WED9LC6816V-BC [ETC]

SSRAM/SDRAM MCP ; SSRAM / SDRAM MCP\n
WED9LC6816V-BC
型号: WED9LC6816V-BC
厂家: ETC    ETC
描述:

SSRAM/SDRAM MCP
SSRAM / SDRAM MCP\n

静态存储器 动态存储器
文件: 总27页 (文件大小:357K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
WED9LC6816V  
White Electronic Designs  
256Kx32 SSRAM/4Mx32 SDRAM  
External Memory Solution for Texas Instruments  
TMS320C6000 DSP  
DESCRIPTION  
FEATURES  
The WED9LC6816V is a 3/3V, 256K x 32 Synchronous  
Pipeline SRAM and a 4Mx32 Synchronous DRAM array  
constructed with one 256K x 32 SBSRAM and two 4Mx16  
SDRAM die mounted on a multilayer laminate sub-  
strate/ The device is packaged in a 153 lead, 14mm by  
22mm, BGA/  
n Clock speeds:  
• SSRAM: 200, 166,150, and 133 MHz  
• SDRAMs: 125 and 100 MHz  
n DSP Memory Solution  
• Texas Instruments TMS320C6201  
• Texas Instruments TMS320C6701  
n Packaging:  
The WED9LC6816V provides a total memory solution  
for the Texas Instruments TMS320C6201 and the  
TMS320C6701 DSPs The Synchronous Pipeline SRAM  
is available with clock speeds of 200, 166,150,v and  
133 MHz, allowing the user to develop a fast external  
memory for the SSRAM interface port /  
• 153 pin BGA, JEDEC MO-163  
n 3/3V Operating supply voltage  
n Direct control interface to both the SSRAM and  
The SDRAM is available in clock speeds of 125 and  
100 MHz, allowing the user to develop a fast external  
memory for the SDRAM interface port/  
SDRAM ports on the “C6x”  
n Common address and databus  
n 65% space savings vs/ monolithic solution  
n Reduced system inductance and capacitance  
The WED9LC6816V is available in both commercial  
and industrial temperature ranges/  
FIGꢀ 1 PIN CONFIGURATION  
PIN DESCRIPTION  
TOP VIEW  
A0-17  
Address Bus  
Data Bus  
1
2
DQ23  
DQ22  
VCCQ  
DQ21  
DQ20  
VCCQ  
NC  
3
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
NC  
4
VSS  
5
6
7
8
9
DQ0-31  
SSCLK  
A
B
C
D
E
F
DQ19  
DQ18  
VCCQ  
DQ17  
DQ16  
VCCQ  
NC  
VSS  
VSS  
VSS  
NC  
VSS  
VSS  
VSS  
VSS  
NC  
NC  
NC  
NC  
NC  
VSS  
VSS  
VSS  
NC  
NC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
A2  
DQ24 DQ28  
DQ25 DQ29  
SSRAM Clock  
VSS  
SDCE  
SDA10  
VSS  
SSADC SSRAM Address Status Control  
SDWE  
VSS  
VCCQ  
VCCQ  
SSWE  
SSOE  
SSRAM Write Enable  
SSRAM Output Enable  
SDRAM Clock  
DQ26 DQ30  
DQ27 DQ31  
VSS  
SDCLK  
VSS  
SDCLK  
SDRAS  
VSS  
VCCQ  
A4  
VCCQ  
A5  
SDRAM Row Address Strobe  
G
H
J
SDRAS  
VSS  
SDCAS  
VSS  
SDCAS SDRAM Column Address Strobe  
SDWE SDRAM Write Enable  
SDA10 SDRAM Address10/auto precharge  
NC  
NC  
A8  
A1  
A3  
A10  
A6  
A7  
A9  
VSS  
VSS  
A0  
A11  
A12  
K
L
A17  
NC/A18  
NC  
NC/A19  
NC  
VSS  
VSS  
NC  
NC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
A13  
A14  
BWE0-3  
SSRAM Byte Write Enables  
SDRAM SDQM 0-3  
NC  
BWE2  
BWE0  
VSS  
BWE3  
BWE1  
VSS  
A15  
A16  
M
N
P
R
T
VCCQ  
DQ12  
DQ13  
VCCQ  
DQ14  
DQ15  
VCCQ  
DQ11  
DQ10  
VCCQ  
DQ9  
DQ8  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCCQ  
DQ4  
DQ5  
VCCQ  
DQ6  
DQ7  
VCCQ  
DQ0  
DQ1  
VCCQ  
DQ2  
DQ3  
SSCE  
SDCE  
VCC  
Chip Enable SSRAM Device  
Chip Enable SDRAM Device  
Power Supply pins, 3:3V  
VSS  
SSCLK  
VSS  
VSS  
VCCQ  
Data Bus Power Supply pins,  
3:3V (2:5V future)  
SSADC  
SSOE  
SSWE  
SSCE  
VSS  
Ground  
U
NC  
No Contact  
Contact factory for ordering informationꢀ  
September 2003 Rev 1  
ECO #16493  
1
White Electronic Designs Corporation • (508) 366-5151 • wwwꢀwhiteedcꢀcom  
WED9LC6816V  
White Electronic Designs  
FIGꢀ 2 BLOCK DIAGRAM  
A
0-17  
A
A
0
1
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
0
1
2
3
4
DQ0-7  
5
DQ1-8  
6
DQ8-15  
DQ9-16  
7
8
DQ16-23  
DQ17-24  
9
DQ24-31  
10  
11  
12  
13  
14  
15  
16  
DQ25-32  
SSWE  
BWE  
BWE  
BWE  
BWE  
BWE  
0
1
2
3
BW1  
BW2  
BW3  
BW4  
SSCE  
SSOE  
CE  
OE  
2
SSADC  
ADSC  
CLK  
SSCLK  
DQ0-31  
A
A
A
A
A
A
A
A
A
A
A
A
0
1
2
3
4
5
6
7
8
DQ0-7  
DQ0-7  
9
11  
DQ8-15  
DQ8-15  
SDA10  
10/AP  
A
A
12  
13  
BA  
BA  
0
1
LDQM  
UDQM  
CS  
RAS  
CAS  
WE  
SDCE  
SDRAS  
SDCAS  
SDWE  
SDCLK  
CLK  
A
A
A
A
A
A
A
A
A
A
A
A
0
1
2
3
4
5
6
7
8
DQ16-23  
DQ24-31  
DQ0-7  
9
11  
DQ8-15  
10/AP  
A
A
12  
13  
BA  
BA  
0
1
LDQM  
UDQM  
CS  
RAS  
CAS  
WE  
CLK  
Contact factory for ordering informationꢀ  
White Electronic Designs Corporation • Westborough, MA • (508) 366-5151  
2
WED9LC6816V  
White Electronic Designs  
OUTPUT FUNCTIONAL DESCRIPTIONS  
Symbol  
Type  
Signal  
Polarity  
Function  
SSCLK  
Input  
Pulse Positive Edge  
The system clock input: All of the SSRAM inputs are sampled on the rising edge of the clock:  
SSADS  
SSOE  
SSWE  
When sampled at the positive rising edge of the clock, SSADS, SSOE, and SSWE define  
the operation to be executed by the SSRAM:  
Input  
Pulse  
Pulse  
Active Low  
Active Low  
SSCE  
SDCLK  
SDCE  
Input  
Input  
Input  
SSCE disable or enable SSRAM device operation:  
Pulse Positive Edge  
The system clock input: All of the SDRAM inputs are sampled on the rising edge of the clock:  
SDCE disable or enable device operation by masking or enabling all inputs except SDCLK and BWE0-3:  
Pulse  
Active Low  
SDRAS  
SDCAS  
SDWE  
When sampled at the positive rising edge of the clock, SDCAS, SDRAS, and SDWE define  
the operation to be executed by the SDRAM:  
Input  
Pulse  
Active Low  
Address bus for SSRAM and SDRAM  
A0 and A1 are the burst address inputs for the SSRAM  
During a Bank Active command cycle, A0-11, SDA10 defines the row address (RA0-10)  
when sampled at the rising clock edge:  
During a Read or Write command cycle, A0-7 defines the column address (CA0-7) when  
sampled at the rising clock edge: In addition to the row address, SDA10 is used to invoke  
Autoprecharge operation at the end of the Burst Read or Write Cycle: If SDA10 is high,  
autoprecharge is selected and A12 and A13 define the bank to be precharged: If SDA10 is  
low, autoprecharge is disabled:  
A0-17,  
SDA10  
Input  
Level  
—
During a Precharge command cycle, SDA10 is used in conjunction with A12 and A13 to  
control which bank(s) to precharge: If SDA10 is high, all banks will be precharged regardless  
of the state of A12 and A13: If SDA10 is low, then A12 and A13 are used to define which  
bank to precharge:  
Input  
Output  
DQ0-31  
Level  
Pulse  
—
Data Input/Output are multiplexed on the same pins:  
BWE0-3 perform the byte write enable function for the SSRAM and DQM function for the  
SDRAM: BWE0 is associated with DQ0-7, BWE1 with DQ8-15, BWE2 with DQ16-23 and BWE3  
with DQ24-31:  
BWE0-3  
Input  
VCC, VSS Supply  
VCCQ Supply  
Power and ground for the input buffers and the core logic:  
Data base power supply pins, 3:3V (2:5V future):  
Contact factory for ordering informationꢀ  
3
White Electronic Designs Corporation • (508) 366-5151 • wwwꢀwhiteedcꢀcom  
WED9LC6816V  
White Electronic Designs  
ABSOLUTE MAXIMUM RATINGS  
RECOMMENDED DC OPERATING CONDITIONS  
(VCC = 3ꢀ3V -5% / +10% UNLESS OTHERWISE NOTED; 0°C £ TA £ 70°C,  
COMMERCIAL; -40°C£ TA £ 85°C, INDUSTRIAL)  
Voltage on VCC Relative to VSS  
Vin (DQx)  
-0:5V to +4:6V  
-0:5V to Vcc +0:5V  
-55°C to +125°C  
+150°C  
Parameter  
Symbol Min  
Max  
Units  
V
Storage Temperature (BGA)  
Junction Temperature  
Supply Voltage (1)  
Input High Voltage (1,2)  
Input Low Voltage (1,2)  
VCC  
VIH  
VIL  
ILI  
3:135  
3:6  
2:0 VCC +0:3  
V
Short Circuit Output Current  
100 mA  
-0:3  
-10  
0:8  
10  
V
*Stress greater than those listed under "Absolute Maximum Ratings"  
may cause permanent damage to the deviceꢀ This is a stress rating  
only and functional operation of the device at these or any other  
conditions greater than those indicated in operational sections of  
this specifications is not impliedꢀ Exposure to absolute maximum  
rating conditions for extended periods may affect reliabilityꢀ  
Input Leakage Current  
µA  
0 £ VIN £ VCC  
Output Leakage (Output Disabled)  
ILO  
-10  
10  
µA  
0 £ VIN £ VCC  
SSRAM Output High (IOH = -4mA) (1)  
SSRAM Output Low (IOL = 8mA) (1)  
SDRAM Output High (IOH = -2mA)  
SDRAM Output Low (IOL = 2mA)  
VOH  
VOL  
VOH  
VOL  
2:4  
—
—
0:4  
—
V
V
V
V
2:4  
—
0:4  
NOTES:  
1ꢀ All voltages referenced to VSS (GND)ꢀ  
2ꢀ Overshoot: VIH £ +6ꢀ0V for t £ tKC/2  
Underershoot: VIL ³ -2ꢀ0V for t £ tKC/2  
DC ELECTRICAL CHARACTERISTICS  
(VCC = 3ꢀ3V -5% / +10% UNLESS OTHERWISE NOTED; 0°C £ TA £ 70°C, COMMERCIAL; -40°C £ TA £ 85°C, INDUSTRIAL)  
Description  
Conditions  
Symbol Frequency  
Typ  
Max  
Units  
133MHz  
150MHz  
166MHz  
200MHz  
500  
500  
550  
600  
625  
650  
700  
800  
Power Supply Currentꢀ  
Operating (1,2,3)  
SSRAM Active / DRAM Auto Refresh  
ICC1  
mA  
133MHz  
325  
350  
400  
450  
425  
450  
495  
585  
Power Supply Current  
Operating (1,2,3)  
150MHz  
ICC2  
SSRAM Active / DRAM Idle  
SSRAM Active / SSRAM Idle  
166MHz  
mA  
mA  
mA  
200MHz  
83MHz  
100MHz  
125MHz  
500  
500  
550  
625  
650  
700  
Power Supply Current  
Operating (1,2,3)  
ICC3  
ISB1  
SSCE and SDCE £ VCC -0:2V,  
All other inputs at VSS +0:2 £ VIN or  
VIN £ VCC -0:2V, Clk frequency = 0  
CMOS Standby  
20:0  
40:0  
SSCE and SDCE £ VIH min  
TTL Standby  
Auto Refresh  
All other inputs at VIL max £ VIN or  
VIN £ VCC -0:2V, Clk frequency = 0  
ISB2  
ICC5  
30:0  
250  
55:0  
300  
mA  
mA  
NOTES:  
1ꢀ ICC (operating) is specified with no output currentꢀ ICC (operating) increases with faster cycle times and greater output loadingꢀ  
2ꢀ "Device idle" means device is deselected (CE = VIH) Clock is running at max frequency and Addresses are switching each cycleꢀ  
3ꢀ Typical values are measured at 3ꢀ3V, 25°Cꢀ ICC (operating) is specified at specified frequencyꢀ  
Contact factory for ordering informationꢀ  
White Electronic Designs Corporation • Westborough, MA • (508) 366-5151  
4
WED9LC6816V  
White Electronic Designs  
SSRAM AC CHARACTERISTICS  
(VCC = 3ꢀ3V -5% / +10% UNLESS OTHERWISE NOTED; 0°C £ TA £ 70°C, COMMERCIAL; -40°C £ TA £ 85°C, INDUSTRIAL)  
Symbol  
200MHz  
166MHz  
150MHz  
Min Max  
133MHz  
Parameter  
Min  
Max  
Min  
Max  
Min  
Max Units  
Clock Cycle Time  
tKHKH  
tKLKH  
tKHKL  
tKHQV  
tKHQX  
tKQLZ  
tKQHZ  
tOELQV  
tOELZ  
tOEHZ  
tS  
5
6
7
8
ns  
ns  
ns  
Clock HIGH Time  
1:6  
1:6  
2:4  
2:4  
2:6  
2:6  
2:8  
2:8  
Clock LOW Time  
Clock to output valid  
2:5  
3:5  
3:8  
4:0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Clock to output invalid  
1:5  
0
1:5  
0
1:5  
0
1:5  
0
Clock to output on Low-Z  
Clock to output in High-Z  
Output Enable to output valid  
Output Enable to output in Low-Z  
Output Enable to output in High-Z  
Address, Control, Data-in Setup Time to Clock  
Address, Control, Data-in Hold Time to Clock  
1:5  
3
1:5  
3:5  
3:5  
1:5  
3:8  
3:8  
1:5  
4:0  
4:0  
2:5  
0
0
0
0
3:0  
3:5  
3:5  
3:8  
1:5  
0:5  
1:5  
0:5  
1:5  
0:5  
1:5  
0:5  
tH  
BGACAPACITANCE  
Conditions  
Description  
Symbol  
CI  
Typ  
Max  
8
Units  
Address Input Capacitance (1)  
Input/Output Capacitance (DQ) (1)  
Control Input Capacitance (1)  
Clock Input Capacitance (1)  
TA = 25°C; f = 1MHz  
TA = 25°C; f = 1MHz  
TA = 25°C; f = 1MHz  
TA = 25°C; f = 1MHz  
5
8
5
4
pF  
pF  
pF  
pF  
CO  
10  
8
CA  
CCK  
6
NOTE:  
1ꢀ This parameter is sampledꢀ  
Contact factory for ordering informationꢀ  
5
White Electronic Designs Corporation • (508) 366-5151 • wwwꢀwhiteedcꢀcom  
WED9LC6816V  
White Electronic Designs  
SSRAM OPERATION TRUTH TABLE  
Operation  
Address Used  
None  
SSCE  
SSADS  
SSWE  
SSOE  
DQ  
High-Z  
D
Deselected Cycle, Power Down  
WRITE Cycle, Begin Burst  
READ Cycle, Begin Burst  
READ Cycle, Begin Burst  
READ Cycle, Suspend Burst  
READ Cycle, Suspend Burst  
READ Cycle, Suspend Burst  
READ Cycle, Suspend Burst  
WRITE Cycle, Suspend Burst  
WRITE Cycle, Suspend Burst  
H
L
L
L
X
L
X
X
L
External  
External  
External  
Current  
Current  
Current  
Current  
Current  
Current  
L
L
H
H
H
H
H
H
L
Q
L
L
H
L
High-Z  
Q
X
X
H
H
X
H
H
H
H
H
H
H
H
L
High-Z  
Q
H
X
X
High-Z  
D
L
D
NOTE:  
1ꢀ X means “don’t care”, H means logic HIGHꢀ L means logic LOWꢀ  
2ꢀ All inputs except SSOE must meet setup and hold times around the rising edge (LOW to HIGH) of SSCLKꢀ  
3ꢀ Suspending burst generates wait cycle  
4ꢀ For a write operation following a read operation, SSOE must be HIGH before the input data required setup time plus High-Z time for SSOE and  
staying HIGH through out the input data hold timeꢀ  
5ꢀ This device contains circuitry that will ensure the outputs will be in High-Z during power-upꢀ  
SSRAM PARTIAL TRUTH TABLE  
Function  
SSWE BWE0 BWE1 BWE2 BWE3  
READ  
H
L
X
L
L
X
H
L
X
H
L
X
H
L
WRITE one Byte (DQ0-7)  
WRITE all Bytes  
L
Contact factory for ordering informationꢀ  
White Electronic Designs Corporation • Westborough, MA • (508) 366-5151  
6
WED9LC6816V  
White Electronic Designs  
FIGꢀ 3 SSRAM READ TIMING  
t
KHKL  
tKLKH  
t
KHKH  
SSCLK  
t
S
tH  
SSADS  
SSCE  
t
S
tH  
t
S
A1  
A5  
A2  
A3  
A4  
ADDR  
SSOE  
tH  
tOEHZ  
tOELQV  
SSWE  
DQ  
tKHQX  
tKHQV  
tKQLZ  
Q(A1)  
Q(A2)  
Q(A3)  
Q(A4)  
Q(A5)  
FIGꢀ 4 SSRAM WRITE TIMING  
t
t
tKHKH  
K
H
K
L
K
L
K
H
SSCLK  
tS  
tH  
SSADS  
tH  
SSCE  
tH  
tS  
A4  
A1  
A2  
A3  
A5  
ADDR  
tH  
tOEHZ  
Must be HIGH  
SSOE  
SSWE  
KHGWX  
tS  
tH  
tH  
tS  
D(A2)  
D(A3)  
D(A5)  
D(A1)  
D(A4)  
DQ  
Contact factory for ordering informationꢀ  
7
White Electronic Designs Corporation • (508) 366-5151 • wwwꢀwhiteedcꢀcom  
WED9LC6816V  
White Electronic Designs  
SDRAM AC CHARACTERISTICS  
(VCC = 3ꢀ3V -5% / +10% UNLESS OTHERWISE NOTED; 0°C£ TA£ 70°C, COMMERCIAL; -40°C£ TA£ 85°C, INDUSTRIAL)  
Symbol  
125MHz  
Min  
100MHz  
83MHz  
Parameter  
Max  
1000  
1000  
6
Min  
Max  
1000  
1000  
7
Min  
Max  
1000  
1000  
8
Units  
CL = 3  
CL = 2  
tCC  
tCC  
8
10  
12  
12  
15  
Clock Cycle Time (1)  
ns  
10  
Clock to valid Output delay (1,2)  
Output Data Hold Time (2)  
tSAC  
tOH  
ns  
ns  
3
3
3
2
1
2
3
3
3
2
1
2
3
3
3
2
1
2
Clock HIGH Pulse Width (3)  
Clock LOW Pulse Width (3)  
Input Setup Time (3)  
tCH  
ns  
tCL  
ns  
tSS  
ns  
Input Hold Time (3)  
tSH  
ns  
CLK to Output Low-Z (2)  
tSLZ  
tSHZ  
tRRD  
tRCD  
tRP  
ns  
CLK to Output High-Z  
7
7
8
ns  
Row Active to Row Active Delay (4)  
RAS\ to CAS\ Delay (4)  
20  
20  
20  
50  
70  
70  
1
20  
20  
20  
50  
80  
80  
1
24  
24  
24  
60  
90  
90  
1
ns  
ns  
Row Precharge Time (4)  
ns  
Row Active Time (4)  
tRAS  
tRC  
10,000  
10,000  
10,000  
ns  
Row Cycle Time - Operation (4)  
Row Cycle Time - Auto Refresh (4,8)  
Last Data in to New Column Address Delay (5)  
Last Data in to Row Precharge (5)  
Last Data in to Burst Stop (5)  
Column Address to Column Address Delay (6)  
Number of Valid Output Data (7)  
ns  
tRFC  
tCDL  
tRDL  
tBDL  
tCCD  
ns  
CLK  
CLK  
CLK  
CLK  
1
1
1
1
1
1
1:5  
2
1:5  
2
1:5  
2
ea  
1
2
1
NOTES:  
1ꢀ Parameters depend on programmed CAS latencyꢀ  
2ꢀ If clock rise time is longer than 1ns (trise/2 -0ꢀ5)ns should be added to the parameterꢀ  
3ꢀ Assumed input rise and fall time = 1nsꢀ If trise of tfall are longer than 1nsꢀ [(trise = tfall)/2] - 1ns should be added to the parameterꢀ  
4ꢀ The minimum number of clock cycles required is detemined by dividing the minimum time required by the clock cycle time and then rounding up  
to the next higher integerꢀ  
5ꢀ Minimum delay is required to complete writeꢀ  
6ꢀ All devices allow every cycle column address changesꢀ  
7ꢀ In case of row precharge interrupt, auto precharge and read burst stopꢀ  
8ꢀ A new command may be given tRFC after self-refresh exitꢀ  
Contact factory for ordering informationꢀ  
White Electronic Designs Corporation • Westborough, MA • (508) 366-5151  
8
WED9LC6816V  
White Electronic Designs  
CLOCK FREQUENCY AND LATENCY PARAMETERS - 125MHZ SDRAM  
(UNIT = NUMBER OF CLOCK)  
Frequency  
tRC  
70ns  
9
tRAS  
tRP  
20ns  
3
tRRD  
tRCD  
tCCD  
tCDL  
tRDL  
CAS  
Latency  
50ns  
20ns  
20ns  
10ns  
10ns  
10ns  
125MHz (8:0ns)  
100MHz (10:0ns)  
83MHz (12:0ns)  
3
3
2
6
5
4
2
2
2
3
2
2
1
1
1
1
1
1
1
1
1
7
2
6
2
CLOCK FREQUENCY AND LATENCY PARAMETERS - 100MHZ SDRAM  
(UNIT = NUMBER OF CLOCK)  
Frequency  
tRC  
70ns  
7
tRAS  
50ns  
5
tRP  
20ns  
2
tRRD  
20ns  
2
tRCD  
20ns  
2
tCCD  
10ns  
1
tCDL  
10ns  
1
tRDL  
10ns  
1
CAS  
Latency  
100MHz (12:0ns)  
83MHz (12:0ns)  
3
2
6
5
2
2
2
1
1
1
REFRESH CYCLE PARAMETERS  
-10  
-12  
Parameter  
Symbol  
Min  
Max  
Min  
Max  
64  
Units  
ms  
Refresh Period (1,2)  
tREF  
—
64  
—
NOTES:  
1ꢀ 4096 cycles  
2ꢀ Any time that the Refresh Period has been exceeded, a minimum of two Auto (CBR) Refresh commands must be given to "wake-up" the deviceꢀ  
SDRAM COMMAND TRUTH TABLE  
SDCE  
SDRAS  
SDCAS  
SDWE  
BWE  
A12, A13  
OP CODE  
SDA10  
A11-0  
Function  
Notes  
Mode Register Set  
Auto Refresh (CBR)  
L
L
L
L
L
L
L
L
L
L
L
H
X
X
L
L
L
L
L
H
L
X
X
X
X
X
X
X
X
X
X
X
X
L
X
BA  
X
X
Precharge  
Single Bank  
Precharge all Banks  
L
H
H
H
L
L
2
L
L
H
Bank Activate  
Write  
L
H
L
BA  
BA  
BA  
BA  
BA  
X
Row Address  
2
2
2
2
2
3
H
H
H
H
H
H
X
X
X
L
H
L
Write with Auto Precharge  
Read  
L
L
L
L
Read with Auto Precharge  
Burst Termination  
L
H
L
H
X
X
X
X
X
H
H
X
X
X
No Operation  
H
X
X
X
X
Device Deselect  
X
Data Write/Output Disable  
Data Mask/Output Disable  
X
4
4
H
X
NOTES:  
1ꢀ All of the SDRAM operations are defined by states of SDCE\, SDWE\, SDRAS\, SDCAS\, and BWE0-3 at the positive rising edge of the clockꢀ  
2ꢀ Bank Select (BA), A12 (BA0) and A13 (BA1) select between different banksꢀ  
3ꢀ During a Burst Write cycle there is a zero clock delay, for a Burst Read cycle the delay is equal to the CAS latencyꢀ  
4ꢀ The BWE has two functions for the data DQ Read and Write operationsꢀ During a Read cycle, when BWE goes high at a clock timing the data  
outputs are disabled and become high impedance after a two clock delayꢀ BWE also provides a data mask function for Write cyclesꢀ When it  
activates, the Write operation at the clock is prohibited (zero clock latency)ꢀ  
Contact factory for ordering informationꢀ  
9
White Electronic Designs Corporation • (508) 366-5151 • wwwꢀwhiteedcꢀcom  
WED9LC6816V  
White Electronic Designs  
MODE REGISTER SET TABLE  
A11  
A10  
A
9
A8  
A
7
A6  
A
5
A4  
A3  
A
2
A1  
A0  
Address Bus  
Mode Register (Mx)  
Reserved* WB Op Mode CAS Latency BT  
Burst Length  
*Should program  
M11, M10 = "0, 0"  
to ensure compatibility  
with future devices.  
Burst Length  
M2 M1 M0  
M3 = 0  
M3 = 1  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
1
2
4
8
1
2
4
8
Reserved  
Reserved  
Reserved  
Full Page  
Reserved  
Reserved  
Reserved  
Reserved  
Burst Type  
M3  
0
Sequential  
Interleaved  
1
CAS Latency  
M6 M5 M4  
Reserved  
Reserved  
2
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
3
Reserved  
Reserved  
Reserved  
Reserved  
M8  
0
M7  
0
M6-M0  
Defined  
-
Operating Mode  
Standard Operation  
All other states reserved  
-
-
Write Burst Mode  
M9  
0
Programmed Burst Length  
Single Location Access  
1
Contact factory for ordering informationꢀ  
White Electronic Designs Corporation • Westborough, MA • (508) 366-5151  
10  
WED9LC6816V  
White Electronic Designs  
SDRAM CURRENT STATE TRUTH TABLE  
Command  
Current State  
Action  
Notes  
SDCE SDRAS SDCAS SDWE  
A12 & A13  
A11-A0  
Description  
(BA)  
L
L
L
L
L
L
L
L
H
L
L
L
L
L
L
L
L
H
L
L
L
L
L
L
L
L
H
L
L
L
L
L
L
L
L
H
L
L
L
L
L
L
L
L
H
L
L
L
L
L
H
L
OP Code  
Mode Register Set  
Auto or Self Refresh  
Precharge  
Set the Mode Register  
Start Auto  
1
1
X
X
X
L
H
H
L
X
No Operation  
L
H
L
BA  
BA  
BA  
X
Row Address  
Bank Activate  
Write w/o Precharge  
Read w/o Precharge  
Burst Termination  
No Operation  
Device Deselect  
Mode Register Set  
Auto or Self Refresh  
Precharge  
Activate the specified bank and row  
ILLEGAL  
Idle  
H
H
H
H
X
L
Column  
2
1
1
L
H
L
Column  
ILLEGAL  
H
H
X
L
X
X
X
No Operation  
H
X
L
X
No Operation  
X
No Operation  
OP Code  
ILLEGAL  
L
L
H
L
X
X
X
ILLEGAL  
L
H
H
L
X
Precharge  
3
1
L
H
L
BA  
BA  
BA  
X
Row Address  
Bank Activate  
Write  
ILLEGAL  
Row Active  
H
H
H
H
X
L
Column  
Start Write; Determine if Auto Precharge  
Start Read; Determine if Auto Precharge  
No Operation  
4,5  
4,5  
L
H
L
Column  
Read  
H
H
X
L
X
X
X
Burst Termination  
No Operation  
Device Deselect  
Mode Register Set  
Auto or Self Refresh  
Precharge  
H
X
L
X
No Operation  
X
No Operation  
OP Code  
ILLEGAL  
L
L
H
L
X
X
X
ILLEGAL  
L
H
H
L
X
Terminate Burst; Start the Precharge  
ILLEGAL  
L
H
L
BA  
BA  
BA  
X
Row Address  
Bank Activate  
Write  
2
Read  
H
H
H
H
X
L
Column  
Terminate Burst; Start the Write cycle  
Terminate Burst; Start a new Read cycle  
Terminate the Burst  
Continue the Burst  
Continue the Burst  
ILLEGAL  
5,6  
5,6  
L
H
L
Column  
Read  
H
H
X
L
X
X
X
Burst Termination  
No Operation  
Device Deselect  
Mode Register Set  
Auto or Self Refresh  
Precharge  
H
X
L
X
X
OP Code  
L
L
H
L
X
X
X
ILLEGAL  
L
H
H
L
X
Terminate Burst; Start the Precharge  
ILLEGAL  
L
H
L
BA  
BA  
BA  
X
Row Address  
Bank Activate  
Write  
2
Write  
H
H
H
H
X
L
Column  
Terminate Burst; Start a new Write cycle  
Terminate Burst; Start the Read cycle  
Terminate the Burst  
Continue the Burst  
Continue the Burst  
ILLEGAL  
5,6  
5,6  
L
H
L
Column  
Read  
H
H
X
L
X
X
X
Burst Termination  
No Operation  
Device Deselect  
Mode Register Set  
Auto or Self Refresh  
Precharge  
H
X
L
X
X
OP Code  
L
L
H
L
X
X
X
ILLEGAL  
L
H
H
L
X
ILLEGAL  
2
2
Read with  
L
H
L
BA  
BA  
BA  
X
Row Address  
Bank Activate  
Write  
ILLEGAL  
Auto Precharge  
H
H
H
H
X
Column  
ILLEGAL  
L
H
L
Column  
Read  
ILLEGAL  
H
H
X
X
X
X
Burst Termination  
No Operation  
Device Deselect  
ILLEGAL  
H
X
X
Continue the Burst  
Continue the Burst  
X
Contact factory for ordering informationꢀ  
11  
White Electronic Designs Corporation • (508) 366-5151 • wwwꢀwhiteedcꢀcom  
WED9LC6816V  
White Electronic Designs  
SDRAM CURRENT STATE TRUTH TABLE (CONTꢀ)  
Command  
Current State  
Action  
Notes  
SDCE SDRAS SDCAS SDWE  
A12 & A13  
A11-A0  
Description  
(BA)  
L
L
L
L
L
L
L
L
H
L
L
L
L
L
L
L
L
H
L
L
L
L
L
L
L
L
H
L
L
L
L
L
L
L
L
H
L
L
L
L
L
L
L
L
H
L
L
L
L
L
H
L
OP Code  
Mode Register Set  
Auto or Self Refresh  
Precharge  
ILLEGAL  
X
X
X
ILLEGAL  
L
H
H
L
X
ILLEGAL  
2
2
Write with  
L
H
L
BA  
BA  
BA  
X
Row Address  
Bank Activate  
Write  
ILLEGAL  
Auto Precharge  
H
H
H
H
X
L
Column  
ILLEGAL  
ILLEGAL  
L
H
L
Column  
Read  
H
H
X
L
X
X
X
Burst Termination  
No Operation  
Device Deselect  
Mode Register Set  
Auto or Self Refresh  
Precharge  
ILLEGAL  
H
X
L
X
Continue the Burst  
Continue the Burst  
ILLEGAL  
X
OP Code  
L
L
H
L
X
X
X
ILLEGAL  
L
H
H
L
X
No Operation; Bank(s) idle after tRP  
ILLEGAL  
L
H
L
BA  
BA  
BA  
X
Row Address  
Bank Activate  
Write w/o Precharge  
Read w/o Precharge  
Burst Termination  
No Operation  
Device Deselect  
Mode Register Set  
Auto or Self Refresh  
Precharge  
2
2
Precharging  
H
H
H
H
X
L
Column  
ILLEGAL  
L
H
L
Column  
ILLEGAL  
20  
H
H
X
L
X
X
X
No Operation; Bank(s) idle after tRP  
No Operation; Bank(s) idle after tRP  
No Operation; Bank(s) idle after tRP  
ILLEGAL  
H
X
L
X
X
OP Code  
L
L
H
L
X
X
X
ILLEGAL  
L
H
H
L
X
ILLEGAL  
2
2
2
2
L
H
L
BA  
BA  
BA  
X
Row Address  
Bank Activate  
Write  
ILLEGAL  
Row Activating  
H
H
H
H
X
L
Column  
ILLEGAL  
L
H
L
Column  
Read  
ILLEGAL  
H
H
X
L
X
X
X
Burst Termination  
No Operation  
Device Deselect  
Mode Register Set  
Auto orSelf Refresh  
Precharge  
No Operation; Row active after tRCD  
No Operation; Row active after tRCD  
No Operation; Row active after tRCD  
ILLEGAL  
H
X
L
X
X
OP Code  
L
L
H
L
X
X
X
ILLEGAL  
L
H
H
L
X
ILLEGAL  
2
2
6
6
L
H
L
BA  
BA  
BA  
X
Row Address  
Bank Activate  
Write  
ILLEGAL  
Write Recovering  
H
H
H
H
X
L
Column  
Start Write; Determine if Auto Precharge  
Start Read; Determine if Auto Precharge  
No Operation; Row active after tDPL  
No Operation; Row active after tDPL  
No Operation; Row active after tDPL  
ILLEGAL  
L
H
L
Column  
Read  
H
H
X
L
X
X
X
Burst Termination  
No Operation  
Device Deselect  
Mode Register Set  
Auto orSelf Refresh  
Precharge  
H
X
L
X
X
OP Code  
L
L
H
L
X
X
X
ILLEGAL  
L
H
H
L
X
ILLEGAL  
2
2
Write Recovering  
with Auto  
L
H
L
BA  
BA  
BA  
X
Row Address  
Bank Activate  
Write  
ILLEGAL  
H
H
H
H
X
Column  
ILLEGAL  
2,6  
2,6  
Precharge  
L
H
L
Column  
Read  
ILLEGAL  
H
H
X
X
X
X
Burst Termination  
No Operation  
Device Deselect  
No Operation; Precharge after tDPL  
No Operation; Precharge after tDPL  
No Operation; Precharge after tDPL  
H
X
X
X
Contact factory for ordering informationꢀ  
White Electronic Designs Corporation • Westborough, MA • (508) 366-5151  
12  
WED9LC6816V  
White Electronic Designs  
SDRAM CURRENT STATE TRUTH TABLE (CONTꢀ)  
Command  
Current State  
Action  
Notes  
SDCE SDRAS SDCAS SDWE  
A12 & A13  
A11-A0  
Description  
(BA)  
L
L
L
L
L
L
L
L
H
L
L
L
L
L
L
L
L
H
L
L
L
L
L
H
L
OP Code  
Mode Register Set  
Auto or Self Refresh  
Precharge  
ILLEGAL  
X
X
X
ILLEGAL  
L
H
H
L
X
ILLEGAL  
L
H
L
BA  
BA  
BA  
X
Row Address  
Bank Activate  
Write  
ILLEGAL  
ILLEGAL  
Refreshing  
H
H
H
H
X
L
Column  
L
H
L
Column  
Read  
ILLEGAL  
H
H
X
L
X
X
X
Burst Termination  
No Operation  
Device Deselect  
Mode Register Set  
Auto or Self Refresh  
Precharge  
No Operation; Idle after tRC  
No Operation; Idle after tRC  
No Operation; Idle after tRC  
ILLEGAL  
H
X
L
X
X
OP Code  
L
L
H
L
X
X
X
ILLEGAL  
L
H
H
L
X
ILLEGAL  
Mode Register  
Accessing  
L
H
L
BA  
BA  
BA  
X
Row Address  
Bank Activate  
Write  
ILLEGAL  
H
H
H
H
X
Column  
ILLEGAL  
L
H
L
Column  
Read  
ILLEGAL  
H
H
X
X
X
X
Burst Termination  
No Operation  
Device Deselect  
ILLEGAL  
H
X
X
No Operation; Idle after two clock cycles  
No Operation; Idle after two clock cycles  
X
NOTES:  
1ꢀ Both Banks must be idle otherwise it is an illegal actionꢀ  
2ꢀ The Current State refers only refers to one of the banks, if BA selects this bank then the action is illegalꢀ If BA selects the bank not being  
referenced by the Current State then the action may be legal depending on the state of that bankꢀ  
3ꢀ The minimum and maximum Active time (tRAS) must be satisfiedꢀ  
4ꢀ The RAS to CAS Delay (tRCD) must occur before the command is givenꢀ  
5ꢀ Address SDA10 is used to determine if the Auto Precharge function is activatedꢀ  
6ꢀ The command must satisfy any bus contention, bus turn around, and/or write recovery requirementsꢀ  
The command is illegal if the minimum bank to bank delay time (tRRD) is not satisfiedꢀ  
Contact factory for ordering informationꢀ  
13  
White Electronic Designs Corporation • (508) 366-5151 • wwwꢀwhiteedcꢀcom  
WED9LC6816V  
White Electronic Designs  
FIGꢀ 5 SDRAM SINGLE BIT READ-WRITE-READ CYCLE (SAME PAGE) @  
CAS LATENCY = 3, BURST LENGTH = 1  
6
0
1
2
3
4
5
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
SDCLK  
tCH  
t
CL  
t
CC  
t
RCD  
t
RAS  
SDCE  
t
SS  
tSH  
t
RP  
t
RCD  
t
SH  
t
SS  
SDRAS  
t
CCD  
tSS  
tSH  
SDCAS  
ADDR  
t
SS  
t
SH  
tSH  
t
SS  
Cb  
BS  
Cc  
Ra  
Ca  
Rb  
BA0, 1  
BS  
Rb  
BS  
Ra  
BS  
BS  
BS  
[A12,A13  
]
SDA10  
t
RAC  
t
SS  
SS  
SS  
t
SH  
t
SAC  
Qa  
Db  
Qc  
DQ  
t
SLZ  
tOH  
t
t
tSH  
SDWE  
t
SH  
BWE  
Read  
Read  
Write  
Row Active  
Row Active  
DON’T CARE  
Precharge  
Contact factory for ordering informationꢀ  
White Electronic Designs Corporation • Westborough, MA • (508) 366-5151  
14  
WED9LC6816V  
White Electronic Designs  
FIGꢀ 6 SDRAM POWER UP SEQUENCE  
6
0
1
2
3
4
5
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
SDCLK  
SDCE  
tRFC  
tRFC  
t
RP  
SDRAS  
SDCAS  
ADDR  
Key  
RAa  
BA0,1  
[A12,A13  
]
RAa  
SDA10  
DQ  
HIGH-Z  
SDWE  
BWE  
High level is necessary  
Auto Refresh  
Mode Register Set  
Precharge  
(All Banks)  
Auto Refresh  
Row Active  
(A-Bank)  
DON’T CARE  
Contact factory for ordering informationꢀ  
15  
White Electronic Designs Corporation • (508) 366-5151 • wwwꢀwhiteedcꢀcom  
WED9LC6816V  
White Electronic Designs  
FIGꢀ 7 SDRAM READ & WRITE CYCLE AT SAME BANK @  
BURST LENGTH = 4  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
SDCLK  
SDCE  
Note 1  
t
RC  
tRCD  
SDRAS  
SDCAS  
ADDR  
Ra  
Ca0  
Rb  
Cb0  
BA0, 1  
[A12,A13  
]
Ra  
Rb  
SDA10  
CL=2  
t
SHZ Note 4  
t
RAC  
t
RDL  
t
OH  
Note 3  
t
SAC  
Qa0 Qa1 Qa2 Qa3  
Db0 Db1 Db2 Db3  
tSHZ Note 4  
t
RAC  
DQ  
t
RDL  
tOH  
Note 3  
tSAC  
Qa3  
Db0 Db1 Db2 Db3  
Qa0 Qa1 Qa2  
CL=3  
SDWE  
BWE  
Row Active  
(A-Bank)  
Write  
(A-Bank)  
Read  
(A-Bank)  
Row Active  
(A-Bank)  
Precharge  
(A-Bank)  
Precharge  
(A-Bank)  
DON’T CARE  
NOTES:  
1ꢀ Minimum row cycle times are required to complete internal DRAM operationꢀ  
2ꢀ Row precharge can interrupt burst on any cycleꢀ (CAS Latency - 1) number of valid output data is available after Row prechargeꢀ Last  
valid output will be Hi-Z (tSHZ) after the clockꢀ  
3ꢀ Access time from Row active commandꢀ tCC *(tRCD + CAS Latency - 1) + tSACꢀ  
4ꢀ Output will be Hi-Z after the end of burstꢀ (1, 2, 4, 8 & Full page bit burst)  
Contact factory for ordering informationꢀ  
White Electronic Designs Corporation • Westborough, MA • (508) 366-5151  
16  
WED9LC6816V  
White Electronic Designs  
FIGꢀ 8 SDRAM PAGE READ & WRITE CYCLE AT SAME BANK @  
BURST LENGTH = 4  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
SDCLK  
SDCE  
t
RCD  
SDRAS  
Note 2  
SDCAS  
ADDR  
Ra  
Ca0  
Cb0  
Cc0  
Cd0  
BA0, 1  
[A12,A13  
]
Ra  
SDA10  
CL=2  
tRDL  
Qa0  
Qa1  
Qb1  
Qb2  
Dc0  
Dc0  
Dc1  
Dd1  
Qb0  
Dd0  
DQ  
t
CDL  
Qa3  
Dc1  
Dd0 Dd1  
Qa0 Qa1 Qa2  
CL=3  
SDWE  
BWE  
Note 3  
Note 1  
Read  
(A-Bank)  
Read  
(A-Bank)  
Write  
(A-Bank)  
Write  
(A-Bank)  
Row Active  
(A-Bank)  
Precharge  
(A-Bank)  
DON’T CARE  
NOTES:  
1ꢀ To write data before burst read endsꢀ BWE should be asserted three cycle prior to write command to avoid bus contentionꢀ  
2ꢀ Row precharge will interrupt writingꢀ Last data input, tRDL before Row precharge will be writtenꢀ  
3ꢀ BWE should mask invalid input data on precharge command cycle when asserting precharge before end of burstꢀ Input data after  
Row precharge cycle will be masked internallyꢀ  
Contact factory for ordering informationꢀ  
17  
White Electronic Designs Corporation • (508) 366-5151 • wwwꢀwhiteedcꢀcom  
WED9LC6816V  
White Electronic Designs  
FIGꢀ 9 SDRAM PAGE READ CYCLE AT DIFFERENT BANK @  
BURST LENGTH = 4  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
SDCLK  
Note 1  
SDCE  
SDRAS  
SDCAS  
ADDR  
Note 2  
RAa  
CAa RBb  
CBb  
CAc  
CAe  
CBd  
BA0, 1  
[A12,A13]  
RAa  
RBb  
SDA10  
CL=2  
QAa0 QAa1 QAa2  
QBb0 QBb1 QBb2 QBb3 QAc0 QAc1 QBd0 QBd1 QAe0 QAe1  
QAa3  
DQ  
QAa0 QAa1 QAa2 QAa3 QBb0 QBb1 QBb2 Qbb3 QAc0 QAc1 QBd0 QBd1 QAe0 QAe1  
CL=3  
SDWE  
BWE  
Read  
(B-Bank)  
Read  
(A-Bank)  
Read  
(B-Bank)  
Read  
(A-Bank)  
Row Active  
(A-Bank)  
Row Active  
(B-Bank)  
Precharge  
(A-Bank)  
DON’T CARE  
Read  
(A-Bank)  
NOTES:  
1ꢀ SDCE can be “don’t care” when SDRAS, SDCAS and SDWE are high at the clock going high edgeꢀ  
2ꢀ To interrupt a burst read by Row precharge, both the read and the precharge banks must be the sameꢀ  
Contact factory for ordering informationꢀ  
White Electronic Designs Corporation • Westborough, MA • (508) 366-5151  
18  
WED9LC6816V  
White Electronic Designs  
FIG10 SDRAM PAGE WRITE CYCLE AT DIFFERENT BANK @  
BURST LENGTH = 4  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
SDCLK  
SDCE  
SDRAS  
Note 2  
SDCAS  
ADDR  
RAa  
CAa RBb  
CBb  
CAc  
CBb  
BA0, 1  
[A12,A13  
]
SDA10  
DQ  
RAa  
RBb  
tCDL  
t
RDL  
DAa3  
DBb1 DBb2 DBb3 DAc0 DAc1  
DBd1  
DAa0 DAa1 DAa2  
DBb0  
DBd0  
SDWE  
BWE  
Note 1  
Row Active  
(A-Bank)  
Write  
(A-Bank)  
Row Active  
(A-Bank)  
Write  
(B-Bank)  
Precharge  
(Both Banks)  
Write  
(B-Bank)  
Write  
(A-Bank)  
DON’T CARE  
NOTES:  
1ꢀ To interrupt burst write by Row precharge, BWE should be asserted to mask invalid input dataꢀ  
2ꢀ To interrupt a burst read by Row precharge, both the read and the precharge banks must be the sameꢀ  
Contact factory for ordering informationꢀ  
19  
White Electronic Designs Corporation • (508) 366-5151 • wwwꢀwhiteedcꢀcom  
WED9LC6816V  
White Electronic Designs  
FIGꢀ 11 SDRAM READ & WRITE CYCLE AT DIFFERENT BANK @  
BURST LENGTH = 4  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
SDCLK  
SDCE  
SDRAS  
SDCAS  
ADDR  
RAa  
CAa  
RBb  
CBb  
RAc  
CAc  
BA0, 1  
[A12,A13]  
RAa  
RBb  
RAc  
SDA10  
tCDL  
Note 1  
QAa0  
DBb0 DBb1  
DBb0 DBb1  
DBb3  
DBb3  
QAc0 QAc1 QAc2  
QAc0 QAc1  
QAa1 QAa2  
QAa0 QAa1  
DBb2  
DBb2  
QAa3  
QAa2  
CL=2  
DQ  
CL=3  
QAa3  
SDWE  
BWE  
Write  
(B-Bank)  
Row Active  
(A-Bank)  
Read  
(A-Bank)  
Precharge  
(A-Bank)  
Read  
(A-Bank)  
DON’T CARE  
Row Active  
(A-Bank)  
Row Active  
(A-Bank)  
NOTES:  
1ꢀ tCDL should be met to complete writeꢀ  
Contact factory for ordering informationꢀ  
White Electronic Designs Corporation • Westborough, MA • (508) 366-5151  
20  
WED9LC6816V  
White Electronic Designs  
FIG12 SDRAM READ & WRITE CYCLE WITH AUTO PRECHARGE @  
BURST LENGTH = 4  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
SDCLK  
SDCE  
SDRAS  
SDCAS  
ADDR  
BA0, 1  
Ra  
Rb  
Ca  
Cb  
[A12,A13  
]
Ra  
Rb  
SDA10  
CL=2  
Qa0  
Db0  
Db0  
Db1 Db2  
Db3  
Qa1 Qa2 Qa3  
DQ  
CL=3  
Qa0 Qa1  
Qa3  
Db1  
Db3  
Qa2  
Db2  
SDWE  
BWE  
Row Active  
(A-Bank)  
Auto Precharge  
Start Point  
(B-Bank)  
Write with  
Auto Precharge  
(B-Bank)  
Read with  
Auto Precharge  
(A-Bank)  
Auto Precharge  
Start Point  
(A-Bank)  
Row Active  
(B-Bank)  
DON’T CARE  
NOTES:  
1ꢀ tCDL should be controlled to meet minimum tRAS before internal precharge startꢀ  
(In the case of Burst Length = 1 & 2 and BRSW mode)  
Contact factory for ordering informationꢀ  
21  
White Electronic Designs Corporation • (508) 366-5151 • wwwꢀwhiteedcꢀcom  
WED9LC6816V  
White Electronic Designs  
FIG13 SDRAM READ INTERRUPTED BY PRECHARGE COMMAND &  
READ BURST STOP @ BURST LENGTH = FULL PAGE  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
SDCLK  
SDCE  
SDRAS  
SDCAS  
ADDR  
BA0, 1  
RAa  
CAa  
CAb  
[A12,A13  
]
RAa  
SDA10  
Note 2  
1
1
QAb2 QAb3 QAb4 QAb5  
QAb0  
QAb1  
QAa0 QAa1  
QAa3 QAa4  
QAa2  
CL=2  
CL=3  
DQ  
2
2
QAa0 QAa1 QAa2 QAa3 QAa4  
QAb0 QAb1 QAb2 QAb3 QAb4 QAb5  
SDWE  
BWE  
Read  
(A-Bank)  
Precharge  
(A-Bank)  
Read  
(A-Bank)  
Row Active  
(A-Bank)  
Burst Stop  
DON’T CARE  
NOTES:  
1ꢀ At full page mode, burst is end at the end of burstꢀ So auto precharge is possibleꢀ  
2ꢀ About the valid DQs after burst stop, it is the same as the case of SDRAS interruptꢀ Both cases are illustrated in the above timing  
diagramꢀ See the label 1, 2 on each of themꢀ But at burst write, burst stop and SDRAS interrupt should be compared carefullyꢀ Refer  
to the timing diagram of “Full page write burst stop cycle”ꢀ  
3ꢀ Burst stop is valid at every burst lengthꢀ  
Contact factory for ordering informationꢀ  
White Electronic Designs Corporation • Westborough, MA • (508) 366-5151  
22  
WED9LC6816V  
White Electronic Designs  
FIG14 SDRAM WRITE INTERRUPTED BY PRECHARGE COMMAND &  
WRITE BURST STOP @ BURST LENGTH = FULL PAGE  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
SDCLK  
SDCE  
SDRAS  
SDCAS  
ADDR  
BA0, 1  
RAa  
CAa  
CAb  
[A12,A13  
]
RAa  
SDA10  
DQ  
tBDL  
tRDL  
Note 2  
DAb0 DAb1 DAb2 DAb3 DAB4 DAb5  
DAa0 DAa1 DAa2 DAa3 DAa4  
SDWE  
BWE  
Write  
(A-Bank)  
Row Active  
(A-Bank)  
Burst Stop  
Precharge  
(A-Bank)  
Write  
(A-Bank)  
DON’T CARE  
NOTES:  
1ꢀ At full page mode, burst is end at the end of burstꢀ So auto precharge is possibleꢀ  
2ꢀ Data-in at the cycle of interrupted by precharge can not be written into the corresponding memory cellꢀ It is defined by AC parameter  
of tRDLꢀ BWE at write interrupt by precharge command is needed to prevent invalid writeꢀ  
BWE should mask invalid input data on precharge command cycle when asserting precharge before end of burstꢀ Input data after Row  
precharge cycle will be masked internallyꢀ  
3ꢀ Burst stop is valid at every burst lengthꢀ  
Contact factory for ordering informationꢀ  
23  
White Electronic Designs Corporation • (508) 366-5151 • wwwꢀwhiteedcꢀcom  
WED9LC6816V  
White Electronic Designs  
FIG15 SDRAM BURST READ SINGLE BIT WRITE CYCLE @  
BURST LENGTH = 2  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
SDCLK  
SDCE  
SDRAS  
SDCAS  
ADDR  
RAa  
CAa  
RBb CAb  
RAc  
CBc  
CAd  
BA0, 1  
[A12,A13]  
RAa  
RBb  
RAc  
SDA10  
DAa0  
DAa0  
QAb0  
DBc0  
DBc0  
QAd1  
QAb1  
QAd0  
CL=2  
DQ  
CL=3  
QAd0 QAd1  
QAa1 QAb1  
SDWE  
BWE  
Row Active  
(A-Bank)  
Precharge  
(Both Banks)  
Row Active  
(A-Bank)  
Read  
(A-Bank)  
Write with  
Auto Precharge  
(B-Bank)  
Row Active  
(B-Bank)  
Read with  
Write  
Auto Precharge  
(A-Bank)  
(A-Bank)  
DON’T CARE  
NOTES:  
1ꢀ BRSW modes enabled by setting A9 “High” at MRS (Mode Register Set)ꢀ  
At the BRSW Mode, the burst length at Write is fixed to “1” regardless of programmed burst lengthꢀ  
2ꢀ When BRSW write command with auto precharge is executed, keep it in mind that tRAS should not be violatedꢀ Auto precharge is  
executed at the burst-end cycle, so in the case of BRSW write command, the next cycle starts the prechargeꢀ  
Contact factory for ordering informationꢀ  
White Electronic Designs Corporation • Westborough, MA • (508) 366-5151  
24  
WED9LC6816V  
White Electronic Designs  
FIG16  
SDRAM MODE REGISTER  
SET CYLE  
SDRAM AUTO REFRESH CYCLE  
0
1
2
3
4
5
6
0
1
2
3
4
5
6
7
8
9
10  
SDCLK  
HIGH  
SDCE  
Note 2  
t
RFC  
SDRAS  
Note 1  
Note 3  
SDCAS  
ADDR  
Key  
Ra  
DQ  
HI-Z  
HI-Z  
SDWE  
BWE  
MRS  
New  
Command  
Auto Refresh  
New Command  
DON'T CARE  
*Both banks precharge should be completed before Mode Register Set cycle and Auto refresh cycleꢀ  
NOTES:  
MODE REGISTER SET CYCLE  
1ꢀ SDCE, SDRAS, SDCAS & SDWE activation at the same clock cycle with address key will set internal mode registerꢀ  
2ꢀ Minimum 2 clock cycles should be met before new SDRAS activationꢀ  
3ꢀ Please refer to Mode Register Set Tableꢀ  
Contact factory for ordering informationꢀ  
25  
White Electronic Designs Corporation • (508) 366-5151 • wwwꢀwhiteedcꢀcom  
WED9LC6816V  
White Electronic Designs  
PACKAGE DESCRIPTION: 153 LEAD BGA (17 X 9 BALL ARRAY)  
JEDEC MP-163  
3.50 (0.138)  
MAX  
14.00 (0.551)  
BSC  
A
B
C
D
E
F
PIN 1 INDEX  
G
H
J
22.00 (0.866)  
BSC  
K
L
M
N
P
R
T
U
1.27 (0.050) TYP  
ALL LINEAR DIMENSIONSARE MILLIMETERS AND PARENTHETICALLY IN INCHES  
NOTE:  
Ball attach pad for above BGA package is 480 microns in diameterꢀ Pad is solder mask definedꢀ  
ORDERING INFORMATION  
COMMERCIAL (0°C £ TA £ 70°C)  
INDUSTRIAL (-40°C £ TA £ 85°C)  
Part Number  
SSRAM Access  
200MHz  
SDRAM Access  
125MHz  
Part Number  
SSRAM Access  
SDRAM Access  
125MHz  
WED9LC6816V2012BI  
WED9LC6816V2010BI  
WED9LC6816V1612BI  
WED9LC6816V1610BI  
WED9LC6816V1512BI  
WED9LC6816V1510BI  
WED9LC6816V1312BI  
WED9LC6816V1310BI  
WED9LC6816V2012BC  
WED9LC6816V2010BC  
WED9LC6816V1612BC  
WED9LC6816V1610BC  
WED9LC6816V1512BC  
WED9LC6816V1510BC  
WED9LC6816V1312BC  
WED9LC6816V1310BC  
200MHz  
200MHz  
166MHz  
166MHz  
150MHz  
150MHz  
133MHz  
133MHz  
200MHz  
100MHz  
100MHz  
166MHz  
125MHz  
125MHz  
166MHz  
100MHz  
100MHz  
150MHz  
125MHz  
125MHz  
150MHz  
100MHz  
100MHz  
133MHz  
125MHz  
125MHz  
133MHz  
100MHz  
100MHz  
Contact factory for ordering informationꢀ  
White Electronic Designs Corporation • Westborough, MA • (508) 366-5151  
26  
WED9LC6816V  
White Electronic Designs  
INTERFACING THE TEXAS INSTRUMENTS TMS 320C6x WITH THE  
WED9LC6816V (256Kx32 SSRAM/4Mx32 SDRAM)  
Address Bus  
EDI9LC644V  
128K x 32 SSRAM  
1M x 32 SDRAM  
EA2-21  
EA  
EA  
2
3
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
DQ0-7  
DQ8-15  
Texas Instruments  
TMS320C6x  
DSP  
DQ16-23  
DQ24-31  
SSWE\  
SSCE\  
SSOE\  
SSADC\  
SSCLK  
SSWE\  
CE  
SSOE\  
SSADS\  
SSCLK  
2
\
SSRAM  
Control  
BWE  
BWE  
BWE  
BWE  
0
1
2
3
\
\
\
\
BE0  
BE1  
BE2  
BE3  
\
\
\
\
Shared  
Controls  
SDA10  
SDA10  
CE  
SDRAS\  
SDCAS\  
SDWE\  
SDCLK  
SDCE\  
SDRAS\  
SDCAS\  
SDWE\  
SDCLK  
0
\
SDRAM  
Control  
Data Bus  
ED0-31  
Contact factory for ordering informationꢀ  
27  
White Electronic Designs Corporation • (508) 366-5151 • wwwꢀwhiteedcꢀcom  

相关型号:

WED9LC6816V1310BC

256Kx32 SSRAM/4Mx32 SDRAM
WEDC

WED9LC6816V1310BI

Memory Circuit, SDRAM+SRAM, 4MX32, CMOS, PBGA153, 14 X 22 MM, MO-163, BGA-153
MICROSEMI

WED9LC6816V1310BI

256Kx32 SSRAM/4Mx32 SDRAM
WEDC

WED9LC6816V1312BC

256Kx32 SSRAM/4Mx32 SDRAM
WEDC

WED9LC6816V1312BI

256Kx32 SSRAM/4Mx32 SDRAM
WEDC

WED9LC6816V1510BC

256Kx32 SSRAM/4Mx32 SDRAM
WEDC

WED9LC6816V1510BI

256Kx32 SSRAM/4Mx32 SDRAM
WEDC

WED9LC6816V1512BC

Memory Circuit, SDRAM+SRAM, 4MX32, CMOS, PBGA153, 14 X 22 MM, MO-163, BGA-153
MICROSEMI

WED9LC6816V1512BC

256Kx32 SSRAM/4Mx32 SDRAM
WEDC

WED9LC6816V1512BI

256Kx32 SSRAM/4Mx32 SDRAM
WEDC

WED9LC6816V1610BC

256Kx32 SSRAM/4Mx32 SDRAM
WEDC

WED9LC6816V1610BI

256Kx32 SSRAM/4Mx32 SDRAM
WEDC