XR16C850IJ [EXAR]

2.97V TO 5.5V UART WITH 128-BYTE FIFO; 带有128字节FIFO 2.97V至5.5V UART
XR16C850IJ
型号: XR16C850IJ
厂家: EXAR CORPORATION    EXAR CORPORATION
描述:

2.97V TO 5.5V UART WITH 128-BYTE FIFO
带有128字节FIFO 2.97V至5.5V UART

微控制器和处理器 串行IO控制器 通信控制器 外围集成电路 先进先出芯片 数据传输 时钟
文件: 总56页 (文件大小:1335K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
xr  
XR16C850  
2.97V TO 5.5V UART WITH 128-BYTE FIFO  
AUGUST 2005  
REV. 2.3.1  
FEATURES  
GENERAL DESCRIPTION  
Added feature in devices with top mark date code of  
"F2 YYWW" and newer:  
1
The XR16C850 (850) is a Universal Asynchronous  
Receiver and Transmitter (UART). This device  
supports Intel and PC mode data bus interface and is  
software compatible to industry standard 16C450,  
16C550, ST16C580 and ST16C650A UARTs.  
5 volt tolerant inputs  
0 ns address hold time (T  
)
AH  
2.97 to 5.5 volt operation  
The 850 has 128 bytes of TX and RX FIFOs and is  
capable of operating up to a serial data rate of 2  
Mbps. The internal registers include the 16C550  
register set plus Exar’s enhanced registers for  
additional features to support today’s highly  
demanding data communication needs. The  
enhanced features include automatic hardware and  
software flow control, selectable TX and RX trigger  
levels, and wireless infrared (IrDA) encoder/decoder.  
Pin to pin compatible to ST16C550, ST16C580,  
ST16C650A and TL16C750  
128-byte Transmit and Receive FIFOs  
Transmit/Receive FIFO Counters  
Programmable TX/RX FIFO Trigger Levels  
Automatic Hardware/Software Flow Control  
Auto RS-485 half duplex direction support  
Programmable Xon/Xoff characters  
Infrared (IrDA) TX and RX Encoder/Decoder  
Sleep Mode (100 uA stand-by)  
The XR16C850 is available in the 44 pin PLCC and  
48 pin TQFP packages. They both provide the  
standard Intel Bus mode and PC ISA bus (PC) mode.  
The Intel Bus mode is compatible with the ST16C450  
and ST16C550 while the PC mode allows connection  
to the PC ISA bus.  
APPLICATIONS  
Battery Operated Electronics  
Internet Appliances  
NOTE: 1 Covered by U.S. patent #5,649,122 and #5,949,787.  
Handheld Terminal  
Personal Digital Assistants  
Cellular Phones DataPort  
Wireless Infrared Data Communications Systems  
FIGURE 1. BLOCK DIAGRAM  
RESET  
A2:A0  
128 Byte TX FIFO  
Transmitter  
TX  
D7:D0  
Infrared  
Encoder  
IOR#  
IOR  
IOW#  
CTS Flow  
Control  
UART  
Configuration  
Regs  
IOW  
Intel or  
PC Data  
Bus  
DTR#, RTS#  
CS2#  
CS1  
Modem Control Signals  
DSR#, CTS#,  
CD#, RI#  
Interface  
RTS Flow  
Control  
Infrared  
CS0  
INT  
Decoder  
TXRDY#  
RXRDY#  
DDIS#  
RX  
Receiver  
128 Byte RX FIFO  
BRG  
Prescaler  
PCMODE#  
Baud Rate Generator  
Crystal Osc/Buffer  
S1  
S2  
S3  
IRQA  
IRQB  
IRQC  
PC  
Mode:  
COM 1 to  
XTAL1/CLK  
XTAL2  
4
Decode Logic  
Exar Corporation 48720 Kato Road, Fremont CA, 94538 (510) 668-7000 FAX (510) 668-7017 www.exar.com  
XR16C850  
xr  
2.97V TO 5.5V UART WITH 128-BYTE FIFO  
REV. 2.3.1  
FIGURE 2. PINOUTS IN INTEL BUS MODE AND PC MODE, TQFP AND PLCC PACKAGES  
48-TQFP PACKAGE  
SEL  
N.C.  
D5  
1
2
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
RESET  
OP1#/RS485  
DTR#  
RTS#  
OP2#  
INT  
D6  
3
44-PLCC PACKAGE  
D7  
4
RCLK  
N.C.  
5
XR16C850CM  
Intel Bus Mode (SEL = VCC)  
8-Bit Bus Mode  
6
RX  
7
RXRDY#  
A0  
TX  
8
CS0  
9
7
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
D5  
D6  
RESET  
OP1#/RS485  
DTR#  
RTS#  
OP2#  
SEL  
CS1  
10  
11  
12  
A1  
8
A2  
-CS2  
-BAUDOUT  
9
D7  
BUS 8/16  
10  
11  
12  
13  
14  
15  
16  
17  
RCLK  
RX  
XR16C850CJ  
Intel Bus Mode (SEL = VCC)  
8-Bit Bus Mode Only  
N.C.  
TX  
INT  
CS0  
RXRDY#  
A0  
CS1  
CS2#  
BAUDOUT#  
A1  
A2  
1
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
SEL  
D11  
D5  
RESET  
OP1#/RS485  
DTR#  
RTS#  
OP2#  
INT  
2
3
D6  
D7  
4
RCLK  
N.C.  
5
XR16C850CM  
Intel Bus Mode (SEL = VCC)  
16-Bit Bus Mode  
6
RX  
7
RXRDY#  
A0  
TX  
8
7
39  
D5  
D6  
RESET  
OP1#/RS485  
DTR#  
RTS#  
S3  
CS0  
9
8
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
10  
11  
12  
A1  
CS1  
A2  
-CS2  
-BAUDOUT  
9
D7  
BUS 8/16  
10  
11  
12  
13  
14  
15  
16  
17  
S2  
RX  
XR16C850CJ  
PC Mode (SEL = GND)  
8-Bit Bus Mode Only  
A4  
SEL  
TX  
IRQA  
IRQB  
A0  
A5  
A6  
A7  
A1  
LPT1#  
A2  
SEL  
N.C.  
D5  
1
2
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
RESET  
OP1#/RS485  
DTR#  
RTS#  
S3  
D6  
3
D7  
4
S2  
5
XR16C850CM  
PC Mode (SEL = GND)  
8-Bit Bus Mode Only  
A4  
6
IRQA  
IRQB  
A0  
RX  
7
TX  
8
A5  
9
A6  
10  
11  
12  
A1  
A2  
A7  
BUS 8/16  
LPT1#  
2
xr  
XR16C850  
REV. 2.3.1  
2.97V TO 5.5V UART WITH 128-BYTE FIFO  
ORDERING INFORMATION  
OPERATING TEMPERATURE  
PART NUMBER  
PACKAGE  
DEVICE STATUS  
RANGE  
XR16C850CJ  
XR16C850CM  
XR16C850IJ  
XR16C850IM  
44-Lead PLCC  
48-Lead TQFP  
44-Lead PLCC  
48-Lead TQFP  
0°C to +70°C  
0°C to +70°C  
-40°C to +85°C  
-40°C to +85°C  
Active  
Active  
Active  
Active  
PIN DESCRIPTIONS  
NOTE: Pin type: I=Input, O=Output, IO= Input/output, OD=Output Open Drain.  
44-PIN 48-PIN  
PLCC TQFP  
NAME  
TYPE  
DESCRIPTION  
INTEL BUS MODE INTERFACE. THE SEL PIN IS CONNECTED TO VCC.  
A2  
A1  
A0  
29  
30  
31  
26  
27  
28  
I
Address data lines [2:0]. A2:A0 selects internal UART’s configuration registers.  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
2
3
4
5
6
7
8
9
43  
44  
45  
46  
47  
2
I/O Data bus lines [7:0] (bidirectional).  
3
4
IOR#  
24  
19  
I
Input/Output Read (active low). The falling edge instigates an internal read cycle  
and retrieves the data byte from an internal register pointed by the address lines  
[A2:A0], places it on the data bus to allow the host processor to read it on the lead-  
ing edge. Either an active IOR# or IOR is required to transfer data from 850 to CPU  
during a read operation. If not used, connect this pin to VCC. Caution: SEE”FAC-  
TORY TEST MODE” ON PAGE 7.  
IOR  
25  
20  
20  
16  
I
I
Input/Output Read (active high). Same as IOR# but active high. Either an active  
IOR# or IOR is required to transfer data from 850 to CPU during a read operation.  
If not used, connect this pin to GND. During PC Mode, this pin becomes A3. Cau-  
tion: SEE”FACTORY TEST MODE” ON PAGE 7.  
IOW#  
Input/Output Write (active low). The falling edge instigates the internal write cycle  
and the rising edge transfers the data byte on the data bus to an internal register  
pointed by the address lines [A2:A0]. Either an active IOW# or IOW is required to  
transfer data from 850 to the Intel type CPU during a write operation. If not used,  
connect this pin to VCC. Caution: SEE”FACTORY TEST MODE” ON PAGE 7.  
IOW  
21  
17  
I
Input/Output Write (active high). The rising edge instigates the internal write cycle  
and the falling edge transfers the data byte on the data bus to an internal register  
pointed by the address lines [A2:A0]. Either an active IOW# or IOW is required to  
transfer data from 850 to the Intel type CPU during a write operation. During PC  
Mode, this pin becomes A8. If not used, connect this pin to GND. Caution:  
SEE”FACTORY TEST MODE” ON PAGE 7.  
3
XR16C850  
xr  
2.97V TO 5.5V UART WITH 128-BYTE FIFO  
REV. 2.3.1  
44-PIN 48-PIN  
PLCC TQFP  
NAME  
TYPE  
DESCRIPTION  
CS0  
14  
9
I
Chip Select 0 input (active high). This input selects the XR16C850 device. If CS1 or  
CS2# is used as the chip select then this pin must be connected to VCC. During  
PC Mode, this pin becomes A5. Caution: SEE”FACTORY TEST MODE” ON  
PAGE 7.  
CS1  
15  
10  
I
Chip Select 1 input (active high). This input selects the XR16C850 device. If CS0 or  
CS2# is used as the chip select then this pin must be connected to VCC. During  
PC Mode, this pin becomes A6. Caution: SEE”FACTORY TEST MODE” ON  
PAGE 7.  
CS2#  
INT  
16  
33  
32  
27  
28  
11  
30  
29  
23  
24  
I
Chip Select 2 input (active low). This input selects the XR16C850 device. If CS0 or  
CS1 is used as the chip select then this pin must be connected to GND. During PC  
Mode, this pin becomes A7. Caution: SEE”FACTORY TEST MODE” ON PAGE 7.  
O
O
O
I
Interrupt Output. This output becomes active whenever the transmitter, receiver,  
line and/or modem status register has an active condition and is enabled by IER.  
See interrupt section for more details. During PC mode, this pin becomes IRQA.  
RXRDY#  
TXRDY#  
AS#  
Receive Ready (active low). A logic 0 indicates receive data ready status, i.e. the  
RHR is full or the FIFO has one or more RX characters available for unloading. For  
details, see Table 2. During PC Mode, this pin becomes IRQB.  
Transmit Ready (active low). Buffer ready status is indicated by a logic 0, i.e. at  
least one location is empty and available in the FIFO or THR. For details, see  
Table 2. During PC Mode, this pin becomes IRQC.  
Address Strobe input (active low). In the Intel bus mode, the leading-edge transition  
of AS# latches the chip selects (CS0, CS1, CS2#) and the address lines A0, A1  
and A2. This input is used when the address lines are not stable for the duration of  
a read or write operation. In devices with top mark date code of "F2 YYWW" and  
newer, the address bus is latched even if this input is not used. These devices fea-  
ture a ’0 ns’ address hold time. See “AC Electrical Characteristics” . If not required,  
this input can be permanently tied to GND. During PC Mode, this pin becomes  
AEN#.  
D10  
D11  
D12  
-
-
-
48  
1
O
High order data bus. When BUS8/16 is selected as 16 bit data bus mode (BUS8/16  
is grounded), RX data errors (break, parity, framing) can be read via these pins.  
D10 = Parity, D11 = Framing, and D12 = Break. When BUS8/16 is selected as 8 bit  
data bus mode (BUS8/16 is at VCC), D10 and D11 are inactive and D12 becomes  
DDIS#. During PC Mode, D10 and D11 are inactive and D12 becomes LPT2#.  
22  
BUS8/16  
CLKSEL  
-
-
25  
13  
I
8 or 16 Bit Bus select. For normal 8 bit operation, this pin should be connected to  
VCC or left open. To select 16 bit bus mode, this pin should be connected to GND.  
When 16 bit bus mode is enabled, DDIS# becomes D12. 16 bit bus mode is not  
available for PC Mode. Only RX data error will be provided during this operation.  
This pin has an internal pull-up resistor.  
I
Clock Select. The div-by-1 or div-by-4 pre-scaleable clock is selected by this pin.  
The div-by-1 clock is selected when CLKSEL is connected to VCC or the div-by-4  
is selected when CLKSEL is connected to GND. MCR bit-7 can override the state  
of this pin following reset or initialization (see MCR bit-7). This pin is not available  
on 40 and 44 pin packages which provide MCR bit-7 selection only. This pin has  
an internal pull-up resistor.  
RCLK  
10  
5
I
This input is used as external 16X clock input to the receiver section. If not used,  
connect the -BAUDOUT pin to this input externally. During PC Mode, this pin  
becomes S2.  
4
xr  
XR16C850  
REV. 2.3.1  
2.97V TO 5.5V UART WITH 128-BYTE FIFO  
44-PIN 48-PIN  
PLCC TQFP  
NAME  
TYPE  
DESCRIPTION  
BAUD-  
OUT#  
17  
12  
O
Baud Rate Generator Output (active low). This pin provides the 16X clock of the  
selected data rate from the baud rate generator. The RCLK pin must be connected  
externally to BAUDOUT# when the receiver is operating at the same data rate.  
When the PC mode is selected, the baud rate generator clock output is internally  
connected to the RCLK input. This pin then functions as the printer port decode  
logic output (LPT1#), see Table 3.  
DDIS#  
OP2#  
26  
35  
22  
31  
O
O
Drive Disable Output. This pin goes to a logic 0 whenever the host CPU is reading  
data from the 850. It can control the direction of a data bus transceiver between the  
CPU and 850 or other logic functions. If 16 bit bus mode is selected, this pin  
becomes D12. During PC Mode, this pin becomes LPT2#.  
Output Port 2. General purpose output. During PC Mode, this pin becomes S3.  
PC MODE INTERFACE SIGNALS. CONNECT SEL PIN TO GND TO SELECT PC MODE.  
A3  
25  
20  
I
Address-3 Select Bit. This pin is used as the 4th address line to decode the  
COM1-4 and LPT ports. See Table 1 for details. During Intel Bus Mode, this pin  
becomes IOR.  
A4  
12  
6
I
Address-4 Select Bit. This pin is used as the 5th address line to decode the  
COM1-4 and LPT ports. This pin has an internal 100kpull-up resistor. This pin is  
not available on the 40-Pin PDIP package which operates in the Intel Bus Mode  
Only. See Table 1 for details. During Intel Bus Mode, this pin is inactive.  
A5  
A6  
A7  
A8  
14  
15  
16  
21  
9
I
I
Address-5 thru Address-8 Select Bit. These pins are used as the 6th thru 9th  
address lines to decode the COM1-4 and LPT ports. See Table 1 for details. Dur-  
ing Intel Bus Mode, A5 becomes CS0, A6 becomes CS1, A7 becomes CS2#, and  
A8 becomes IOW.  
10  
11  
17  
A9  
1
37  
Address-9 Select Bit. This pin is used as the 10th address line to decode the  
COM1-4 and LPT ports. This pin has an internal 100kpull-up resistor. This pin is  
not available on the 40-Pin PDIP package which operates in the Intel Bus Mode  
Only. See Table 1 for details. During Intel Bus Mode, this pin is inactive.  
AEN#  
28  
24  
I
I
Address Enable input (active low). When AEN# transitions to logic 0, it decodes  
and validates COM 1-4 ports address per S1, S2 and S3 inputs. During Intel Bus  
Mode, this pin becomes AS#.  
S1  
S2  
S3  
23  
10  
35  
21  
5
Select 1 to 3. These are the standard PC COM 1-4 ports and IRQ selection inputs.  
See Table 1 and Table 3 for details. The S1 pin has an internal 100kpull-up  
resistor. This pin is not available on the 40 pin PDIP packages which operates in  
the Intel Bus Mode Only. During Intel Bus Mode, S1 is inactive, S2 becomes  
RCLK, and S3 becomes OP2#.  
31  
IRQA  
IRQB  
IRQC  
33  
32  
27  
30  
29  
23  
O
O
Interrupt Request A, B and C Outputs (active high, three-state). These are the  
interrupt outputs associated with COM 1-4 to be connected to the host data bus.  
See interrupt section for details. The Interrupt Requests A, B or C functions as  
IRQx to the PC bus. IRQx is enabled by setting MCR bit-3 to logic 1 and the  
desired interrupt(s) in the interrupt enable register (IER). During Intel Bus Mode,  
IRQA becomes INT, IRQB becomes RXRDY#, and IRQC becomes TXRDY#.  
LPT1#  
17  
12  
Line Printer Port-1 Decode Logic Output (active low). This pin functions as the PC  
standard LPT-1 printer port address decode logic output, see Table 1. The baud  
rate generator clock output, BAUDOUT#, is internally connected to the RCLK input  
in the PC mode. During Intel Bus Mode, LPT1# becomes BAUDOUT#.  
5
XR16C850  
xr  
2.97V TO 5.5V UART WITH 128-BYTE FIFO  
REV. 2.3.1  
44-PIN 48-PIN  
PLCC TQFP  
NAME  
TYPE  
DESCRIPTION  
LPT2#  
26 22  
O
Line Printer Port-2 Decode Logic Output (active low) - This pin functions as the PC  
standard LPT-2 printer port address decode logic output, see Table 1. During Intel  
Bus Mode, LPT2# becomes DDIS#/D12.  
MODEM OR SERIAL I/O INTERFACE  
TX  
13  
8
O
Transmit Data or wireless infrared transmit data. This output is active low in normal  
standard serial interface operation (RS-232, RS-422 or RS-485) and active high in  
the infrared mode. Infrared mode can be enabled by connecting pin ENIR to VCC  
or through software selection after power up.  
RX  
11  
7
I
Receive Data or wireless infrared receive data. Normal received data input idles at  
logic 1 condition and logic 0 in the infrared mode. The wireless infrared pulses are  
applied to the decoder. This input must be connected to its idle logic state in either  
normal, logic 1, or infrared mode, logic 0, else the receiver may report “receive  
break” and/or “error” condition(s).  
RTS#  
CTS#  
36  
40  
32  
38  
O
Request to Send or general purpose output (active low). This port may be used for  
automatic hardware flow control, see EFR bit-6, MCR bit-1, FCTR bits 0-1 and IER  
bit-6. RTS# output must be asserted before auto RTS flow control can start. If this  
pin is not needed for modem communication, then it can be used as a general I/O.  
If it is not used, leave it unconnected.  
I
Clear to Send or general purpose input (active low). If used for automatic hardware  
flow control, data transmission will be stopped when this pin is de-asserted and will  
resume when this pin is asserted again. See EFR bit-7, MCR bit-2 and IER bit-7. If  
this pin is not needed for modem communication, then it can be used as a general  
I/O. If it is not used, connect it to VCC.  
DTR#  
DSR#  
CD#  
37  
41  
42  
43  
33  
39  
40  
41  
O
I
Data Terminal Ready or general purpose output (active low). If this pin is not  
needed for modem communication, then it can be used as a general I/O. If it is not  
used, leave it unconnected.  
Data Set Ready input or general purpose input (active low). If this pin is not  
needed for modem communication, then it can be used as a general I/O. If it is not  
used, connect it to VCC.  
I
Carrier Detect input or general purpose input (active low). If this pin is not needed  
for modem communication, then it can be used as a general I/O. If it is not used,  
connect it to VCC.  
RI#  
I
Ring Indicator input or general purpose input (active low). If this pin is not needed  
for modem communication, then it can be used as a general I/O. If it is not used,  
connect it to VCC.  
ANCILLARY SIGNALS  
XTAL1  
18  
14  
I
Crystal or external clock input. See Figure 7 for typical oscillator connections.  
Caution: this input is not 5V tolerant.  
XTAL2  
SEL  
19  
34  
15  
36  
O
I
Crystal or buffered clock output. See Figure 7 for typical oscillator connections.  
PC Mode Select (active low). When this input is at logic 0, it enables the on-board  
chip select decode function according to PC ISA bus COM[4:1] and IRQ[4,3] port  
definitions. See Table 3 for details. This pin has an internal 100kpull-up resistor.  
This pin is not available on the 40 pin PDIP packages which operate in the Intel  
Bus Mode only.  
6
xr  
XR16C850  
REV. 2.3.1  
2.97V TO 5.5V UART WITH 128-BYTE FIFO  
44-PIN 48-PIN  
PLCC TQFP  
NAME  
TYPE  
DESCRIPTION  
OP1#/  
RS485  
38  
34  
O
Output Port 1 (General purpose output) or RS-485 Direction Control Signal. RS-  
485 direction control can be selected when FCTR Bit-3 is set to “1”. During data  
transmit cycle, RS485 pin is low. An inverter is usually required before connecting  
to RS-485 Transceiver.  
RESET  
VCC  
39  
44  
35  
42  
I
Reset Input (active high). When it is asserted, the UART configuration registers are  
reset to default values, see Table 15.  
Pwr Power supply input. All inputs are 5V tolerant except for XTAL1 for devices with top  
mark date code of "F2 YYWW" and newer. Devices with top mark date code of "EC  
YYWW" and older do not have 5V tolerant inputs.  
GND  
22  
18  
Pwr Power supply common ground.  
Pin type: I=Input, O=Output, I/O= Input/output, OD=Output Open Drain.  
Factory Test Mode  
For devices with top mark date code of "EC YYWW" and older devices, please note that if IOR# (or IOR) and  
IOW# (or IOW) are both asserted simultaneously, the 850 will enter a Factory Test Mode. The most noticeable  
Factory Test Mode symptom is the continuous transmission of the same character on the TX pin. This usually  
happens during power-up or when another device in the design requires both signals to be asserted  
simultaneously (like an SDRAM). A solution to this would be to OR (AND if using active-high signals) the chip  
selects with the read and write signals to the XR16C850 as shown below:  
CS#  
(from CPU  
or PLD)  
CS2#  
CS  
(from CPU  
or PLD)  
CS0 or CS1  
IOR#  
IOR  
IOR#  
IOW#  
IOR  
XR16C850  
IOW#  
XR16C850  
IOW  
IOW  
(Active High Signals)  
(Active Low Signals)  
For devices with top mark date code of "F2 YYWW" and higher devices, the solution for the Factory Test Mode  
given in the figure above has been incorporated into the UART. It will only enter Factory Test Mode when all  
three signals (chip select, read and write) are asserted simultaneously.  
7
XR16C850  
xr  
2.97V TO 5.5V UART WITH 128-BYTE FIFO  
REV. 2.3.1  
1.0 PRODUCT DESCRIPTION  
The XR16C850 (850) provides serial asynchronous receive data synchronization, parallel-to-serial and serial-  
to-parallel data conversions for both the transmitter and receiver sections. These functions are necessary for  
converting the serial data stream into parallel data that is required with digital data systems. Synchronization  
for the serial data stream is accomplished by adding start and stops bits to the transmit data to form a data  
character (character orientated protocol). Data integrity is ensured by attaching a parity bit to the data  
character. The parity bit is checked by the receiver for any transmission bit errors. The electronic circuitry to  
provide all these functions is fairly complex especially when manufactured on a single integrated silicon chip.  
The XR16C850 represents such an integration with greatly enhanced features. The 850 is fabricated using an  
advanced CMOS process.  
Enhanced Features  
The 850 is an upward solution that provides 128 bytes of transmit and receive FIFO memory, instead of 32  
bytes provided in the 16C650A, 16 bytes in the 16C550, or none in the 16C450. The 850 is designed to work  
with high speed modems and shared network environments, that require fast data processing time. Increased  
performance is realized in the 850 by the larger transmit and receive FIFOs. This allows the external processor  
to handle more networking tasks within a given time. For example, the ST16C550 with a 16 byte FIFO, unloads  
16 bytes of receive data in 1.53 ms (This example uses a character length of 11 bits, including start/stop bits at  
115.2Kbps). This means the external CPU will have to service the receive FIFO at 1.53 ms intervals. However  
with the 128 byte FIFO in the 850, the data buffer will not require unloading/loading for 12.2 ms. This increases  
the service interval giving the external CPU additional time for other applications and reducing the overall  
UART interrupt servicing time. In addition, the programmable FIFO trigger level interrupt and automatic  
hardware/software flow control is uniquely provided for maximum data throughput performance. The  
combination of the above greatly reduces the bandwidth requirement of the external controlling CPU,  
increases performance, and reduces power consumption.  
The 850 provides a RS-485 half-duplex direction control signal, pin OP1#/RS485 to select the external  
transceiver direction. It automatically changes the state of the output pin for receive state after the last stop-bit  
of the last character has been shifted out of the TX shift register. Afterward, upon loading a TX data byte, it  
changes state of the output pin back for transmit state. The RS-485 direction control pin is not activated after  
reset. To activate the direction control function, the user has to set EFR Bit-4, and FCTR Bit-3 to “1”. This pin  
(OP1#/RS485) is high for receive state, low for transmit state.  
Data Bus Interface  
Two data bus interfaces are available to the user. The PC mode allows direct interconnect to the PC ISA bus  
while the Intel Bus Mode operates similar to the standard CPU interface available on the 16C450/550/650A.  
When the PC mode is selected, the external logic circuitry required for PC COM port address decode and chip  
select is eliminated. These functions are provided internally in the 850.  
Data Rate  
The 850 is capable of operation up to 1.5 Mbps with a 24 MHz crystal or external clock input with a 16X  
sampling clock. However, it is possible to operate up to 2.25 Mbps with a 36 MHz external clock for devices  
with top mark date code of "F2 YYWW" and newer, and up to 2 Mbps with a 33 MHz external clock for devices  
with top mark date code of "EC YYWW" and older. With a crystal of 14.7456 MHz and through a software  
option, the user can select data rates up to 921.6 Kbps.  
The rich feature set of the 850 is available through internal registers. Automatic hardware/software flow control,  
selectable transmit and receive FIFO trigger levels, selectable TX and RX baud rates, infrared encoder/  
decoder interface, modem interface controls, and a sleep mode are all standard features. In addition, there is a  
PC Mode that has two additional three state interrupt lines and one selectable open source interrupt output.  
The open source interrupt scheme allows multiple interrupts to be combined in a “WIRE-OR” operation, thus  
reducing the number of interrupt lines in larger systems. Following a power on reset or an external reset, the  
850 is software compatible with previous generation of UARTs, 16C450 and 16C550 and 16C650A.  
8
xr  
XR16C850  
REV. 2.3.1  
2.97V TO 5.5V UART WITH 128-BYTE FIFO  
2.0 FUNCTIONAL DESCRIPTIONS  
2.1  
Host Data Bus Interface  
The host interface is 8 data bits wide with 3 address lines and control signals to execute bus read and write  
transactions. The 850 supports 2 types of host interfaces: Intel and PC mode. The Intel bus interface is  
selected by connecting SEL to logic 1. When the SEL pin is set to a logic 1, the 850 interface is the same as  
industry standard 16C550. The Intel bus interconnections are shown in Figure 3. The special PC mode is  
selected when SEL is connected to logic 0. The PC mode interconnections are shown in Figure 4.  
FIGURE 3. XR16C850 INTEL BUS INTERCONNECTIONS  
BAUDOUT#  
RCLK  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
VCC  
VCC  
CS0  
CS1  
SEL  
A0  
A0  
A1  
A1  
A2  
A2  
TX  
RX  
IOR  
IOR#  
DTR#  
RTS#  
CTS#  
DSR#  
CD#  
RI#  
IOW  
IOW#  
CS#  
INT  
CS2#  
INT  
OP1#  
OP2#  
RESET  
RESET  
IOW  
IOR  
AS#  
GND  
.
FIGURE 4. XR16C850 PC MODE INTERCONNECTIONS  
VCC  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
VCC  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
TX  
RX  
DTR#  
RTS#  
CTS#  
DSR#  
CD#  
RI#  
A14  
A15  
AEN#  
A8  
A9  
AEN  
IOR#  
IOR#  
OP1#  
IOW#  
IOW#  
IRQn  
IRQ4  
IRQ3  
IRQA  
IRQB  
IRQC  
S3  
VCC  
GND  
GND  
SEL  
S2  
S1  
GND  
RESET  
RESET  
9
XR16C850  
xr  
2.97V TO 5.5V UART WITH 128-BYTE FIFO  
REV. 2.3.1  
2.2  
PC MODE  
The PC mode interface includes an on-chip address decoder and interrupt selection function for the standard  
PC COM 1-4 ports addresses. The selection is made through three input signals: S1, S2 and S3. The selection  
summary is shown in Table 1. Although the on-chip address decoder was designed for PC applications  
ranging from 0x278 to 0x3FF, it can fit into an embedded applications by offsetting the address lines to the 850.  
An example is shown in Figure 5 where the UART is operating from 0x80F8 to 0x80FF address space.  
Operating in the PC mode eliminates external address decode components.  
TABLE 1: PC MODE INTERFACE ON-CHIP ADDRESS DECODER AND INTERRUPT SELECTION.  
S3, S2, S1  
INPUTS  
A3-A9 ADDRESS LINES TO  
ON-CHIP DECODER  
COM/LPT PORT  
SELECTION  
SEL# INPUT  
IRQ OUTPUT SELECTION  
0
0
0
0
0
0
0
0
0
0
0 0 0  
0 0 1  
0 1 0  
0 0 0  
1 0 0  
1 0 1  
1 1 0  
1 1 1  
X X X  
X X X  
0x3F8 - 0x3FF  
0x2F8 - 0x2FF  
0x3E8 - 0x3EF  
0x3F8 - 0x3FF  
0x2F8 - 0x2FF  
0x3E8 - 0x3EF  
0x2E8 - 0x2EF  
0x3F8 - 0x3FF  
0x278 - 0x27F  
0x378 - 0x37F  
COM-1  
COM-2  
COM-3  
COM-4  
COM-1  
COM-2  
COM-3  
COM-4  
LPT-2  
IRQB (for PC’s IRQ4)  
IRQC (for PC’s IRQ3)  
IRQB (for PC’s IRQ4)  
IRQB (for PC’s IRQ4)  
IRQA (for PC’s IRQn  
IRQA (for PC’s IRQn)  
IRQA (for PC’s IRQn)  
IRQA (for PC’s IRQn)  
N/A  
LPT-1  
N/A  
FIGURE 5. PC MODE INTERFACE IN AN EMBEDDED APPLICATION.  
VCC  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
VCC  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
TX  
RX  
DTR#  
RTS#  
CTS#  
DSR#  
CD#  
RI#  
A8  
A9  
AEN*  
A14  
A15  
AEN#  
IOR#  
IOR#  
OP1#  
IOW #  
IOW #  
INT  
IRQA  
IRQB  
IRQC  
Em bedded Application set to operate  
VCC  
at address 0x80F8 to 0x80FF  
GND  
S3  
S2  
SEL  
GND  
S1  
GND  
RESET  
RESET  
10  
xr  
XR16C850  
REV. 2.3.1  
2.97V TO 5.5V UART WITH 128-BYTE FIFO  
2.3  
16-Bit Bus Interface  
The 16-bit bus interface is only available on the 48 pin package. The 16-bit bus mode is enabled when the  
BUS8/16 pin is connected to GND. In this mode, the RX data errors can be read via the higher order data bus  
pins D10-D12. See Figure 6.  
FIGURE 6. XR16C850 16-BIT BUS INTERFACE  
BAUDOUT#  
RCLK  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
VCC  
VCC  
CS0  
CS1  
SEL  
D10  
D11  
D12  
Parity Error  
Framing Error  
Break Error  
TX  
RX  
A0  
A0  
A1  
A2  
DTR#  
RTS#  
CTS#  
DSR#  
CD#  
RI#  
A1  
A2  
IOR  
IOR#  
IOW  
IOW#  
OP1#  
OP2#  
CS#  
INT  
CS2#  
INT  
BUS8/16  
IOW  
IOR  
AS#  
RESET  
RESET  
GND  
2.4  
5-Volt Tolerant Inputs  
For devices that have top mark date code "F2 YYWW" and newer, the 850 can accept a voltage of up to 5.5V  
on any of its inputs (except XTAL1) when operating from 2.97V to 5.5V. XTAL1 is not 5 volt tolerant. Devices  
that have top mark date code "EC YYWW" and older do not have 5V tolerant inputs.  
2.5  
Device Reset  
The RESET input resets the internal registers and the serial interface outputsto their default state (see  
Table 15). An active high pulse of longer than 40 ns duration will be required to activate the reset function in  
the device.  
2.6  
Device Identification and Revision  
The XR16C850 provides a Device Identification code and a Device Revision code to distinguish the part from  
other devices and revisions. To read the identification code from the part, it is required to set the baud rate  
generator registers DLL and DLM both to 0x00. Now reading the content of the DLM will provide 0x10 for the  
XR16C850 and reading the content of DLL will provide the revision of the part; for example, a reading of 0x01  
means revision A.  
11  
XR16C850  
xr  
2.97V TO 5.5V UART WITH 128-BYTE FIFO  
REV. 2.3.1  
2.7  
Internal Registers  
The 850 has a set of enhanced registers for controlling, monitoring and data loading and unloading. The  
configuration register set is compatible to those already available in the standard 16C550. These registers  
function as data holding registers (THR/RHR), interrupt status and control registers (ISR/IER), a FIFO control  
register (FCR), receive line status and control registers (LSR/LCR), modem status and control registers (MSR/  
MCR), programmable data rate (clock) divisor registers (DLL/DLM), and a user accessible scractchpad register  
(SPR).  
Beyond the general 16C550 features and capabilities, the 850 offers enhanced feature registers (EMSR, TRG,  
FC, FCTR, EFR, Xon/Xoff 1, Xon/Xoff 2) that provide automatic RTS and CTS hardware flow control, Xon/Xoff  
software flow control, automatic RS-485 half-duplex direction output enable/disable, FIFO trigger level control,  
and FIFO level counters. All the register functions are discussed in full detail later in “Section 3.0, UART  
INTERNAL REGISTERS” on page 25.  
2.8  
DMA Mode  
The DMA Mode (a legacy term) in this document does not mean “Direct Memory Access” but refers to data  
block transfer operation. The DMA mode affects the state of the RXRDY# A/B and TXRDY# A/B output pins.  
The transmit and receive FIFO trigger levels provide additional flexibility to the user for block mode operation.  
The LSR bits 5-6 provide an indication when the transmitter is empty or has an empty location(s) for more data.  
The user can optionally operate the transmit and receive FIFO in the DMA mode (FCR bit-3=1). When the  
transmit and receive FIFO are enabled and the DMA mode is disabled (FCR bit-3 = 0), the 850 activates the  
interrupt output pin for each data transmit or receive operation. When DMA mode is enabled (FCR bit-3 = 1),  
the user takes advantage of block mode operation by loading or unloading the FIFO in a block sequence  
determined by the programmed trigger level. In this mode, the 850 sets the TXRDY# pin when the transmit  
FIFO becomes full, and sets the RXRDY# pin when the receive FIFO becomes empty. The following table  
shows their behavior.  
TABLE 2: TXRDY# AND RXRDY# OUTPUTS IN FIFO AND DMA MODE  
FCR BIT-0=0  
PINS  
FCR BIT-0=1 (FIFO ENABLED)  
(FIFO DISABLED)  
FCR Bit-3 = 0  
FCR Bit-3 = 1  
(DMA Mode Disabled)  
(DMA Mode Enabled)  
0 = 1 byte.  
RXRDY# A/B  
TXRDY# A/B  
0 = at least 1 byte in FIFO  
1 = FIFO empty.  
1 to 0 transition when FIFO reaches the trigger  
level, or timeout occurs.  
1 = no data.  
0 to 1 transition when FIFO empties.  
0 = THR empty.  
1 = byte in THR.  
0 = FIFO empty.  
0 = FIFO has at least 1 empty location.  
1 = FIFO is full.  
1 = at least 1 byte in FIFO.  
12  
xr  
XR16C850  
REV. 2.3.1  
2.97V TO 5.5V UART WITH 128-BYTE FIFO  
2.9  
Interrupts  
The output function of interrupt outputs change according to the operating bus type. During the Intel Bus Mode,  
the INT output will always be active high and MCR bit-3 will have no effect on the INT output pin. In the PC  
Mode, the IRQ outputs are in three-state mode unless MCR bit-3 and S3 are both a logic 1. Table 3  
summarizes its behavior in Intel and PC mode of operation.  
TABLE 3: INTERRUPT OUTPUT FUNCTIONS  
S3  
BUS  
MODE  
MCR  
BIT-3  
INTERRUPT OUTPUT  
(INT OR IRQ)  
(PC MODE  
ONLY)  
Intel  
PC  
X
0
0
1
1
X
0
1
0
1
Active High  
Three-State  
Three-State  
Three-State  
Active High  
FIGURE 7. TYPICAL OSCILLATOR CONNECTIONS  
XTAL1  
XTAL2  
R1  
0-120  
(Optional)  
R2  
500K - 1M  
1.8432 MHz  
to  
Y1  
24 MHz  
C1  
C2  
22-47pF  
22-47pF  
2.10 Crystal Oscillator or External Clock  
The 850 includes an on-chip oscillator (XTAL1 and XTAL2). The crystal oscillator provides the system clock to  
the Baud Rate Generators (BRG) in the UART. XTAL1 is the input to the oscillator or external clock buffer input  
with XTAL2 pin being the output. For programming details, see “Section 2.11, Programmable Baud Rate  
Generator” on page 14. To use the same clock for the receiver as used with the transmiter of the UART in the  
Intel bus mode, the BAUDCLK pin must be connected to the RCLK pin external to the UART.  
The on-chip oscillator is designed to use an industry standard microprocessor crystal (parallel resonant,  
fundamental frequency with 10-22 pF capacitance load, ESR of 20-120 ohms and 100ppm frequency  
tolerance) connected externally between the XTAL1 and XTAL2 pins (see Figure 7). Alternatively, an external  
clock can be connected to the XTAL1 pin to clock the internal baud rate generator for standard or custom rates.  
Typically, the oscillator connections are shown in Figure 7. For further reading on oscillator circuit please see  
application note DAN108 on EXAR’s web site.  
13  
XR16C850  
xr  
2.97V TO 5.5V UART WITH 128-BYTE FIFO  
REV. 2.3.1  
2.11 Programmable Baud Rate Generator  
The UART has its own Baud Rate Generator (BRG) with a prescaler for the transmitter. The prescaler is  
controlled by a software bit in the MCR register. The MCR register bit-7 sets the prescaler to divide the input  
crystal or external clock by 1 or 4. The clock output of the prescaler goes to the BRG. The BRG further divides  
16  
this clock by a programmable divisor between 1 and (2 -1) to obtain a 16X sampling clock of the serial data  
rate. The sampling clock is used by the transmitter for data bit shifting and receiver for data sampling. The BRG  
divisor (DLL and DLM registers) defaults to a random value upon power up or a reset. Therefore, the BRG  
must be programmed during initialization to the operating data rate.  
FIGURE 8. BAUD RATE GENERATOR  
During  
Initialization or  
Reset  
DLL and DLM  
Registers  
MCR Bit-7=0  
(default)  
Prescaler  
Divide by 1  
CLKSEL = VCC  
CLKSEL = GND  
16X  
Sampling  
Rate Clock to  
Transmitter  
and Receiver  
Crystal  
Osc/  
Buffer  
XTAL1  
XTAL2  
Baud Rate  
Generator  
Logic  
Prescaler  
Divide by 4  
MCR Bit-7=1  
Programming the Baud Rate Generator Registers DLM and DLL provides the capability of selecting the  
operating data rate. Table 4 shows the standard data rates available with a 14.7456 MHz crystal or external  
clock at 16X clock rate. When using a non-standard data rate crystal or external clock, the divisor value can be  
calculated for DLL/DLM with the following equation.  
divisor (decimal) = (XTAL1 clock frequency / prescaler) / (serial data rate x 16)  
TABLE 4: TYPICAL DATA RATES WITH A 14.7456 MHZ CRYSTAL OR EXTERNAL CLOCK  
DLM  
PROGRAM  
VALUE (HEX) VALUE (HEX)  
DLL  
PROGRAM  
DATA RATE  
ERROR (%)  
OUTPUT Data Rate OUTPUT Data Rate DIVISOR FOR 16x DIVISOR FOR 16x  
MCR Bit-7=1  
MCR Bit-7=0  
Clock (Decimal) Clock (HEX)  
100  
600  
400  
2304  
384  
192  
96  
48  
24  
12  
6
900  
180  
C0  
60  
09  
01  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
80  
C0  
60  
30  
18  
0C  
06  
04  
02  
01  
0
0
0
0
0
0
0
0
0
0
0
2400  
1200  
2400  
4800  
9600  
19.2k  
38.4k  
57.6k  
115.2k  
230.4k  
4800  
9600  
19.2k  
38.4k  
76.8k  
153.6k  
230.4k  
460.8k  
921.6k  
30  
18  
0C  
06  
4
04  
2
02  
1
01  
14  
xr  
XR16C850  
REV. 2.3.1  
2.97V TO 5.5V UART WITH 128-BYTE FIFO  
2.12 Transmitter  
The transmitter section comprises of an 8-bit Transmit Shift Register (TSR) and 128 bytes of FIFO which  
includes a byte-wide Transmit Holding Register (THR). TSR shifts out every data bit with the 16X internal  
clock. A bit time is 16 clock periods. The transmitter sends the start-bit followed by the number of data bits,  
inserts the proper parity-bit if enabled, and adds the stop-bit(s). The status of the FIFO and TSR are reported in  
the Line Status Register (LSR bit-5 and bit-6).  
2.12.1 Transmit Holding Register (THR) - Write Only  
The transmit holding register is an 8-bit register providing a data interface to the host processor. The host  
writes transmit data byte to the THR to be converted into a serial data stream including start-bit, data bits,  
parity-bit and stop-bit(s). The least-significant-bit (Bit-0) becomes first data bit to go out. The THR is the input  
register to the transmit FIFO of 128 bytes when FIFO operation is enabled by FCR bit-0. Every time a write  
operation is made to the THR, the FIFO data pointer is automatically bumped to the next sequential data  
location.  
2.12.2 Transmitter Operation in non-FIFO Mode  
The host loads transmit data to THR one character at a time. The THR empty flag (LSR bit-5) is set when the  
data byte is transferred to TSR. THR flag can generate a transmit empty interrupt (ISR bit-1) when it is enabled  
by IER bit-1. The TSR flag (LSR bit-6) is set when TSR becomes completely empty.  
FIGURE 9. TRANSMITTER OPERATION IN NON-FIFO MODE  
Transmit  
Holding  
Register  
(THR)  
Data  
Byte  
THR Interrupt (ISR bit-1)  
Enabled by IER bit-1  
16X Clock  
M
S
B
L
S
B
Transmit Shift Register (TSR)  
TXNOFIFO1  
2.12.3 Transmitter Operation in FIFO Mode  
The host may fill the transmit FIFO with up to 128 bytes of transmit data. The THR empty flag (LSR bit-5) is set  
whenever the FIFO is empty. The THR empty flag can generate a transmit empty interrupt (ISR bit-1) when the  
amount of data in the FIFO falls below its programmed trigger level. The transmit empty interrupt is enabled by  
IER bit-1. The TSR flag (LSR bit-6) is set when TSR/FIFO becomes empty.  
15  
XR16C850  
xr  
2.97V TO 5.5V UART WITH 128-BYTE FIFO  
REV. 2.3.1  
FIGURE 10. TRANSMITTER OPERATION IN FIFO AND FLOW CONTROL MODE  
Transmit  
FIFO  
Transmit  
Data Byte  
THR Interrupt (ISR bit-1) falls  
below the programmed Trigger  
Level and then when becomes  
empty. FIFO is Enabled by FCR  
bit-0=1  
Auto CTS Flow Control (CTS# pin)  
Flow Control Characters  
(Xoff1/2 and Xon1/2 Reg.  
Auto Software Flow Control  
16X Clock  
Transmit Data Shift Register  
(TSR)  
TXFIFO1  
2.13 Receiver  
The receiver section contains an 8-bit Receive Shift Register (RSR) and 128 bytes of FIFO which includes a  
byte-wide Receive Holding Register (RHR). The RSR uses the 16X clock for timing. It verifies and validates  
every bit on the incoming character in the middle of each data bit. On the falling edge of a start or false start bit,  
an internal receiver counter starts counting at the 16X clock rate. After 8 clocks the start bit period should be at  
the center of the start bit. At this time the start bit is sampled and if it is still a logic 0 it is validated. Evaluating  
the start bit in this manner prevents the receiver from assembling a false character. The rest of the data bits  
and stop bits are sampled and validated in this same manner to prevent false framing. If there were any  
error(s), they are reported in the LSR register bits 2-4. Upon unloading the receive data byte from RHR, the  
receive FIFO pointer is bumped and the error tags are immediately updated to reflect the status of the data  
byte in RHR register. RHR can generate a receive data ready interrupt upon receiving a character or delay until  
it reaches the FIFO trigger level. Furthermore, data delivery to the host is guaranteed by a receive data ready  
time-out interrupt when data is not received for 4 word lengths as defined by LCR[1:0] plus 12 bits time. This is  
equivalent to 3.7-4.6 character times. The RHR interrupt is enabled by IER bit-0.  
2.13.1 Receive Holding Register (RHR) - Read-Only  
The Receive Holding Register is an 8-bit register that holds a receive data byte from the Receive Shift  
Register. It provides the receive data interface to the host processor. The RHR register is part of the receive  
FIFO of 128 bytes by 11-bits wide, the 3 extra bits are for the 3 error tags to be reported in LSR register. When  
the FIFO is enabled by FCR bit-0, the RHR contains the first data character received by the FIFO. After the  
RHR is read, the next character byte is loaded into the RHR and the errors associated with the current data  
byte are immediately updated in the LSR bits 2-4.  
16  
xr  
XR16C850  
REV. 2.3.1  
2.97V TO 5.5V UART WITH 128-BYTE FIFO  
FIGURE 11. RECEIVER OPERATION IN NON-FIFO MODE  
16X Clock  
Receive Data Shift  
Register (RSR)  
Data Bit  
Validation  
Receive Data Characters  
Error  
Receive  
Data Byte  
and Errors  
Receive Data  
Holding Register  
(RHR)  
Tags in  
LSR bits  
4:2  
RHR Interrupt (ISR bit-2)  
RXFIFO1  
FIGURE 12. RECEIVER OPERATION IN FIFO AND AUTO RTS FLOW CONTROL MODE  
16X Clock  
Receive Data Shift  
Register (RSR)  
Data Bit  
Validation  
Receive Data Characters  
Example  
- RX FIFO trigger level selected at 16  
:
bytes  
(See Note Below)  
RTS# re-asserts when data falls below the flow  
control trigger level to restart remote transmitter.  
Enable by EFR bit-6=1, MCR bit-1.  
128 bytes by 11-bit  
wide  
Data falls to  
8
FIFO  
Receive  
Data FIFO  
FIFO  
Trigger=16  
RHR Interrupt (ISR bit-2) programmed for  
desired FIFO trigger level.  
FIFO is Enabled by FCR bit-0=1  
Data fills to  
24  
RTS# de-asserts when data fills above the flow  
control trigger level to suspend remote transmitter.  
Enable by EFR bit-6=1, MCR bit-1.  
Receive  
Data  
Receive Data  
Byte and Errors  
RXFIFO1  
NOTE: Table-B selected as Trigger Table for Figure 12 (Table 10).  
17  
XR16C850  
xr  
2.97V TO 5.5V UART WITH 128-BYTE FIFO  
REV. 2.3.1  
2.14 Auto RTS (Hardware) Flow Control  
Automatic RTS hardware flow control is used to prevent data overrun to the local receiver FIFO. The RTS#  
output is used to request remote unit to suspend/resume data transmission. The auto RTS flow control  
features is enabled to fit specific application requirement (see Figure 13):  
Enable auto RTS flow control using EFR bit-6.  
The auto RTS function must be started by asserting RTS# output pin (MCR bit-1 to logic 1 after it is enabled).  
Enable RTS interrupt through IER bit-6 (after setting EFR bit-4). The UART issues an interrupt when the  
RTS# pin makes a transition from low to high: ISR bit-5 will be set to logic 1.  
2.15  
Auto RTS Hysteresis  
The 850 has a new feature that provides flow control trigger hysteresis while it maintains compatibility to  
16C650A and 16C550. With the Auto RTS function enabled, an interrupt is generated when the receive FIFO  
reaches the programmed RX trigger level. The RTS# pin will not be forced to a logic 1 (RTS off), until the  
receive FIFO reaches the upper limit of the hysteresis level. The RTS# pin will return to a logic 0 after the RX  
FIFO is unloaded to the lower limit of the hysteresis level. Under the above described conditions, the 850 will  
continue to accept data until the receive FIFO gets full. The Auto RTS function is initiated when the RTS#  
output pin is asserted to a logic 0 (RTS On). For complete details, see Table 5.  
TABLE 5: AUTO RTS HYSTERESIS  
RTS#  
RTS#  
RTS  
HYSTERESIS  
(CHARACTERS)  
FCTR FCTR  
BIT-1 BIT-0  
INT PIN  
TRIGGER TABLE SELECTED  
(SEE TABLE 10)  
TRIGGER LEVEL  
(CHARACTERS)  
DE-ASSERTED  
(CHARACTERS) (CHARACTERS)  
ASSERTED  
ACTIVATION  
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
1
4
-
-
1
4
4
8
0
1
Trigger Table-A  
Trigger Table-B  
Trigger Table-C  
8
-
8
14  
4
14  
8
-
14  
8
14  
8
-
16  
0
16  
24  
28  
8
-
16  
24  
28  
8
24  
8
-
28  
16  
24  
0
-
28  
-
16  
16  
56  
60  
N
-
16  
56  
60  
N
56  
8
-
60  
16  
56  
N - 4  
N - 6  
N - 8  
-
60  
±4  
±6  
±8  
N + 4  
N + 6  
N + 8  
Trigger Table-D  
(Programmable)  
N
N
N
N
18  
xr  
XR16C850  
REV. 2.3.1  
2.97V TO 5.5V UART WITH 128-BYTE FIFO  
2.16  
Auto CTS (Hardware) Flow Control  
Automatic CTS flow control is used to prevent data overrun to the remote receiver FIFO. The CTS# input is  
monitored to suspend/restart the local transmitter. The auto CTS flow control feature is selected to fit specific  
application requirement (see Figure 13):  
Enable auto CTS flow control using EFR bit-7.  
Enable CTS interrupt through IER bit-7 (after setting EFR bit-4). The UART issues an interrupt when the  
CTS# pin is de-asserted (logic 1): ISR bit-5 will be set to 1, and UART will suspend transmission as soon as  
the stop bit of the character in process is shifted out. Transmission is resumed after the CTS# input is re-  
asserted (logic 0), indicating more data may be sent.  
FIGURE 13. AUTO RTS AND CTS FLOW CONTROL OPERATION  
Local UART  
UARTA  
Remote UART  
UARTB  
RXA  
TXB  
Receiver FIFO  
Trigger Reached  
Transmitter  
RTSA#  
TXA  
CTSB#  
RXB  
Auto RTS  
Trigger Level  
Auto CTS  
Monitor  
Receiver FIFO  
Trigger Reached  
Transmitter  
CTSA#  
RTSB#  
Auto CTS  
Monitor  
Auto RTS  
Trigger Level  
Assert RTS# to Begin  
Transmission  
1
10  
11  
ON  
ON  
ON  
RTSA#  
OFF  
OFF  
7
2
ON  
3
CTSB#  
TXB  
8
Restart  
9
Data Starts  
6
Suspend  
4
RXA FIFO  
Receive  
Data  
RX FIFO  
12  
RTS High  
Threshold  
RTS Low  
Threshold  
5
RX FIFO  
Trigger Level  
Trigger Level  
INTA  
(RXA FIFO  
Interrupt)  
RTSCTS1  
The local UART (UARTA) starts data transfer by asserting RTSA# (1). RTSA# is normally connected to CTSB# (2) of  
remote UART (UARTB). CTSB# allows its transmitter to send data (3). TXB data arrives and fills UARTA receive FIFO  
(4). When RXA data fills up to its receive FIFO trigger level, UARTA activates its RXA data ready interrupt (5) and con-  
tinues to receive and put data into its FIFO. If interrupt service latency is long and data is not being unloaded, UARTA  
monitors its receive data fill level to match the upper threshold of RTS delay and de-assert RTSA# (6). CTSB# follows  
(7) and request UARTB transmitter to suspend data transfer. UARTB stops or finishes sending the data bits in its trans-  
mit shift register (8). When receive FIFO data in UARTA is unloaded to match the lower threshold of RTS delay (9),  
UARTA re-asserts RTSA# (10), CTSB# recognizes the change (11) and restarts its transmitter and data flow again until  
next receive FIFO trigger (12). This same event applies to the reverse direction when UARTA sends data to UARTB  
with RTSB# and CTSA# controlling the data flow.  
19  
XR16C850  
xr  
2.97V TO 5.5V UART WITH 128-BYTE FIFO  
REV. 2.3.1  
2.17 Auto Xon/Xoff (Software) Flow Control  
When software flow control is enabled (See Table 14), the 850 compares one or two sequential receive data  
characters with the programmed Xon or Xoff-1,2 character value(s). If receive character(s) (RX) match the  
programmed values, the 850 will halt transmission (TX) as soon as the current character has completed  
transmission. When a match occurs, the Xoff (if enabled via IER bit-5) flag will be set and the interrupt output  
pin will be activated. Following a suspension due to a match of the Xoff character, the 850 will monitor the  
receive data stream for a match to the Xon-1,2 character. If a match is found, the 850 will resume operation  
and clear the flags (ISR bit-4).  
Reset initially sets the contents of the Xon/Xoff 8-bit flow control registers to a logic 0. Following reset the user  
can write any Xon/Xoff value desired for software flow control. Different conditions can be set to detect Xon/  
Xoff characters (See Table 14) and suspend/resume transmissions. When double 8-bit Xon/Xoff characters are  
selected, the 850 compares two consecutive receive characters with two software flow control 8-bit values  
(Xon1, Xon2, Xoff1, Xoff2) and controls TX transmissions accordingly. Under the above described flow control  
mechanisms, flow control characters are not placed (stacked) in the user accessible RX data buffer or FIFO.  
In the event that the receive buffer is overfilling and flow control needs to be executed, the 850 automatically  
sends an Xoff message (when enabled) via the serial TX output to the remote modem. The 850 sends the Xoff-  
1,2 characters two-character-times (= time taken to send two characters at the programmed baud rate) after  
the receive FIFO crosses the programmed trigger level (for all trigger tables A-D). To clear this condition, the  
850 will transmit the programmed Xon-1,2 characters as soon as receive FIFO is less than one trigger level  
below the programmed trigger level (for Trigger Tables A, B, and C) or when receive FIFO is less than the  
trigger level minus the hysteresis value (for Trigger Table D). This hysteresis value is the same as the Auto  
RTS Hysteresis value in Table 5. Table 6 below explains this when Trigger Table-B (See Table 10) is  
selected.  
TABLE 6: AUTO XON/XOFF (SOFTWARE) FLOW CONTROL  
XOFF CHARACTER(S) SENT  
(CHARACTERS IN RX FIFO)  
XON CHARACTER(S) SENT  
(CHARACTERS IN RX FIFO)  
RX TRIGGER LEVEL  
INT PIN ACTIVATION  
8
8
8*  
0
8
16  
24  
28  
16  
24  
28  
16*  
24*  
28*  
16  
24  
* After the trigger level is reached, an xoff character is sent after a short span of time (= time required to send 2  
characters); for example, after 2.083ms has elapsed for 9600 baud and 10-bit word length setting.  
2.18  
Special Character Detect  
A special character detect feature is provided to detect an 8-bit character when bit-5 is set in the Enhanced  
Feature Register (EFR). When this character (Xoff2) is detected, it will be placed in the FIFO along with normal  
incoming RX data.  
The 850 compares each incoming receive character with Xoff-2 data. If a match exists, the received data will  
be transferred to FIFO and ISR bit-4 will be set to indicate detection of special character. Although the Internal  
Register Table shows Xon, Xoff Registers with eight bits of character information, the actual number of bits is  
dependent on the programmed word length. Line Control Register (LCR) bits 0-1 defines the number of  
character bits, i.e., either 5 bits, 6 bits, 7 bits, or 8 bits. The word length selected by LCR bits 0-1 also  
determines the number of bits that will be used for the special character comparison. Bit-0 in the Xon, Xoff  
Registers corresponds with the LSB bit for the receive character.  
2.19  
Auto RS485 Half-duplex Control  
The auto RS485 half-duplex direction control changes the behavior of the transmitter when enabled by MCR  
bit-2. It de-asserts OP1#/RS485 output following the last stop bit of the last character that has been  
transmitted. This helps in turning around the transceiver to receive the remote station’s response. When the  
host is ready to transmit next polling data packet again, it only has to load data bytes to the transmit FIFO. The  
transmitter automatically re-asserts OP1# output prior to sending the data. See Figure 14.  
20  
xr  
XR16C850  
REV. 2.3.1  
2.97V TO 5.5V UART WITH 128-BYTE FIFO  
FIGURE 14. AUTO RS-485 HALF-DUPLEX CONTROL  
RS-485 Transceiver  
D
850 UART  
T+  
T-  
TX  
OP1#/RS485  
(0 = Transmit  
1= Receive)  
R+  
R-  
RX  
R
2.20 Infrared Mode  
The 850 UART includes the infrared encoder and decoder compatible to the IrDA (Infrared Data Association)  
version 1.0. The IrDA 1.0 standard that stipulates the infrared encoder sends out a 3/16 of a bit wide HIGH-  
pulse for each “0” bit in the transmit data stream. This signal encoding reduces the on-time of the infrared LED,  
hence reduces the power consumption. See Figure 15.  
The infrared encoder and decoder are enabled by setting MCR register bit-6 to a ‘1’. When the infrared feature  
is enabled, the transmit data output, TX, idles at logic zero level. Likewise, the RX input assumes an idle level  
of logic zero from a reset and power up, see Figure 15.  
Typically, the wireless infrared decoder receives the input pulse from the infrared sensing diode on the RX pin.  
Each time it senses a light pulse, it returns a logic 1 to the data bit stream. However, this is not true with some  
infrared modules on the market which indicate a logic 0 by a light pulse. So the 850 has a provision to invert  
the input polarity to accomodate this. In this case, the user can enable FCTR bit-2 to invert the incoming  
infrared RX signal.  
21  
XR16C850  
xr  
2.97V TO 5.5V UART WITH 128-BYTE FIFO  
REV. 2.3.1  
FIGURE 15. INFRARED TRANSMIT DATA ENCODING AND RECEIVE DATA DECODING  
Character  
Data Bits  
1
1
1
1
1
0
0
0
0
0
TX Data  
Transmit  
IR Pulse  
(TX Pin)  
1/2 Bit Time  
Bit Time  
3/16 Bit Time  
IrEncoder-1  
Receive  
IR Pulse  
(RX pin)  
(FCTR  
Bit Time  
1/16 Clock Delay  
bit-2 = 0)  
0
1
0
1
0
0
1
1
0
1
RX Data  
Data Bits  
Character  
IRdecoder-1  
Receive  
IR Pulse  
(RX pin)  
(FCTR  
Bit Time  
1/16 Clock Delay  
bit-2 = 1)  
0
1
0
1
0
0
1
1
0
1
RX Data  
Data Bits  
Character  
IRdecoder-1  
22  
xr  
XR16C850  
REV. 2.3.1  
2.97V TO 5.5V UART WITH 128-BYTE FIFO  
2.21  
Sleep Mode with Auto Wake-Up  
The 850 supports low voltage system designs, hence, a sleep mode is included to reduce its power  
consumption when the chip is not actively used.  
All of these conditions must be satisfied for the 850 to enter sleep mode:  
no interrupts pending for the 850 (ISR bit-0 = 1)  
sleep mode is enabled (IER bit-4 = 1)  
modem inputs are not toggling (MSR bits 0-3 = 0)  
RX input pin is idling at a logic 1  
The 850 stops its crystal oscillator to conserve power in the sleep mode. User can check the XTAL2 pin for no  
clock output as an indication that the device has entered the sleep mode.  
The 850 resumes normal operation by any of the following:  
a receive data start bit transition (logic 1 to 0)  
a data byte is loaded to the transmitter, THR or FIFO  
a change of logic state on any of the modem or general purpose serial inputs: CTS#, DSR#, CD#, RI#  
If the 850 is awakened by any one of the above conditions, it will return to the sleep mode automatically after  
all interrupting conditions have been serviced and cleared. If the 850 is awakened by the modem inputs, a read  
to the MSR is required to reset the modem inputs. In any case, the sleep mode will not be entered while an  
interrupt is pending. The 850 will stay in the sleep mode of operation until it is disabled by setting IER bit-4 to a  
logic 0.  
If the address lines, data bus lines, IOW#, IOR#, CSA#, CSB#, and modem input lines remain steady when the  
850 is in sleep mode, the maximum current will be in the microamp range as specified in the DC Electrical  
Characteristics on page 42. If the input lines are floating or are toggling while the 850 is in sleep mode, the  
current can be up to 100 times more. If any of those signals are toggling or floating, then an external buffer  
would be required to keep the address, data and control lines steady to achieve the low current.  
A word of caution: owing to the starting up delay of the crystal oscillator after waking up from sleep mode, the  
first few receive characters may be lost. Also, make sure the RX input is idling at logic 1 or “marking” condition  
during sleep mode. This may not occur when the external interface transceivers (RS-232, RS-485 or another  
type) are also put to sleep mode and cannot maintain the “marking” condition. To avoid this, the system design  
engineer can use a 47k ohm pull-up resistor on the RX input.  
23  
XR16C850  
xr  
2.97V TO 5.5V UART WITH 128-BYTE FIFO  
REV. 2.3.1  
2.22  
Internal Loopback  
The 850 UART provides an internal loopback capability for system diagnostic purposes. The internal loopback  
mode is enabled by setting MCR register bit-4 to logic 1. All regular UART functions operate normally.  
Figure 16 shows how the modem port signals are re-configured. Transmit data from the transmit shift register  
output is internally routed to the receive shift register input allowing the system to receive the same data that it  
was sending. The TX pin is held at logic 1 or mark condition while RTS# and DTR# are de-asserted, and  
CTS#, DSR# CD# and RI# inputs are ignored. Caution: the RX input must be held to a logic 1 during loopback  
test else upon exiting the loopback test the UART may detect and report a false “break” signal.  
FIGURE 16. INTERNAL LOOPBACK  
VCC  
TX  
Transmit Shift Register  
(THR/FIFO)  
MCR bit-4=1  
Receive Shift Register  
(RHR/FIFO)  
RX  
VCC  
RTS#  
RTS#  
CTS#  
CTS#  
VCC  
DTR#  
DTR#  
DSR#  
DSR#  
VCC  
OP1#  
OP1#  
RI#  
RI#  
VCC  
OP2#  
OP2#  
CD#  
CD#  
24  
xr  
XR16C850  
REV. 2.3.1  
2.97V TO 5.5V UART WITH 128-BYTE FIFO  
3.0 UART INTERNAL REGISTERS  
The 850 has a set of configuration registers selected by address lines A0, A1 and A2. The 16C550 compatible  
registers can be accessed when LCR[7] = 0 and the baud rate generator divisor registers can be accessed  
when LCR[7] = 1 and LCR 0xBF. The enhanced registers are accessible only when LCR = 0xBF. The  
complete register set is shown on Table 7 and Table 8.  
TABLE 7: XR16C850 UART INTERNAL REGISTERS  
A2,A1,A0 ADDRESSES  
REGISTER  
READ/WRITE  
COMMENTS  
16C550 COMPATIBLE REGISTERS  
0
0 0  
RHR - Receive Holding Register  
Read-only  
Write-only  
LCR[7] = 0  
THR - Transmit Holding Register  
0
0 0  
0 1  
0 0  
0 1  
0 1  
1 0  
DLL - Div Latch Low Byte  
Read/Write  
Read/Write  
Read-only  
Read-only  
Read/Write  
LCR[7] = 1, LCR 0xBF  
0
0
0
0
0
DLM - Div Latch High Byte  
DREV - Device Revision Code  
DVID - Device Identification Code  
IER - Interrupt Enable Register  
DLL, DLM = 0x00,  
LCR[7] = 1, LCR 0xBF  
LCR[7] = 0  
ISR - Interrupt Status Register  
FCR - FIFO Control Register  
Read-only  
Write-only  
0
1
1
1 1  
0 0  
0 1  
LCR - Line Control Register  
Read/Write  
Read/Write  
MCR - Modem Control Register  
LSR - Line Status Register  
Reserved  
Read-only  
Write-only  
LCR[7] = 0  
1
1 0  
MSR - Modem Status Register  
Reserved  
Read-only  
Write-only  
1
1
1
1 1  
1 1  
1 1  
SPR - Scratch Pad Register  
Read/Write  
Read-only  
Write-only  
LCR[7] = 0, FCTR[6] = 0  
LCR[7] = 0, FCTR[6] = 1  
FLVL - TX/RX FIFO Level Counter Register  
EMSR - Enhanced Mode Select Register  
ENHANCED REGISTERS  
0
0 0  
TRG - TX/RX FIFO Trigger Level Reg  
FC - TX/RX FIFO Level Counter Register  
Write-only  
Read-only  
0
0
1
1
1
1
0 1  
1 0  
0 0  
0 1  
1 0  
1 1  
FCTR - Feature Control Reg  
EFR - Enhanced Function Reg  
Xon-1 - Xon Character 1  
Xon-2 - Xon Character 2  
Xoff-1 - Xoff Character 1  
Xoff-2 - Xoff Character 2  
Read/Write  
Read/Write  
Read/Write  
Read/Write  
Read/Write  
Read/Write  
LCR = 0xBF  
25  
XR16C850  
xr  
2.97V TO 5.5V UART WITH 128-BYTE FIFO  
REV. 2.3.1  
.
TABLE 8: INTERNAL REGISTERS DESCRIPTION. SHADED BITS ARE ENABLED WHEN EFR BIT-4=1  
ADDRESS  
REG  
READ/  
WRITE  
BIT-7  
BIT-6  
BIT-5  
BIT-4  
BIT-3  
BIT-2  
BIT-1  
BIT-0  
COMMENT  
A2-A0  
NAME  
16C550 Compatible Registers  
0 0 0  
0 0 0  
0 0 1  
RHR  
THR  
RD  
Bit-7  
Bit-7  
0/  
Bit-6  
Bit-6  
0/  
Bit-5  
Bit-5  
0/  
Bit-4  
Bit-4  
0/  
Bit-3  
Bit-3  
Bit-2  
Bit-2  
Bit-1  
Bit-1  
TX  
Bit-0  
Bit-0  
WR  
IER RD/WR  
Modem RXLine  
Status Int. Status- Empty  
Enable  
RX  
Data  
Int.  
CTS#  
Int.  
Enable Enable  
RTS# Xoff Int.. Sleep  
Int.  
Int.  
Int.  
Enable  
Mode  
Enable  
Enable Enable Enable  
LCR[7] = 0  
0 1 0  
0 1 0  
ISR  
RD  
FIFOs FIFOs  
Enabled Enabled  
0/  
0/  
INT  
INT INT INT  
Source Source Source Source  
Bit-3  
INT  
INT  
Bit-2  
Bit-1  
Bit-0  
Source Source  
Bit-5  
Bit-4  
FCR  
WR RXFIFO RXFIFO  
Trigger Trigger  
0/  
0/  
DMA  
Mode  
Enable  
TX  
RX  
FIFOs  
FIFO  
FIFO Enable  
TXFIFO TXFIFO  
Trigger Trigger  
Reset Reset  
0 1 1  
1 0 0  
LCR RD/WR Divisor Set TX  
Set  
Even  
Parity  
Parity  
Enable  
Stop  
Bits  
Word  
Length Length  
Bit-1 Bit-0  
Word  
Enable  
Break  
Parity  
MCR RD/WR  
0/  
0/  
0/  
Internal  
Lopback  
Enable  
OP2#/  
INT  
OP1#/ RTS# DTR#  
Auto Output Output  
RS485 Control Control  
Output  
BRG  
Pres-  
caler  
IR Mode XonAny  
ENable  
Output  
Enable  
1 0 1  
LSR  
RD  
RD  
RX FIFO THR &  
THR  
Empty  
RX  
Break  
RX  
RX  
RX  
RX  
Data  
Ready  
LCR[7] = 0  
Global  
Error  
TSR  
Empty  
Parity Over-  
Error  
Framing  
Error  
run  
Error  
1 1 0  
1 1 1  
MSR  
CD#  
RI#  
DSR#  
Input  
CTS#  
Input  
Delta  
CD#  
Delta  
RI#  
Delta  
DSR# CTS#  
Delta  
Input  
Input  
SPR RD/WR  
Bit-7  
Bit-6  
Bit-5  
Bit-4  
Bit-3  
Bit-2  
Bit-1 Bit-0  
LCR[7] = 0  
FCTR[6]=0  
1 1 1  
1 1 1  
EMSR  
FLVL  
WR  
RD  
Rsvd  
Rsvd  
Rsvd  
Rsvd  
Rsvd  
Rsvd RX/TX RX/TX  
FIFO FIFO  
Count Count  
LCR[7] = 0  
FCTR[6]=1  
Bit-7  
Bit-6  
Bit-5  
Bit-4  
Bit-3  
Bit-2  
Bit-1  
Bit-0  
Baud Rate Generator Divisor  
0 0 0  
0 0 1  
DLL RD/WR  
DLM RD/WR  
Bit-7  
Bit-7  
Bit-6  
Bit-6  
Bit-5  
Bit-5  
Bit-4  
Bit-4  
Bit-3  
Bit-3  
Bit-2  
Bit-2  
Bit-1  
Bit-1  
Bit-0  
Bit-0  
LCR[7] = 1  
LCR 0xBF  
26  
xr  
XR16C850  
REV. 2.3.1  
2.97V TO 5.5V UART WITH 128-BYTE FIFO  
TABLE 8: INTERNAL REGISTERS DESCRIPTION. SHADED BITS ARE ENABLED WHEN EFR BIT-4=1  
ADDRESS  
REG  
READ/  
WRITE  
BIT-7  
BIT-6  
BIT-5  
BIT-4  
BIT-3  
BIT-2  
BIT-1  
BIT-0  
COMMENT  
A2-A0  
NAME  
0 0 0  
0 0 1  
DREV  
DVID  
RD  
RD  
Bit-7  
0
Bit-6  
0
Bit-5  
0
Bit-4  
1
Bit-3  
0
Bit-2  
0
Bit-1  
0
Bit-0  
0
LCR[7] = 1  
LCR0xBF  
DLL=0x00  
DLM=0x00  
Enhanced Registers  
0 0 0  
0 0 0  
0 0 1  
TRG  
FC  
WR  
RD  
Bit-7  
Bit-7  
Bit-6  
Bit-6  
Bit-5  
Bit-5  
Bit-4  
Bit-4  
Bit-3  
Bit-3  
Bit-2  
Bit-2  
Bit-1  
Bit-1  
Bit-0  
Bit-0  
FCTR RD/WR RX/TX SCPAD  
Trig  
Table  
Bit-1  
Trig  
Table  
Bit-0  
Auto  
RX IR  
Input  
Inv.  
Auto  
RTS  
Hyst  
Bit-1  
Auto  
RTS  
Hyst  
Bit-0  
Mode  
Swap  
RS485  
Direction  
Control  
Enable  
0 1 0  
EFR RD/WR  
Auto  
CTS  
Enable Enable  
Auto  
RTS  
Special  
Char  
Select  
Soft-  
ware  
Flow  
Cntl  
Soft-  
ware  
Flow  
Cntl  
Soft-  
ware  
Flow  
Cntl  
Soft-  
ware  
Flow  
Cntl  
IER [7:4],  
ISR [5:4],  
FCR[5:4],  
LCR=0XBF  
MCR[7:5]  
Bit-2  
Bit-1  
Bit-0  
Bit-3  
1 0 0  
1 0 1  
1 1 0  
1 1 1  
XON1 RD/WR  
XON2 RD/WR  
XOFF1 RD/WR  
XOFF2 RD/WR  
Bit-7  
Bit-7  
Bit-7  
Bit-7  
Bit-6  
Bit-6  
Bit-6  
Bit-6  
Bit-5  
Bit-5  
Bit-5  
Bit-5  
Bit-4  
Bit-4  
Bit-4  
Bit-4  
Bit-3  
Bit-3  
Bit-3  
Bit-3  
Bit-2  
Bit-2  
Bit-2  
Bit-2  
Bit-1  
Bit-1  
Bit-1  
Bit-1  
Bit-0  
Bit-0  
Bit-0  
Bit-0  
4.0 INTERNAL REGISTER DESCRIPTIONS  
4.1 Receive Holding Register (RHR) - Read- Only  
SEE”RECEIVER” ON PAGE 16.  
4.2 Transmit Holding Register (THR) - Write-Only  
SEE”TRANSMITTER” ON PAGE 15.  
4.3 Interrupt Enable Register (IER) - Read/Write  
The Interrupt Enable Register (IER) masks the interrupts from receive data ready, transmit empty, line status  
and modem status registers. These interrupts are reported in the Interrupt Status Register (ISR).  
4.3.1  
IER versus Receive FIFO Interrupt Mode Operation  
When the receive FIFO (FCR BIT-0 = 1) and receive interrupts (IER BIT-0 = 1) are enabled, the RHR interrupts  
(see ISR bits 2 and 3) status will reflect the following:  
A. The receive data available interrupts are issued to the host when the FIFO has reached the programmed  
trigger level. It will be cleared when the FIFO drops below the programmed trigger level.  
B. FIFO level will be reflected in the ISR register when the FIFO trigger level is reached. Both the ISR register  
status bit and the interrupt will be cleared when the FIFO drops below the trigger level.  
C. The receive data ready bit (LSR BIT-0) is set as soon as a character is transferred from the shift register to  
the receive FIFO. It is reset when the FIFO is empty.  
27  
XR16C850  
xr  
2.97V TO 5.5V UART WITH 128-BYTE FIFO  
REV. 2.3.1  
4.3.2  
IER versus Receive/Transmit FIFO Polled Mode Operation  
When FCR BIT-0 equals a logic 1 for FIFO enable; resetting IER bits 0-3 enables the XR16C850 in the FIFO  
polled mode of operation. Since the receiver and transmitter have separate bits in the LSR either or both can  
be used in the polled mode by selecting respective transmit or receive control bit(s).  
A. LSR BIT-0 indicates there is data in RHR or RX FIFO.  
B. LSR BIT-1 indicates an overrun error has occurred and that data in the FIFO may not be valid.  
C. LSR BIT 2-4 provides the type of receive data errors encountered for the data byte in RHR, if any.  
D. LSR BIT-5 indicates THR is empty.  
E. LSR BIT-6 indicates when both the transmit FIFO and TSR are empty.  
F. LSR BIT-7 indicates a data error in at least one character in the RX FIFO.  
IER[0]: RHR Interrupt Enable  
The receive data ready interrupt will be issued when RHR has a data character in the non-FIFO mode or when  
the receive FIFO has reached the programmed trigger level in the FIFO mode.  
Logic 0 = Disable the receive data ready interrupt (default).  
Logic 1 = Enable the receiver data ready interrupt.  
IER[1]: THR Interrupt Enable  
This bit enables the Transmit Ready interrupt which is issued whenever the THR becomes empty in the non-  
FIFO mode or when data in the FIFO falls below the programmed trigger level in the FIFO mode. If the THR is  
empty when this bit is enabled, an interrupt will be generated. Reading ISR will clear this interrupt. It is not  
necessary to disable this interrupt by setting IER bit-1 = 0. The UART will automatically issue this interrupt  
again when more data is loaded into the FIFO and the FIFO level drops below the trigger level and/or it  
becomes empty.  
Logic 0 = Disable Transmit Ready interrupt (default).  
Logic 1 = Enable Transmit Ready interrupt.  
IER[2]: Receive Line Status Interrupt Enable  
If any of the LSR register bits 1, 2, 3 or 4 is a logic 1, it will generate an interrupt to inform the host controller  
about the error status of the current data byte in FIFO. LSR bit-1 generates an interrupt immediately when the  
character has been received. LSR bits 2-4 generate an interrupt when the character with errors is read out of  
the FIFO.  
Logic 0 = Disable the receiver line status interrupt (default).  
Logic 1 = Enable the receiver line status interrupt.  
IER[3]: Modem Status Interrupt Enable  
Logic 0 = Disable the modem status register interrupt (default).  
Logic 1 = Enable the modem status register interrupt.  
IER[4]: Sleep Mode Enable (requires EFR bit-4 = 1)  
Logic 0 = Disable Sleep Mode (default).  
Logic 1 = Enable Sleep Mode. See Sleep Mode section for further details.  
IER[5]: Xoff Interrupt Enable (requires EFR bit-4=1)  
Logic 0 = Disable the software flow control, receive Xoff interrupt (default).  
Logic 1 = Enable the software flow control, receive Xoff interrupt. See Software Flow Control section for  
details.  
28  
xr  
XR16C850  
REV. 2.3.1  
2.97V TO 5.5V UART WITH 128-BYTE FIFO  
IER[6]: RTS# Output Interrupt Enable (requires EFR bit-4=1)  
Logic 0 = Disable the RTS# interrupt (default).  
Logic 1 = Enable the RTS# interrupt. The UART issues an interrupt when the RTS# pin makes a transition  
from low to high.  
IER[7]: CTS# Input Interrupt Enable (requires EFR bit-4=1)  
Logic 0 = Disable the CTS# interrupt (default).  
Logic 1 = Enable the CTS# interrupt. The UART issues an interrupt when CTS# pin makes a transition from  
low to high.  
4.4  
Interrupt Status Register (ISR) - Read-Only  
The UART provides multiple levels of prioritized interrupts to minimize external software interaction. The  
Interrupt Status Register (ISR) provides the user with six interrupt status bits. Performing a read cycle on the  
ISR will give the user the current highest pending interrupt level to be serviced, others are queued up to be  
serviced next. No other interrupts are acknowledged until the pending interrupt is serviced. The Interrupt  
Source Table, Table 9, shows the data values (bits 0-5) for the interrupt priority levels and the interrupt sources  
associated with each of these interrupt levels.  
4.4.1  
Interrupt Generation:  
LSR is by any of the LSR bits 1, 2, 3 and 4.  
RXRDY is by RX trigger level.  
RXRDY Time-out is by a 4-char plus 12 bits delay timer.  
TXRDY is by TX trigger level or TX FIFO empty (or transmitter empty in auto RS-485 control).  
MSR is by any of the MSR bits 0, 1, 2 and 3.  
Receive Xoff/Special character is by detection of a Xoff or Special character.  
CTS# is when its transmitter toggles the input pin (from low to high) during auto CTS flow control enabled by  
EFR bit-7.  
RTS# is when its receiver toggles the output pin (from low to high) during auto RTS flow control enabled by  
EFR bit-6.  
4.4.2  
Interrupt Clearing:  
LSR interrupt is cleared by a read to the LSR register (but flags and tags not cleared until character(s) that  
generated the interrupt(s) has been emptied or cleared from FIFO).  
RXRDY interrupt is cleared by reading data until FIFO falls below the trigger level.  
RXRDY Time-out interrupt is cleared by reading RHR until empty.  
TXRDY interrupt is cleared by a read to the ISR register or writing to THR.  
MSR interrupt is cleared by a read to the MSR register.  
Xoff interrupt is cleared by a read to ISR or when Xon character(s) is received.  
Special character interrupt is cleared by a read to ISR or after the next character is received.  
RTS# and CTS# flow control interrupts are cleared by a read to the MSR register.  
29  
XR16C850  
xr  
2.97V TO 5.5V UART WITH 128-BYTE FIFO  
REV. 2.3.1  
]
TABLE 9: INTERRUPT SOURCE AND PRIORITY LEVEL  
ISR REGISTER STATUS BITS  
PRIORITY  
SOURCE OF INTERRUPT  
LEVEL  
BIT-5  
BIT-4  
BIT-3  
BIT-2  
BIT-1  
BIT-0  
1
2
3
4
5
6
7
-
0
0
0
0
0
0
1
0
0
0
0
0
0
1
0
0
0
1
0
0
0
0
0
0
1
1
1
0
0
0
0
0
1
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
LSR (Receiver Line Status Register)  
RXRDY (Receive Data Time-out)  
RXRDY (Received Data Ready)  
TXRDY (Transmit Ready)  
MSR (Modem Status Register)  
RXRDY (Received Xoff or Special character)  
CTS#, RTS# change of state  
None (default)  
ISR[0]: Interrupt Status  
Logic 0 = An interrupt is pending and the ISR contents may be used as a pointer to the appropriate interrupt  
service routine.  
Logic 1 = No interrupt pending (default condition).  
ISR[5:1]: Interrupt Status  
These bits indicate the source for a pending interrupt at interrupt priority levels (See Table 9). See “Section  
4.4.1, Interrupt Generation:” on page 29 and “Section 4.4.2, Interrupt Clearing:” on page 29 for details.  
ISR[7:6]: FIFO Enable Status  
These bits are set to a logic 0 when the FIFOs are disabled. They are set to a logic 1 when the FIFOs are  
enabled.  
4.5  
FIFO Control Register (FCR) - Write-Only  
This register is used to enable the FIFOs, clear the FIFOs, set the transmit/receive FIFO trigger levels, and  
select the DMA mode. The DMA, and FIFO modes are defined as follows:  
FCR[0]: TX and RX FIFO Enable  
Logic 0 = Disable the transmit and receive FIFO (default).  
Logic 1 = Enable the transmit and receive FIFOs. This bit must be set to logic 1 when other FCR bits are  
written or they will not be programmed.  
FCR[1]: RX FIFO Reset  
This bit is only active when FCR bit-0 is a ‘1’.  
Logic 0 = No receive FIFO reset (default).  
Logic 1 = Reset the receive FIFO pointers and FIFO level counter logic (the receive shift register is not  
cleared or altered). This bit will return to a logic 0 after resetting the FIFO.  
30  
xr  
XR16C850  
REV. 2.3.1  
2.97V TO 5.5V UART WITH 128-BYTE FIFO  
FCR[2]: TX FIFO Reset  
This bit is only active when FCR bit-0 is a ‘1’.  
Logic 0 = No transmit FIFO reset (default).  
Logic 1 = Reset the transmit FIFO pointers and FIFO level counter logic (the transmit shift register is not  
cleared or altered). This bit will return to a logic 0 after resetting the FIFO.  
FCR[3]: DMA Mode Select  
Controls the behavior of the TXRDY# and RXRDY# pins. See DMA operation section for details.  
Logic 0 = Normal Operation (default).  
Logic 1 = DMA Mode.  
FCR[5:4]: Transmit FIFO Trigger Select  
(logic 0 = default, TX trigger level = 1)  
These 2 bits set the trigger level for the transmit FIFO. The UART will issue a transmit interrupt when the  
number of characters in the FIFO falls below the selected trigger level, or when it gets empty in case that the  
FIFO did not get filled over the trigger level on last re-load. Table 10 below shows the selections. EFR bit-4  
must be set to ‘1’ before these bits can be accessed.  
FCR[7:6]: Receive FIFO Trigger Select  
(logic 0 = default, RX trigger level =1)  
The FCTR Bits 5-4 are associated with these 2 bits. These 2 bits are used to set the trigger level for the receive  
FIFO. The UART will issue a receive interrupt when the number of the characters in the FIFO crosses the  
trigger level. Table 10 shows the complete selections.  
31  
XR16C850  
xr  
2.97V TO 5.5V UART WITH 128-BYTE FIFO  
REV. 2.3.1  
TABLE 10: TRANSMIT AND RECEIVE FIFO TRIGGER TABLE AND LEVEL SELECTION  
TRANSMIT  
TRIGGER  
LEVEL  
TRIGGER  
TABLE  
FCTR FCTR  
FCR  
BIT-7  
FCR  
BIT-6  
FCR  
BIT-5  
FCR  
BIT-4  
RECEIVE  
TRIGGER LEVEL  
COMPATIBILITY  
BIT-5  
BIT-4  
Table-A  
0
0
0
0
1 (default)  
16C550, 16C2550,  
16C2552, 16C554,  
16C580  
0
0
1
1
0
1
0
1
1 (default)  
4
8
14  
Table-B  
0
1
1
1
0
1
0
0
1
1
0
1
0
1
16  
8
16C650A  
24  
30  
0
0
1
1
0
1
0
1
8
16  
24  
28  
Table-C  
0
0
1
1
0
1
0
1
8
16C654  
16  
32  
56  
0
0
1
1
0
1
0
1
8
16  
56  
60  
Table-D  
X
X
X
X
Programmable Programmable 16L2752,16L2750,  
16C2852, 16C854,  
16C864  
via TRG  
via TRG  
register.  
register.  
FCTR[7] = 0.  
FCTR[7] = 1.  
4.6  
Line Control Register (LCR) - Read/Write  
The Line Control Register is used to specify the asynchronous data communication format. The word or  
character length, the number of stop bits, and the parity are selected by writing the appropriate bits in this  
register.  
LCR[1:0]: TX and RX Word Length Select  
These two bits specify the word length to be transmitted or received.  
BIT-1  
BIT-0  
WORD LENGTH  
0
0
1
1
0
1
0
1
5 (default)  
6
7
8
32  
xr  
XR16C850  
REV. 2.3.1  
2.97V TO 5.5V UART WITH 128-BYTE FIFO  
LCR[2]: TX and RX Stop-bit Length Select  
The length of stop bit is specified by this bit in conjunction with the programmed word length.  
STOP BIT LENGTH  
(BIT TIME(S))  
WORD  
LENGTH  
BIT-2  
0
1
1
5,6,7,8  
5
1 (default)  
1-1/2  
2
6,7,8  
LCR[3]: TX and RX Parity Select  
Parity or no parity can be selected via this bit. The parity bit is a simple way used in communications for data  
integrity check. See Table 11 for parity selection summary below.  
Logic 0 = No parity.  
Logic 1 = A parity bit is generated during the transmission while the receiver checks for parity error of the  
data character received.  
LCR[4]: TX and RX Parity Select  
If the parity bit is enabled with LCR bit-3 set to a logic 1, LCR BIT-4 selects the even or odd parity format.  
Logic 0 = ODD Parity is generated by forcing an odd number of logic 1’s in the transmitted character. The  
receiver must be programmed to check the same format (default).  
Logic 1 = EVEN Parity is generated by forcing an even number of logic 1’s in the transmitted character. The  
receiver must be programmed to check the same format.  
LCR[5]: TX and RX Parity Select  
If the parity bit is enabled, LCR BIT-5 selects the forced parity format.  
LCR[5] = logic 0, parity is not forced (default).  
LCR[5] = logic 1 and LCR[4] = logic 0, parity bit is forced to a logical 1 for the transmit and receive data.  
LCR[5] = logic 1 and LCR[4] = logic 1, parity bit is forced to a logical 0 for the transmit and receive data.  
TABLE 11: PARITY SELECTION  
LCR BIT-5 LCR BIT-4 LCR BIT-3  
PARITY SELECTION  
No parity  
X
0
0
1
X
0
1
0
0
1
1
1
Odd parity  
Even parity  
Force parity to mark,  
“1”  
1
1
1
Forced parity to  
space, “0”  
LCR[6]: Transmit Break Enable  
When enabled, the Break control bit causes a break condition to be transmitted (the TX output is forced to a  
“space’, logic 0, state). This condition remains, until disabled by setting LCR bit-6 to a logic 0.  
Logic 0 = No TX break condition (default).  
Logic 1 = Forces the transmitter output (TX) to a “space”, logic 0, for alerting the remote receiver of a line  
break condition.  
33  
XR16C850  
xr  
2.97V TO 5.5V UART WITH 128-BYTE FIFO  
REV. 2.3.1  
LCR[7]: Baud Rate Divisors Enable  
Baud rate generator divisor (DLL/DLM) enable.  
Logic 0 = Data registers are selected (default).  
Logic 1 = Divisor latch registers are selected.  
4.7  
Modem Control Register (MCR) or General Purpose Outputs Control - Read/Write  
The MCR register is used for controlling the serial/modem interface signals or general purpose inputs/outputs.  
MCR[0]: DTR# Output  
The DTR# pin is a modem control output. If the modem interface is not used, this output may be used as a  
general purpose output.  
Logic 0 = Force DTR# output to a logic 1 (default).  
Logic 1 = Force DTR# output to a logic 0.  
MCR[1]: RTS# Output  
The RTS# pin is a modem control output and may be used for automatic hardware flow control by enabled by  
EFR bit-6. If the modem interface is not used, this output may be used as a general purpose output.  
Logic 0 = Force RTS# output to a logic 1 (default).  
Logic 1 = Force RTS# output to a logic 0.  
MCR[2]: OP1# Output/Auto RS485 Control  
OP1# is a general purpose output. If Auto RS-485 mode is enabled, this works as the half-duplex direction  
control output. See FCTR[3] for more details.  
Logic 0 = OP1# output is at logic 1.  
Logic 1 = OP1# output is at logic 0.  
MCR[3]: OP2# or IRQn Enable during PC Mode  
OP2# is a general purpose output available during the Intel bus interface mode of operation. In the PC bus  
mode, this bit enables the IRQn operation. See PC Mode section and IRQn pin description. The OP2# output  
is not available in the PC Mode.  
During Intel Bus Mode Operation:  
Logic 0 = Sets OP2# output to a logic 1 (default).  
Logic 1 = Sets OP2# output to a logic 0.  
During PC Mode Operation:  
See Table 3 for more details.  
MCR[4]: Internal Loopback Enable  
Logic 0 = Disable loopback mode (default).  
Logic 1 = Enable local loopback mode, see loopback section and Figure 16.  
MCR[5]: Xon-Any Enable  
Logic 0 = Disable Xon-Any function (for 16C550 compatibility, default).  
Logic 1 = Enable Xon-Any function. In this mode, any RX character received will resume transmit operation.  
The RX character will be loaded into the RX FIFO , unless the RX character is an Xon or Xoff character and  
the 850 is programmed to use the Xon/Xoff flow control.  
MCR[6]: Infrared Encoder/Decoder Enable  
Logic 0 = Enable the standard modem receive and transmit input/output interface (default).  
Logic 1 = Enable infrared IrDA receive and transmit inputs/outputs. The TX/RX output/input are routed to the  
infrared encoder/decoder. The data input and output levels conform to the IrDA infrared interface  
requirement. While in this mode, the infrared TX output will be a logic 0 during idle data conditions.  
34  
xr  
XR16C850  
REV. 2.3.1  
2.97V TO 5.5V UART WITH 128-BYTE FIFO  
MCR[7]: Clock Prescaler Select  
This bit overrides the CLKSEL pin selection available on the 48 and 52 pin packages. See Figure 8.  
Logic 0 = Divide by one. The input clock from the crystal or external clock is fed directly to the Programmable  
Baud Rate Generator without further modification, i.e., divide by one (default).  
Logic 1 = Divide by four. The prescaler divides the input clock from the crystal or external clock by four and  
feeds it to the Programmable Baud Rate Generator, hence, data rates become one fourth.  
4.8  
Line Status Register (LSR) - Read Only  
This register provides the status of data transfers between the UART and the host. If IER bit-2 is set to a logic  
1, an LSR interrupt will be generated immediately when any character in the RX FIFO has an error (parity,  
framing, overrun, break).  
LSR[0]: Receive Data Ready Indicator  
Logic 0 = No data in receive holding register or FIFO (default).  
Logic 1 = Data has been received and is saved in the receive holding register or FIFO.  
LSR[1]: Receiver Overrun Error Flag  
Logic 0 = No overrun error (default).  
Logic 1 = Overrun error. A data overrun error condition occurred in the receive shift register. This happens  
when additional data arrives while the FIFO is full. In this case the previous data in the receive shift register  
is overwritten. Note that under this condition the data byte in the receive shift register is not transferred into  
the FIFO, therefore the data in the FIFO is not corrupted by the error. If IER bit-2 is set, an interrupt will be  
generated immediately.  
LSR[2]: Receive Data Parity Error Tag  
Logic 0 = No parity error (default).  
Logic 1 = Parity error. The receive character in RHR does not have correct parity information and is suspect.  
This error is associated with the character available for reading in RHR.  
LSR[3]: Receive Data Framing Error Tag  
Logic 0 = No framing error (default).  
Logic 1 = Framing error. The receive character did not have a valid stop bit(s). This error is associated with  
the character available for reading in RHR.  
LSR[4]: Receive Break Error Tag  
Logic 0 = No break condition (default).  
Logic 1 = The receiver received a break signal (RX was a logic 0 for at least one character frame time). In the  
FIFO mode, only one break character is loaded into the FIFO. The break indication remains until the RX  
input returns to the idle condition, “mark” or logic 1.  
LSR[5]: Transmit Holding Register Empty Flag  
This bit is the Transmit Holding Register Empty indicator. The THR bit is set to a logic 1 when the last data byte  
is transferred from the transmit holding register to the transmit shift register. The bit is reset to logic 0  
concurrently with the data loading to the transmit holding register by the host. In the FIFO mode this bit is set  
when the transmit FIFO is empty, it is cleared when the transmit FIFO contains at least 1 byte.  
LSR[6]: THR and TSR Empty Flag  
This bit is set to a logic 1 whenever the transmitter goes idle. It is set to logic 0 whenever either the THR or  
TSR contains a data character. In the FIFO mode this bit is set to a logic 1 whenever the transmit FIFO and  
transmit shift register are both empty.  
35  
XR16C850  
xr  
2.97V TO 5.5V UART WITH 128-BYTE FIFO  
REV. 2.3.1  
LSR[7]: Receive FIFO Data Error Flag  
Logic 0 = No FIFO error (default).  
Logic 1 = A global indicator for the sum of all error bits in the RX FIFO. At least one parity error, framing error  
or break indication is in the FIFO data. This bit clears when there is no more error(s) in any of the bytes in the  
RX FIFO.  
4.9  
Modem Status Register (MSR) - Read Only  
This register provides the current state of the modem interface input signals. Lower four bits of this register are  
used to indicate the changed information. These bits are set to a logic 1 whenever a signal from the modem  
changes state. These bits may be used for general purpose inputs when they are not used with modem  
signals.  
MSR[0]: Delta CTS# Input Flag  
Logic 0 = No change on CTS# input (default).  
Logic 1 = The CTS# input has changed state since the last time it was monitored. A modem status interrupt  
will be generated if MSR interrupt is enabled (IER bit-3).  
MSR[1]: Delta DSR# Input Flag  
Logic 0 = No change on DSR# input (default).  
Logic 1 = The DSR# input has changed state since the last time it was monitored. A modem status interrupt  
will be generated if MSR interrupt is enabled (IER bit-3).  
MSR[2]: Delta RI# Input Flag  
Logic 0 = No change on RI# input (default).  
Logic 1 = The RI# input has changed from a logic 0 to a logic 1, ending of the ringing signal. A modem status  
interrupt will be generated if MSR interrupt is enabled (IER bit-3).  
MSR[3]: Delta CD# Input Flag  
Logic 0 = No change on CD# input (default).  
Logic 1 = Indicates that the CD# input has changed state since the last time it was monitored. A modem  
status interrupt will be generated if MSR interrupt is enabled (IER bit-3).  
MSR[4]: CTS Input Status  
CTS# pin may function as automatic hardware flow control signal input if it is enabled and selected by Auto  
CTS (EFR bit-7). Auto CTS flow control allows starting and stopping of local data transmissions based on the  
modem CTS# signal. A logic 1 on the CTS# pin will stop UART transmitter as soon as the current character  
has finished transmission, and a logic 0 will resume data transmission. Normally MSR bit-4 bit is the  
compliment of the CTS# input. However in the loopback mode, this bit is equivalent to the RTS# bit in the MCR  
register. The CTS# input may be used as a general purpose input when the modem interface is not used.  
MSR[5]: DSR Input Status  
DSR# (active high, logical 1). Normally this bit is the compliment of the DSR# input. In the loopback mode, this  
bit is equivalent to the DTR# bit in the MCR register. The DSR# input may be used as a general purpose input  
when the modem interface is not used.  
MSR[6]: RI Input Status  
RI# (active high, logical 1). Normally this bit is the compliment of the RI# input. In the loopback mode this bit is  
equivalent to bit-2 in the MCR register. The RI# input may be used as a general purpose input when the  
modem interface is not used.  
MSR[7]: CD Input Status  
CD# (active high, logical 1). Normally this bit is the compliment of the CD# input. In the loopback mode this bit  
is equivalent to bit-3 in the MCR register. The CD# input may be used as a general purpose input when the  
modem interface is not used.  
4.10 Scratch Pad Register (SPR) - Read/Write  
36  
xr  
XR16C850  
REV. 2.3.1  
2.97V TO 5.5V UART WITH 128-BYTE FIFO  
This is a 8-bit general purpose register for the user to store temporary data. The content of this register is  
preserved during sleep mode but becomes 0xFF (default) after a reset or a power off-on cycle.  
4.11 Enhanced Mode Select Register (EMSR)  
This register replaces SPR (during a Write) and is accessible only when FCTR[6] = 1.  
EMSR[1:0]: Receive/Transmit FIFO Count (Write-Only)  
When Scratchpad Swap (FCTR[6]) is asserted, EMSR bits 1-0 controls what mode the FIFO Level Counter is  
operating in.  
TABLE 12: SCRATCHPAD SWAP SELECTION  
FCTR[6] EMSR[1] EMSR[0] Scratchpad is  
0
1
1
1
1
X
0
0
1
1
X
0
1
0
1
Scratchpad  
RX FIFO Counter Mode  
TX FIFO Counter Mode  
RX FIFO Counter Mode  
Alternate RX/TX FIFO  
Counter Mode  
During Alternate RX/TX FIFO Counter Mode, the first value read after EMSR bits 1-0 have been asserted will  
always be the RX FIFO Counter. The second value read will correspond with the TX FIFO Counter. The next  
value will be the RX FIFO Counter again, then the TX FIFO Counter and so on and so forth.  
EMSR[7:2]: Reserved  
4.12 FIFO Level Register (FLVL) - Read-Only  
The FIFO Level Register replaces the Scratchpad Register (during a Read) when FCTR[6] = 1. Note that this  
is not identical to the FIFO Data Count Register which can be accessed when LCR = 0xBF.  
FLVL[7:0]: FIFO Level Register  
This register provides the FIFO counter level for the RX FIFO or the TX FIFO or both depending on EMSR[1:0].  
See Table 12 for details.  
4.13 Baud Rate Generator Registers (DLL and DLM) - Read/Write  
The concatenation of the contents of DLM and DLL gives the 16-bit divisor value which is used to calculate the  
baud rate:  
Baud Rate = (Clock Frequency / 16) / Divisor  
See MCR bit-7 and the baud rate table also.  
4.14 Device Identification Register (DVID) - Read Only  
This register contains the device ID (0x10 for XR16C850). Prior to reading this register, DLL and DLM should  
be set to 0x00.  
4.15 Device Revision Register (DREV) - Read Only  
This register contains the device revision information. For example, 0x01 means revision A. Prior to reading  
this register, DLL and DLM should be set to 0x00.  
4.16 Trigger Level / FIFO Data Count Register (TRG) - Write-Only  
User Programmable Transmit/Receive Trigger Level Register.  
TRG[7:0]: Trigger Level Register  
These bits are used to program desired trigger levels when trigger Table-D is selected. FCTR bit-7 selects  
between programming the RX Trigger Level (a logic 0) and the TX Trigger Level (a logic 1).  
4.17 FIFO Data Count Register (FC) - Read-Only  
37  
XR16C850  
xr  
2.97V TO 5.5V UART WITH 128-BYTE FIFO  
REV. 2.3.1  
This register is accessible when LCR = 0xBF. Note that this register is not identical to the FIFO Level Register  
which is located in the general register set when FCTR bit-6 = 1.  
FC[7:0]: FIFO Data Count Register  
Transmit/Receive FIFO Count. Number of characters in Transmit (FCTR[7] = 1) or Receive FIFO (FCTR[7] =  
0) can be read via this register.  
4.18  
Feature Control Register (FCTR) - Read/Write  
This register controls the XR16C2850 new functions that are not available in ST16C550 or ST16C650A.  
FCTR[1:0]: Auto RTS Hysteresis  
User selectable RTS# hysteresis levels for hardware flow control application. After reset, these bits are set to  
“0” to select the next trigger level for hardware flow control. See Table 5 for more details.  
FCTR[2]: IrDa RX Inversion  
Logic 0 = Select RX input as encoded IrDa data (Idle state will be logic 0).  
Logic 1 = Select RX input as inverted encoded IrDa data (Idle state will be logic 1).  
FCTR[3]: Auto RS-485 Direction Control  
Logic 0 = Standard ST16C550 mode. Transmitter generates an interrupt when transmit holding register  
becomes empty and transmit shift register is shifting data out.  
Logic 1 = Enable Auto RS485 Direction Control function. The direction control signal, RS485 pin, changes  
its output logic state from low to high one bit time after the last stop bit of the last character is shifted out.  
Also, the Transmit interrupt generation is delayed until the transmitter shift register becomes empty. The  
RS485 output pin will automatically return to a logic low when a data byte is loaded into the TX FIFO.  
FCTR[5:4]: Transmit/Receive Trigger Table Select  
See Table 10 for more details.  
TABLE 13: TRIGGER TABLE SELECT  
FCTR  
BIT-5  
FCTR  
BIT-4  
TABLE  
0
0
1
1
0
1
0
1
Table-A (TX/RX)  
Table-B (TX/RX)  
Table-C (TX/RX)  
Table-D (TX/RX)  
FCTR[6]: Scratchpad Swap  
Logic 0 = Scratch Pad register is selected as general read and write register. ST16C550 compatible mode.  
Logic 1 = FIFO Count register (Read-Only), Enhanced Mode Select Register (Write-Only). Number of  
characters in transmit or receive FIFO can be read via scratch pad register when this bit is set. Enhanced  
Mode Select Register is selected when it is written into.  
38  
xr  
XR16C850  
REV. 2.3.1  
2.97V TO 5.5V UART WITH 128-BYTE FIFO  
FCTR[7]: Programmable Trigger Register Select  
Logic 0 = Registers TRG and FC selected for RX.  
Logic 1 = Registers TRG and FC selected for TX.  
4.19 Enhanced Feature Register (EFR)  
Enhanced features are enabled or disabled using this register. Bit 0-3 provide single or dual consecutive  
character software flow control selection (see Table 14). When the Xon1 and Xon2 and Xoff1 and Xoff2 modes  
are selected, the double 8-bit words are concatenated into two sequential characters. Caution: note that  
whenever changing the TX or RX flow control bits, always reset all bits back to logic 0 (disable) before  
programming a new setting.  
EFR[3:0]: Software Flow Control Select  
Single character and dual sequential characters software flow control is supported. Combinations of software  
flow control can be selected by programming these bits.  
TABLE 14: SOFTWARE FLOW CONTROL FUNCTIONS  
EFR BIT-3  
CONT-3  
EFR BIT-2  
CONT-2  
EFR BIT-1  
CONT-1  
EFR BIT-0  
CONT-0  
TRANSMIT AND RECEIVE SOFTWARE FLOW CONTROL  
0
0
1
0
1
X
X
X
1
0
0
0
1
1
X
X
X
0
0
X
X
X
X
0
1
0
1
0
X
X
X
X
0
No TX and RX flow control (default and reset)  
No transmit flow control  
Transmit Xon1, Xoff1  
Transmit Xon2, Xoff2  
Transmit Xon1 and Xon2, Xoff1 and Xoff2  
No receive flow control  
0
Receiver compares Xon1, Xoff1  
Receiver compares Xon2, Xoff2  
1
1
Transmit Xon1, Xoff1  
Receiver compares Xon1 or Xon2, Xoff1 or Xoff2  
0
1
0
1
1
0
1
1
1
1
1
1
Transmit Xon2, Xoff2  
Receiver compares Xon1 or Xon2, Xoff1 or Xoff2  
Transmit Xon1 and Xon2, Xoff1 and Xoff2,  
Receiver compares Xon1 and Xon2, Xoff1 and Xoff2  
No transmit flow control,  
Receiver compares Xon1 and Xon2, Xoff1 and Xoff2  
EFR[4]: Enhanced Function Bits Enable  
Enhanced function control bit. This bit enables IER bits 4-7, ISR bits 4-5, FCR bits 4-5, and MCR bits 5-7 to be  
modified. After modifying any enhanced bits, EFR bit-4 can be set to a logic 0 to latch the new values. This  
feature prevents legacy software from altering or overwriting the enhanced functions once set. Normally, it is  
recommended to leave it enabled, logic 1.  
Logic 0 = modification disable/latch enhanced features. IER bits 4-7, ISR bits 4-5, FCR bits 4-5, and MCR  
bits 5-7 are saved to retain the user settings. After a reset, the IER bits 4-7, ISR bits 4-5, FCR bits 4-5, and  
MCR bits 5-7are set to a logic 0 to be compatible with ST16C550 mode (default).  
Logic 1 = Enables the above-mentioned register bits to be modified by the user.  
39  
XR16C850  
xr  
2.97V TO 5.5V UART WITH 128-BYTE FIFO  
REV. 2.3.1  
EFR[5]: Special Character Detect Enable  
Logic 0 = Special Character Detect Disabled (default).  
Logic 1 = Special Character Detect Enabled. The UART compares each incoming receive character with  
data in Xoff-2 register. If a match exists, the receive data will be transferred to FIFO and ISR bit-4 will be set  
to indicate detection of the special character. Bit-0 corresponds with the LSB bit of the receive character. If  
flow control is set for comparing Xon1, Xoff1 (EFR [1:0]= ‘10’) then flow control and special character work  
normally. However, if flow control is set for comparing Xon2, Xoff2 (EFR[1:0]= ‘01’) then flow control works  
normally, but Xoff2 will not go to the FIFO, and will generate an Xoff interrupt and a special character  
interrupt, if enabled via IER bit-5.  
EFR[6]: Auto RTS Flow Control Enable  
RTS# output may be used for hardware flow control by setting EFR bit-6 to logic 1. When Auto RTS is  
selected, an interrupt will be generated when the receive FIFO is filled to the programmed trigger level and  
RTS de-asserts to a logic 1 at the next upper trigger level or hysteresis level. RTS# will return to a logic 0 when  
FIFO data falls below the next lower trigger level. The RTS# output must be asserted (logic 0) before the auto  
RTS can take effect. RTS# pin will function as a general purpose output when hardware flow control is  
disabled.  
Logic 0 = Automatic RTS flow control is disabled (default).  
Logic 1 = Enable Automatic RTS flow control.  
EFR[7]: Auto CTS Flow Control Enable  
Automatic CTS Flow Control.  
Logic 0 = Automatic CTS flow control is disabled (default).  
Logic 1 = Enable Automatic CTS flow control. Data transmission stops when CTS# input de-asserts to logic  
1. Data transmission resumes when CTS# returns to a logic 0.  
4.20 Software Flow Control Registers (XOFF1, XOFF2, XON1, XON2) - Read/Write  
These registers are used as the programmable software flow control characters xoff1, xoff2, xon1, and xon2.  
For more details, see Table 6.  
40  
xr  
XR16C850  
REV. 2.3.1  
2.97V TO 5.5V UART WITH 128-BYTE FIFO  
TABLE 15: UART RESET CONDITIONS  
RESET STATE  
REGISTERS  
DLL  
Bits 7-0 = 0xXX  
Bits 7-0 = 0xXX  
Bits 7-0 = 0xXX  
Bits 7-0 = 0xXX  
Bits 7-0 = 0x00  
Bits 7-0 = 0x00  
Bits 7-0 = 0x01  
Bits 7-0 = 0x00  
Bits 7-0 = 0x00  
Bits 7-0 = 0x60  
Bits 3-0 = Logic 0  
DLM  
RHR  
THR  
IER  
FCR  
ISR  
LCR  
MCR  
LSR  
MSR  
Bits 7-4 = Logic levels of the inputs inverted  
Bits 7-0 = 0xFF  
Bits 7-0 = 0x00  
Bits 7-0 = 0x00  
Bits 7-0 = 0x00  
Bits 7-0 = 0x00  
Bits 7-0 = 0x00  
Bits 7-0 = 0x00  
Bits 7-0 = 0x00  
Bits 7-0 = 0x00  
RESET STATE  
Logic 1  
SPR  
EMSR  
FLVL  
EFR  
XON1  
XON2  
XOFF1  
XOFF2  
FC  
I/O SIGNALS  
TX  
OP1#  
Logic 1 (Intel Bus Mode)  
Logic 1  
OP2#  
RTS#  
Logic 1  
DTR#  
Logic 1  
RXRDY#  
Logic 1 (Intel Bus Mode)  
Three-State Condition (PC Mode)  
TXRDY#  
INT  
Logic 0 (Intel Bus Mode)  
Three-State Condition (PC Mode)  
Logic 0 (Intel Bus Mode)  
Three-State Condition (PC Mode)  
41  
XR16C850  
xr  
2.97V TO 5.5V UART WITH 128-BYTE FIFO  
REV. 2.3.1  
ABSOLUTE MAXIMUM RATINGS  
Power Supply Range  
Voltage at Any Pin  
7 Volts  
GND-0.3 V to 7 V  
-40o to +85oC  
Operating Temperature  
-65o to +150oC  
500 mW  
Storage Temperature  
Package Dissipation  
TYPICAL PACKAGE THERMAL RESISTANCE DATA (MARGIN OF ERROR: ± 15%)  
theta-ja =59oC/W, theta-jc = 16oC/W  
theta-ja = 50oC/W, theta-jc = 21oC/W  
Thermal Resistance (48-TQFP)  
Thermal Resistance (44-PLCC)  
ELECTRICAL CHARACTERISTICS  
DC ELECTRICAL CHARACTERISTICS  
UNLESS OTHERWISE NOTED: TA=0O TO 70OC (-40O TO +85OC FOR INDUSTRIAL GRADE PACKAGE), VCC = 2.97V TO  
5.5V  
LIMITS  
3.3V  
LIMITS  
5.0V  
SYMBOL  
PARAMETER  
UNITS  
CONDITIONS  
MIN  
MAX  
MIN  
MAX  
VILCK  
VIHCK  
VIL  
Clock Input Low Level  
-0.3  
2.4  
0.6  
-0.5  
3.0  
0.6  
V
V
V
V
Clock Input High Level  
Input Low Voltage  
VCC  
0.8  
VCC  
0.8  
-0.3  
2.0  
-0.5  
2.2  
VIH  
Input High Voltage  
VCC  
VCC  
(top mark date code of "EC YYWW" and older)  
VIH  
Input High Voltage  
2.0  
2.0  
5.5  
0.4  
2.2  
5.5  
0.4  
V
(top mark date code of "F2 YYWW and newer)  
VOL  
VOL  
VOH  
VOH  
IIL  
Output Low Voltage  
Output Low Voltage  
Output High Voltage  
Output High Voltage  
Input Low Leakage Current  
Input High Leakage Current  
Input Pin Capacitance  
Power Supply Current  
Sleep Current  
V
V
IOL = 6 mA  
IOL = 4 mA  
IOH = -6 mA  
IOH = -1 mA  
2.4  
V
V
±10  
±10  
5
±10  
±10  
5
uA  
uA  
pF  
mA  
uA  
IIH  
CIN  
ICC  
2.7  
30  
4
ISLEEP  
50  
See Test 1  
Test 1: The following inputs should remain steady at VCC or GND state to minimize sleep current: A0-A2, D0-D7, IOR#,  
IOW#, CS# and modem inputs. Also, RX input must idle at logic 1 state while in sleep mode. In mixed voltage environ-  
ments, where the voltage at any of the inputs of the 651 is lower than its VCC supply voltage, the sleep current will be high-  
er than the maximum values given here.  
42  
xr  
XR16C850  
REV. 2.3.1  
2.97V TO 5.5V UART WITH 128-BYTE FIFO  
AC ELECTRICAL CHARACTERISTICS  
TA=0O TO 70OC (-40O TO +85OC FOR INDUSTRIAL GRADE PACKAGE), VCC IS 2.97V TO 5.5V, 70 PF LOAD WHERE  
APPLICABLE  
LIMITS  
3.3V  
LIMITS  
5.0V  
SYMBOL  
PARAMETER  
UNIT  
MIN  
MAX MIN  
MAX  
CLK  
OSC  
OSC  
OSC  
Clock Pulse Duration  
45  
30  
ns  
Crystal Frequency (top mark date code "EC YYWW" and older)  
Crystal Frequency (top mark date code "F2 YYWW" and newer)  
8
24  
24  
33  
MHz  
MHz  
MHz  
16  
22  
External Clock Frequency  
(top mark date code "EC YYWW" and older)  
OSC  
External Clock Frequency  
22  
36  
MHz  
(top mark date code "F2 YYWW" and newer)  
TAS  
TAH  
Address Setup Time (AS# tied to GND)  
5
0
5
ns  
ns  
Address Hold Time (AS# tied to GND)  
10  
(top mark date code of "EC YYWW" and older)  
TAH  
Address Hold Time (AS# tied to GND)  
0
0
ns  
(top mark date code of "F2 YYWW" and newer)  
TCS  
TRD  
Chip Select Width  
75  
75  
75  
50  
50  
50  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
IOR# Strobe Width  
TDY  
Read/Write Cycle Delay  
Data Access Time  
TRDV  
TDD  
35  
25  
25  
15  
Data Disable Time  
0
0
TWR  
TDS1  
TDH1  
TASW  
IOW# Strobe Width  
75  
20  
5
50  
15  
5
Data Setup Time (AS# tied to GND)  
Data Hold Time (AS# tied to GND)  
Address Strobe Width  
75  
50  
TAS1  
TAH1  
TAS2  
TAH2  
TCS1  
TCSH  
TCS2  
TRD1  
Address Setup Time (AS# used)  
Address Hold Time (AS# used)  
Address Setup Time (AS# used)  
Address Hold Time (AS# used)  
Delay from Chip Select to AS#  
Delay from AS# to Chip Select  
Delay from AS# to Chip Select  
Delay from AS# to Read  
5
10  
5
5
5
5
5
5
5
5
5
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
10  
5
10  
5
10  
43  
XR16C850  
xr  
2.97V TO 5.5V UART WITH 128-BYTE FIFO  
REV. 2.3.1  
AC ELECTRICAL CHARACTERISTICS  
TA=0O TO 70OC (-40O TO +85OC FOR INDUSTRIAL GRADE PACKAGE), VCC IS 2.97V TO 5.5V, 70 PF LOAD WHERE  
APPLICABLE  
LIMITS  
3.3V  
LIMITS  
5.0V  
SYMBOL  
PARAMETER  
UNIT  
MIN  
MAX MIN  
MAX  
TRD2  
TDIS  
Delay from Chip Select to IOR#  
10  
5
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Delay from IOR# to DDIS#  
Delay from AS# to IOW#  
20  
10  
20  
5
10  
TWR1  
TDS2  
TDH2  
TAS3  
TRD3  
TRD4  
TWR2  
TWR3  
TDS3  
TDH3  
5
15  
5
Data Setup Time (AS# used)  
Data Hold Time (AS# used)  
Address Setup Time (PC Mode)  
Delay from AEN# to IOR#  
Delay from IOR# to AEN#  
Delay from AEN# to IOW#  
Delay from IOW# to AEN#  
Data Setup Time (PC Mode)  
Data Hold Time (PC Mode)  
10  
10  
10  
10  
5
5
5
5
5
5
20  
5
15  
5
TWDO Delay From IOW# To Output  
75  
75  
75  
1
50  
50  
50  
1
ns  
ns  
TMOD Delay To Set Interrupt From MODEM Input  
TRSI  
TSSI  
TRRI  
TSI  
Delay To Reset Interrupt From IOR#  
Delay From Stop To Set Interrupt  
Delay From IOR# To Reset Interrupt  
Delay From Stop To Interrupt  
ns  
Bclk  
ns  
75  
75  
24  
75  
1
50  
50  
24  
50  
1
ns  
TINT  
TWRI  
TSSR  
TRR  
TWT  
TSRT  
TRST  
N
Delay From Initial INT Reset To Transmit Start  
Delay From IOW# To Reset Interrupt  
Delay From Stop To Set RXRDY#  
Delay From IOR# To Reset RXRDY#  
Delay From IOW# To Set TXRDY#  
Delay From Center of Start To Reset TXRDY#  
Reset Pulse Width  
8
8
Bclk  
ns  
Bclk  
ns  
75  
75  
8
50  
50  
8
ns  
Bclk  
ns  
40  
1
40  
1
216-1  
16X  
216-1  
Baud Rate Divisor  
-
Bclk  
Baud Clock  
Hz  
44  
xr  
XR16C850  
REV. 2.3.1  
2.97V TO 5.5V UART WITH 128-BYTE FIFO  
FIGURE 17. CLOCK TIMING  
CLK  
CLK  
EXTERNAL  
CLOCK  
OSC  
FIGURE 18. MODEM INPUT/OUTPUT TIMING  
IOW#  
Active  
IOW  
TWDO  
Change of state  
RTS#  
DTR#  
Change of state  
CD#  
CTS#  
DSR#  
Change of state  
Change of state  
TMOD  
TMOD  
Active  
INT  
Active  
Active  
Active  
TRSI  
IOR#  
IOR  
Active  
Active  
TMOD  
Change of state  
RI#  
45  
XR16C850  
xr  
2.97V TO 5.5V UART WITH 128-BYTE FIFO  
REV. 2.3.1  
FIGURE 19. DATA BUS READ TIMING IN INTEL BUS MODE WITH AS# TIED TO GND  
A0-A2  
CS2#  
Valid Address  
Valid Address  
TAS  
TAS  
TAH  
TAH  
TCS  
TCS  
CS0  
CS1  
TDY  
IOR#  
IOR  
TRD  
TRD  
TDD  
TDD  
TRDV  
TRDV  
D0-D7  
Valid Data  
Valid Data  
Note: Only one chipselect and one read strobe should be used.  
FIGURE 20. DATA BUS WRITE TIMING IN INTEL BUS MODE WITH AS# TIED TO GND  
A0-A2  
CS2#  
Valid Address  
Valid Address  
TAS  
TAS  
TAH  
TAH  
TCS  
TCS  
CS1  
CS0  
TDY  
IOW#  
IOW  
TWR  
TWR  
TDH2  
TDH2  
TDS2  
TDS2  
Valid Data  
D0-D7  
Valid Data  
Note: Only one chipselect and one write strobe should be used.  
46  
xr  
XR16C850  
REV. 2.3.1  
2.97V TO 5.5V UART WITH 128-BYTE FIFO  
FIGURE 21. DATA BUS READ TIMING IN INTEL BUS MODE USING AS#  
TASW  
TASW  
AS#  
TAH1  
TAH2  
TAS1  
TAS2  
Valid Address  
TCS  
Valid Address  
A0-A2  
TCSH  
TCSH  
TCS2  
TCS1  
CS2#  
TCS  
CS0 or CS1  
TRD1  
TDY  
TRD2  
IOR#  
IOR  
TRD  
TRD  
TDIS  
TDIS  
DDIS#  
D0-D7  
TDD  
TDD  
TRDV  
TRDV  
Valid Data  
Valid Data  
Note: Only one chipselect and one read strobe should be used.  
FIGURE 22. DATA BUS WRITE TIMING IN INTEL BUS MODE USING AS#  
TASW  
TASW  
AS#  
TAH1  
TAH1  
TAS1  
TAS2  
Valid Address  
TCS  
Valid Address  
TCS  
A0-A2  
TCSH  
TCSH  
TCS1  
TCS1  
CS2#  
CS0 or CS1  
TDY  
TWR1  
TWR1  
IOW#  
IOW  
TWR  
TDS2  
TWR  
TDS2  
TDH2  
TDH2  
D0-D7  
Valid Data  
Valid Data  
Note: Only one chipselect and one write strobe should be used.  
47  
XR16C850  
xr  
2.97V TO 5.5V UART WITH 128-BYTE FIFO  
REV. 2.3.1  
FIGURE 23. DATA BUS READ TIMING IN PC MODE  
A0-A9  
AEN#  
Valid Address  
Valid Address  
TAS3  
TAS3  
TCS  
TCS  
TRD3  
TRD4  
TRD3  
TRD4  
IOR#  
TRD  
TRD  
TDY  
TDD  
TDD  
TRDV  
TRDV  
D0-D7  
Valid Data  
Valid Data  
RDTm  
FIGURE 24. DATA BUS WRITE TIMING IN PC MODE  
A0-A9  
AEN#  
Valid Address  
Valid Address  
TAS3  
TAS3  
TCS  
TCS  
TWR2  
TWR3  
TWR2  
TWR3  
IOW#  
TWR  
TWR  
TDY  
TDS  
TDS  
TDH  
TDH  
D0-D7  
Valid Data  
Valid Data  
48  
xr  
XR16C850  
REV. 2.3.1  
2.97V TO 5.5V UART WITH 128-BYTE FIFO  
FIGURE 25. RECEIVE READY & INTERRUPT TIMING [NON-FIFO MODE]  
RX  
Stop  
Bit  
Start  
Bit  
D0:D7  
D0:D7  
D0:D7  
TSSR  
TSSR  
TSSR  
1 Byte  
1 Byte  
1 Byte  
in RHR  
in RHR  
in RHR  
INT  
TSSR  
TSSR  
TSSR  
Active  
Data  
Active  
Data  
Active  
Data  
RXRDY#  
Ready  
Ready  
Ready  
TRR  
TRR  
TRR  
IOR#  
(Reading data  
out of RHR)  
RXNFM  
FIGURE 26. TRANSMIT READY & INTERRUPT TIMING [NON-FIFO MODE]  
TX  
(Unloading)  
Stop  
Bit  
Start  
Bit  
D0:D7  
D0:D7  
D0:D7  
IER[1]  
enabled  
ISR is read  
ISR is read  
ISR is read  
INT*  
TWRI  
TWRI  
TWRI  
TSRT  
TSRT  
TSRT  
TXRDY#  
TWT  
TWT  
TWT  
IOW#  
(Loading data  
into THR)  
*INT is cleared when the ISR is read or when data is loaded into the THR.  
TXNonFIFO  
49  
XR16C850  
xr  
2.97V TO 5.5V UART WITH 128-BYTE FIFO  
REV. 2.3.1  
FIGURE 27. RECEIVE READY & INTERRUPT TIMING [FIFO MODE, DMA DISABLED]  
Start  
Bit  
RX  
S
S
S
S
T
D0:D7  
D0:D7  
D0:D7  
T
D0:D7  
TSSI  
D0:D7  
S
T
S
D0:D7  
T
D0:D7  
T
Stop  
Bit  
RX FIFO drops  
below RX  
Trigger Level  
INT  
TSSR  
FIFO  
Empties  
RX FIFO fills up to RX  
Trigger Level or RX Data  
Timeout  
RXRDY#  
First Byte is  
Received in  
RX FIFO  
TRRI  
TRR  
IOR#  
(Reading data out  
of RX FIFO)  
RXINTDMA#  
FIGURE 28. RECEIVE READY & INTERRUPT TIMING [FIFO MODE, DMA ENABLED]  
Start  
Bit  
Stop  
Bit  
RX  
S
S
S
S
T
D0:D7  
D0:D7  
D0:D7  
T
D0:D7  
TSSI  
D0:D7  
S
T
S
D0:D7  
T
D0:D7  
T
RX FIFO drops  
below RX  
Trigger Level  
INT  
RX FIFO fills up to RX  
Trigger Level or RX Data  
Timeout  
TSSR  
FIFO  
Empties  
RXRDY#  
TRRI  
TRR  
IOR#  
(Reading data out  
of RX FIFO)  
RXFIFODMA  
50  
xr  
XR16C850  
REV. 2.3.1  
2.97V TO 5.5V UART WITH 128-BYTE FIFO  
FIGURE 29. TRANSMIT READY & INTERRUPT TIMING [FIFO MODE, DMA MODE DISABLED]  
Stop  
Bit  
Start  
Bit  
Last Data Byte  
Transmitted  
TX FIFO  
Empty  
TX  
(Unloading)  
T
S
S
S
T
S
T
S
D0:D7  
D0:D7  
T
S D0:D7  
T
D0:D7  
T
D0:D7  
D0:D7  
T
ISR is read  
TSI  
IER[1]  
enabled  
ISR is read  
TSRT  
INT*  
TX FIFO  
Empty  
TX FIFO fills up  
to trigger level  
TX FIFO drops  
below trigger level  
TWRI  
Data in  
TX FIFO  
TXRDY#  
TWT  
IOW#  
(Loading data  
into FIFO)  
*INT is cleared when the ISR is read or when TX FIFO fills up to the trigger level.  
TXDMA#  
FIGURE 30. TRANSMIT READY & INTERRUPT TIMING [FIFO MODE, DMA MODE ENABLED]  
Stop  
Bit  
Start  
Bit  
Last Data Byte  
Transmitted  
TX  
(Unloading)  
S
D0:D7  
S
D0:D7  
S
S
D0:D7  
T
T
T
D0:D7  
D0:D7  
S
D0:D7  
T
S D0:D7  
T
T
IER[1]  
enabled  
ISR Read  
ISR Read  
TSI  
TSRT  
INT*  
TX FIFO fills up  
to trigger level  
TX FIFO drops  
below trigger level  
TWRI  
At least 1  
empty location  
in FIFO  
TX FIFO  
Full  
TXRDY#  
TWT  
IOW#  
(Loading data  
into FIFO)  
*INT cleared when the ISR is read or when TX FIFO fills up to trigger level.  
TXDMA  
51  
XR16C850  
xr  
2.97V TO 5.5V UART WITH 128-BYTE FIFO  
REV. 2.3.1  
PACKAGE DIMENSIONS (48 PIN TQFP - 7 X 7 X 1 mm)  
D
D
1
36  
25  
37  
24  
D
1
D
48  
13  
1
1
2
B
e
A
2
C
A
Seating  
Plane  
α
A
1
L
Note: The control dimension is the millimeter column  
INCHES  
MAX  
MILLIMETERS  
SYMBOL  
MIN  
MIN  
1.00  
0.05  
0.95  
0.17  
0.09  
8.80  
6.90  
MAX  
1.20  
0.15  
1.05  
0.27  
0.20  
9.20  
7.10  
A
A1  
A2  
B
0.039  
0.002  
0.037  
0.007  
0.004  
0.346  
0.272  
0.047  
0.006  
0.041  
0.011  
0.008  
0.362  
0.280  
C
D
D1  
e
0.020 BSC  
0.50 BSC  
L
0.018  
0.030  
0.45  
0.75  
α
0°  
7°  
0°  
7°  
52  
xr  
XR16C850  
REV. 2.3.1  
2.97V TO 5.5V UART WITH 128-BYTE FIFO  
PACKAGE DIMENSIONS (44 PIN PLCC)  
44 LEAD PLASTIC LEADED CHIP CARRIER  
(PLCC)  
Rev. 1.00  
C
D
Seating Plane  
D1  
45° x H  
1
45° x H  
2
A
2
2
1
44  
B
1
B
e
D
D
1
D
D
3
2
R
D
3
A
1
A
Note: The control dimension is the millimeter column  
INCHES  
MAX  
MILLIMETERS  
SYMBOL  
MIN  
MIN  
MAX  
4.57  
3.05  
---  
A
A1  
A2  
B
0.165  
0.090  
0.020  
0.013  
0.026  
0.008  
0.685  
0.650  
0.590  
0.180  
0.120  
---  
4.19  
2.29  
0.51  
0.021  
0.032  
0.013  
0.695  
0.656  
0.630  
0.33  
0.53  
0.81  
0.32  
17.65  
16.66  
16.00  
B
0.66  
1
C
D
0.19  
17.40  
16.51  
14.99  
D1  
D
2
D
0.500 typ.  
0.050 BSC  
12.70 typ.  
1.27 BSC  
1.07  
3
e
H
0.042  
0.056  
0.048  
0.045  
1.42  
1.22  
1.14  
1
H
0.042  
0.025  
1.07  
0.64  
2
R
53  
XR16C850  
xr  
2.97V TO 5.5V UART WITH 128-BYTE FIFO  
REV. 2.3.1  
REVISION HISTORY  
DATE  
February 2000  
April 2002  
REVISION  
Rev 1.0.0  
Rev 2.0.0  
DESCRIPTION  
Initial datasheet.  
Changed to standard style format. Internal Registers are described in the order they  
are listed in the Internal Register Table. Clarified timing diagrams. Corrected Auto  
RTS Hysteresis table. Renamed Rclk (Receive Clock) to Bclk (Baud Clock) and tim-  
ing symbols. Added T , T and OSC.  
AH CS  
January 2003  
Rev 2.1.0  
Changed to single column format. Added Factory Test Mode description and work-  
around.  
May 2003  
June 2003  
Rev 2.1.1  
Rev 2.2.0  
Corrected patent number on first page.  
Added and Updated Device Status in Ordering Information: 40-pin PDIP and 52-pin  
QFP are discontinued.  
March 2004  
Rev 2.3.0  
Devices with top mark date code of "F2 YYWW" and newer have 5V tolerant inputs  
(except for XTAL1) and have 0 ns address hold time (T ). Factory test mode entry  
AH  
(SEE”FACTORY TEST MODE” ON PAGE 7. ) was improved and DREV register was  
updated to 0x06. In addition, the packages are now in Green Molding Compound.  
August 2005  
Rev 2.3.1  
Removed discontinued packages (40-pin PDIP and 52-pin QFP) from Ordering Infor-  
mation.  
NOTICE  
EXAR Corporation reserves the right to make changes to the products contained in this publication in order to  
improve design, performance or reliability. EXAR Corporation assumes no responsibility for the use of any  
circuits described herein, conveys no license under any patent or other right, and makes no representation that  
the circuits are free of patent infringement. Charts and schedules contained here in are only for illustration  
purposes and may vary depending upon a user’s specific application. While the information in this publication  
has been carefully checked; no responsibility, however, is assumed for inaccuracies.  
EXAR Corporation does not recommend the use of any of its products in life support applications where the  
failure or malfunction of the product can reasonably be expected to cause failure of the life support system or  
to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless  
EXAR Corporation receives, in writing, assurances to its satisfaction that: (a) the risk of injury or damage has  
been minimized; (b) the user assumes all such risks; (c) potential liability of EXAR Corporation is adequately  
protected under the circumstances.  
Copyright 2005 EXAR Corporation  
Datasheet August 2005.  
Send your UART technical inquiry with technical details to hotline: uarttechsupport@exar.com.  
Reproduction, in part or whole, without the prior written consent of EXAR Corporation is prohibited.  
54  
xr  
XR16C850  
REV. 2.3.1  
2.97V TO 5.5V UART WITH 128-BYTE FIFO  
TABLE OF CONTENTS  
GENERAL DESCRIPTION................................................................................................. 1  
FEATURES..................................................................................................................................................... 1  
APPLICATIONS ............................................................................................................................................... 1  
FIGURE 1. BLOCK DIAGRAM ............................................................................................................................................................. 1  
FIGURE 2. PINOUTS IN INTEL BUS MODE AND PC MODE, TQFP AND PLCC PACKAGES ................................................................... 2  
PIN DESCRIPTIONS.......................................................................................................... 3  
Intel Bus Mode Interface. The SEL pin is connected to VCC...................................................................................... 3  
ORDERING INFORMATION ................................................................................................................................ 3  
PC Mode Interface Signals. Connect SEL pin to GND to select PC Mode. ................................................................ 5  
MODEM OR SERIAL I/O INTERFACE ....................................................................................................................... 6  
ANCILLARY SIGNALS................................................................................................................................................ 6  
1.0 PRODUCT DESCRIPTION .................................................................................................................... 8  
2.0 FUNCTIONAL DESCRIPTIONS ............................................................................................................ 9  
2.1 HOST DATA BUS INTERFACE ....................................................................................................................... 9  
FIGURE 3. XR16C850 INTEL BUS INTERCONNECTIONS .................................................................................................................... 9  
FIGURE 4. XR16C850 PC MODE INTERCONNECTIONS...................................................................................................................... 9  
2.2 PC MODE ........................................................................................................................................................ 10  
TABLE 1: PC MODE INTERFACE ON-CHIP ADDRESS DECODER AND INTERRUPT SELECTION.............................................................. 10  
FIGURE 5. PC MODE INTERFACE IN AN EMBEDDED APPLICATION..................................................................................................... 10  
2.3 16-BIT BUS INTERFACE ............................................................................................................................... 11  
FIGURE 6. XR16C850 16-BIT BUS INTERFACE.............................................................................................................................. 11  
2.4 5-VOLT TOLERANT INPUTS ......................................................................................................................... 11  
2.5 DEVICE RESET .............................................................................................................................................. 11  
2.6 DEVICE IDENTIFICATION AND REVISION .................................................................................................. 11  
2.7 INTERNAL REGISTERS ................................................................................................................................. 12  
2.8 DMA MODE .................................................................................................................................................... 12  
TABLE 2: TXRDY# AND RXRDY# OUTPUTS IN FIFO AND DMA MODE........................................................................................... 12  
2.9 INTERRUPTS ................................................................................................................................................. 13  
TABLE 3: INTERRUPT OUTPUT FUNCTIONS...................................................................................................................................... 13  
FIGURE 7. TYPICAL OSCILLATOR CONNECTIONS............................................................................................................................... 13  
2.10 CRYSTAL OSCILLATOR OR EXTERNAL CLOCK ..................................................................................... 13  
2.11 PROGRAMMABLE BAUD RATE GENERATOR ......................................................................................... 14  
FIGURE 8. BAUD RATE GENERATOR ............................................................................................................................................... 14  
TABLE 4: TYPICAL DATA RATES WITH A 14.7456 MHZ CRYSTAL OR EXTERNAL CLOCK ...................................................................... 14  
2.12 TRANSMITTER ............................................................................................................................................. 15  
2.12.1 TRANSMIT HOLDING REGISTER (THR) - WRITE ONLY....................................................................................... 15  
2.12.2 TRANSMITTER OPERATION IN NON-FIFO MODE................................................................................................ 15  
FIGURE 9. TRANSMITTER OPERATION IN NON-FIFO MODE .............................................................................................................. 15  
2.12.3 TRANSMITTER OPERATION IN FIFO MODE ......................................................................................................... 15  
FIGURE 10. TRANSMITTER OPERATION IN FIFO AND FLOW CONTROL MODE ................................................................................... 16  
2.13 RECEIVER .................................................................................................................................................... 16  
2.13.1 RECEIVE HOLDING REGISTER (RHR) - READ-ONLY .......................................................................................... 16  
FIGURE 11. RECEIVER OPERATION IN NON-FIFO MODE.................................................................................................................. 17  
FIGURE 12. RECEIVER OPERATION IN FIFO AND AUTO RTS FLOW CONTROL MODE ....................................................................... 17  
2.14 AUTO RTS (HARDWARE) FLOW CONTROL ............................................................................................. 18  
2.15 AUTO RTS HYSTERESIS ........................................................................................................................... 18  
TABLE 5: AUTO RTS HYSTERESIS.................................................................................................................................................. 18  
2.16 AUTO CTS (HARDWARE) FLOW CONTROL ............................................................................................ 19  
FIGURE 13. AUTO RTS AND CTS FLOW CONTROL OPERATION....................................................................................................... 19  
2.17 AUTO XON/XOFF (SOFTWARE) FLOW CONTROL ................................................................................... 20  
TABLE 6: AUTO XON/XOFF (SOFTWARE) FLOW CONTROL ............................................................................................................... 20  
2.18 SPECIAL CHARACTER DETECT ............................................................................................................... 20  
2.19 AUTO RS485 HALF-DUPLEX CONTROL .................................................................................................. 20  
FIGURE 14. AUTO RS-485 HALF-DUPLEX CONTROL ....................................................................................................................... 21  
2.20 INFRARED MODE ........................................................................................................................................ 21  
FIGURE 15. INFRARED TRANSMIT DATA ENCODING AND RECEIVE DATA DECODING.......................................................................... 22  
2.21 SLEEP MODE WITH AUTO WAKE-UP ...................................................................................................... 23  
2.22 INTERNAL LOOPBACK .............................................................................................................................. 24  
FIGURE 16. INTERNAL LOOPBACK................................................................................................................................................... 24  
I
XR16C850  
xr  
2.97V TO 5.5V UART WITH 128-BYTE FIFO  
REV.2.3.1  
3.0 UART INTERNAL REGISTERS ...........................................................................................................25  
TABLE 7: XR16C850 UART INTERNAL REGISTERS ................................................................................................................. 25  
TABLE 8: INTERNAL REGISTERS DESCRIPTION. SHADED BITS ARE ENABLED WHEN EFR BIT-4=1......................................... 26  
4.0 INTERNAL REGISTER DESCRIPTIONS .............................................................................................27  
4.1 RECEIVE HOLDING REGISTER (RHR) - READ- ONLY ............................................................................... 27  
4.2 TRANSMIT HOLDING REGISTER (THR) - WRITE-ONLY ............................................................................ 27  
4.3 INTERRUPT ENABLE REGISTER (IER) - READ/WRITE .............................................................................. 27  
4.3.1 IER VERSUS RECEIVE FIFO INTERRUPT MODE OPERATION ............................................................................. 27  
4.3.2 IER VERSUS RECEIVE/TRANSMIT FIFO POLLED MODE OPERATION................................................................ 28  
4.4 INTERRUPT STATUS REGISTER (ISR) - READ-ONLY ............................................................................... 29  
4.4.1 INTERRUPT GENERATION: ...................................................................................................................................... 29  
4.4.2 INTERRUPT CLEARING: ........................................................................................................................................... 29  
TABLE 9: INTERRUPT SOURCE AND PRIORITY LEVEL ....................................................................................................................... 30  
4.5 FIFO CONTROL REGISTER (FCR) - WRITE-ONLY ...................................................................................... 30  
TABLE 10: TRANSMIT AND RECEIVE FIFO TRIGGER TABLE AND LEVEL SELECTION .......................................................................... 32  
4.6 LINE CONTROL REGISTER (LCR) - READ/WRITE ...................................................................................... 32  
TABLE 11: PARITY SELECTION ........................................................................................................................................................ 33  
4.7 MODEM CONTROL REGISTER (MCR) OR GENERAL PURPOSE OUTPUTS CONTROL - READ/WRITE 34  
4.8 LINE STATUS REGISTER (LSR) - READ ONLY ........................................................................................... 35  
4.9 MODEM STATUS REGISTER (MSR) - READ ONLY .................................................................................... 36  
4.10 SCRATCH PAD REGISTER (SPR) - READ/WRITE .................................................................................... 36  
4.11 ENHANCED MODE SELECT REGISTER (EMSR) ...................................................................................... 37  
TABLE 12: SCRATCHPAD SWAP SELECTION .................................................................................................................................... 37  
4.12 FIFO LEVEL REGISTER (FLVL) - READ-ONLY .......................................................................................... 37  
4.13 BAUD RATE GENERATOR REGISTERS (DLL AND DLM) - READ/WRITE .............................................. 37  
4.14 DEVICE IDENTIFICATION REGISTER (DVID) - READ ONLY .................................................................... 37  
4.15 DEVICE REVISION REGISTER (DREV) - READ ONLY .............................................................................. 37  
4.16 TRIGGER LEVEL / FIFO DATA COUNT REGISTER (TRG) - WRITE-ONLY ............................................. 37  
4.17 FIFO DATA COUNT REGISTER (FC) - READ-ONLY .................................................................................. 37  
4.18 FEATURE CONTROL REGISTER (FCTR) - READ/WRITE ........................................................................ 38  
TABLE 13: TRIGGER TABLE SELECT................................................................................................................................................ 38  
4.19 ENHANCED FEATURE REGISTER (EFR) .................................................................................................. 39  
TABLE 14: SOFTWARE FLOW CONTROL FUNCTIONS........................................................................................................................ 39  
4.20 SOFTWARE FLOW CONTROL REGISTERS (XOFF1, XOFF2, XON1, XON2) - READ/WRITE ................ 40  
TABLE 15: UART RESET CONDITIONS...................................................................................................................................... 41  
ABSOLUTE MAXIMUM RATINGS...................................................................................42  
TYPICAL PACKAGE THERMAL RESISTANCE DATA (MARGIN OF ERROR: ± 15%)..................................................42  
ELECTRICAL CHARACTERISTICS ................................................................................42  
DC ELECTRICAL CHARACTERISTICS ..............................................................................................................42  
AC ELECTRICAL CHARACTERISTICS ..............................................................................................................43  
TA=0O TO 70OC (-40O TO +85OC FOR INDUSTRIAL GRADE PACKAGE), VCC IS 2.97V TO 5.5V, 70 PF LOAD WHERE  
APPLICABLE..................................................................................................................................................43  
FIGURE 17. CLOCK TIMING............................................................................................................................................................. 45  
FIGURE 18. MODEM INPUT/OUTPUT TIMING .................................................................................................................................... 45  
FIGURE 19. DATA BUS READ TIMING IN INTEL BUS MODE WITH AS# TIED TO GND ......................................................................... 46  
FIGURE 20. DATA BUS WRITE TIMING IN INTEL BUS MODE WITH AS# TIED TO GND........................................................................ 46  
FIGURE 22. DATA BUS WRITE TIMING IN INTEL BUS MODE USING AS#............................................................................................ 47  
FIGURE 21. DATA BUS READ TIMING IN INTEL BUS MODE USING AS# ............................................................................................. 47  
FIGURE 24. DATA BUS WRITE TIMING IN PC MODE ........................................................................................................................ 48  
FIGURE 23. DATA BUS READ TIMING IN PC MODE.......................................................................................................................... 48  
FIGURE 25. RECEIVE READY & INTERRUPT TIMING [NON-FIFO MODE]............................................................................................ 49  
FIGURE 26. TRANSMIT READY & INTERRUPT TIMING [NON-FIFO MODE].......................................................................................... 49  
FIGURE 27. RECEIVE READY & INTERRUPT TIMING [FIFO MODE, DMA DISABLED] .......................................................................... 50  
FIGURE 28. RECEIVE READY & INTERRUPT TIMING [FIFO MODE, DMA ENABLED]........................................................................... 50  
FIGURE 29. TRANSMIT READY & INTERRUPT TIMING [FIFO MODE, DMA MODE DISABLED].............................................................. 51  
FIGURE 30. TRANSMIT READY & INTERRUPT TIMING [FIFO MODE, DMA MODE ENABLED]............................................................... 51  
PACKAGE DIMENSIONS (48 PIN TQFP - 7 X 7 X 1 mm)....................................................................................52  
PACKAGE DIMENSIONS (44 PIN PLCC) .........................................................................................................53  
TABLE OF CONTENTS ............................................................................................................I  
II  

相关型号:

XR16C850IJ-F

Serial I/O Controller, 1 Channel(s), 0.28125MBps, CMOS, PQCC44, GREEN, PLASTIC, LCC-44
EXAR

XR16C850IJ44

Serial I/O Controller, 1 Channel(s), 0.1875MBps, CMOS, PQCC44, PLASTIC, LCC-44
EXAR

XR16C850IM

2.97V TO 5.5V UART WITH 128-BYTE FIFO
EXAR

XR16C850IP

UART|CMOS|DIP|40PIN|PLASTIC
ETC

XR16C850IP40

Serial I/O Controller, 1 Channel(s), 0.1875MBps, CMOS, PDIP40, 0.600 INCH, PLASTIC, DIP-40
EXAR

XR16C850IQ

UART|CMOS|QFP|52PIN|PLASTIC
ETC

XR16C850_05

2.97V TO 5.5V UART WITH 128-BYTE FIFO
EXAR

XR16C854

QUAD UART WITH RX/TX FIFO COUNTERS,128-BYTE FIFO
EXAR

XR16C854CJ

2.97V TO 5.5V QUAD UART WITH 128-BYTE FIFO
EXAR

XR16C854CJ68

Serial I/O Controller, 4 Channel(s), 0.1875MBps, CMOS, PQCC68, PLASTIC, LCC-68
EXAR

XR16C854CJTR-F

Serial I/O Controller, CMOS
EXAR

XR16C854CQ

2.97V TO 5.5V QUAD UART WITH 128-BYTE FIFO
EXAR