CLC2011IMP8MTR [EXAR]

Operational Amplifier, 2 Func, BIPolar, PDSO8, MSOP-8;
CLC2011IMP8MTR
型号: CLC2011IMP8MTR
厂家: EXAR CORPORATION    EXAR CORPORATION
描述:

Operational Amplifier, 2 Func, BIPolar, PDSO8, MSOP-8

放大器 光电二极管
文件: 总17页 (文件大小:2262K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CLC2011, CLC4011  
Low Power, Low Cost, Rail-to-Rail I/O Amplifiers  
FEATURES  
ꢀ■  
General Description  
136μA supply current  
ꢀ■  
4.9MHz bandwidth  
The CLC2011 (dual) and CLC4011 (quad) are ultra-low cost, low power,  
voltage feedback amplifiers. At 2.7V, the CLCx011 family uses only 136μA  
of supply current per amplifier and are designed to operate from a supply  
range of 2.5V to 5.5V ( 1.25 to 2.75).The input voltage range exceeds the  
negative and positive rails.  
ꢀ■  
ꢀ■  
Output swings to within 20mV of either rail  
Input voltage range exceeds the rail by  
>250mV  
ꢀ■  
ꢀ■  
ꢀ■  
ꢀ■  
5.3V/μs slew rate  
21nV/√Hz input voltage noise  
35mA linear output current  
Fully specified at 2.7V and 5V supplies  
The CLCx011 family of amplifiers offer high bipolar performance at a low  
CMOS prices.They offer superior dynamic performance with 4.9MHz small  
signal bandwidths and 5.3V/μs slew rates. The combination of low power,  
high bandwidth, and rail-to-rail performance make the CLCx011 amplifiers  
well suited for battery-powered communication/computing systems.  
APPLICATIONS  
ꢀ■  
Portable/battery-powered applications  
ꢀ■  
Mobile communications, cell phones,  
pagers  
ꢀ■  
ADC buffer  
ꢀ■  
Active filters  
ꢀ■  
Portable test instruments  
ꢀ■  
Notebooks and PDAs  
ꢀ■  
Signal conditioning  
ꢀ■  
Medical equipment  
ꢀ■  
Portable medical instrumentation  
Ordering Information - back page  
Output Swing vs. Load  
Large Signal Frequency Response  
1.35  
R
= 10kΩ  
L
V = 5V  
s
R
= 1kΩ  
V
= 1V  
pp  
L
o
R
= 75Ω  
L
0
R
= 100Ω  
L
V
= 4V  
pp  
o
R
= 200Ω  
L
R
= 75/100Ω  
L
V
= 2V  
pp  
o
-1.35  
0.01  
0.1  
-2.0  
1
10  
0
2.0  
Frequency (MHz)  
Input Voltage (0.4V/div)  
© 2009 - 2014 Exar Corporation  
1 / 17  
exar.com/CLC2011  
Rev 1D  
CLC2011, CLC4011  
Absolute Maximum Ratings  
Operating Conditions  
Supply Voltage Range ...................................................2.5 to 5.5V  
Operating Temperature Range ...............................-40°C to 125°C  
Junction Temperature ...........................................................150°C  
Storage Temperature Range...................................-65°C to 150°C  
Lead Temperature (Soldering, 10s) ......................................260°C  
Stresses beyond the limits listed below may cause  
permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect  
device reliability and lifetime.  
VS ..................................................................................... 0V to 6V  
VIN ............................................................ -VS - 0.5V to +VS +0.5V  
Continuous Output Current..................................-40mA to +40mA  
Package Thermal Resistance  
θ
θ
θ
θ
JA (SOIC-8).....................................................................150°C/W  
JA (MSOP-8) .................................................................. 200°C/W  
JA (SOIC-14).................................................................... 90°C/W  
JA (TSSOP-14)................................................................100°C/W  
Package thermal resistance (θJA), JEDEC standard, multi-layer  
test boards, still air.  
ESD Protection  
CLC2011, CLC4011 (HBM).......................................................2kV  
ESD Rating for HBM (Human Body Model).  
© 2009 - 2014 Exar Corporation  
2 / 17  
exar.com/CLC2011  
Rev 1D  
CLC2011, CLC4011  
Electrical Characteristics at +2.7V  
T = 25°C, V = +2.7V, R = R = 5kΩ, R = 10kΩ to V /2; G = 2; unless otherwise noted.  
A
S
f
g
L
S
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
Frequency Domain Response  
UGBW  
Unity Gain -3dB Bandwidth  
-3dB Bandwidth  
G = +1, V  
G = +2, V  
G = +2, V  
= 0.02V  
4.9  
3.2  
1.4  
2.5  
MHz  
MHz  
MHz  
MHz  
SS  
OUT  
OUT  
OUT  
pp  
BW  
= 0.2V  
SS  
LS  
pp  
BW  
Large Signal Bandwidth  
Gain Bandwidth Product  
= 2V  
pp  
GBWP  
G = +11, V  
= 0.2V  
OUT  
pp  
Time Domain Response  
t , t  
Rise and Fall Time  
Settling Time to 0.1%  
Overshoot  
V
V
V
= 1V step; (10% to 90%)  
= 1V step  
163  
500  
<1  
ns  
ns  
R
F
OUT  
OUT  
OUT  
t
S
OS  
SR  
= 1V step  
%
Slew Rate  
1V step  
5.3  
V/μs  
Distortion/Noise Response  
HD2  
HD3  
THD  
2nd Harmonic Distortion  
10kHz, V  
10kHz, V  
10kHz, V  
>10kHz  
= 1V  
= 1V  
= 1V  
-72  
-72  
0.03  
21  
dBc  
dBc  
%
OUT  
OUT  
OUT  
pp  
pp  
pp  
3rd Harmonic Distortion  
Total Harmonic Distortion  
Input Voltage Noise  
e
nV/√Hz  
dB  
n
Channel to Channel, V  
Channel to Channel, V  
= 2V , f = 10kHz  
82  
OUT  
pp  
X
Crosstalk  
TALK  
= 2V , f = 50kHz  
74  
dB  
OUT  
pp  
DC Performance  
V
Input Offset Voltage  
Average Drift  
0.5  
5
mV  
μV/°C  
nA  
IO  
d
VIO  
I
Input Bias Current  
Average Drift  
90  
32  
83  
90  
136  
B
dI  
pA/°C  
dB  
B
PSRR  
Power Supply Rejection Ratio  
Open Loop Gain  
Supply Current  
DC  
55  
A
V
= V / 2  
dB  
OL  
OUT  
S
I
per channel  
μA  
S
Input Characteristics  
R
Input Resistance  
Input Capacitance  
Non-inverting  
12  
2
MΩ  
IN  
IN  
C
pF  
-0.25 to  
2.95  
CMIR  
Common Mode Input Range  
V
CMRR  
Common Mode Rejection Ratio  
DC  
81  
dB  
Output Characteristics  
0.02 to  
2.68  
R = 10kΩ to V / 2  
V
V
L
S
0.05 to  
2.63  
V
Output Voltage Swing  
Output Current  
R = 1kΩ to V / 2  
L S  
OUT  
0.11 to  
2.52  
R = 200Ω to V / 2  
V
L
S
I
30  
mA  
OUT  
© 2009 - 2014 Exar Corporation  
3 / 17  
exar.com/CLC2011  
Rev 1D  
CLC2011, CLC4011  
Electrical Characteristics at +5V  
T = 25°C, V = +5V, R = R = 5kΩ, R = 10kΩ to V /2; G = 2; unless otherwise noted.  
A
S
f
g
L
S
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
Frequency Domain Response  
UGBW  
Unity Gain -3dB Bandwidth  
-3dB Bandwidth  
G = +1, V  
G = +2, V  
G = +2, V  
= 0.02V  
4.3  
3.0  
2.3  
2.5  
MHz  
MHz  
MHz  
MHz  
SS  
OUT  
OUT  
OUT  
pp  
BW  
= 0.2V  
SS  
LS  
pp  
BW  
Large Signal Bandwidth  
Gain Bandwidth Product  
= 2V  
pp  
GBWP  
G = +11, V  
= 0.2V  
OUT  
pp  
Time Domain Response  
t , t  
Rise and Fall Time  
Settling Time to 0.1%  
Overshoot  
V
V
V
= 1V step; (10% to 90%)  
= 2V step  
110  
470  
<1  
9
ns  
ns  
R
F
OUT  
OUT  
OUT  
t
S
OS  
SR  
= 1V step  
%
Slew Rate  
2V step  
V/μs  
Distortion/Noise Response  
HD2  
HD3  
THD  
2nd Harmonic Distortion  
10kHz, V  
10kHz, V  
10kHz, V  
>10kHz  
= 1V  
= 1V  
= 1V  
-73  
-75  
0.03  
22  
dBc  
dBc  
%
OUT  
OUT  
OUT  
pp  
pp  
pp  
3rd Harmonic Distortion  
Total Harmonic Distortion  
Input Voltage Noise  
e
nV/√Hz  
dB  
n
Channel to Channel, V  
Channel to Channel, V  
= 2V , f = 10kHz  
82  
OUT  
pp  
X
Crosstalk  
TALK  
= 2V , f = 50kHz  
74  
dB  
OUT  
pp  
DC Performance  
V
Input Offset Voltage  
Average Drift  
-8  
1.5  
15  
8
mV  
μV/°C  
nA  
IO  
d
VIO  
I
Input Bias Current  
Average Drift  
90  
450  
B
dI  
40  
pA/°C  
dB  
B
PSRR  
Power Supply Rejection Ratio  
Open Loop Gain  
Supply Current  
DC  
55  
85  
A
V
= V / 2  
80  
dB  
OL  
OUT  
S
I
per channel  
160  
235  
μA  
S
Input Characteristics  
R
Input Resistance  
Input Capacitance  
Non-inverting  
12  
2
MΩ  
IN  
IN  
C
pF  
-0.25 to  
5.25  
CMIR  
Common Mode Input Range  
V
CMRR  
Common Mode Rejection Ratio  
DC  
58  
80  
dB  
Output Characteristics  
0.08 to  
4.92  
0.04 to  
4.96  
R = 10kΩ to V / 2  
V
V
L
S
0.07 to  
4.9  
V
Output Voltage Swing  
Output Current  
R = 1kΩ to V / 2  
L S  
OUT  
0.14 to  
4.67  
R = 200Ω to V / 2  
V
L
S
I
35  
mA  
OUT  
© 2009 - 2014 Exar Corporation  
4 / 17  
exar.com/CLC2011  
Rev 1D  
CLC2011, CLC4011  
CLC2011 Pin Configurations  
CLC2011 Pin Assignments  
SOIC-8 / MSOP-8  
SOIC-8 / MSOP-8  
Pin No.  
Pin Name  
OUT1  
-IN1  
Description  
1
2
3
4
5
6
7
8
Output, channel 1  
OUT1  
-IN1  
+IN1  
-Vs  
1
2
3
4
8
7
6
5
+Vs  
Negative input, channel 1  
Positive input, channel 1  
Negative supply  
+IN1  
OUT2  
-IN2  
-
-V  
S
+
-
+IN2  
-IN2  
Positive input, channel 2  
Negative input, channel 2  
Output, channel 2  
+
+IN2  
OUT2  
+V  
Positive supply  
S
CLC4011 Pin Configuration  
CLC4011 Pin Assignments  
SOIC-14 / TSSOP-14  
SOIC-14 / TSSOP-14  
Pin No.  
Pin Name  
OUT1  
-IN1  
Description  
1
2
Output, channel 1  
Negative input, channel 1  
Positive input, channel 1  
Positive supply  
1
2
3
4
14  
13  
12  
11  
10  
9
OUT1  
-IN1  
+IN1  
+VS  
OUT4  
-IN4  
3
+IN1  
4
+V  
S
5
+IN2  
-IN2  
Positive input, channel 2  
Negative input, channel 2  
Output, channel 2  
+IN4  
-VS  
6
7
OUT2  
OUT3  
-IN3  
8
Output, channel 3  
5
6
7
+IN2  
+IN3  
-IN3  
9
Negative input, channel 3  
Positive input, channel 3  
Negative supply  
10  
11  
12  
13  
14  
+IN3  
-IN2  
-V  
S
8
OUT2  
OUT3  
+IN4  
-IN4  
Positive input, channel 4  
Negative input, channel 4  
Output, channel 4  
OUT4  
© 2009 - 2014 Exar Corporation  
5 / 17  
exar.com/CLC2011  
Rev 1D  
CLC2011, CLC4011  
Typical Performance Characteristics  
T = 25°C, V = +2.7V, R = R = 5kΩ, R = 10kΩ to V /2; G = 2; unless otherwise noted.  
A
S
f
g
L
S
Non-Inverting Frequency Response at V = 5V  
Inverting Frequency Response at V = 5V  
S
S
V
= 0.2V  
V
= 0.2V  
pp  
o
pp  
o
G = 1  
R = 0  
f
G = 2  
R = 5kΩ  
R = 5kΩ  
f
f
R = 5kΩ  
f
R = 5kΩ  
f
R = 5kΩ  
f
G = 5  
R = 5kΩ  
f
R = 5kΩ  
f
0.01  
0.1  
1
10  
0.01  
0.1  
1
10  
Frequency (MHz)  
Frequency (MHz)  
Non-Inverting Frequency Response at V = 2.7V  
Inverting Frequency Response at V = 2.7V  
S
S
V
= 0.2V  
R = 5kΩ  
G = 1  
R = 0  
f
o
pp  
f
G = 2  
R = 5kΩ  
G = -2  
f
G = -1  
R = 5kΩ  
f
G = -10  
G = 5  
R = 5kΩ  
f
G = -5  
0.01  
0.1  
0.01  
0.1  
1
10  
1
10  
Frequency (MHz)  
Frequency (MHz)  
Frequency Response vs C  
Frequency Response vs R  
L
L
V
= 0.05V  
C
R
o
L
= 100Ω  
s
C
R
L
s
= 0Ω  
R
= 1kΩ  
R
= 10kΩ  
L
L
C
L
R
= 0Ω  
s
C
L
R
R
= 200Ω  
L
= 0Ω  
s
+
Rs  
R
= 50Ω  
L
-
CL RL  
5kΩ  
5kΩ  
0.01  
0.1  
1
10  
0.01  
0.1  
1
10  
Frequency (MHz)  
Frequency (MHz)  
© 2009 - 2014 Exar Corporation  
6 / 17  
exar.com/CLC2011  
Rev 1D  
CLC2011, CLC4011  
Typical Performance Characteristics  
T = 25°C, V = +2.7V, R = R = 5kΩ, R = 10kΩ to V /2; G = 2; unless otherwise noted.  
A
S
f
g
L
S
Frequency Response vs.V  
Open Loop Gain & Phase vs. Frequency  
OUT  
140  
120  
V
= 5V  
s
V
= 5V  
s
R
= 10kΩ  
L
No load  
V
= 1V  
pp  
o
100  
80  
0
60  
40  
20  
0
-45  
-90  
-135  
-180  
V
= 4V  
pp  
o
V
= 2V  
pp  
o
R
= 10kΩ  
No load  
L
-20  
100 101 102 103 104 105 106 107 108  
Frequency (Hz)  
0.01  
0.1  
1
10  
Frequency (MHz)  
2nd Harmonic Distortion vs V  
3rd Harmonic Distortion vs V  
OUT  
OUT  
-20  
-30  
-40  
-50  
-60  
-20  
-30  
-40  
50kHz  
-50  
100kHz  
50kHz  
100kHz  
-60  
20kHz  
50kHz  
-70  
-70  
10kHz  
10kHz, 20kHz  
-80  
-80  
10kHz  
-90  
-90  
0.5  
1
0.5  
1.5  
2
2.5  
1
1.5  
2
2.5  
Output Amplitude (V )  
Output Amplitude (V )  
pp  
pp  
2nd & 3rd Harmonic Distortion at V = 2.7V  
Input Voltage Noise  
S
-20  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
V
= 1V  
pp  
o
R
= 200Ω  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
L
R
= 1kΩ  
L
R
= 200Ω  
L
R
= 10kΩ  
L
R
= 1kΩ  
L
R
= 10kΩ  
L
0
0
20  
40  
60  
80  
100  
0.1k  
1k  
10k  
100k  
1M  
Frequency (kHz)  
Frequency (Hz)  
© 2009 - 2014 Exar Corporation  
7 / 17  
exar.com/CLC2011  
Rev 1D  
CLC2011, CLC4011  
Typical Performance Characteristics  
T = 25°C, V = +2.7V, R = R = 5kΩ, R = 10kΩ to V /2; G = 2; unless otherwise noted.  
A
S
f
g
L
S
CMRR  
PSRR  
0
0
-10  
-20  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
10  
100  
1000  
10000  
100000  
10  
100  
1000  
10000  
100000  
Frequency (Hz)  
Frequency (Hz)  
Output Swing vs. Load  
Pulse Response vs. Common Mode Voltage  
1.35  
R
= 10kΩ  
L
1.2V offset  
0.6V offset  
R
= 1kΩ  
L
R
= 75Ω  
No offset  
-0.6V offset  
-1.2V offset  
L
0
R
= 100Ω  
L
R
= 200Ω  
L
R
= 75/100Ω  
L
-1.35  
-2.0  
0
2.0  
Time (1µs/div)  
Input Voltage (0.4V/div)  
Crosstalk vs. Frequency  
© 2009 - 2014 Exar Corporation  
8 / 17  
exar.com/CLC2011  
Rev 1D  
CLC2011, CLC4011  
Application Information  
+Vs  
6.8μF  
0.1μF  
General Description  
The CLCx011 family of amplifiers are single supply, general  
purpose, voltage-feedback amplifiers. They are fabricated  
on a complimentary bipolar process, feature a rail-to-rail  
input and output, and are unity gain stable.  
Input  
+
Output  
RL  
-
0.1μF  
6.8μF  
Basic Operation  
Figures 1, 2, and 3 illustrate typical circuit configurations for  
non-inverting, inverting, and unity gain topologies for dual  
supply applications. They show the recommended bypass  
capacitor values and overall closed loop gain equations.  
Figure 4 shows the typical non-inverting gain circuit for  
single supply applications.  
G = 1  
-Vs  
Figure 3: Unity Gain Circuit  
+Vs  
+Vs  
6.8μF  
6.8μF  
+
0.1μF  
+
In  
0.1μF  
Input  
+
-
Out  
Output  
-
RL  
Rf  
0.1μF  
6.8μF  
Rf  
Rg  
Rg  
G = 1 + (Rf/Rg)  
-Vs  
Figure 4: Single Supply Non-Inverting Gain Circuit  
Figure 1: Typical Non-Inverting Gain Circuit  
Power Dissipation  
+Vs  
6.8μF  
Power dissipation should not be a factor when operating  
under the stated 10kΩ load condition. However, applications  
with low impedance, DC coupled loads should be analyzed  
to ensure that maximum allowed junction temperature is  
not exceeded. Guidelines listed below can be used to verify  
that the particular application will not cause the device to  
operate beyond it’s intended operating range.  
R1  
0.1μF  
+
Output  
Rg  
Input  
-
RL  
0.1μF  
Rf  
Maximum power levels are set by the absolute maximum  
junction rating of 150°C. To calculate the junction  
6.8μF  
G = - (Rf/Rg)  
-Vs  
temperature, the package thermal resistance value Theta  
(θ ) is used along with the total die power dissipation.  
JA  
JA  
For optimum input offset  
voltage set R1 = Rf || Rg  
T
= T  
+ (θ × P )  
Ambient JA D  
Junction  
Figure 2: Typical Inverting Gain Circuit  
Where T  
is the temperature of the working  
Ambient  
environment.  
© 2009 - 2014 Exar Corporation  
9 / 17  
exar.com/CLC2011  
Rev 1D  
CLC2011, CLC4011  
In order to determine P , the power dissipated in the load  
needs to be subtracted from the total power delivered by the  
supplies.  
D
2.5  
2
TSSOP-14  
P = P  
- P  
load  
D
supply  
SOIC-14  
1.5  
1
Supply power is calculated by the standard power equation.  
SOIC-8  
P
supply  
= V  
× I  
supply RMSsupply  
V
= V - V  
S+ S-  
supply  
0.5  
0
MSOP-8  
-20  
Power delivered to a purely resistive load is:  
-40  
0
20  
40  
60  
80  
100  
120  
2
Ambient Temperature (°C)  
P
load  
= ((V  
)
)/Rload  
eff  
load RMS  
Figure 5. Maximum Power Derating  
The effective load resistor (Rload ) will need to include  
eff  
the effect of the feedback network. For instance, Rload in  
Figure 3 would be calculated as:  
eff  
Input Common Mode Voltage  
The common mode input range extends to 250mV below  
ground and to 250mV above Vs, in single supply operation.  
Exceeding these values will not cause phase reversal.  
However, if the input voltage exceeds the rails by more  
than 0.5V, the input ESD devices will begin to conduct. The  
output will stay at the rail during this overdrive condition. If  
the absolute maximum input voltage (700mV beyond either  
rail) is exceeded, externally limit the input current to 5mA  
as shown in Figure 6.  
R || (R + R )  
L
f
g
These measurements are basic and are relatively easy to  
perform with standard lab equipment. For design purposes  
however, prior knowledge of actual signal levels and load  
impedance is needed to determine the dissipated power.  
Here, P can be found from  
D
P = P  
D
+ P  
- P  
Quiescent  
Dynamic load  
10k  
Input  
+
-
Output  
Quiescent power can be derived from the specified I values  
S
along with known supply voltage, V  
. Load power can  
supply  
be calculated as above with the desired signal amplitudes  
using:  
Figure 6. Circuit for Input Current Protection  
(V  
)
= V  
/ √2  
peak  
load RMS  
( I  
)
= ( V  
)
/ Rload  
eff  
load RMS  
load RMS  
Driving Capacitive Loads  
Increased phase delay at the output due to capacitive loading  
can cause ringing, peaking in the frequency response, and  
The dynamic power is focused primarily within the output  
stage driving the load. This value can be calculated as:  
possible unstable behavior. Use a series resistance, R ,  
S
P
= (V - V  
)
× ( I )  
load RMS  
between the amplifier and the load to help improve stability  
and settling performance. Refer to Figure 7.  
Dynamic  
S+  
load RMS  
Assuming the load is referenced in the middle of the power  
rails or V /2.  
Input  
+
-
supply  
Rs  
Output  
CL  
RL  
Rf  
The CLC2011 is short circuit protected. However, this may  
not guarantee that the maximum junction temperature  
(+150°C) is not exceeded under all conditions. Figure 5  
shows the maximum safe power dissipation in the package  
vs. the ambient temperature for the packages available.  
Rg  
Figure 7. Addition of R for Driving Capacitive Loads  
S
© 2009 - 2014 Exar Corporation  
10 / 17  
exar.com/CLC2011  
Rev 1D  
CLC2011, CLC4011  
Table 1 provides the recommended R for various capacitive  
Layout Considerations  
S
loads. The recommended R values result in approximately  
S
General layout and supply bypassing play major roles in  
high frequency performance. Exar has evaluation boards to  
use as a guide for high frequency layout and as an aid in  
device testing and characterization. Follow the steps below  
as a basis for high frequency layout:  
<1dB peaking in the frequency response. The Frequency  
Response vs. CL plot, on page 6, illustrates the response  
of the CLCx011.  
ꢀ■  
Include 6.8µF and 0.1µF ceramic capacitors for power supply  
CL (pF)  
RS (Ω)  
-3dB BW (MHz)  
decoupling  
ꢀ■  
Place the 6.8µF capacitor within 0.75 inches of the power pin  
10pF  
20pF  
50pF  
100pF  
0
0
2.2  
2.4  
2.5  
2
ꢀ■  
Place the 0.1µF capacitor within 0.1 inches of the power pin  
ꢀ■  
Remove the ground plane under and around the part,  
especially near the input and output pins to reduce parasitic  
capacitance  
0
100  
ꢀ■  
Minimize all trace lengths to reduce series inductances  
Table 1: Recommended R vs. C  
S
L
Refer to the evaluation board layouts below for more  
information.  
For a given load capacitance, adjust R to optimize the  
S
tradeoff between settling time and bandwidth. In general,  
Evaluation Board Information  
reducing R will increase bandwidth at the expense of  
S
The following evaluation boards are available to aid in the  
testing and layout of these devices:  
additional overshoot and ringing.  
Overdrive Recovery  
Evaluation Board #  
CEB006  
Products  
An overdrive condition is defined as the point when either  
one of the inputs or the output exceed their specified  
voltage range. Overdrive recovery is the time needed for the  
amplifier to return to its normal or linear operating point.The  
recovery time varies, based on whether the input or output  
is overdriven and by how much the range is exceeded.  
The CLCx011 will typically recover in less than 50ns from  
an overdrive condition. Figure 8 shows the CLC2011 in an  
overdriven condition.  
CLC2011 in SOIC  
CLC2011 in MSOP  
CLC4011 in TSSOP  
CLC4011 in SOIC  
CEB010  
CEB019  
CEB018  
Evaluation Board Schematics  
Evaluation board schematics and layouts are shown in  
Figures 9-16 These evaluation boards are built for dual-  
supply operation. Follow these steps to use the board in a  
single-supply application:  
1. Short -VS to ground.  
2. Use C3 and C4, if the -VS pin of the amplifier is not  
directly connected to the ground plane.  
Figure 8: Overdrive Recovery  
© 2009 - 2014 Exar Corporation  
11 / 17  
exar.com/CLC2011  
Rev 1D  
CLC2011, CLC4011  
Figure 11. CEB006 Bottom View  
Figure 9. CEB006 & CEB010 Schematic  
Figure 12. CEB010 Top View  
Figure 10. CEB006 Top View  
Figure 13. CEB010 Bottom View  
© 2009 - 2014 Exar Corporation  
12 / 17  
exar.com/CLC2011  
Rev 1D  
CLC2011, CLC4011  
Figure 16. CEB018 Bottom View  
Figure 14. CEB018 Schematic  
Figure 15. CEB018 Top View  
© 2009 - 2014 Exar Corporation  
13 / 17  
exar.com/CLC2011  
Rev 1D  
CLC2011, CLC4011  
Mechanical Dimensions  
MSOP-8  
© 2009 - 2014 Exar Corporation  
14 / 17  
exar.com/CLC2011  
Rev 1D  
CLC2011, CLC4011  
Mechanical Dimensions  
SOIC-8 Package  
SOIC-14 Package  
© 2009 - 2014 Exar Corporation  
15 / 17  
exar.com/CLC2011  
Rev 1D  
CLC2011, CLC4011  
TSSOP-14 Package  
© 2009 - 2014 Exar Corporation  
16 / 17  
exar.com/CLC2011  
Rev 1D  
CLC2011, CLC4011  
Ordering Information  
Part Number  
Package  
Green  
Operating Temperature Range  
Packaging  
CLC2011 Ordering Information  
CLC2011ISO8X  
SOIC-8  
SOIC-8  
Yes  
Yes  
N/A  
Yes  
Yes  
N/A  
-40°C to +125°C  
-40°C to +125°C  
N/A  
Tape & Reel  
Mini Tape & Reel  
N/A  
CLC2011ISO8MTR  
CLC2011ISO8EVB  
CLC2011IMP8X  
Evaluation Board  
MSOP-8  
-40°C to +125°C  
-40°C to +125°C  
N/A  
Tape & Reel  
Mini Tape & Reel  
N/A  
CLC2011IMP8MTR  
CLC2011IMP8EVB  
CLC4011 Ordering Information  
MSOP-8  
Evaluation Board  
CLC4011ISO14X  
SOIC-14  
SOIC-14  
Yes  
Yes  
N/A  
Yes  
Yes  
N/A  
-40°C to +125°C  
-40°C to +125°C  
N/A  
Tape & Reel  
Mini Tape & Reel  
N/A  
CLC4011ISO14MTR  
CLC4011ISO14EVB  
CLC4011ITP14X  
Evaluation Board  
TSSOP-14  
-40°C to +125°C  
-40°C to +125°C  
N/A  
Tape & Reel  
Mini Tape & Reel  
N/A  
CLC4011ITP14MTR  
CLC4011ITP14EVB  
TSSOP-14  
Evaluation Board  
Moisture sensitivity level for all parts is MSL-1. Mini tape and reel quantity is 250.  
Revision History  
Revision  
Date  
Description  
Reformat into Exar data sheet template. Updated PODs and thermal resistance numbers. Updated  
ordering information table to include MTR and EVB part numbers. Increased operating temperature to  
+125°C.  
January 19,  
2015  
1D (ECN 1504-01)  
For Further Assistance:  
Email: CustomerSupport@exar.com or HPATechSupport@exar.com  
Exar Technical Documentation: http://www.exar.com/techdoc/  
Exar Corporation Headquarters and Sales Offices  
48760 Kato Road  
Fremont, CA 94538 - USA  
Tel.: +1 (510) 668-7000  
Fax: +1 (510) 668-7001  
NOTICE  
EXAR Corporation reserves the right to make changes to the products contained in this publication in order to improve design, performance or reliability. EXAR Corporation  
assumes no responsibility for the use of any circuits described herein, conveys no license under any patent or other right, and makes no representation that the circuits are free  
of patent infringement. Charts and schedules contained here in are only for illustration purposes and may vary depending upon a user’s specific application. While the information  
in this publication has been carefully checked; no responsibility, however, is assumed for inaccuracies.  
EXAR Corporation does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected  
to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless EXAR Corporation  
receives, in writing, assurances to its satisfaction that: (a) the risk of injury or damage has been minimized; (b) the user assumes all such risks; (c) potential liability of EXAR  
Corporation is adequately protected under the circumstances.  
Reproduction, in part or whole, without the prior written consent of EXAR Corporation is prohibited.  
© 2009 - 2014 Exar Corporation  
17 / 17  
exar.com/CLC2011  
Rev 1D  
 

相关型号:

CLC2011IMP8X

Low Power, Low Cost, Rail-to-Rail I/O Amplifiers
CADEKA

CLC2011IMP8X

Low Power, Low Cost, Rail-to-Rail I/O Amplifiers
EXAR

CLC2011ISO8EVB

Low Power, Low Cost, Rail-to-Rail I/O Amplifiers
EXAR

CLC2011ISO8MTR

Operational Amplifier, 2 Func, BIPolar, PDSO8, SOIC-8
EXAR

CLC2011ISO8X

Low Power, Low Cost, Rail-to-Rail I/O Amplifiers
CADEKA

CLC2011ISO8X

Operational Amplifier, 2 Func, BIPolar, PDSO8, SOIC-8
EXAR

CLC2023

Dual, Low Distortion, Low Offset, RRIO Amplifier
EXAR

CLC2023IMP8EVB

Dual, Low Distortion, Low Offset, RRIO Amplifier
EXAR

CLC2023IMP8MTR

Dual, Low Distortion, Low Offset, RRIO Amplifier
EXAR

CLC2023IMP8X

Dual, Low Distortion, Low Offset, RRIO Amplifier
EXAR

CLC2023ISO8EVB

Dual, Low Distortion, Low Offset, RRIO Amplifier
EXAR

CLC2023ISO8MTR

Dual, Low Distortion, Low Offset, RRIO Amplifier
EXAR