM  
Good Y RAM  
Good X RAM  
Good I ROM  
Good Y ROM  
Good X ROM  
Memory tests overwrite the current contents of the RAM memories.  
9.7.4 SCI Test  
Sci test is initialized with the 8-byte sequence 0x53 0x70 0xEE 0 0 0 0, where  
number to test. The content of the given register is read and copied to SCI HDAT0. If the register to be  
tested is HDAT0, the result is copied to SCI HDAT1.  
is the register  
Example: if is 48, contents of SCI register 0 (SCI MODE) is copied to SCI HDAT0.  
Version 1.0, 2005-04-27  
36  
VS1002D  
VLSI  
VS1002d  
y
Solution  
10. VS1002D REGISTERS  
10 VS1002d Registers  
10.1 Who Needs to Read This Chapter  
User software is required when a user wishes to add some own functionality like DSP effects or tone  
controls to VS1002d.  
However, most users of VS1002d don’t need to worry about writing their own code, or about this chapter,  
including those who only download software plug-ins from VLSI Solution’s Web site.  
10.2 The Processor Core  
VS DSP is a 16/32-bit DSP processor core that also had extensive all-purpose processor features. VLSI  
Solution’s free VSKIT Software Package contains all the tools and documentation needed to write, sim-  
ulate and debug Assembly Language or Extended ANSI C programs for the VS DSP processor core.  
VLSI Solution also offers a full Integrated Development Environment VSIDE for full debug capabilities.  
10.3 VS1002d Memory Map  
VS1002d’s Memory Map is shown in Figure 14.  
10.4 SCI Registers  
SCI registers described in Chapter 8.6 can be found here between 0xC000..0xC00F. In addition to these  
registers, there is one in address 0xC010, called SPI CHANGE.  
SPI registers, prefix SPI  
Reg Type Reset Abbrev[bits]  
Description  
0xC010  
r
0
CHANGE[5:0]  
Last SCI access address.  
SPI CHANGE bits  
Bits Description  
1 if last access was a write cycle.  
3:0 SPI address of last access.  
Name  
SPI CH WRITE  
SPI CH ADDR  
4
Version 1.0, 2005-04-27  
37  
VS1002D  
VLSI  
VS1002d  
y
Solution  
10. VS1002D REGISTERS  
Instruction (32−bit)  
X (16−bit)  
Y (16−bit)  
0000  
0030  
0098  
0000  
0030  
0098  
System Vectors  
Stack  
Stack  
User  
Instruction  
RAM  
0500  
0780  
0800  
0C00  
1000  
X DATA  
RAM  
Y DATA  
RAM  
0500  
0780  
0800  
0C00  
1000  
User  
Space  
PlusV  
Space  
1380  
1400  
1800  
1380  
1400  
1800  
User  
Space  
4000  
4000  
Instruction  
ROM  
X DATA  
ROM  
Y DATA  
ROM  
6000  
6000  
7000  
7000  
C000  
C000  
Hardware  
Register  
Space  
C100  
C100  
Figure 14: User’s Memory Map.  
10.5 Serial Data Registers  
SDI registers, prefix SER  
Reg Type Reset Abbrev[bits]  
Description  
0xC011  
0xC012  
r
w
0
0
DATA  
DREQ[0]  
Last received 2 bytes, big-endian.  
DREQ pin control.  
Version 1.0, 2005-04-27  
38  
VS1002D  
VLSI  
VS1002d  
y
Solution  
10. VS1002D REGISTERS  
10.6 DAC Registers  
DAC registers, prefix DAC  
Reg Type Reset Abbrev[bits]  
Description  
0xC013  
0xC014  
0xC015  
0xC016  
rw  
rw  
rw  
rw  
0
0
0
0
FCTLL  
FCTLH[4:0]  
LEFT  
DAC frequency control, 16 LSbs.  
Clock doubler + DAC frequency control MSbs.  
DAC left channel PCM value.  
RIGHT  
DAC right channel PCM value.  
Every fourth clock cycle, an internal 26-bit counter is added to by DAC FCTLH[3:0] × 65536 + DAC FCTLL.  
Whenever this counter overflows, values from DAC LEFT and DAC RIGHT are read and a DAC inter-  
rupt is generated.  
If DAC FCTL[4] is 1, the internal clock doubler is activated.  
10.7 GPIO Registers  
GPIO registers, prefix GPIO  
Reg Type Reset Abbrev[bits]  
Description  
0xC017  
0xC018  
0xC019  
rw  
r
rw  
0
0
0
DDR[3:0]  
IDATA[3:0]  
ODATA[3:0]  
Direction.  
Values read from the pins.  
Values set to the pins.  
GPIO DIR is used to set the direction of the GPIO pins. 1 means output. GPIO ODATA remembers its  
values even if a GPIO DIR bit is set to input.  
GPIO registers don’t generate interrupts.  
Note: Bits 2 and 3 of GPIO DDR and GPIO ODATA are switched in prototypes VS1002b and VS1002c.  
Thus, for example, writing 8 to both registers will set pin GPIO2 to 1 instead of GPIO3.  
Version 1.0, 2005-04-27  
39  
VS1002D  
VLSI  
VS1002d  
y
Solution  
10. VS1002D REGISTERS  
10.8 Interrupt Registers  
Interrupt registers, prefix INT  
Reg Type Reset Abbrev[bits]  
Description  
0xC01A  
0xC01B  
0xC01C  
0xC01D  
rw  
w
w
0
0
0
0
ENABLE[7:0]  
GLOB DIS[-]  
GLOB ENA[-]  
COUNTER[4:0]  
Interrupt enable.  
Write to add to interrupt counter.  
Write to subtract from interript counter.  
Interrupt counter.  
rw  
INT ENABLE controls the interrupts. The control bits are as follows:  
INT ENABLE bits  
Name  
Bits Description  
INT EN TIM1  
INT EN TIM0  
INT EN RX  
7
6
5
4
3
2
1
0
Enable Timer 1 interrupt.  
Enable Timer 0 interrupt.  
Enable UART RX interrupt.  
Enable UART TX interrupt.  
Enable AD modulator interrupt.  
Enable Data interrupt.  
INT EN TX  
INT EN MODU  
INT EN SDI  
INT EN SCI  
INT EN DAC  
Enable SCI interrupt.  
Enable DAC interrupt.  
Note: It may take upto 6 clock cycles before changing INT ENABLE has any effect.  
Writing any value to INT GLOB DIS adds one to the interrupt counter INT COUNTER and effectively  
disables all interrupts. It may take upto 6 clock cycles before writing to this register has any effect.  
Writing any value to INT GLOB ENA subtracts one from the interrupt counter (unless INT COUNTER  
already was 0). If the interrupt counter becomes zero, interrupts selected with INT ENABLE are re-  
stored. An interrupt routine should always write to this register as the last thing it does, because in-  
terrupts automatically add one to the interrupt counter, but subtracting it back to its initial value is the  
responsibility of the user. It may take upto 6 clock cycles before writing this register has any effect.  
By reading INT COUNTER the user may check if the interrupt counter is correct or not. If the register  
is not 0, interrupts are disabled.  
Version 1.0, 2005-04-27  
40  
VS1002D  
VLSI  
VS1002d  
y
Solution  
10. VS1002D REGISTERS  
10.9 A/D Modulator Registers  
Interrupt registers, prefix AD  
Reg Type Reset Abbrev[bits]  
Description  
0xC01E  
0xC01F  
rw  
rw  
0
0
DIV  
DATA  
A/D Modulator divider.  
A/D Modulator data.  
AD DIV bits  
Bits Description  
Name  
ADM POWERDOWN  
ADM DIVIDER  
15 1 in powerdown.  
14:0 Divider.  
ADM DIVIDER controls the AD converter’s sampling frequency. To gather one sample,  
cycles are used ( is value of AD DIV). The lowest usable value is 4, which gives a 48 kHz sample rate  
when CLKI is 24.576 MHz. When ADM POWERDOWN is 1, the A/D converter is turned off.  
×
clock  
AD DATA contains the latest decoded A/D value.  
Version 1.0, 2005-04-27  
41  
VS1002D  
VLSI  
VS1002d  
y
Solution  
10. VS1002D REGISTERS  
10.10 Watchdog v1.0 2002-08-26  
The watchdog consist of a watchdog counter and some logic. After reset, the watchdog is inactive.  
The counter reload value can be set by writing to WDOG CONFIG. The watchdog is activated by writ-  
ing 0x4ea9 to register WDOG RESET. Every time this is done, the watchdog counter is reset. Every  
65536’th clock cycle the counter is decremented by one. If the counter underflows, it will activate vs-  
dsp’s internal reset sequence.  
Thus, after the first 0x4ea9 write to WDOG RESET, subsequent writes to the same register with the  
same value must be made no less than every  
×WDOG CONFIG clock cycles.  
Once started, the watchdog cannot be turned off. Also, a write to WDOG CONFIG doesn’t change the  
counter reload value.  
After watchdog has been activated, any read/write operation from/to WDOG CONFIG or WDOG DUMMY  
will invalidate the next write operation to WDOG RESET. This will prevent runaway loops from re-  
setting the counter, even if they do happen to write the correct number. Writing a wrong value to  
WDOG RESET will also invalidate the next write to WDOG RESET.  
Reads from watchdog registers return undefined values.  
10.10.1 Registers  
Watchdog, prefix WDOG  
Reg Type Reset Abbrev  
Description  
0xC020  
0xC021  
0xC022  
w
w
w
0
0
0
CONFIG  
RESET  
DUMMY[-] Dummy register  
Configuration  
Clock configuration  
Version 1.0, 2005-04-27  
42  
VS1002D  
VLSI  
VS1002d  
y
Solution  
10. VS1002D REGISTERS  
10.11 UART v1.0 2002-04-23  
RS232 UART implements a serial interface using rs232 standard.  
Start  
bit  
Stop  
bit  
D0  
D4  
D1  
D2  
D3  
D5  
D6  
D7  
Figure 15: RS232 Serial Interface Protocol  
When the line is idling, it stays in logic high state. When a byte is transmitted, the transmission begins  
with a start bit (logic zero) and continues with data bits (LSB first) and ends up with a stop bit (logic  
high). 10 bits are sent for each 8-bit byte frame.  
10.11.1 Registers  
UART registers, prefix UARTx  
Reg Type Reset Abbrev  
Description  
STATUS[3:0] Status  
DATA[7:0] Data  
DATAH[15:8] Data High  
DIV Divider  
0xC028  
r
0
0
0
0
0xC029 r/w  
0xC02A r/w  
0xC02B r/w  
10.11.2 Status UARTx STATUS  
A read from the status register returns the transmitter and receiver states.  
UARTx STATUS Bits  
Name  
Bits Description  
UART ST RXORUN  
UART ST RXFULL  
UART ST TXFULL  
UART ST TXRUNNING  
3
2
1
0
Receiver overrun  
Receiver data register full  
Transmitter data register full  
Transmitter running  
UART ST RXORUN is set if a received byte overwrites unread data when it is transferred from the  
receiver shift register to the data register, otherwise it is cleared.  
UART ST RXFULL is set if there is unread data in the data register.  
UART ST TXFULL is set if a write to the data register is not allowed (data register full).  
UART ST TXRUNNING is set if the transmitter shift register is in operation.  
Version 1.0, 2005-04-27  
43  
VS1002D  
VLSI  
VS1002d  
y
Solution  
10. VS1002D REGISTERS  
10.11.3 Data UARTx DATA  
A read from UARTx DATA returns the received byte in bits 7:0, bits 15:8 are returned as ’0’. If there is  
no more data to be read, the receiver data register full indicator will be cleared.  
A receive interrupt will be generated when a byte is moved from the receiver shift register to the receiver  
data register.  
A write to UARTx DATA sets a byte for transmission. The data is taken from bits 7:0, other bits in the  
written value are ignored. If the transmitter is idle, the byte is immediately moved to the transmitter shift  
register, a transmit interrupt request is generated, and transmission is started. If the transmitter is busy,  
the UART ST TXFULL will be set and the byte remains in the transmitter data register until the previous  
byte has been sent and transmission can proceed.  
10.11.4 Data High UARTx DATAH  
The same as UARTx DATA, except that bits 8..15 are used.  
10.11.5 Divider UARTx DIV  
UARTx DIV Bits  
Name  
Bits Description  
UART DIV D1  
UART DIV D2  
15:8 Divider 1 (0..255)  
7:0 Divider 2 (6..255)  
The divider is set to 0x0000 in reset. The ROM boot code must initialize it correctly depending on the  
master clock frequency to get the correct bit speed. The second divider ( 2) must be from 6 to 255.  
The communication speed  
TX/RX speed in bps.  
, where  
)
2
is the master clock frequency, and is the  
(
1+1)×(  
Divider values for common communication speeds at 26 MHz master clock:  
Example UART Speeds,  
Comm. Speed [bps] UART DIV D1 UART DIV D2  
4800  
9600  
85  
42  
42  
51  
42  
25  
1
63  
63  
42  
26  
21  
26  
226  
226  
14400  
19200  
28800  
38400  
57600  
115200  
0
Version 1.0, 2005-04-27  
44  
VS1002D  
VLSI  
VS1002d  
y
Solution  
10. VS1002D REGISTERS  
10.11.6 Interrupts and Operation  
Transmitter operates as follows: After an 8-bit word is written to the transmit data register it will be  
transmitted instantly if the transmitter is not busy transmitting the previous byte. When the transmission  
begins a TX INTR interrupt will be sent. Status bit [1] informs the transmitter data register empty (or  
full state) and bit [0] informs the transmitter (shift register) empty state. A new word must not be written  
to transmitter data register if it is not empty (bit [1] = ’0’). The transmitter data register will be empty  
as soon as it is shifted to transmitter and the transmission is begun. It is safe to write a new word to  
transmitter data register every time a transmit interrupt is generated.  
Receiver operates as follows: It samples the RX signal line and if it detects a high to low transition, a  
start bit is found. After this it samples each 8 bit at the middle of the bit time (using a constant timer),  
and fills the receiver (shift register) LSB first. Finally if a stop bit (logic high) is detected the data in  
the receiver is moved to the reveive data register and the RX INTR interrupt is sent and a status bit[2]  
(receive data register full) is set, and status bit[2] old state is copied to bit[3] (receive data overrun). After  
that the receiver returns to idle state to wait for a new start bit. Status bit[2] is zeroed when the receiver  
data register is read.  
RS232 communication speed is set using two clock dividers. The base clock is the processor master  
clock. Bits 15-8 in these registers are for first divider and bits 7-0 for second divider. RX sample  
frequency is the clock frequency that is input for the second divider.  
Version 1.0, 2005-04-27  
45  
VS1002D  
VLSI  
VS1002d  
y
Solution  
10. VS1002D REGISTERS  
10.12 Timers v1.0 2002-04-23  
There are two 32-bit timers that can be initialized and enabled independently of each other. If enabled,  
a timer initializes to its start value, written by a processor, and starts decrementing every clock cycle.  
When the value goes past zero, an interrupt is sent, and the timer initializes to the value in its start value  
register, and continues downcounting. A timer stays in that loop as long as it is enabled.  
A timer has a 32-bit timer register for down counting and a 32-bit TIMER1 LH register for holding the  
timer start value written by the processor. Timers have also a 2-bit TIMER ENA register. Each timer is  
enabled (1) or disabled (0) by a corresponding bit of the enable register.  
10.12.1 Registers  
Timer registers, prefix TIMER  
Reg Type Reset Abbrev  
Description  
0xC030 r/w  
0xC031 r/w  
0
0
CONFIG[7:0] Timer configuration  
ENABLE[1:0] Timer enable  
0xC034 r/w  
0xC035 r/w  
0xC036 r/w  
0xC037 r/w  
0xC038 r/w  
0xC039 r/w  
0xC03A r/w  
0xC03B r/w  
0
0
0
0
0
0
0
0
T0L  
T0H  
T0CNTL  
T0CNTH  
T1L  
T1H  
T1CNTL  
T1CNTH  
Timer0 startvalue - LSBs  
Timer0 startvalue - MSBs  
Timer0 counter - LSBs  
Timer0 counter - MSBs  
Timer1 startvalue - LSBs  
Timer1 startvalue - MSBs  
Timer1 counter - LSBs  
Timer1 counter - MSBs  
10.12.2 Configuration TIMER CONFIG  
TIMER CONFIG Bits  
Bits Description  
7:0 Master clock divider  
Name  
TIMER CF CLKDIV  
TIMER CF CLKDIV is the master clock divider for all timer clocks. The generated internal clock  
frequency +1, where is the master clock frequency and is TIMER CF CLKDIV. Example:  
With a 12 MHz master clock, TIMER CF DIV=3 divides the master clock by 4, and the output/sampling  
12  
3+1  
clock would thus be  
.
Version 1.0, 2005-04-27  
46  
VS1002D  
VLSI  
VS1002d  
y
Solution  
10. VS1002D REGISTERS  
10.12.3 Configuration TIMER ENABLE  
TIMER ENABLE Bits  
Bits Description  
Enable timer 1  
Enable timer 0  
Name  
TIMER EN T1  
TIMER EN T0  
1
0
10.12.4 Timer X Startvalue TIMER Tx[L/H]  
The 32-bit start value TIMER Tx[L/H] sets the initial counter value when the timer is reset. The timer  
interrupt frequency where is the master clock obtained with the clock divider (see Chap-  
+1  
ter 10.12.2 and is TIMER Tx[L/H].  
Example: With a 12 MHz master clock and with TIMER CF CLKDIV=3, the master clock  
.
3
If TIMER TH=0, TIMER TL=99, then the timer interrupt frequency  
99+1  
.
10.12.5 Timer X Counter TIMER TxCNT[L/H]  
TIMER TxCNT[L/H] contains the current counter values. By reading this register pair, the user may get  
knowledge of how long it will take before the next timer interrupt. Also, by writing to this register, a  
one-shot different length timer interrupt delay may be realized.  
10.12.6 Interrupts  
Each timer has its own interrupt, which is asserted when the timer counter underflows.  
Version 1.0, 2005-04-27  
47  
VS1002D  
VLSI  
VS1002d  
y
Solution  
10. VS1002D REGISTERS  
10.13 System Vector Tags  
The System Vector Tags are tags that may be replaced by the user to take control over several decoder  
functions.  
10.13.1 AudioInt, 0x20  
Normally contains the following VS DSP assembly code:  
jmpi DAC_INT_ADDRESS,(i6)+1  
The user may, at will, replace the first instruction with a  
interrupt.  
command to gain control over the audio  
10.13.2 SciInt, 0x21  
Normally contains the following VS DSP assembly code:  
jmpi SCI_INT_ADDRESS,(i6)+1  
The user may, at will, replace the instruction with a  
command to gain control over the SCI interrupt.  
10.13.3 DataInt, 0x22  
Normally contains the following VS DSP assembly code:  
jmpi SDI_INT_ADDRESS,(i6)+1  
The user may, at will, replace the instruction with a  
command to gain control over the SDI interrupt.  
10.13.4 ModuInt, 0x23  
Normally contains the following VS DSP assembly code:  
jmpi MODU_INT_ADDRESS,(i6)+1  
The user may, at will, replace the instruction with a  
lator interrupt.  
command to gain control over the AD Modu-  
Version 1.0, 2005-04-27  
48  
VS1002D  
VLSI  
VS1002d  
y
Solution  
10. VS1002D REGISTERS  
10.13.5 TxInt, 0x24  
Normally contains the following VS DSP assembly code:  
jmpi EMPTY_INT_ADDRESS,(i6)+1  
The user may, at will, replace the instruction with a  
interrupt.  
command to gain control over the UART TX  
command to gain control over the UART  
command to gain control over the Timer  
command to gain control over the Timer  
10.13.6 RxInt, 0x25  
Normally contains the following VS DSP assembly code:  
jmpi RX_INT_ADDRESS,(i6)+1  
The user may, at will, replace the first instruction with a  
RX interrupt.  
10.13.7 Timer0Int, 0x26  
Normally contains the following VS DSP assembly code:  
jmpi EMPTY_INT_ADDRESS,(i6)+1  
The user may, at will, replace the first instruction with a  
0 interrupt.  
10.13.8 Timer1Int, 0x27  
Normally contains the following VS DSP assembly code:  
jmpi EMPTY_INT_ADDRESS,(i6)+1  
The user may, at will, replace the first instruction with a  
1 interrupt.  
Version 1.0, 2005-04-27  
49  
VS1002D  
VLSI  
VS1002d  
y
Solution  
10. VS1002D REGISTERS  
10.13.9 UserCodec, 0x0  
Normally contains the following VS DSP assembly code:  
jr  
nop  
If the user wants to take control away from the standard decoder, the first instruction should be replaced  
with an appropriate command to user’s own code.  
Unless the user is feeding MP3 data at the same time, the system activates the user program in less than  
1 ms. After this, the user should steal interrupt vectors from the system, and insert user programs.  
10.14 System Vector Functions  
The System Vector Functions are pointers to some functions that the user may call to help implementing  
his own applications.  
10.14.1 WriteIRam(), 0x2  
VS DSP C prototype:  
void WriteIRam(register i0 u int16 *addr, register a1 u int16 msW, register a0 u int16 lsW);  
This is the only supported way to write to the User Instruction RAM. This is because Instruction RAM  
cannot be written when program control is in RAM. Thus, the actual implementation of this function is  
in ROM, and here is simply a tag to that routine.  
10.14.2 ReadIRam(), 0x4  
VS DSP C prototype:  
u int32 ReadIRam(register i0 u int16 *addr);  
This is the only supported way to read from the User Instruction RAM. This is because Instruction RAM  
cannot be read when program control is in RAM. Thus, the actual implementation of this function is in  
ROM, and here is simply a tag to that routine.  
A1 contains the MSBs and a0 the LSBs of the result.  
Version 1.0, 2005-04-27  
50  
VS1002D  
VLSI  
VS1002d  
y
Solution  
10. VS1002D REGISTERS  
10.14.3 DataBytes(), 0x6  
VS DSP C prototype:  
u int16 DataBytes(void);  
If the user has taken over the normal operation of the system by switching the pointer in UserCodec  
to point to his own code, he may read data from the Data Interface through this and the following two  
functions.  
This function returns the number of data bytes that can be read.  
10.14.4 GetDataByte(), 0x8  
VS DSP C prototype:  
u int16 GetDataByte(void);  
Reads and returns one data byte from the Data Interface. This function will wait until there is enough  
data in the input buffer.  
10.14.5 GetDataWords(), 0xa  
VS DSP C prototype:  
void GetDataWords(register i0 y u int16 *d, register a0 u int16 n);  
Read data byte pairs and copy them in big-endian format (first byte to MSBs) to . This function will  
wait until there is enough data in the input buffer.  
10.14.6 Reboot(), 0xc  
VS DSP C prototype:  
void Reboot(void);  
Causes a software reboot.  
Version 1.0, 2005-04-27  
51  
VS1002D  
VLSI  
VS1002d  
y
Solution  
11. VS1002 VERSION CHANGES  
11 VS1002 Version Changes  
This chapter describes changes between different generations of VS1002.  
11.1 Changes Between VS1002c and VS1002d, 2004-05-13  
ADPCM recording now works without software patches.  
Version 1.0, 2005-04-27  
52  
VS1002D  
VLSI  
VS1002d  
y
Solution  
12. DOCUMENT VERSION CHANGES  
12 Document Version Changes  
This chapter describes the most important changes to this document.  
12.1 Version 1.0 for VS1002d, 2005-04-27  
RX should be connected to VDD if UART is not used.  
Limits updated  
Qualified production version  
12.2 Version 0.71 for VS1002d, 2004-07-20  
Added instructions to add 100 k pull-down resistor to unused GPIOs to Chapter 5.2.  
12.3 Version 0.70 for VS1002d, 2004-05-13  
Updated document for VS1002d.  
Removed SM JUMP.  
12.4 Version 0.62 for VS1002c, 2004-03-24  
Redrew Figure 3 to include new microphone connection and serial port.  
Rewrote and clarified Chapter 8.2, Supported Audio Codecs.  
12.5 Version 0.61 for VS1002c, 2004-03-11  
Added samplerate and bitrate tables to Chapter 8.6.9.  
12.6 Version 0.6 for VS1002c, 2004-02-13  
A/D Modulator powerdown bit explained in (Chapter 10.9).  
Added BGA-49 to Packages and Pin Descriptions (Chapter 5).  
Added new Chapter 8.2, Supported Audio Codecs.  
Version 1.0, 2005-04-27  
53  
VS1002D  
VLSI  
VS1002d  
y
Solution  
13. CONTACT INFORMATION  
13 Contact Information  
VLSI Solution Oy  
Hermiankatu 6-8 C  
FIN-33720 Tampere  
FINLAND  
Fax: +358-3-316 5220  
Phone: +358-3-316 5230  
Email: sales@vlsi.fi  
URL: http://www.vlsi.fi/  
Note: If you have questions, first see the Frequently Asked Questions at http://www.vlsi.fi/ .  
Version 1.0, 2005-04-27  
54  

相关型号:

VS1003

MP3 / WMA AUDIO CODEC
ETC

VS1003B-L

芬兰VLSI厂家生产的音频编解码芯片
CONSONANCE

VS1005

此产品是芬兰VLSI刚刚研发成功的音频编解码芯片样品
ETC

VS100AE

CAMERA MONOCHROME
ETC

VS100B

Single output 10W~150W
LAMBDA

VS100B-12

Single output 10W~150W
LAMBDA

VS100B-12

AC-DC Regulated Power Supply Module, 1 Output, 105W
INFINEON

VS100B-15

Single output 10W~150W
LAMBDA

VS100B-15

AC-DC Regulated Power Supply Module, 1 Output, 105W
INFINEON

VS100B-24

Single output 10W~150W
LAMBDA

VS100B-24

AC-DC Regulated Power Supply Module, 1 Output, 103.2W
INFINEON

VS100B-3

Single output 10W~150W
LAMBDA