XR76121ELMTR-F [EXAR]

PowerBloxTM 20A Synchronous Step-Down COT Regulators;
XR76121ELMTR-F
型号: XR76121ELMTR-F
厂家: EXAR CORPORATION    EXAR CORPORATION
描述:

PowerBloxTM 20A Synchronous Step-Down COT Regulators

文件: 总18页 (文件大小:1225K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
XR76121  
TM  
PowerBlox 20A Synchronous  
Step-Down COT Regulators  
Description  
FEATURES  
The XR76121 is a synchronous step-down regulator combining the  
controller, drivers, bootstrap diode and MOSFETs in a single package  
for point-of-load supplies. The XR76121 has a load current rating  
of 20A. A wide 5V to 22V input voltage range allows for single supply  
operation from industry standard 5V, 12V and 19.6V rails.  
ꢀ■  
20A step-down regulator  
4.5V to 5.5V low VIN operation  
5V to 22V wide single input voltage  
3V to 22V operation with external  
5V bias  
≥0.6V adjustable output voltage  
Proprietary constant on-time control  
No loop compensation required  
Ceramic output capacitor stable  
operation  
With a proprietary emulated current mode constant on-time (COT)  
control scheme, the XR76121 provides extremely fast line and  
load transient response using ceramic output capacitors. They  
require no loop compensation, simplifying circuit implementation  
and reducing overall component count. The control loop also  
provides 0.1% load and 0.1% line regulation and maintains constant  
operating frequency. A selectable power saving mode, allows the user  
to operate in discontinuous mode (DCM) at light current loads thereby  
significantly increasing the converter efficiency.  
ꢀ■  
Programmable 70ns-1µs on-time  
Constant 200kHz-1MHz frequency  
Selectable CCM or CCM/DCM  
operation  
Power-good flag with low impedance when  
power removed  
ꢀ■  
ꢀ■  
ꢀ■  
ꢀ■  
Precision enable  
Programmable soft-start  
5mm x 6mm QFN package  
A host of protection features, including overcurrent, over temperature,  
overvoltage, short-circuit, open feedback detect and UVLO, helps  
achieve safe operation under abnormal operating conditions.  
APPLICATIONS  
The XR76121 is available in a RoHS compliant, green/halogen-free  
space-saving 5mm x 6mm QFN package.  
ꢀ■  
Servers  
Distributed power architecture  
Point-of-load converters  
FPGA, DSP and processor supplies  
ꢀ■  
ꢀ■  
ꢀ■  
ꢀ■  
Base stations, switches/routers  
Typical Application  
100  
C
L1  
C
V
600kHz  
ENABLE  
BST  
OUT  
98  
96  
94  
92  
90  
88  
86  
84  
82  
80  
78  
76  
74  
72  
70  
EN  
BST  
SW  
V
IN  
VIN  
R
FF  
LIM  
PVIN  
PGOOD  
VCC  
SS  
ILIM  
R1  
R2  
POWER GOOD  
R
FF  
800kHz  
XR76121  
FB  
FCCM  
VSNS  
PGND  
C
IN  
C
OUT  
R
5.0V  
3.3V  
2.5V  
1.8V  
1.5V  
1.2V  
1.0V  
V
OUT  
R1  
TON  
AGND  
R
ON  
R2  
C
C
SS  
VCC  
0.1  
5.1  
10.1  
15.1  
20.1  
I
( )  
A
OUT  
Figure 1. Typical Application  
Figure 2. Efficiency  
REV1A  
1/18  
XR76121  
Absolute Maximum Ratings  
Operating Conditions  
These are stress ratings only and functional operation  
of the device at these ratings or any other above those  
indicated in the operation sections of the specifications  
below is not implied. Stresses beyond those listed under  
absolute maximum ratings may cause permanent damage  
to the device. Exposure to any absolute maximum rating  
condition for extended periods may affect device reliability  
and lifetime.  
PV ......................................................................3V to 22V  
IN  
V
V
.....................................................................4.5V to 22V  
IN  
...................................................................4.5V to 5.5V  
CC  
SW, ILIM ..........................................................-1V to 22V(2)  
PGOOD, TON, SS, EN.................................-0.3V to 5.5V(2)  
Switching frequency ...................................200kHz-1MHz(3)  
Junction temperature range (T ).................. -40°C to 125°C  
PV , V  
-0.3V to 25V  
-0.3V to 6.0V  
J
IN  
IN.........................................................................  
Package power dissipation max at 25°C.....................4.1W  
V
CC ..................................................................................  
Package thermal resistance θJA .................................... 24°C/W(4)  
BST................................................................-0.3V to 31V(1)  
BST-SW............................................................. -0.3V to 6V  
SW, ILIM........................................................ -1V to 25V(1)(2)  
NOTES:  
1. No external voltage applied.  
2. SW pin’s DC range is -1V, transient is -5V for less than 50ns.  
3. Recommended.  
4. Measured on Exar evaluation board.  
All other pins.........................................-0.3V to V + 0.3V  
CC  
Storage temperature.................................... -65°C to 150°C  
Junction temperature................................................. 150°C  
Power dissipation ...................................... Internally limited  
Lead temperature (soldering, 10 second).................. 300°C  
ESD rating (HBM – human body model) ....................... 2kV  
ESD rating (CDM – charged device model) .................. 1kV  
ESD rating (MM – machine model) .............................200V  
Electrical Characteristics  
Specifications are for operating junction temperature of T = 25°C only; limits applying over the full operating junction  
J
temperature range are denoted by a •. Typical values represent the most likely parametric norm at T = 25°C, and are  
J
provided for reference purposes only. Unless otherwise indicated, V = 12V, SW = AGND = PGND = 0V, C  
= 4.7uF.  
Units  
IN  
VCC  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Power Supply Characteristics  
V
V
regulating  
5
12  
5.0  
0.8  
22  
5.5  
1.3  
CC  
V
IN  
Input voltage range  
V
tied to V  
4.5  
CC  
IN  
I
I
V
V
supply current  
Not switching, V = 12V, V = 0.7V  
mA  
mA  
VIN  
IN  
IN  
FB  
Not switching, V = V = 5V,  
CC  
IN  
quiescent current  
0.8  
1.3  
VCC  
CC  
V
FB  
= 0.7V  
f = 600kHz, R = 49.9k,  
ON  
I
I
V
supply current  
17  
1
mA  
μA  
VIN  
IN  
V
= 0.58V  
FB  
Shutdown current  
Enable = 0V, PV = V = 12V  
OFF  
IN  
IN  
Enable and Undervoltage Lock-Out UVLO  
V
V
EN pin rising threshold  
EN pin hysteresis  
1.8  
1.9  
60  
2.0  
V
mV  
V
IH_EN  
EN_HYS  
V
CC  
V
CC  
UVLO start threshold, rising edge  
UVLO hysteresis  
4.00  
100  
4.25  
170  
4.40  
mV  
REV1A  
2/18  
XR76121  
Electrical Characteristics (Continued)  
Specifications are for operating junction temperature of T = 25°C only; limits applying over the full operating junction  
J
temperature range are denoted by a •. Typical values represent the most likely parametric norm at T = 25°C, and are  
J
provided for reference purposes only. Unless otherwise indicated, V = 12V, SW = AGND = PGND = 0V, C  
= 4.7uF.  
Units  
IN  
VCC  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Reference Voltage  
V
V
= 5V - 22V, V regulating  
0.597  
0.596  
0.600  
0.600  
0.603  
0.604  
V
V
IN  
CC  
= 4.5V - 5.5V, V tied to V  
IN  
CC  
IN  
V
Reference voltage  
REF  
V
IN  
V
IN  
= 5V - 22V, V regulating  
CC  
0.594  
0.600  
0.606  
V
= 4.5V - 5.5V, V tied to V  
CC  
IN  
DC load regulation  
DC line regulation  
0.1  
0.1  
%
%
CCM operation, closed loop,  
applies to any C  
OUT  
Programmable Constant On-Time  
On-time 1  
R
= 5.90kΩ, V = 12V  
170  
360  
425  
478  
90  
200  
415  
500  
550  
110  
250  
230  
490  
575  
647  
135  
350  
ns  
kHz  
ns  
ON  
IN  
f corresponding to on-time 1  
On-time 2  
V
= 1.0V  
OUT  
R
= 16.2kΩ, V = 12V  
IN  
ON  
f corresponding to on-time 2  
On-time 3  
V
= 3.3V  
kHz  
ns  
OUT  
R
= 3.01kΩ, V = 12V  
ON  
IN  
Minimum off-time  
ns  
Diode Emulation Mode  
Zero crossing threshold  
Soft-Start  
DC value measured during test  
-2  
mV  
I
Charge current  
-14  
1
-10  
3
-6  
µA  
SS_CHARGE  
I
Discharge current  
Fault present  
mA  
SS_DISCHARGE  
VCC Linear Regulator  
V
V
= 6V to 22V, I  
= 0 to 30mA  
4.8  
4.6  
5.0  
4.8  
5.2  
IN  
LOAD  
V
CC  
Output voltage  
V
= 5V, R = 16.2kΩ,  
IN  
ON  
f
= 678kHz  
SW  
Power Good Output  
Power good threshold  
-10  
-7.5  
1
-5  
4
%
%
V
Power good hysteresis  
Power good  
Minimum I  
= 1mA  
0.2  
0.5  
SINK  
Power good, unpowered  
I
= 1mA  
V
SINK  
Power good assertion delay,  
FB rising  
2
ms  
µs  
Power good de-assertion delay,  
FB falling  
65  
REV1A  
3/18  
XR76121  
Electrical Characteristics (Continued)  
Specifications are for operating junction temperature of T = 25°C only; limits applying over the full operating junction  
J
temperature range are denoted by a •. Typical values represent the most likely parametric norm at T = 25°C, and are  
J
provided for reference purposes only. Unless otherwise indicated, V = 12V, SW = AGND = PGND = 0V, C  
= 4.7uF.  
Units  
IN  
VCC  
Symbol  
Parameter  
Conditions  
Min  
2.4  
Typ  
Max  
Mode Control (FCCM)  
FCCM mode logic high threshold  
FCCM rising  
FCCM falling  
V
V
FCCM mode logic low threshold  
Input leakage current  
0.4  
100  
nA  
Open Feedback/OVP Detect (VSNS)  
OVP trip high threshold  
VSNS rising. Specified as % of V  
115  
0.5  
120  
115  
1
125  
%
%
REF  
OVP trip low threshold  
VSNS falling. Specified as % of V  
VSNS rising  
REF  
OVP comparator delay  
3.5  
3.5  
µs  
Delay to turn off power stage from an  
overvoltage event  
VSNS rising  
µs  
Protection: OCP, OTP, Short-Circuit  
Hiccup timeout  
110  
16.2  
0.4  
0
ms  
µA/mΩ  
%/°C  
mV  
I
I
I
I
/R  
14.5  
18.0  
LIM DS  
current temperature coefficient  
LIM  
LIM  
LIM  
comparator offset  
comparator offset  
-4.7  
-8.0  
4.7  
8.0  
0
mV  
Current limit blanking  
Thermal shutdown threshold  
Thermal hysteresis  
100  
138  
15  
ns  
Rising temperature  
°C  
°C  
Percent of V , short circuit is active.  
REF  
Feedback pin short-circuit threshold  
50  
20  
60  
70  
%
After PGOOD asserts high.  
Output Power Stage  
High-side MOSFET R  
I
I
= 2A  
= 2A  
7.7  
3.1  
10  
mΩ  
mΩ  
A
DS(ON)  
DS  
DS  
Low-side MOSFET R  
3.5  
DS(ON)  
Maximum output current  
REV1A  
4/18  
XR76121  
Pin Configuration  
SW  
12  
PVIN  
13  
11  
PGND  
BST 14  
EN 15  
SS 16  
10 VCC  
17  
AGND  
9 VIN  
8 VSNS  
1
2
3
4
5
6
7
Pin Functions  
Pin Number  
Pin Name  
Type  
Description  
1
2
3
4
5
6
7
8
9
FB  
A
I
Feedback input to feedback comparator.  
FCCM  
Forcing this pin logic level high forces CCM operation.  
AGND  
A
Signal ground for control circuitry. Connect to AGND pad with a short trace.  
TON  
ILIM  
A
A
Constant on-time programming pin. Connect with a resistor to AGND.  
Overcurrent protection programming. Connect with a resistor to SW.  
Power-good output. Open drain to AGND. Low Z when IC unpowered.  
Sense pin for output OVP and open FB.  
PGOOD  
VSNS  
VIN  
OD  
A
A
Supply input for the regulator’s LDO. Normally connected to PV .  
IN  
The output of regulators LDO. It requires a 4.7µF V bypass capacitor. For operation  
using a 5V rail, VCC should be tied to VIN.  
CC  
10  
11  
12  
VCC  
PGND  
SW  
A
PWR  
PWR  
Ground of the power stage. Internally connected to source of the low-side MOSFET.  
Switch node. Internally it connects source of the high-side MOSFET to drain of the  
low-side MOSFET.  
13  
14  
15  
PVIN  
BST  
EN  
PWR  
Input voltage for power stage. Internally connected to drain of the high-side MOSFET.  
High-side driver supply pin. Connect a 0.1µF bootstrap capacitor between BST and SW.  
Precision enable pin. Pulling this pin above 2V will enable the regulator.  
A
I
Soft-start pin. Connect an external capacitor between SS and AGND to program the soft-  
start rate based on the 10µA internal source current.  
16  
17  
SS  
A
A
AGND PAD  
Signal ground for control circuitry.  
NOTE:  
A = Analog, I = Input, O = Output, OD = Open Drain, PWR = Power.  
REV1A  
5/18  
XR76121  
Typical Performance Characteristics  
Efficiency and Package Thermal Derating  
Unless otherwise specified: T  
= 25°C, no airflow, f = 800kHz. Efficiency data includes inductor losses, schematic  
AMBIENT  
from the Application Information section of this datasheet.  
100  
98  
100  
98  
96  
94  
92  
90  
88  
86  
84  
82  
80  
78  
76  
74  
72  
70  
600kHz  
600kHz  
L = 0.4µH (1.0V, 1.2V, 1.5V, 1.8V)  
L = 1µH (2.5V, 3.3V, 5.0V)  
96  
94  
92  
90  
88  
86  
84  
82  
80  
78  
76  
74  
72  
70  
5.0V CCM  
3.3V CCM  
2.5V CCM  
1.8V CCM  
1.5V CCM  
1.2V CCM  
1.0V CCM  
3.3V DCM  
2.5V DCM  
1.8V DCM  
1.5V DCM  
1.2V DCM  
1.0V DCM  
3.3V CCM  
2.5V CCM  
1.8V CCM  
1.5V CCM  
1.2V CCM  
1.0V CCM  
5.0V DCM  
3.3V DCM  
2.5V DCM  
1.8V DCM  
1.5V DCM  
1.2V DCM  
1.0V DCM  
1.0  
I
10.0  
10.0  
1.0  
I
0.1  
0.1  
(A)  
(A)  
OUT  
OUT  
Figure 3. Efficiency, V = 12V  
Figure 4. Efficiency, V = 5V, L = 0.4µH  
IN  
IN  
120  
120  
110  
100  
90  
110  
100  
90  
80  
80  
70  
70  
60  
60  
3.3V, CCM, 600kHz  
1.8V, CCM, 800kHz  
1.0V, CCM, 800kHz  
5.0V, CCM, 600kHz  
2.5V, CCM, 800kHz  
50  
50  
40  
40  
1.0V, CCM, 800kHz  
30  
30  
20  
20  
4
6
8
10  
12  
(A)  
14  
16  
18  
20  
4
6
8
10  
12  
14  
16  
18  
20  
I
I
(A)  
OUT  
OUT  
Figure 5. Maximum T  
vs. I  
,
Figure 6. Maximum T  
vs. I  
,
AMBIENT  
OUT  
AMBIENT  
OUT  
V
IN  
= 12V, No Airflow  
V
IN  
= 5V, No Airflow  
REV1A  
6/18  
XR76121  
Typical Performance Characteristics (Continued)  
All data taken at V = 12V, V  
= 1.8V, f = 800kHz, T = 25°C, no airflow, forced CCM. (Unless otherwise specified).  
IN  
OUT  
A
Schematic from the Applications Information section of this datasheet.  
Figure 7. Steady State, I  
= 20A  
Figure 8. Steady State, DCM, I  
= 0A  
OUT  
OUT  
Figure 9. Power-Up, I  
= 20A  
Figure 10. Power-Up, I  
= 0A  
OUT  
OUT  
Figure 11. Load Transient, Forced CCM,  
0A-10A-0A  
Figure 12. Load Transient, DCM,  
1.8A-11.8A-1.8A  
REV1A  
7/18  
XR76121  
Typical Performance Characteristics (Continued)  
All data taken at V = 12V, V  
= 1.8V, f = 800kHz, T = 25°C, no airflow, forced CCM. (Unless otherwise specified).  
IN  
OUT  
A
Schematic from the Applications Information section of this datasheet.  
Figure 13. Load Transient, DCM or Forced CCM,  
10A-20A-10A  
Figure 14. Enable Functionality,  
= 12V  
V
IN  
Figure 15. Power-Up with Pre-Bias Voltage,  
Figure 16. Short-Circuit Recovery,  
= 20A  
I
= 0A  
I
OUT  
OUT  
REV1A  
8/18  
XR76121  
Typical Performance Characteristics (Continued)  
All data taken at V = 12V, V  
= 1.8V, f = 800kHz, T = 25°C, no airflow, forced CCM. (Unless otherwise specified).  
IN  
OUT  
A
Schematic from the Applications Information section of this datasheet.  
1.850  
1.840  
1.830  
1.820  
1.810  
1.800  
1.790  
1.780  
1.770  
1.760  
1.750  
1.850  
1.840  
1.830  
1.820  
1.810  
1.800  
1.790  
1.780  
1.770  
1.760  
1.750  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
4
6
8
10  
12  
14  
(V)  
16  
18  
20  
22  
V
I
(A)  
IN  
OUT  
Figure 17. Load Regulation  
Figure 18. Line Regulation  
1,000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
450  
400  
350  
300  
250  
200  
150  
100  
Calculated  
Typical  
Calculated  
Typical  
4
6
8
10  
12  
14  
(V)  
16  
18  
20  
22  
0
10  
15  
20  
(kΩ)  
25  
30  
35  
5
V
R
IN  
ON  
Figure 19. t vs. R  
Figure 20. t vs. V , R = 5.9kΩ  
ON  
ON  
ON  
IN  
ON  
900  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
800  
700  
600  
500  
400  
300  
200  
100  
0
0
2
4
6
8
10  
(A)  
12  
14  
16  
18  
20  
4
6
8
10  
12  
(V)  
14  
16  
18  
20  
22  
I
V
OUT  
IN  
Figure 21. Frequency vs. I  
Figure 22. Frequency vs. V  
IN  
OUT  
REV1A  
9/18  
XR76121  
Typical Performance Characteristics (Continued)  
All data taken at V = 12V, V  
= 1.8V, f = 800kHz, T = 25°C, no airflow, forced CCM. (Unless otherwise specified).  
IN  
OUT  
A
Schematic from the Applications Information section of this datasheet.  
35  
30  
610  
605  
600  
595  
590  
25  
20  
15  
10  
5
Calculated worst case  
Typical  
0
1
1.2  
1.4  
1.6  
1.8  
2
2.2  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
R
(kΩ)  
T (°C)  
J
LIM  
Figure 24. V  
vs. Temperature  
Figure 23. I  
vs. R  
REF  
OCP  
LIM  
300  
250  
200  
150  
100  
-40  
-20  
0
20  
40  
T (˚C)  
60  
80  
100  
120  
J
Figure 25. t vs. Temperature, R = 5.9k  
ON  
ON  
REV1A  
10/18  
XR76121  
Functional Block Diagram  
VIN  
VCC  
PGOOD  
V
UVLO  
CC  
4.25V  
V
XR76121  
CC  
LDO  
V
CC  
BST  
10µA  
THERMAL  
PVIN  
SHUTDOWN  
SS  
HS  
0.6V  
POWER GOOD  
LEVEL  
DRV  
ENABLING SWITCHING  
SHIFT  
AND  
SW  
NON  
FB  
OVERLAP  
COT CONTROL LOOP  
V
0.555V  
CC  
LS  
DRV  
CONTROL  
ZC  
SW  
OVP  
VSNS  
SCCOMP  
DELAY  
PGND  
FB  
0.36V  
V
= 1.2 x V  
HICCUP  
LIM  
H
L
REF  
REF  
PGND  
V = 1.15 x V  
I
EN  
V
1.9V  
CC  
FCCM  
PGND  
TON EN  
ILIM  
AGND  
Figure 26. Functional Block Diagram  
REV1A  
11/18  
XR76121  
Applications Information  
Programming the On-Time  
Detailed Operation  
The on-time t is programmed via resistor R according  
The XR76121 uses a synchronous step-down proprietary  
ON  
ON  
to following equation:  
emulated current-mode Constant On-Time (COT) control  
scheme. The on-time, which is programmed via R  
,
ON  
IN  
V
× [t  
ON  
(2.5 × 10-8)]  
3.45 × 10-10  
versus R , using the above equation,  
is inversely proportional to V and maintains a nearly  
IN  
R
=
constant frequency. The emulated current-mode control  
allows the use of ceramic output capacitors.  
ON  
A graph of t  
ON  
ON  
Each switching cycle begins with the high-side (switching)  
FET turning on for a preprogrammed time. At the end  
of the on-time, the high-side FET is turned off and the  
low-side (synchronous) FET is turned on for a preset  
minimum time (250ns nominal). This parameter is termed  
the minimum off-time. After the minimum off-time the voltage  
at the feedback pin FB is compared to an internal voltage  
is compared to typical test data in Figure 19. The graph  
shows that calculated data matches typical test data  
within 3%.  
The t  
corresponding to a particular set of operating  
conditions can be calculated based on empirical data from:  
ON  
ramp at the feedback comparator. When V drops below  
FB  
V
OUT  
the ramp voltage, the high-side FET is turned on and the  
cycle repeats. This voltage ramp constitutes an emulated  
current ramp and allows for the use of ceramic capacitors,  
in addition to other capacitor types, for output filtering.  
t
=
ON  
V
x 1.06 x f x Eff.  
IN  
Where:  
ꢀ■  
f
is the desired switching frequency at  
Enable  
nominal I  
.
OUT  
The enable input provides precise control for startup.  
Where bus voltage is well regulated, the enable input  
can be derived from this voltage with a suitable resistor  
divider. This ensures that XR76121 does not turn on  
until bus voltage reaches the desired level. Therefore the  
enable feature allows implementation of undervoltage  
ꢀ■  
Eff. is the converter efficiency corresponding to  
nominal I  
.
OUT  
Substituting for t in the first equation we get:  
ON  
V
OUT  
1.06 x f x Eff.  
[(2.5 × 10-8) x V ]  
IN  
lockout for the bus voltage PV . Simple sequencing can  
IN  
R
=
ON  
be implemented by using the PGOOD signal as the enable  
input of a succeeding XR76121. Sequencing can also  
be achieved by using an external signal to control the  
enable pin.  
(3.45 × 10-10)  
Now R can be calculated in terms of operating  
conditions V , V  
above equation.  
ON  
, f and efficiency using the  
OUT  
IN  
Selecting the Forced CCM Mode  
A voltage higher than 2.4V at the FCCM pin forces the  
XR76121 to operate in continuous conduction mode (CCM).  
Note that discontinuous conduction mode (DCM) is always  
on during soft-start. DCM will persist following soft-start  
until a sufficient load is applied to transition the regulator  
to CCM. Magnitude of the load required to transition  
At V = 12V, f = 800kHz, I  
efficiency numbers from Figure 3 we get the following R  
= 20A and using the  
IN  
OUT  
:
ON  
VOUT (V)  
Eff. (%)  
f (kHz)  
RON (kΩ)  
5.0  
3.3  
2.5  
1.8  
1.5  
1.2  
1.0  
0.95  
0.93  
0.91  
0.89  
0.87  
0.84  
0.81  
600  
600  
800  
800  
800  
800  
800  
23.12  
15.30  
8.52  
6.04  
5.02  
4.01  
3.35  
to CCM is ΔI /2, where ΔI is peak-to-peak inductor  
L
L
current ripple. Once the regulator transitions to CCM it will  
continue operating in CCM regardless of the load magnitude.  
Selecting the DCM/CCM Mode  
The DCM will always be available if a voltage less  
than 0.4V is applied to the FCCM pin. XR76121 will  
operate in either DCM or CCM depending on the  
load magnitude. At light loads DCM significantly increases  
efficiency as seen in Figures 3 and 4. A preload of 10mA  
is recommended for DCM operation. This helps improve  
voltage regulation when external load is less then 10mA  
and may reduce voltage ripple.  
XR76121 R for common output voltages,  
ON  
V
= 12V, I  
= 20A  
IN  
OUT  
REV1A  
12/18  
XR76121  
Applications Information (Continued)  
Overcurrent Protection (OCP)  
If the load current exceeds the programmed overcurrent  
Overvoltage Protection (OVP)  
The output OVP function detects an overvoltage condition  
on V of the regulator. OVP is achieved by comparing  
threshold I  
for four consecutive switching cycles,  
OCP  
OUT  
the regulator enters the hiccup mode of operation.  
In hiccup mode the MOSFET gates are turned off for 110ms  
(hiccup timeout). Following the hiccup timeout a soft-start  
is attempted. If OCP persists, hiccup timeout will repeat.  
The regulator will remain in hiccup mode until load current  
the voltage at VSNS pin to an OVP threshold voltage  
set at 1.2 x V . When VSNS voltage exceeds the  
OVP threshold, an internal overvoltage signal asserts after  
1us (typical). This OVP signal latches off the high-side FET,  
turns on the low-side FET and also asserts PGOOD low.  
The low-side FET remains on to discharge the output  
REF  
is reduced below the programmed I  
. In order to program  
OCP  
overcurrent protection use the following equation:  
capacitor until VSNS voltage drops below 1.15 x V  
.
REF  
Then low-side FET turns off to prevent complete discharge  
of V . The high-side and low-side FETs remain latched  
OUT  
(I + (0.5 × IL))  
OCP  
off until V or EN is recycled. In order to use this feature,  
IN  
R
=
0.16kΩ  
LIM  
I
LIM  
connect VSNS to V  
with a resistor divider as shown in  
OUT  
R
DS  
the application circuit. Use the same resistor divider value  
that was used for programming V  
.
OUT  
Where:  
Programming the Output Voltage  
Use a voltage divider as shown in Figure 1 to program the  
output voltage V  
ꢀ■  
R
LIM  
is resistor value in kΩ for programming I  
OCP  
ꢀ■  
ꢀ■  
ꢀ■  
I
is the overcurrent value to be programmed  
OCP  
.
OUT  
ΔI is the peak-to-peak inductor current ripple  
L
V
I
/R is the minimum value of the parameter  
OUT  
LIM DS  
R1 = R2 x  
1  
0.6  
specified in the tabulated data  
ꢀ■  
ꢀ■  
I
/R = 14.5uA/mΩ  
LIM DS  
The recommended value for R2 is 2kΩ.  
0.16kΩ accounts for OCP comparator offset  
Programming the Soft-Start  
The above equation is for worst-case analysis and  
safeguards against premature OCP. Typical value of I  
Place a capacitor C between the SS and AGND pins to  
SS  
,
OCP  
program the soft-start. In order to program a soft-start time  
for a given R , will be higher than that predicted by  
LIM  
of t , calculate the required capacitance C  
from the  
SS  
SS  
the above equation. Graph of calculated I  
vs. R  
is  
OCP  
LIM  
following equation:  
compared to typical I  
in Figures 23.  
OCP  
Short-Circuit Protection (SCP)  
10µA  
0.6V  
C
= t x  
SS SS  
If the output voltage drops below 60% of its programmed  
value (i.e., FB drops below 0.36V), the regulator will enter  
hiccup mode. Hiccup mode will persist until short-circuit  
is removed. The SCP circuit becomes active at the end  
of soft-start. Hiccup mode and short-circuit recovery  
waveform is shown in Figure 16.  
Pre-Bias Startup  
XR76121 has the capability to startup into a pre-charged  
output. Typical pre-bias startup waveforms are shown in  
Figure 15.  
Over Temperature Protection (OTP)  
OTP triggers at a nominal controller temperature of 138°C.  
The gates of the switching FET and the synchronous FET  
are turned off. When controller temperature cools down to  
123°C, soft-start is initiated and regular operation resumes.  
Maximum Allowable Voltage Ripple at FB Pin  
The steady-state voltage ripple at feedback pin FB  
(V  
,
) must not exceed 50mV in order for the regulator  
FB RIPPLE  
to function correctly. If V  
,
is larger than 50mV then  
FB RIPPLE  
C
OUT  
and/or L should be increased as necessary in order to  
keep the V  
,
below 50mV.  
FB RIPPLE  
REV1A  
13/18  
XR76121  
Applications Information (Continued)  
Thermal Design  
Feed-Forward Capacitor (C  
)
FF  
Proper thermal design is critical in controlling device  
temperatures and in achieving robust designs. There are  
a number of factors that affect the thermal performance.  
One key factor is the temperature rise of the devices in  
the package, which is a function of the thermal resistances  
of the devices inside the package and the power  
being dissipated.  
The feed-forward capacitor C is used to set the necessary  
phase margin when using ceramic output capacitors.  
FF  
Calculate C from the following equation:  
FF  
1
C
=
FF  
2 x  
π
x R1 x 5 x f  
LC  
The thermal resistance of the XR76121 is specified in  
the Operating Ratings section of this datasheet. The θJA  
thermal resistance specification is based on the XR76121  
evaluation board operating without forced airflow. Since the  
actual board design in the final application will be different,  
the thermal resistances in the final design may be different  
from those specified.  
Where f , the output filter double-pole frequency is  
calculated from:  
LC  
1
f
=
LC  
2 x  
π
x L x C  
OUT  
You must use manufacturer’s DC derating curves to  
determine the effective capacitance corresponding to V  
A load step test (and/or a loop transient response test)  
The package thermal derating curves for the XR76121 are  
shown in Figures 5 and 6. These correspond to input voltage  
of 12V and 5V, respectively. The package thermal derating  
curves for the XR76121 are shown in Figures 9 and 10.  
.
OUT  
should be performed and if necessary C can be adjusted  
FF  
in order to get a critically damped transient load response.  
In applications where output voltage ripple is less than  
about 3mV, such as when a large number of ceramic  
C
are paralleled, it is necessary to use ripple injection  
OUT  
from across the inductor. The circuit and corresponding  
calculations are explained in the Exar design note.  
Feed-Forward Resistor (R  
)
FF  
R
FF  
is required when C is used. R , in conjunction with  
FF FF  
C
, functions similar to a high frequency pole and adds  
FF  
gain margin to the frequency response. Calculate R from:  
FF  
1
R
=
FF  
2 x  
π
x f x C  
FF  
Where f is the switching frequency.  
If R is greater than 0.1 x R1, then instead of C /R , use  
FF  
FF FF  
ripple injection circuit as described in Exar design note.  
REV1A  
14/18  
XR76121  
Applications Information  
V
= 12V  
IN  
REN2 3.83k  
REN1 10k  
V
IN  
4 x 22µF/25V/X6T/1206  
2 x 0.1µF  
C
SS  
47nF  
CBST  
0.1µF  
FB  
1
2
3
4
5
6
7
FB  
V
CC  
800kHz, 1.8V, 0-20A  
OUT  
FCCM  
AGND  
AGND  
TON  
L1, IHLP-5050FD-01  
0.4µH at 44A, 0.9m Ohm  
V
SW  
12 SW  
R
6.19k  
ON  
4 x 0.1µF  
5 x 100µF/6.3V/X6T/1206  
XR76121  
R
1.82k  
ILIM  
SW  
LIM  
PGOOD  
C
FF  
470pF  
RPGOOD 10k  
V
CC  
R1  
4.02k  
R
FF  
V
OUT  
0.4k  
V
CC  
RSENS1  
4.02k  
FB  
V
IN  
R2  
2k  
RSENS2  
2k  
C
C
IN  
0.1µF  
VCC  
4.7µF  
Figure 27. Application Circuit Schematic  
REV1A  
15/18  
XR76121  
Package Description  
All dimensions are in mm and angles in degrees.  
Figure 28. Package Description (1 of 2)  
REV1A  
16/18  
XR76121  
Package Description (Continued)  
All dimensions are in mm and angles in degrees.  
Figure 28. Package Description (2 of 2)  
REV1A  
17/18  
XR76121  
Ordering Information  
Operating  
Temperature Range  
Environmental  
Rating  
Packaging  
Quantity  
Part Number  
Package  
Marking  
XR76121EL-F  
Bulk  
XR76121EL  
YYWWF  
RoHS compliant  
and Green(1)  
XR76121ELMTR-F  
XR76121ELTR-F  
XR76121EVB  
-40°C ≤ T ≤ 125°C  
5mm x 6mm QFN  
250/tape and reel  
3K/tape and reel  
J
XXXXXXXX(2)  
XR76121 evaluation board  
NOTE:  
1. Visit www.exar.com for more information.  
2. YY = Year, WW = Work Week, F = Halogen Free, XXXXXXXX = Lot Number.  
Revision History  
Revision  
1A  
Date  
Description  
July 2016  
Initial Release  
www.exar.com  
48760 Kato Road  
Fremont, CA 94538  
USA  
Tel.: +1 (510) 668-7000  
Fax: +1 (510) 668-7001  
Email: powertechsupport@exar.com  
Exar Corporation reserves the right to make changes to the products contained in this publication in order to improve design, performance or reliability. Exar Corporation conveys  
no license under any patent or other right and makes no representation that the circuits are free of patent infringement. While the information in this publication has been  
carefully checked, no responsibility, however, is assumed for inaccuracies.  
Exar Corporation does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected  
to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless Exar Corporation  
receives, in writing, assurances to its satisfaction that: (a) the risk of injury or damage has been minimized; (b) the user assumes all such risks; (c) potential liability of  
Exar Corporation is adequately protected under the circumstances.  
Reproduction, in part or whole, without the prior written consent of Exar Corporation is prohibited. Exar, XR and the XR logo are registered trademarks of Exar Corporation.  
All other trademarks are the property of their respective owners.  
©2016 Exar Corporation  
XR76121_DS_070116  
REV1A  
18/18  

相关型号:

XR76121ELTR-F

PowerBloxTM 20A Synchronous Step-Down COT Regulators
EXAR

XR76121EVB

PowerBloxTM 20A Synchronous Step-Down COT Regulators
EXAR

XR76201

40V PowerBloxTM 1.5A Synchronous Step-Down COT Regulator
EXAR

XR76201EL

40V PowerBloxTM 1.5A Synchronous Step-Down COT Regulator
EXAR

XR76201ELMTR

40V PowerBloxTM 1.5A Synchronous Step-Down COT Regulator
EXAR

XR76201ELTR

40V PowerBloxTM 1.5A Synchronous Step-Down COT Regulator
EXAR

XR76201EVB

40V PowerBloxTM 1.5A Synchronous Step-Down COT Regulator
EXAR

XR76203

3A/5A/8A Synchronous Step Down COT Regulator
EXAR

XR76203-Q

AEC-Q100 Qualified 40V PowerBlox 3A/5A/8A Synchronous Step Down COT Regulator
EXAR

XR76203EL-F

3A/5A/8A Synchronous Step Down COT Regulator
EXAR

XR76203EL-Q

AEC-Q100 Qualified 40V PowerBlox 3A/5A/8A Synchronous Step Down COT Regulator
EXAR

XR76203ELMTR-F

Switching Regulator,
EXAR