XRD9826ACD-F [EXAR]

Analog Circuit, 1 Func, CMOS, PDSO20, 0.300 INCH, SOIC-20;
XRD9826ACD-F
型号: XRD9826ACD-F
厂家: EXAR CORPORATION    EXAR CORPORATION
描述:

Analog Circuit, 1 Func, CMOS, PDSO20, 0.300 INCH, SOIC-20

传感器 CD
文件: 总33页 (文件大小:274K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
XRD9826  
16-Bit Linear CIS/CCD Sensor  
Signal Processor with Serial Control  
May 2000-3  
FEATURES  
APPLICATIONS  
·
·
·
·
·
·
·
16-Bit Resolution  
·
Color and Grayscale Flatbed Scanners  
One-channel 6MSPS Pixel Rate  
Triple-channel 2MSPS Pixel Rate  
6-BitProgrammableGainAmplifier  
8-Bit Programmable Offset Adjustment  
CIS or CCD Compatibility  
·
·
·
·
·
·
Color and Grayscale Sheetfed Scanners  
MultifunctionPeripherals  
DigitalColorCopiers  
General Purpose CIS or CCD Imaging  
Low Cost Data Acquisition  
Simple and Direct Interface to Canon 600 DPI  
Sensors  
Internal Clamp for CIS or CCD AC Coupled  
Configurations  
·
·
·
·
·
3.3V or 5V Operation & I/O Compatibility  
SerialLoadControlRegisters  
Low Power CMOS: 200mW-typ  
Low Cost 20-Lead Packages  
USBCompliant  
GENERALDESCRIPTION  
range of the ADC. In the CIS configuration the input  
can also be AC coupled similar to the CCD configura-  
tion. This enables CIS signals with large black levels  
tobeinternallyclampedtoaDCreferenceequaltothe  
black level. The DC reference is internally subtracted  
from the input signal.  
TheXRD9826isacompletelinearCISorCCDsensor  
signal processor on a single monolithic chip. The  
XRD9826includesahighspeed16-bit resolutionADC,  
a 6-bit Programmable Gain Amplifier with gain adjust-  
mentof1to10, and8-bitprogrammableinputreferred  
offset calibration range of 800mV.  
The CIS configuration can also be used in other  
applications that do not require CDS function, such as  
low cost data acquisition.  
IntheCCDconfigurationtheinputsignalisACcoupled  
with an external capacitor. An internal clamp sets the  
black level. In the CIS configuration, the clamp switch  
can be disabled and the CIS output signal is DC  
coupledfromtheCISsensortotheXRD9826. TheCIS  
signal is level shifted to VRB in order to use the full  
ORDERINGINFORMATION  
PackageType  
20-LeadSOIC  
20-LeadSSOP  
TemperatureRange  
Cto+70°C  
Cto+70°C  
PartNumber  
XRD9826ACD  
XRD9826ACU  
Rev. 1.00  
EXAR Corporation, 48720 Kato Road, Fremont, CA 94538 (510) 668-7000 FAX (510) 668-7017 www.exar.com  
XRD9826  
VBG  
* CIS REF Circuit  
AVDD  
Power  
Down  
* CIS REF Circuit  
RED  
GRN  
Triple  
S/H  
&
DVDD  
+
_
3-1  
VREF+  
VRT  
VRB  
MUX  
BUFFER  
BLU  
16  
8
DATA  
I/O  
PORT  
16-BIT  
RL  
PGA  
6
DB7:0  
DGND  
ADC  
DC Reference  
V
DCREF  
VDCEXT  
INT/EXT_V  
DCREF  
G<5:0>  
CLP  
6-BIT GAIN  
AVDD  
AGND  
REGISTERS  
Power  
Down  
DC/AC  
R
G
B
AGND  
8-BIT DAC  
AGND  
SYNCH  
8
O<7:0>  
CIS/CCD  
CLAMP  
8-BIT OFFSET  
REGISTERS  
TIMING  
&
ADCCLK  
R
G
B
VRT  
CCD  
CIS  
CONTROL LOGIC  
Note: * For Canon CIS Sensor  
Figure 1. Functional Block Diagram  
Rev. 1.00  
2
XRD9826  
PIN CONFIGURATION  
1
2
20  
19  
18  
17  
16  
15  
14  
13  
DVDD  
DB0  
AVDD  
RED  
3
DB1  
GRN  
4
DB2  
BLU  
5
DB3  
VDCEXT  
VREF+  
AGND  
SYNCH  
XRD9826ACD  
6
DB4  
7
DB5/SCLK  
DB6/SDATA  
8
12 CLAMP  
9
DB7/LD  
DGND  
11  
10  
ADCCLK  
20-LeadSOIC  
PINDESCRIPTION  
Pin#  
1
2
Symbol  
DVDD  
DB0  
Description  
Digital VDD (for Output Drivers)  
Data Output Bit 0  
3
DB1  
Data Output Bit 1  
4
DB2  
Data Output Bit 2  
5
DB3  
Data Output Bit 3  
6
DB4  
Data Output Bit 4  
7
8
9
DB5/SCLK  
DB6/SDATA  
DB7/LD  
DGND  
ADCCLK  
CLAMP  
SYNCH  
AGND  
VREF+  
VDCEXT  
BLU  
Data Output Bit 5 & Data Input SCLK  
Data Output Bit 6 & Data Input SDATA  
Data Output Bit 7 & LD  
Digital Ground (for Output Drivers)  
A/D Converter Clock  
Clamp and Video Sample Clock  
Start of New Line and Serial Data Input Control  
Analog Ground  
A/D Positive Reference for Decoupling Cap  
External DC Reference  
Blue Input  
Green Input  
Red Input  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
GRN  
RED  
AVDD  
Analog Power Supply  
Rev. 1.00  
3
XRD9826  
ELECTRICALCHARACTERISTICS  
Test Conditions: AVDD=DVDD=5V, ADCCLK=6MHz, 50% Duty Cycle, TA=25°C unless otherwise specified.  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit Conditions  
Power Supplies  
AVDD  
DVDD  
IDD  
Analog Power Supply  
3.0  
3.0  
25  
3.3  
3.3  
40  
5.5  
5.5  
60  
V
V
(Note 2)  
Digital I/O Power Supply  
Supply Current  
DVDD < AVDD  
mA VDD=5V  
IDDPD  
Power Down Power Supply Current  
50  
µA VDD=5V  
ADC Specifications  
RES  
Fs  
Resolution  
16  
12  
Bits  
MSPS  
LSB  
V
Maximum Sampling Rate  
Differential Non-Linearity  
Bottom Reference Voltage  
Differential Reference Voltage  
(VRT - VRB)  
DNL  
VRB  
-2.0  
±1.5  
2.0  
AVDD/10  
0.67AVDD  
DVREF  
0.3  
V
RL  
Ladder Resistance  
300  
600  
780  
PGA & Offset DAC Specifications  
PGARES  
PGAGMIN  
PGAGMAX  
PGAGD  
VBLACK  
PGA Resolution  
6
Bits  
Minimum Gain  
0.950  
9.5  
1.0  
1.050  
10.50  
V/V  
Maximum Gain  
10.0  
0.14  
V/V  
Gain Adjustment Step Size  
Black Level Input Range  
Offset DAC Resolution  
Minimum Offset Adjustment  
Maximum Offset Adjustment  
Minimum Offset Adjustment  
Maximum Offset Adjustment  
Offset Adjustment Step Size  
V/V  
-100  
8
500  
mV DC Configuration  
Bits  
DACRES  
OFFMIN  
-250  
+500  
-450  
+350  
-200  
+600  
-400  
-150  
+700  
-350  
+450  
mV Mode 111, D5=0 (Note 1)  
mV Mode 111, D5=0  
mV Mode 111, D5=1 (Note 1)  
mV Mode 111, D5=1  
mV  
OFFMAX  
OFFMIN  
OFFMAX  
OFF∆  
+400  
3.125  
Note 1: The additional ±100 mV of adjustment with respect to the black level input range is needed to compensate  
for any additional offset introduced by the XRD9826 Buffer/PGA internally.  
Note 2: It is not recommended to operate the part between 3.6V and 4.4V.  
Rev. 1.00  
4
XRD9826  
ELECTRICALCHARACTERISTICS(CONT'D)  
Test Conditions: AVDD=DVDD=5V, ADCCLK=6MHz, 50% Duty Cycle, TA=25°C unless otherwise specified.  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Conditions  
Buffer Specifications  
IIL  
Input Leakage Current  
100  
nA  
pF  
V
CIN  
Input Capacitance  
10  
VINPP  
AC Input Voltage Range  
0
0
AVDD-1.4  
CIS AC; INT VDCREF  
Config Reg  
=> XXX010XX  
Gain=1 (Note 1)  
CCD AC; INT VDCREF  
Config Reg  
AC Input Voltage Range  
DC Input Voltage Range  
DC Input Voltage Range  
DVREF  
V
V
V
=> XXX011XX  
Gain=1 (Note 1)  
CIS DC; INT VDCREF  
Config Reg  
VIN  
-0.1  
AVDD-1.4  
=> XXX000XX  
Gain=1 (Note 2)  
CIS DC; EXT VDCREF  
Config Reg  
V
DCEXT-0.1  
VDCEXT+  
DVREF  
=> XXX100XX  
Gain=1 (Note 3)  
VDCEXT+DVREF < AVDD  
VDCEXT  
External DC Reference  
0.3  
3
AVDD/2  
V
CIS DC; EXT VDCREF  
Config Reg  
=> XXX100XX  
VINBW  
VINCT  
Input Bandwidth  
MHz  
dB  
Channel to Channel Crosstalk  
-60  
-50  
fin=3MHz  
Internal Clamp Specifications  
VCLAMP  
Clamp Voltage  
AGND  
VRT  
50  
mV  
V
CIS (AC) Config  
CCD (AC) Config  
3.5  
10  
RINT  
ROFF  
Clamp Switch On Resistance  
Clamp Switch Off Resistance  
100  
150  
MΩ  
Note 1: VINPP is the signal swing before the external capacitor tied to the MUX inputs.  
Note 2: The -0.1V minimum is specified in order to accommodate black level signals lower than the external DC  
reference (clamp) voltage.  
Note 3: The VDCEXT-0.1V minimum is specified in order to accommodate black level signals lower than the external DC  
reference voltage.  
Rev. 1.00  
5
XRD9826  
ELECTRICALCHARACTERISTICS(CONT'D)  
Test Conditions: AVDD=DVDD=5V, ADCCLK=6MHz, 50% Duty Cycle, TA=25°C unless otherwise specified.  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
+2.3  
+5.0  
Unit  
Conditions  
Note 1  
System Specifications (MUX + Buffer + PGA + ADC)  
SYSDNL  
SYSLIN  
SYSGE  
IRN  
System DNL  
-1.0  
-5.0  
±0.5  
±6.0  
LSB  
LSB  
%
System Linearity  
System Gain Error  
Input Referred Noise  
Input Referred Noise  
1.5  
0.5  
mVrms  
mVrms  
Gain=1  
Gain=10  
System Timing Specifications  
tcklw  
tckhw  
tckpd  
tsypw  
trars  
ADCCLK Low Pulse Width  
50  
70  
120  
30  
0
83  
83  
ns  
ns  
ns  
ns  
ADCCLK High Pulse Width  
ADCCLK Period  
166  
SYNCH Pulse Width  
Rising ADCCLK to rising  
SYNCH  
SYNCH must rise equal to  
or after ADCCLK, See Figure 18  
tclpw  
CLAMP Pulse Width  
30  
ns  
Note 2  
Write Timing Specifications  
tsclkw  
tdz  
SCLK Pulse Width  
40  
20  
20  
0
ns  
ns  
ns  
ns  
ns  
LD Low to SCLK High  
Input Data Set-up Time  
Input Data Hold Time  
SCLK High to LD High  
tds  
tdh  
tdl  
50  
ADC Digital Output Specifications  
tap  
tdv  
tsa  
tlat  
tlat  
Aperture Delay  
Output Data Valid  
SYNCH to ADCCLK  
Latency  
10  
ns  
ns  
ns  
40  
15  
3ch Pixel Md  
8
6
cycles Config 00, 11  
pixels Config 01, 10  
Latency  
Digital Input Specifications  
VIH  
VIL  
IIH  
Input High Voltage  
AVDD-2.5  
V
V
Input Low Voltage  
1
High Voltage Input Current  
Low Voltage Input Current  
Input Capacitance  
5
5
µA  
µA  
pF  
IIL  
CIN  
10  
Note 1: System performance is specified for typical digital system timing specifications.  
Note 2: The actual minimum ‘tclpw’ is dependent on the external capacitor value, the CIS output impedance.  
During ‘clamp’ operation, sufficient time needs to be allowed for the external capacitor to charge up to the  
correct operating level. Refer to the description in Theory of Operation, CIS Config.  
Rev. 1.00  
6
XRD9826  
ELECTRICALCHARACTERISTICS(CONT'D)  
Test Conditions: AVDD=DVDD=5V, ADCCLK=6MHz, 50% Duty Cycle, TA=25°C unless otherwise specified.  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Conditions  
Digital Output Specifications  
VOH  
DVDD  
VOL  
Output High Voltage  
80  
(%)  
(%)  
IL=1mA  
Output Low Voltage  
IL=-1mA  
20  
10  
15  
DVDD  
IOZ  
Output High-Z Leakage Current  
Output Capacitance  
Slew Rate (10% to 90% DVDD)  
-10  
2
µA  
pF  
ns  
COUT  
SR  
10  
CL=10pF, DVDD=3.3V  
Rev. 1.00  
7
XRD9826  
Mode 1. DC Coupled  
THEORYOFOPERATION  
If the CIS does not have leading or trailing black pixels  
asshowninFigure2,thenDCcoupletheCISoutputto  
theXRD9826input.  
CIS Configuration (Contact Image Sensor)  
TheXRD9826hastwoconfigurationsforCISapplica-  
tions. Eachconfigurationissetbythecontrolregisters  
accessed through the serial port.  
Optically Shielded  
Pixels  
Valid Pixels  
Figure 2. Typical Output CIS Mode  
Adjust the offset of the CIS (-100 mV to 500 mV) by  
setting the internal registers of the XRD9826 to set the  
black pixel value when the LEDs of the CIS are off.  
When the LEDs are on, use the XRD9826 Program-  
mable Gain to maximize the ADCs dynamic range.  
Figure 3, shows a typical application for a CIS with an  
offset of -100mV to 500mV.  
Rev. 1.00  
8
XRD9826  
XRD9826  
VDD  
VRT  
C
I
RED  
M
U
X
N/C  
N/C  
N/C  
RL  
S
VRB  
Figure 3. Application with Offset in the Range (-100mv to 500mv)  
The input is added to VRB before the signal passes  
beyond the offset range of the XRD9826 (see Offset  
ControlDAC,Pg.22)settheinternalmoderegistersto  
external reference. An external reference voltage  
equal to the value of the CIS offset voltage can be  
applied to VDCEXT (Figure 4) in order to meet the  
dynamicrangeoftheXRD9826. Figure4,isadiagram  
oftheXRD9826intheexternalreferencemodeforCIS,  
DCcoupledapplications.  
through the ADC. If the CIS output is zero, then the  
output of the ADC will be zero code. This enables the  
CIS to be referenced to the bottom ladder reference  
voltage to use the full range of the ADC.  
Some CIS sensors have an output with an offset  
voltage of greater than 500mV. If the CIS output is  
Rev. 1.00  
9
XRD9826  
XRD9826  
VDD  
VRT  
C
I
RED  
M
U
X
N/C  
N/C  
S
RL  
VDCEXT  
DC  
REFERENCE  
VRB  
Figure 4. Application with Offset Greater Than (-100mv to 500mv)  
TheDCreferencevoltageappliedtoVDCEXTdoesnot  
have to be accurate. The internal offset DAC voltage  
is still used in this mode for fine adjustment. VDCEXT  
cannot be used as an input from the CIS. Any signal  
applied to VDCEXT will be subtracted from the output  
signal of the multiplexer.  
Rev. 1.00  
10  
XRD9826  
VCC (5V - 15V)  
19  
18  
9
8
7
6
5
4
3
2
DB7/LD  
RED  
GRN  
DB6/SDATA  
DB5/SCLK  
DB4  
N/C  
N/C  
DB3  
AVDD  
DB2  
C
I
S
DB1  
17  
16  
DB0  
BLU  
DIGITAL  
ASIC  
VDCEXT  
11  
ADCCLK  
CLAMP  
SYNCH  
12  
13  
15  
VREF+  
0.1uF  
AVDD  
DVDD (3V - 5V)  
1
20  
14  
AVDD  
AGND  
DVDD  
DGND  
10  
XRD9826  
AGND  
DGND  
Figure 5. Typical Application Circuitry CIS DC Coupled Non-Inverted Mode  
Rev. 1.00  
11  
XRD9826  
CIS Mode Timing -- DC Coupled  
(CLAMP disabled)  
Pixel N-1  
Pixel N  
tap  
Pixel N+1  
tap  
CIS  
tckpd  
tckhw tcklw  
ADCCLK  
tdv  
tdv  
N-6  
N-6  
N-8  
N-7  
N-8  
N-7  
N-5  
N-5  
[5:0]  
DB  
MSB  
LSB  
LSB  
MSB  
MSB  
LSB  
LSB  
[11:6]  
MSB  
Figure 6. Timing Diagram for Figure 5  
ADCCLK  
Events  
ADC Sample & PGA Start Tracking next Pixel  
MSB Data Out  
LSB Data Out  
HI  
LO  
ADC Track PGA Output  
ADC Hold/Convert  
Table 1.  
Mode 2. AC Coupled  
If the CIS signal has a black reference for the video  
signal, an external capacitor CEXT is used. When  
CLAMP(clamp)pinissethighaninternalswitchallows  
one side of the external capacitor to be set to ground.  
Itthenislevelshiftedtocorrespondtothebottomladder  
reference voltage of the ADC (Figure 7).  
Rev. 1.00  
12  
XRD9826  
XRD9826  
VDD  
VRT  
REXT  
CEXT  
RED  
C
I
S
M
U
X
N/C  
N/C  
N/C  
RL  
CLAMP  
VRB  
RINT  
Figure 7. CIS AC Coupled Application  
This value corresponds to the black reference of the  
imagesensor. WhentheCLAMPpinissetbacktolow,  
the ADC samples the video signal with respect to the  
black reference. The typical value for the external  
capacitor is 100pF. This value should be adjusted  
according to the time constant (Tc) needed in a  
particularapplication. TheCLAMPpinhasaninternal  
150 ohm impedance (RINT) which is in series with the  
externalcapacitor(CEXT).  
Therefore, Tc =1/RINTCEXT  
If the input to the external capacitor has a source  
impedance(REXT),then:  
Tc=1/(RINT+REXT)CEXT  
Rev. 1.00  
13  
XRD9826  
VCC (5V - 15V)  
19  
18  
17  
16  
15  
9
8
7
6
5
4
3
2
DB7/LD  
RED  
DB6/SDATA  
DB5/SCLK  
100PF  
DB4  
N/C  
N/C  
N/C  
GRN  
DB3  
DB2  
C
I
S
DB1  
DB0  
BLU  
DIGITAL  
ASIC  
11  
VDCEXT  
VREF+  
ADCCLK  
12  
13  
CLAMP  
SYNCH  
DVDD (3V - 5V)  
1
AVDD  
20  
14  
AVDD  
AGND  
DVDD  
DGND  
10  
XRD9826  
AGND  
DGND  
Figure 8. Typical Application Circuitry CIS AC Coupled Non-Inverted  
Rev. 1.00  
14  
XRD9826  
CIS Mode Timing -- AC Coupled  
(CLAMP enabled)  
Pixel N-1  
Pixel N  
tap  
Pixel N+1  
tap  
CIS  
tckpd  
tckhw tcklw  
ADCCLK  
tdv  
tdv  
N-6  
MSB  
N-6  
N-8  
MSB  
N-7  
MSB  
N-8  
N-7  
[5:0]  
DB  
N-5  
MSB  
N-5  
LSB  
LSB  
LSB  
LSB  
[11:6]  
tclpw  
CLAMP  
Note: There is an 8 clock latency for the output  
Figure 9. Timing Diagram for Figure 8.  
ADCCLK  
Events  
ADC Sample & PGA Start Track of next Pixel  
MSB Data Out (8 Upper Bits)  
LSB Data Out (8 Lower Bits)  
ADC Track PGA Output  
HI  
LO  
ADC Hold/Convert  
Table 3.  
CLAMP  
Events  
HI  
PGA Tracks VCLAMP & CEXT is Charged to  
VBLACK - VCLAMP, which is equal to VBLACK  
PGA Tracks VINPP  
LO  
Table 4.  
Rev. 1.00  
15  
XRD9826  
Internal CIS Reference Circuit (DB 4 = 1)  
The XRD9826 has an internal register reserved for  
interfacing to the Canon CIS model number CVA-  
60216K. When this register is selected, the VDCEXT  
(Pin16)becomesanoutputvoltageof1.24volts. This  
voltage can be directly connected to the VREF (Pin 5)  
of the Canon sensor. This reduces the amount of  
componentsneededforbiasingtheCanonCISsensor  
(theexternaldiodesandresistorstypicallyusedinthis  
applicationhavebeenincludedinsidetheXRD9826for  
this mode of operation). Below is a typical application  
circuitusingtheXRD9826andtheCanonCVA-60216K  
CIS sensor.  
VCC (5V)  
CANON CIS  
DVDD (3V - 5V)  
SENSOR  
VOUT  
1
2
MODE  
3
AGND  
4
VCC  
5
VREF  
19  
18  
9
8
7
6
5
4
3
2
6
RED  
GRN  
DB7/LD  
DB6/SDATA  
DB5/SCLK  
DB4  
SP  
7
CLK  
8
N/C  
N/C  
DB3  
DB2  
DB1  
DB0  
LED COM  
9
LED BLU  
17  
16  
10  
BLU  
LED GRN  
11  
LED RED  
VDCEXT  
DIGITAL  
ASIC  
NPN  
11  
12  
13  
12  
ADCCLK  
CLAMP  
SYNCH  
FGND  
47uF  
DGND  
15  
VREF+  
NPN  
0.1uF  
AGND  
DVDD (3V - 5V)  
AVDD  
DGND  
20  
14  
1
0.01uF  
AVDD  
AGND  
DVDD  
DGND  
NPN  
10  
100uF  
DGND  
AGND  
DGND  
XRD9826  
DGND  
CVA-60216K  
Figure 10. Typical Application Circuitry Internal CIS Reference Circuit Mode  
CANONCISSensor,Model#CVA=60216k  
Rev. 1.00  
16  
XRD9826  
CIS Line-By-Line Rotating Gain and Offset  
(Configuration DB1 = 1, DB0 = 1)  
Line-by-line rotating gain and offset minimizes the  
amountofwritecyclesperscan. Pre-loadedvaluesof  
gainandoffsetcanbeloadedforeachcolorbeforethe  
first line is scanned. Each gain and offset is cycled  
through line-by-line so that the gain and offset do not  
havetobeloadedinbetweenlines. Belowisthetypical  
application circuit and timing for this configuration.  
VCC (5V - 15V)  
19  
9
RED  
DB7/LD  
8
7
6
5
4
3
2
DB6/SDATA  
DB5/SCLK  
DB4  
18  
GRN  
DB3  
DB2  
DB1  
DB0  
C
I
S
17  
BLU  
DIGITAL  
ASIC  
16  
N/C  
VDCEXT  
11  
12  
13  
ADCCLK  
CLAMP  
SYNCH  
15  
VREF+  
0.1uF  
DVDD (3V - 5V)  
AVDD  
20  
1
AVDD  
DVDD  
DGND  
14  
10  
AGND  
AGND  
XRD9826  
DGND  
Figure 11. Typical Application Circuitry Internal CIS Rotating Gain  
andOffsetLine-By-Line  
Rev. 1.00  
17  
XRD9826  
CIS Rotating Gain and Offset  
Line-By-Line (Md 11)  
CIS  
Red Pixel Line Scan  
Grn Pixel Line Scan  
Blu Pixel Line Scan  
ADCCLK  
SYNCH  
tsypw  
tsa  
GAIN/  
Red Gain/Offset Cycle  
Grn Gain/Offset Cycle  
Blu Gain/Offset Cycle  
OFFSET  
Tri-State (SYNCH = LO)  
LD  
Reset Internal Mux Color to Red Channel (LD = 110YYYYYY11)  
Y = Previous State  
Note:  
Figure 12. Timing Diagram for Figure 11.  
CCDConfiguration(ChargeCoupledDevice)  
Mode 1. AC Coupled  
WhenCLAMP(clamp)pinissethighaninternalswitch  
allows one side of the external capacitor to be set to  
VRT (Figure 13). This value corresponds to the black  
referenceoftheCCD. WhentheCLAMPpinissetback  
to low, the ADC samples the video signal with respect  
to the black reference. The difference between the  
black reference and the video signal is the actual pixel  
value of the video content. Since this value is refer-  
encedtothetopladderreferencevoltageoftheADCa  
zero input signal would yield a full scale output code.  
Therefore, the output of the conversion is inverted  
(internally) to correspond to zero scale output code.  
In the CCD configuration of operation, an external  
capacitor needs to be chosen according to the equa-  
tionsbelow.Thetypicalvaluefortheexternalcapacitor  
is 100pF. This value should be adjusted according to  
the time constant (Tc) needed in a particular applica-  
tion. The CLAMP pin has an internal 150 ohm imped-  
ance(RINT)whichisinserieswiththeexternalcapacitor  
(CEXT).  
Therefore, Tc =1/RINTCEXT  
If the input to the external capacitor has a load  
impedance(REXT),then  
Tc=1/(RINT+REXT)CEXT  
Rev. 1.00  
18  
XRD9826  
XRD9826  
VDD  
CLAMP  
VRT  
AREA  
or  
RED  
LINEAR  
CCD  
M
U
X
N/C  
N/C  
N/C  
RL  
VRB  
Figure 13. CCD AC Coupled Application  
Area or Linear CCD Applications  
pixelvalueshavebeensampled,thegainandoffsetare  
adjustedatthebeginningofthenextline. Forexample,  
if there is a line-to-line variation between the black  
reference pixels, the offset is adjusted. The gain is  
always adjusted for the highest color intensity.  
Figure 13 is a block diagram for applications with Area  
or Linear CCDs (The timing for Area CCDs and B/W  
CCDs is the same). For Area or Linear CCD applica-  
tions, a global offset is loaded into the serial port at the  
beginning of a line. The gain is set to adjust for the  
highest color intensity of the CCD output. Once the  
Rev. 1.00  
19  
XRD9826  
VCC (5V - 15V)  
19  
18  
17  
16  
15  
9
8
7
6
5
4
3
2
RED  
DB7/LD  
DB6/SDATA  
DB5/SCLK  
DB4  
100PF  
N/C  
N/C  
N/C  
GRN  
DB3  
DB2  
DB1  
DB0  
C
C
D
BLU  
DIGITAL  
ASIC  
11  
12  
13  
VDCEXT  
VREF+  
ADCCLK  
CLAMP  
SYNCH  
DVDD (3V - 5V)  
AVDD  
20  
14  
1
AVDD  
AGND  
DVDD  
DGND  
10  
AGND  
XRD9826  
DGND  
Figure 14. Typical Application Circuitry Single  
Channel CCD AC Coupled Inverted Mode.  
Rev. 1.00  
20  
XRD9826  
AREA, LINEAR or B/W CCD -- AC Coupled  
(CLAMP Enabled)  
Pixel N-1  
Pixel N  
Pixel N+1  
CCD  
Channel N  
tckpd  
tckhw tcklw  
tap  
tap  
ADCCLK  
tclpw  
CLAMP  
[5:0]  
tdv  
tdv  
N-6  
N-7  
MSB  
N-8  
MSB  
N-7  
N-6  
N-8  
LSB  
DB  
MSB  
LSB  
LSB  
[11:6]  
Note: There is an 8 clock latency at the output.  
Figure 15. Timing Diagram for Figure 14.  
Triple Channel CCD Application  
Thegainandoffsetisautomaticallyrotatedtoadjustfor  
each channel input. The MSBs (8 upper bits) are  
available on the output bus on the falling edge of  
ADCCLK. The LSBs (8 lower bits) are available on the  
rising edge of ADCCLK.  
Figure 6 is a block diagram for pixel-by-pixel applica-  
tions with triple channel CCDs. During the optically  
shielded section of a pixel, CLAMP must go high to  
storetheblackreferenceoneachcapacitortotheinput.  
Rev. 1.00  
21  
XRD9826  
XRD9827  
VDD  
CLAMP  
VRT  
RED/GRN/BLU  
C
C
D
M
U
X
RL  
N/C  
VRB  
Figure 16. CCD AC Coupled Application  
Rev. 1.00  
22  
XRD9826  
VCC (5V - 15V)  
19  
18  
17  
16  
15  
9
8
7
6
5
4
3
2
RED  
DB7/LD  
DB6/SDATA  
DB5/SCLK  
DB4  
100PF  
100PF  
100PF  
GRN  
DB3  
DB2  
DB1  
DB0  
C
C
D
BLU  
DIGITAL  
ASIC  
11  
12  
N/C  
VDCEXT  
VREF+  
ADCCLK  
CLAMP  
SYNCH  
13  
AVDD  
DVDD (3V - 5V)  
20  
14  
1
AVDD  
AGND  
DVDD  
DGND  
10  
AGND  
XRD9826  
DGND  
Figure 17. Typical Application Circuitry Triple Channel CCD  
AC Coupled Inverted Mode  
Rev. 1.00  
23  
XRD9826  
PIXEL-BY-PIXEL 3 CHANNEL CCD -- AC Coupled  
(CLAMP Enabled)  
RED  
N Pixel  
N+1 Pixel  
GRN  
N Pixel  
N+1 Pixel  
tclp=10ns  
tclp=10ns  
BLU  
N Pixel  
N+1 Pixel  
tap  
CONVERT  
BLU (N)  
CONVERT  
GRN (N)  
TRACK  
RED (N)  
CONVERT  
RED (N)  
TRACK  
GRN (N)  
TRACK  
BLU (N)  
TRACK  
RED (N+1)  
CONVERT  
RED (N+1)  
ADCCLK  
CLAMP  
trars  
Simultaneous  
Sample  
CLAMP  
tdv  
tdv  
RED (N-6)  
tdv  
RED (N-6)  
tdv  
GRN (N-6)  
tdv  
GRN (N-6)  
MSB  
BLU (N-6)  
LSB  
BLU (N-6)  
MSB  
LSB  
LSB  
MSB  
DATA  
tsa  
tsypw  
SYNCH  
Note: There is an 8 clock latency at the output.  
Figure 18. Timing Diagram for Figure 17  
ADCCLK  
Events  
3rd ↓  
Simultaneous RED/GRN/BLU Sample Every 3rd CLK.  
Convert RED, S/H GRN, S/H BLU.  
MSB Data Out (8 upper bits)  
All ↓  
LSB Data Out (8 lower bits)  
HI  
LO  
ADC Track PGA Output  
ADC Hold/Convert  
CLAMP  
HI  
Events  
Internal Clamp Enabled  
LO  
SYNCH  
HI  
Internal RED/GRN/BLU Tracking Enabled  
Events  
Reset Internal Mux to Red, Ouput Bus is Tri-stated  
Increment Mux Color on Falling Edge of ADCCLK  
LO  
Table 5.  
Rev. 1.00  
24  
XRD9826  
VRT  
S1, S2 and S3 close when  
CLAMP is high and open  
when CLAMP is low  
S1 S2 S3  
From CCD RED  
Channel  
S6  
S7  
S8  
C
C
C
EXT  
EXT  
EXT  
R
G
B
12-Bit ADC  
S9 closes at rising edge and opens  
at falling edge of ADCCLK  
From CCD  
S4  
VRT - V  
PIX  
GRN Channel  
-
S9  
PGA  
+
T/H  
T/H  
From CCD BLU  
Channel  
S5  
VRT  
VCDS = PGAG * [VRT - (VRT - VPIX)]  
= PGAG * VPIX  
T/H  
XRD9827  
VBLK  
CCD  
Waveform  
V
PIX  
V
-
VBLK  
PIX  
CLAMP  
S8 Opens, S4,  
S5 and S6  
S8 Opens, S4,  
S6 opens, S7  
closes at this  
rising edge  
S7 opens, S8  
closes at this  
rising edge  
S4 and S5 open  
at this falling  
edge  
S5 and S6  
close at this  
rising edge  
close at this  
rising edge  
Track  
RED  
Convert  
RED  
Track  
GRN  
Convert  
GRN  
Track  
BLU  
Convert  
BLU  
Track  
RED  
Convert  
RED  
ADCCLK  
Figure 19. CDS Timing (Triple Channel)  
Mode:11000001110  
Rev. 1.00  
25  
XRD9826  
PGA GAIN TRANSFER CURVE  
GAIN 1 - 10  
10  
9
8
7
6
5
4
3
2
1
Mode 2. DC Coupled  
Typical CCDs have outputs with black references.  
Therefore, DC Coupled is not recommended for CCD  
applications.  
OffsetControlDAC  
0
10  
20  
30  
40  
50  
60  
TheoffsetDACiscontrolledby8bits. Theoffsetrange  
is800mVrangingfrom-200mVto+600mV(whenDB5  
is set to 0) and -400 mV to +400 mV (when DB5 is set  
to 1). Therefore, the resolution of the 8-Bit offset DAC  
is 3.14 mV. However, the XRD9826 has +/- 100 mV  
reserved for internal offsets. Therefore, the effective  
rangeforadjustingforCISoffsetsorblackreferenceis  
600 mV. The offset adjustment is used primarily to  
correctforthedifferencebetweentheblacklevelofthe  
imagesensorandthebottomladderreferencevoltage  
(VRB) of the ADC. By adjusting the black level to  
correspondtoVRB,theentirerangeoftheADCcanbe  
used.  
CODE  
Figure 20. Transfer Curve for the 6-Bit PGA  
After the signal is level shifted to correspond with the  
bottom ladder reference voltage, the system can be  
calibrated such that a white video pixel can represent  
thetopladderreferencevoltagetotheADC. Thisallows  
for a full scale conversion maximizing the resolution of  
the ADC.  
AnalogtoDigitalConverter  
IftheoffsetoftheCISoutputisgreaterthan500mVan  
external reference can be applied to VDCEXT. The  
external reference can be used to adjust for large  
offsets only when the internal mode is configured  
through the serial port.  
The ADC is a 16-bit, 10 MSPS analog-to-digital con-  
verterforhighspeedandhighaccuracy. TheADCuses  
a subranging architecture to maintain low power con-  
sumption at high conversion rates. The output of the  
ADCisonan8-bitdatabus. The8-bitdatabussupports  
8x8 output data. ADCCLK samples the input on its  
falling edge. After the input is sampled, the MSB (8  
upperbits)islatchedtotheoutputdrivers. Ontherising  
edge of the ADCCLK, the LSB (8 lower bits) is latched  
to the output drivers. The output needs to be  
demultiplexed with external circuitry or a digital ASIC.  
There is an 8 clock cycle latency (Config 00, 11) or 6  
pixel count latency (Config 01, 10) for the analog-to-  
digitalconverter.  
Since the offset DAC adjustment is done before the  
gain stage, it is gain-dependent. For example, if the  
gain needs to be changed between lines (red to blue,  
etc.), the offset is calibrated before the signal passes  
through the PGA.  
PGA (Programmable Gain Amplifier) DAC  
The gain of the input waveform is controlled by a 6-Bit  
PGA. The PGA is used along with the offset DAC for  
the purpose of using the entire range of the ADC. The  
PGA has a linear gain from 1 to 10. Figure 19 is a plot  
of the transfer curve for the PGA gain.  
The VRT and VRB reference voltages for the ADC are  
generated internally, unless the external VRT is se-  
lected. In the external VRT mode, the VRT voltage is set  
through the VREF+ pin. This allows the user to select  
the dynamic range of the ADC.  
Rev. 1.00  
26  
XRD9826  
SerialLoadControlRegisters  
The serial load registers are controlled by a three wire  
serialinterfacethroughthebi-directionalparallelportto  
reducethepincountofthisdevice. WhenSYNCHisset  
to high, the output bus is tri-stated and the serial  
interface is activated. DB7/LD, DB5/SCLK and DB6/  
SDATA are the three input signals that control this  
process. The DB7/LD signal is set low to initiate the  
loading of the internal registers.  
ThefirstthreeMSBschoosewhichinternalregisterwill  
be selected. The remaining 8 LSBs contain the data  
needed for programming the internal register for a  
particularconfiguration.  
Power-UpStateoftheInternalRegisters  
The control register settings upon initial power-up are  
for CIS, DC Coupled configuration (VRT is set to  
internal, Input DC Reference=AGND and the input to  
theADCisselectedthroughtheREDchannel). Gainis  
unity and Offset is set to zero. The test modes are  
disabled in the power-up state.  
Thereareinternal registersthatareaccessedviaan11-  
bit data string. Data is shifted in on the rising edge of  
SCLK and loaded to the registers on the rising edge of  
LD. The data on pin DB6/SDATA is latched automati-  
cally after eleven DB5/SCLKs have been counted. If  
elevenclocksarenotpresentonDB5/SCLKbeforethe  
DB7/LD signal returns high, no data will be loaded into  
the internal registers. If more than 11 clocks are  
present on DB5/SCLK, the additional clocks will be  
ignored. The data corresponding to the first eleven  
DB5/SCLKs will be loaded only.  
SYNCH  
tsclkw  
DB7/LD  
tdl  
tdz  
DB5/SCLK  
tds tdh  
S1  
S2  
S0  
D7  
D2  
D1  
D0  
DB6/SDATA  
Figure 21. Write Timing  
Rev. 1.00  
27  
XRD9826  
OutputBusFormat  
ADCOutput>DO15(MSB):DO0(LSB)  
DB7  
DO5  
DO7  
DB6  
DO4  
DO6  
DB5  
DO3  
DO5  
DB4  
DO2  
DO4  
DB3  
DO1  
DO3  
DB2  
DO0  
DO2  
DB1  
DO9  
DO1  
DB0  
DO8  
DO0  
MSB  
LSB  
Table 9. 8 MSB + 8 LSB Output Bus Format  
Note : 1 These are the control register settings upon initial power-up. The previous register settings are retained  
following a logic power-down initiated by the power down bit except the signal configuration. When de-selecting  
the power down bit (D7 = 0, Normal), the signal configuration (D5 and D0) has to be reprogrammed.  
2
MSB = 8 upper bits  
LSB = 8 lower bits  
Rev. 1.00  
28  
XRD9826  
ControlRegisters  
Function  
(Register  
S2/S1/S0)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Power-up  
State  
(Note1)  
Red Gain  
(000)  
G5  
(MSB)  
G4  
O6  
G4  
G3  
O5  
G3  
G2  
O4  
G2  
G1  
O3  
G1  
G0  
(LSB)  
X
O1  
X
X
000000XX  
01000000  
000000XX  
Red Offset  
(001)  
O7  
(MSB)  
O2  
O0  
(LSB)  
Grn Gain  
(010)  
G5  
(MSB)  
G0  
(LSB)  
X
Grn Offset  
(011)  
O7  
(MSB)  
O6  
G4  
O6  
O5  
G3  
O4  
G2  
O4  
O3  
G1  
O2  
O1  
X
O0  
(LSB)  
01000000  
000000XX  
Blu Gain  
(100)  
G5  
(MSB)  
G0  
(LSB)  
X
Blu Offset  
(101)  
O7  
(MSB)  
O5  
O3  
O2  
O1  
O0  
(LSB)  
01000000  
00000000  
Mode  
(110)  
POWER  
DOWN  
DIGITAL  
RESET  
VRT  
INPUTDC  
REFERENCE  
DC/AC  
SIGNAL  
POLARITY  
SIGNAL  
CONFIGURATION  
(VDCREF  
)
0:NORMAL  
0: NO RESET  
0:INTERNAL  
1:EXTERNAL  
0:INTERNAL  
(VDCREF=AGND)  
1:EXTERNAL  
0: DC  
1: AC  
0: Non-  
Inverted  
(CIS)  
1: Inverted  
(CCD/CIS)  
00:Single-Channel  
RED input/gain/offset  
1:  
1:RESET  
(REGISTERS  
ARERESETTO  
POWER-UP  
STATES)  
POWER  
DOWN  
(VDCREF=VDCEXT  
)
01:Single-Channel  
REDinput  
RED/GRN/BLU  
gain/offset cycle  
pixel-by-pixel  
10:Triple-Channel  
RED/GRN/BLU  
input/gain/offset cycle  
pixel-by-pixel  
11:Triple-Channel  
RED/GRN/BLU  
input/gain/offset cycle  
line-by-line  
Mode  
&Test  
(111)  
TEST5  
OUTPUT  
DISABLE  
OFFSET  
DAC  
RANGE  
INTERNALCIS  
REFERENCE  
CIRCUIT  
TEST4  
TEST3  
TEST2  
TEST1  
00000000  
0:NOTUSED  
1:NORMAL  
0:OUTPUTS  
ENABLED  
0:-200mV to  
+600mV  
0:NORMAL  
0: TEST4  
0:TEST3  
0:TEST2 0:NORMAL  
DISABLED DISABLED DISABLED  
1:OUTPUTS  
DISABLED  
1:-400mV to  
+400mV  
1:REFERENCE  
CIRCUIT  
ENABLED  
1:OUTPUT 1:OUTPUT  
OF BUFFER OFPGA  
TIEDTO  
BLU  
1:INPUT  
OFADC  
TIEDTO  
GRN  
1:TEST1  
ENABLED  
TIEDTO  
VDCEXT  
Rev. 1.00  
29  
XRD9826  
2.50  
2.00  
1.50  
1.00  
0.50  
0.00  
-0.50  
-1.00  
-1.50  
0.00  
20,000  
40,000  
60,000  
Code  
Figure 22. DNL: Single-Channel CCD 6MSPS AC Coupled  
2.50  
2.00  
1.50  
1.00  
0.50  
0.00  
-0.50  
-1.00  
-1.50  
0.00  
20,000  
40,000  
60,000  
Code  
Figure 23. DNL: Three-Channel CCD 6MSPS AC Coupled  
Rev. 1.00  
30  
XRD9826  
Rev. 1.00  
31  
XRD9826  
20 LEAD SHRINK SMALL OUTLINE PACKAGE  
(5.3 mm SSOP)  
Rev. 2.00  
D
20  
11  
E
H
1
10  
C
A2  
A
Seating  
Plane  
α
e
B
A1  
L
INCHES  
MILLIMETERS  
SYMBOL  
MIN  
MAX  
0.079  
0.006  
0.073  
0.015  
0.010  
0.296  
0.221  
MIN  
1.70  
0.05  
1.65  
0.22  
0.09  
6.90  
5.00  
MAX  
2.00  
0.15  
1.85  
0.38  
0.25  
7.50  
5.60  
A
A1  
A2  
B
C
D
0.067  
0.002  
0.065  
0.009  
0.004  
0.272  
0.197  
E
e
0.0256 BSC  
0.65 BSC  
H
L
0.292  
0.022  
0.323  
0.037  
7.40  
0.55  
8.20  
0.95  
α
0°  
8°  
0°  
8°  
Note: The control dimension is the inch column  
Rev. 1.00  
32  
XRD9826  
NOTICE  
EXAR Corporation reserves the right to make changes to the products contained in this publication in order to  
improve design, performance or reliability. EXAR Corporation assumes no responsibility for the use of any  
circuits described herein, conveys no license under any patent or other right, and makes no representation  
that the circuits are free of patent infringement. Charts and schedules contained here in are only for illustra-  
tion purposes and may vary depending upon a user’s specific application. While the information in this publi-  
cation has been carefully checked; no responsibility, however, is assumed for in accuracies.  
EXAR Corporation does not recommend the use of any of its products in life support applications where the  
failure or malfunction of the product can reasonably be expected to cause failure of the life support system or  
to significantly affect its safety or effectiveness. Products are not authorized for use in such applications  
unless EXAR Corporation receives, in writing, assurances to its satisfaction that: (a) the risk of injury or  
damage has been minimized; (b) the user assumes all such risks; (c) potential liability of EXAR Corporation is  
adequately protected under the circumstances.  
Copyright 2000 EXAR Corporation  
Datasheet May 2000  
Reproduction, in part or whole, without the prior written consent of EXAR Corporation is prohibited.  
Rev. 1.00  
33  

相关型号:

XRD9826ACU

16-Bit Linear CIS/CCD Sensor Signal Processor with Serial Control
EXAR

XRD9827

12-Bit Linear CIS/CCD Sensor Signal Processor with Serial Control
EXAR

XRD9827ACD

12-Bit Linear CIS/CCD Sensor Signal Processor with Serial Control
EXAR

XRD9827ACD-F

暂无描述
EXAR

XRD9827ACU

12-Bit Linear CIS/CCD Sensor Signal Processor with Serial Control
EXAR

XRD9828

10-Bit Linear CIS/CCD Sensor Signal Processor with Parallel Interface
EXAR

XRD9828ACD

10-Bit Linear CIS/CCD Sensor Signal Processor with Parallel Interface
EXAR

XRD9828ACD18

Analog Circuit, 1 Func, CMOS, PDSO18, 0.300 INCH, SOIC-18
EXAR

XRD9829

10-Bit Linear CIS/CCD Sensor Signal Processor with Serial Control
EXAR

XRD9829ACD

10-Bit Linear CIS/CCD Sensor Signal Processor with Serial Control
EXAR

XRD9836

16-BIT PIXEL GAIN AFE
EXAR

XRD9836ACG

16-BIT PIXEL GAIN AFE
EXAR