XRT81L27 [EXAR]

SEVEN CHANNEL E1 LINE INTERFACE UNIT WITH CLOCK RECOVERY; SEVEN路E1线路接口时钟恢复单元
XRT81L27
型号: XRT81L27
厂家: EXAR CORPORATION    EXAR CORPORATION
描述:

SEVEN CHANNEL E1 LINE INTERFACE UNIT WITH CLOCK RECOVERY
SEVEN路E1线路接口时钟恢复单元

时钟
文件: 总30页 (文件大小:377K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
áç  
XRT81L27  
SEVEN CHANNEL E1 LINE INTERFACE UNIT WITH CLOCK RECOVERY  
NOVEMBER 2001  
REV.1.1.0  
FEATURES  
GENERAL DESCRIPTION  
Seven (7) Independent E1 (CEPT) Line Interface  
Units (Transmitter, Receiver, and Recovery)  
The XRT81L27 is an optimized seven-channel, ana-  
log, 3.3V, line interface unit, fabricated using low pow-  
er CMOS technology. The device contains seven in-  
dependent E1 channels, including data and clock re-  
covery circuits. It is primarily targeted towards the  
SDH multiplexers that accommodate TU12 Tributary  
Unit Frames. Line cards in these units multiplex 21 E1  
channels into higher SDH rates. Devices with seven  
E1 interfaces such as the XRT81L27 provide the  
most efficient method of implementing 21-channel  
line cards. Each channel performs the driver and re-  
ceiver functions necessary to convert bipolar signals  
to logical levels and vice versa.  
Transmit Output Pulses that are Compliant with the  
ITU-T G.703 Pulse Template Requirement for  
2.048Mbps (E1) Rates  
On-Chip Pulse Shaping for both 75and 120line  
drivers  
Receiver Can Either Be Transformer or Capacitive-  
Coupled to the Line  
Detects and Clears LOS (Loss of Signal) Per ITU-T  
G.775 and ETS 300 233 (programmable from Host)  
Compliant with the ITU-T G.823 Jitter Tolerance  
Requirements  
The receiver input accepts transformer or capacitor  
coupled signals, while the transmitter is coupled to  
the line using a 1:2 step-up transformer. The same  
transformer configuration can be used for both bal-  
anced 120 and unbalanced 75 interfaces. The  
Receiver Loss of Original Detection is compliant to  
G.775 and in Host Mode, the number of zeros re-  
ceived before RLOS is declared can be increased to  
4096 bits. This feature provides the user with the flex-  
ibility to implement RLOS specifications that require  
greater than G.775 requirements  
3.3V operation with 5V Input compatibility  
Low power consumption  
APPLICATIONS  
SDH and lPDH Multiplexers  
E1 Digital Cross-Connect Systems  
DECT (Digital European Cordless Telephone) Base  
Stations  
CSU/DSU Equipment  
FIGURE 1. BLOCK DIAGRAM  
SDO  
SDI  
Microprocessor  
Serial  
Interface  
(MSI)  
SClk  
CS  
RST  
LBM  
Channel 6  
Channel 5  
LBEN  
SR/DR  
MODE  
Channel 4  
Global  
Control  
Channel 3  
Channel 2  
RClkP  
ICT  
Channel 1  
MCLK  
TClkP  
Channel 0  
MCLK  
Timing  
Control  
TCLKP  
TPOS_n  
TCLK_n  
TNEG_n  
PDTx_n  
TAOS_n  
Encoded  
PDATA  
TTIP_n  
TX  
Pulse  
Shaper  
Timing  
Control  
Line  
Driver  
Encoder  
MUX  
Encoded  
NDATA  
TRING_n  
Remote  
Loopback  
Digital  
Loopback  
Analog  
Loopback  
LOS  
Detect  
LOS_n  
RPOS_n  
RClk_n  
RTIP_n  
Peak  
Detector  
Receive  
Equalizer  
Data & Timing  
Recovery  
MUX  
RRING_n  
Decoder  
RNEG_n  
Exar Corporation 48720 Kato Road, Fremont CA, 94538 (510) 668-7000 FAX (510) 668-7017 www.exar.com  
XRT81L27  
áç  
SEVEN CHANNEL E1 LINE INTERFACE UNIT WITH CLOCK RECOVERY  
REV. 1.1.0  
FIGURE 2. PIN OUT OF THE XRT81L27  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
AVDD  
AGND  
TClk_1  
RClk_6  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
RNEG_6/LCV_6  
RPOS_6/RDATA_6  
LOS_6  
TPOS_1/TDATA_1  
TNEG_1/CODE_1  
TAOS_1  
RClk_5  
RNEG_5/LCV_5  
RPOS_5/RATA_5  
LOS_5  
VDD  
GND  
TClk_3  
TPOS_3/TDATA_3  
TNEG_3/CODE_3  
TAOS_3  
TAOS_2  
TxClk_5  
TNEG_2/CODE_2  
TPOS_2/TDATA_2  
TClk_2  
TPOS_5/TDATA_5  
TNEG_5/CODE_5  
TAOS_5  
CS/B3  
SClk/B2  
SDI/B1  
SDO/LBM  
TAOS_6  
TNEG_6/CODE_6  
TPOS_6/TDATA_6  
TClk_6  
XRT81L27  
TAOS_0  
TNEG_0/CODE_0  
TPOS_0/TDATA_0  
TClk_0  
GND  
VDD  
RPOS_2/RDATA_2  
RNEG_2/LCV_2  
RClk_2  
GND  
VDD  
TAOS_4  
TNEG_4/CODE_4  
LOS_2  
RPOS_0/RDATA_0  
RNEG_0/LCV_0  
ORDERING INFORMATION  
PART NUMBER  
PACKAGE  
OPERATING TEMPERATURE RANGE  
-40°C to +85°C  
XRT81L27IV  
128 Lead TQFP  
2
áç  
XRT81L27  
SEVEN CHANNEL E1 LINE INTERFACE UNIT WITH CLOCK RECOVERY  
REV.1.1.0  
TABLE OF CONTENTS  
GENERAL DESCRIPTION .................................................................................................. 1  
FEATURES ................................................................................................................................................... 1  
APPLICATIONS .............................................................................................................................................. 1  
Figure 1. Block Diagram ................................................................................................................... 1  
Figure 2. Pin Out of the XRT81L27 ................................................................................................... 2  
ORDERING INFORMATION ............................................................................................................... 2  
TABLE OF CONTENTS ....................................................................................................... I  
PIN DESCRIPTIONS ........................................................................................................... 3  
TABLE 1: PIN NUMBER BY PIN NAME ..................................................................................................... 9  
ELECTRICAL CHARACTERISTICS ................................................................................. 10  
TABLE 2: ABSOLUTE MAXIMUM RATINGS ............................................................................................. 10  
TABLE 3: DC ELECTRICAL CHARACTERISTICS ..................................................................................... 10  
TABLE 4: TRANSMITTER ELECTRICAL CHARACTERISTICS ...................................................................... 10  
TABLE 5: PER CHANNEL POWER CONSUMPTION INCLUDING LINE POWER DISSIPATION, TRANSMISSION AND  
RECEIVE PATHS ALL ACTIVE .................................................................................................... 11  
TABLE 6: RECEIVER ELECTRICAL CHARACTERISTICS ........................................................................... 11  
Figure 3. Receive Output Timing ................................................................................................... 12  
Figure 4. Transmit Input Timing ..................................................................................................... 12  
TABLE 7: AC ELECTRICAL CHARACTERISTICS ..................................................................................... 12  
THE HARDWARE MODE ............................................................................................................................... 13  
THE HOST MODE ....................................................................................................................................... 13  
1.0 The Microprocessor Serial Interface (MSI) ........................................................................................... 13  
1.1 MICROPROCESSOR SERIAL INTERFACE DESCRIPTION. ............................................................................ 13  
USING THE MICROPROCESSOR SERIAL INTERFACE (MSI) ............................................................................ 13  
1.1.1 Selection Phase ........................................................................................................................ 13  
1.1.2 Data phase of the (MSI) operation ........................................................................................... 14  
Figure 5. Timing Diagram for the Microprocessor Serial Interface ............................................ 14  
TABLE 8: MICROPROCESSOR SERIAL INTERFACE TIMING (SEE FIGURE 5) ............................................. 15  
Figure 6. Microprocessor Serial Interface Data Structure ........................................................... 15  
1.2 DESCRIPTION OF THE COMMAND REGISTERS ........................................................................................ 16  
TABLE 9: MICROPROCESSOR REGISTER ADDRESS AND CONTROL ........................................................ 16  
TABLE 10: COMMAND CONTROL REGISTER - ADDRESS 0000 - HEX 0X00 ........................................... 16  
(COMMON TO ALL SEVEN CHANNELS) ............................................................................................ 16  
TABLE 11: LOCAL LOOP-BACK REGISTERS - ADDRESS: 0001, HEX 0X01 ........................................... 17  
TABLE 12: REMOTE LOOP-BACK REGISTERS - ADDRESS: 0010, HEX 0X02 ......................................... 17  
TABLE 13: ANALOG LOOP-BACK REGISTERS - ADDRESS: 0011, HEX 0X03 ......................................... 17  
TABLE 14: TAOS REGISTERS - ADDRESS: 0100, HEX 0X04 ............................................................... 17  
TABLE 15: RAOS REGISTERS - ADDRESS: 0101, HEX 0X05 ............................................................... 17  
TABLE 16: PDTX REGISTERS - ADDRESS: 0110, HEX 0X06 ................................................................ 18  
1.3 OPERATION OF THE COMMAND CONTROL REGISTER BITS (ADDRESS: 0000, HEX 0X00) ........................ 18  
TCLKP (BIT 0) ............................................................................................................................................ 18  
RCLKP (BIT 1) ........................................................................................................................................... 18  
CODE (BIT 2) ............................................................................................................................................ 18  
SR/DR (BIT 3) ........................................................................................................................................... 18  
MUTE (BIT 4) ............................................................................................................................................ 18  
EXLOS (BIT 5) .......................................................................................................................................... 18  
ARAOS (BIT 6) .......................................................................................................................................... 18  
1.4 CHANNEL CONTROL REGISTERS ........................................................................................................... 18  
LLB[6:0] (ADDRESS 0001) ......................................................................................................................... 18  
RLB[6:0] (ADDRESS 0010) ......................................................................................................................... 18  
ALBX (ADDRESS 0011) .............................................................................................................................. 18  
TAOS[6:0] (ADDRESS 0100) ...................................................................................................................... 18  
I
XRT81L27  
áç  
SEVEN CHANNEL E1 LINE INTERFACE UNIT WITH CLOCK RECOVERY  
REV. 1.1.0  
RAOS[6:0] (ADDRESS 0101) ...................................................................................................................... 18  
PDTX[6:0] (ADDRESS 0110) ....................................................................................................................... 18  
2.0 The transmit section ............................................................................................................................... 19  
2.1 THE TRANSMIT LOGIC BLOCK. ............................................................................................................... 19  
Figure 7. The Interface for the Transmission of Data From the Transmitting Terminal Equipment  
to the Transmit Section of the XRT81L27 ......................................................................... 19  
2.1.1 Dual-rail input mode .................................................................................................................. 19  
Figure 8. Dual Rail Data from the Terminal .................................................................................... 19  
2.1.2 Single-rail input mode ............................................................................................................... 19  
Figure 9. Single-Rail Data From the Terminal ............................................................................... 20  
2.1.3 TClk input .................................................................................................................................. 20  
2.2 THE ENCODER BLOCK ........................................................................................................................... 20  
2.2.1 HDB3 Encoding ......................................................................................................................... 20  
Figure 10. HDB3 Encoding .............................................................................................................. 20  
2.3 THE MUX BLOCK .................................................................................................................................. 20  
2.3.1 Timing Control Block ................................................................................................................. 21  
2.3.2 The Transmit Clock Duty Cycle Adjust Circuit .......................................................................... 21  
2.3.3 Transmit All Ones ...................................................................................................................... 21  
2.4 THE PULSE SHAPING CIRCUIT ............................................................................................................... 21  
Figure 11. ITU-T G.703 Pulse Template .......................................................................................... 22  
2.5 THE LINE DRIVER BLOCK ...................................................................................................................... 22  
2.6 INTERFACING THE TRANSMIT SECTIONS OF THE XRT81L27 TO THE LINE ............................................... 22  
Figure 12. Illustration of how to interface the Transmit Sections of the XRT81L27 to the Line (for  
75 or 120W Applications) ................................................................................................... 23  
3.0 The Receive Section ............................................................................................................................... 23  
3.1 INTERFACING THE RECEIVE SECTIONS TO THE LINE ............................................................................... 23  
Figure 13. Schematic for Interfacing the Receive Sections of the XRT81L27 to the Line for 75W  
(Transformer-Coupled) Applications ................................................................................ 24  
Figure 14. Schematic for Interfacing the Receive Sections of the XRT81L27 to the Line for 120W  
(Transformer-Coupled) Applications ................................................................................ 24  
3.2 CAPACITIVE-COUPLING THE RECEIVER TO THE LINE ............................................................................... 25  
Figure 15. Capacitive - Coupled Receive Sections of the XRT81L27 to the Line (for Balanced  
120W Applications) ............................................................................................................. 25  
3.3 THE RECEIVE EQUALIZER BOCK ............................................................................................................ 25  
3.4 THE PEAK DETECTOR AND SLICER BLOCK ............................................................................................. 26  
3.5 THE LOS DETECTOR BLOCK ................................................................................................................. 26  
Figure 16. Package Outline Drawing .............................................................................................. 27  
REVISIONS ................................................................................................................................................. 28  
II  
áç  
XRT81L27  
SEVEN CHANNEL E1 LINE INTERFACE UNIT WITH CLOCK RECOVERY  
REV. 1.1.0  
PIN DESCRIPTIONS  
NOTE: I -H indicates an input pin with a 50kpull-up Resistor, I-L indicates an input pin with a 50kpull-down resistor.  
PIN #  
NAME  
RClk_0  
LOS_0  
TYPE  
O
DESCRIPTION  
1
2
Receiver 0 Clock Output  
Receiver 0 Loss of Signal:  
O
This signal is asserted "High" to indicate loss of signal at the receive  
input.  
3
RST  
I-H  
Reset (Active-low): (Host Mode)  
“Low” Resets the register contents to zero.  
Loop-back Enable (Active-low): (Hardware Mode)  
“Low” for Loop-back mode enable.  
LBEN  
RTIP_0  
RRING_0  
PDTx_0  
4
5
6
I
I
Receiver 0 Bipolar Positive Input:  
Receiver 0 Bipolar Negative Input:  
I-H  
Power-down Transmitter 0:  
This pin is operational for both Host or Hardware Mode.  
This pin MUST be pulled “Low” to enable TTIP_0 and TRING_0 output  
buffers.  
Pull this pin "High" to power-down channel 0 transmitter and set TTIP_0  
and TRING_0 outputs to high impedance.  
7
TTIP_0  
TVDD_0  
TRING_0  
TGND_0  
PDTx_2  
TTIP_2  
O
Vdd  
O
Transmitter 0 Tip Output: Positive bipolar data output to the line  
Transmitter 0 Positive Supply (3.3V± 5%)  
Transmitter 0 Ring Output: Negative bipolar data output to the line.  
Transmitter 0 Supply Ground  
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
Gnd  
I-H  
O
Power-down Transmitter 2: (see pin 6)  
Transmitter 2 Tip Output: Positive bipolar data output to the line.  
Transmitter 2 Positive Supply(3.3V± 5%)  
Transmitter 2 Ring Output: Negative bipolar data output to the line.  
Transmitter 2 Supply Ground.  
TVDD_2  
TRING_2  
TGND_2  
AVDD  
Vdd  
O
Gnd  
AVdd  
I
Analog Positive Supply(3.3V± 5%)  
RTIP_2  
Receiver 2 Bipolar Positive Input:  
RRING_2  
AGND  
I
Receiver 2 Bipolar Negative Input:  
Gnd  
I
Analog Supply Ground.  
RTIP_4  
Receiver 4 Bipolar Positive Input:  
RRING_4  
PDTx_4  
TTIP_4  
I
Receiver 4 Bipolar Negative Input:  
I-H  
O
Power-down Transmitter 4: (see pin 6)  
Transmitter 4 Tip Output: Positive bipolar data output to the line.  
Transmitter 4 Positive Supply(3.3V± 5%)  
Transmitter 4 Ring Output: Negative bipolar data output to the line.  
TVDD_4  
TRING_4  
Vdd  
O
3
XRT81L27  
áç  
SEVEN CHANNEL E1 LINE INTERFACE UNIT WITH CLOCK RECOVERY  
REV. 1.1.0  
PIN DESCRIPTIONS  
NOTE: I -H indicates an input pin with a 50kpull-up Resistor, I-L indicates an input pin with a 50kpull-down resistor.  
PIN #  
NAME  
TGND_4  
PDTx_6  
TTIP_6  
TYPE  
Gnd  
I-H  
O
DESCRIPTION  
26  
Transmitter 4 Supply Ground  
27  
28  
29  
30  
31  
32  
Power-down Transmitter 6: (see pin 6)  
Transmitter 6 Tip Output: Positive bipolar data output to the line.  
Transmitter 6 Positive Supply(3.3V± 5%)  
TVDD_6  
TRING_6  
TGND_6  
MODE  
Vdd  
O
Transmitter 6 Ring Output: Negative bipolar data output to the line.  
Transmitter 6 Supply Ground  
Gnd  
I-L  
Mode Control Input:  
This pin is used to select Hardware or Host Mode control of the device.  
Tie “Low” to select Host Mode  
"High" to select Hardware Mode.  
33  
34  
RClk_4  
O
O
Receiver 4 Clock Output:  
RNEG_4  
Receiver 4 Negative Data Output:  
In Dual-Rail mode, this signal is the receive n-rail output data.  
Line Code Violation Output:  
LCV_4  
In Single-Rail mode, this signal outputs a "High" for one clock cycle to  
indicate a code violation is detected in the received data.  
If AMI coding is selected, every bipolar violation received will cause this  
pin to go "High".  
35  
RPOS_4  
RDATA_4  
O
Receiver 4 Positive Data Output:  
In Dual-Rail mode, this signal is the receive p-rail output data.  
Receiver 4 NRZ Data Output:  
In Single-Rail mode, this signal is the receive output data  
36  
37  
38  
LOS_4  
TClk_4  
O
I
Receiver 4 Loss of Signal: (see pin 2)  
Transmitter 4 Clock Input: E1 rate at 2.048MHz ± 50ppm.  
TPOS_4  
I
Transmitter 4 Positive Data Input:  
In Dual-Rail mode, this signal is the p-rail input data for transmitter 4.  
Transmitter 4 NRZ Data Input:  
In Single-Rail mode, this signal is used as the NRZ input data  
TDATA_4  
TNEG_4  
39  
40  
I-L  
I-L  
Transmitter 4 Negative Data Input:  
In Dual-Rail mode, this signal is the n-rail data input for transmitter 4.  
CODE_4  
TAOS_4  
In Single-Rail mode (pin 69=1) and with this pin tied "High", input data  
at the transmit input is encoded in HDB3 format and the substitution  
code in the corresponding receive channel will be removed.  
Tie this pin "Low" to enable AMI encoding and decoding.  
Transmit All Ones Channel_4:  
This pin is set to insert AMI all ones data to the line using MCLK as refer-  
ence.  
In Host Mode, this pin can be left unconnected.  
41  
42  
VDD  
GND  
Vdd  
Gnd  
Digital Positive Supply(3.3V± 5%).  
Digital Supply Ground.  
4
áç  
XRT81L27  
SEVEN CHANNEL E1 LINE INTERFACE UNIT WITH CLOCK RECOVERY  
REV. 1.1.0  
PIN DESCRIPTIONS  
NOTE: I -H indicates an input pin with a 50kpull-up Resistor, I-L indicates an input pin with a 50kpull-down resistor.  
PIN #  
NAME  
TYPE  
DESCRIPTION  
43  
TClk_6  
I
I
Transmitter 6 Clock Input: E1 rate at 2.048MHz ± 50ppm.  
Transmitter 6 Positive Data/ NRZ Input: (see pin 38)  
44  
TPOS_6/  
TDATA_6  
45  
TNEG_6/  
CODE_6  
I-L  
Transmitter 6 Negative Data Input: (see pin 39)  
Transmit All Ones Channel_6: (see pin 40)  
46  
47  
TAOS_6  
SDO  
I-L  
O
Serial Data Output: (Host Mode)  
This pin is the Serial Data Output port for the Microprocessor Serial  
Interface access.  
LBM  
I
I
Loop-back Mode: (Hardware Mode)  
When this pin is tied "High", Analog Local loop-back is selected.  
Connect this pin "Low" to select remote loop-back. Digital Local loop-  
back is not supported in Hardware Mode.  
48  
SDI  
B1  
Serial Data Input Port:  
Host Mode, this pin is the serial data input port (see Figure 5).  
Hardware Mode, B1, together with B2 (pin 49) and B3 (pin 50) are con-  
trol bits used to select which one of the seven channels to be placed in  
Loop-back mode. Analog or Remote Loop-back is determined by LBM  
(pin 47).  
Loop-back Channel Control  
B1  
0
B2  
0
B3  
0
Chan. #  
0
1
0
0
1
0
1
0
2
0
1
1
3
1
0
0
4
1
0
1
5
1
1
0
6
1
1
1
All  
49  
50  
51  
SClk  
B2  
I
I
Microprocessor Serial Interface Clock:  
Host Mode, this clock signal is used to clock SDI/SDO for the Serial  
Interface.  
Hardware Mode, B2, together with B1 and B3 are control bits to select  
which of the seven channels to be placed in Loop-back mode.(see pin 48  
description)  
CS  
B3  
Chip Select Input:  
Host Mode, this pin must be asserted "Low" in order to enable commu-  
nication with the device via the Serial Interface.  
Hardware Mode, B3, together with B1 and B2 are control bits to select  
which of the seven channels to be placed in Loop-back mode. (see pin  
48 description)  
TAOS_5  
I-L  
Transmit All Ones Channel_5: (see pin 40)  
5
XRT81L27  
áç  
SEVEN CHANNEL E1 LINE INTERFACE UNIT WITH CLOCK RECOVERY  
REV. 1.1.0  
PIN DESCRIPTIONS  
NOTE: I -H indicates an input pin with a 50kpull-up Resistor, I-L indicates an input pin with a 50kpull-down resistor.  
PIN #  
NAME  
TYPE  
DESCRIPTION  
52  
TNEG_5/  
CODE_5  
I-L  
Transmitter 5 Negative Data Input: (see pin 39)I  
53  
TPOS_5/  
TDATA_5  
I
Transmitter 5 Positive/ NRZ Data Input: (see pin 38)  
54  
55  
56  
57  
58  
TClk_5  
GND  
I
Transmitter 5 Clock Input: E1 rate at 2.048MHz ± 50ppm.  
Digital Supply Ground  
Gnd  
Vdd  
O
VDD  
Digital Positive Supply(3.3V± 5%)  
LOS_5  
Receiver 5 Loss of Signal: (see pin 2)  
Receiver 5 Positive/NRZ Data Output: (see pin 35)  
RPOS_5/  
RDATA_5  
O
59  
RNEG_5/  
LCV_5  
O
Receiver 5 Negative Data Output: (see pin 34)  
60  
61  
62  
RClk_5  
LOS_6  
O
O
O
Receiver 5 Clock Output.  
Receiver 6 Loss of Signal: (see pin 2)  
Receiver 6 Positive /NRZ Data Output: (see pin 35)  
RPOS_6/  
RDATA_6  
63  
RNEG_6/  
LCV_6  
O
Receiver 6 Negative Data Output: (see pin 34)  
64  
65  
RClk_6  
RClkP  
O
Receiver 6 Clock Output.  
I-L  
Receiver Clock Output Polarity: (Hardware Mode)  
"Low", All channel RPOS /RDATA and RNEG/LCV output data are  
updated on the falling edge of RClk.  
"High" to select data update on rising edge of RClk.  
66  
TClkP  
I-L  
Transmit Clock Polarity: (Hardware Mode)  
"Low", transmit input data is sampled using the falling edge of TClk.  
"High" to select rising edge of TClk for data sampling.  
67  
68  
69  
RRING_6  
RTIP_6  
SR/DR  
I
I
Receiver 6 Bipolar Negative Input:  
Receiver 6 Bipolar Positive Input:  
I-L  
Single-rail/Dual-rail Select:  
In Hardware Mode and with this pin tied to "High", input transmit data  
and receive output data is selected for Single-Rail mode operation.  
"Low" to select Dual-Rail mode.  
70  
MClk  
I
Master Clock Input:  
This signal is an independent 2.048MHz clock with accuracy better than  
±50ppm and duty cycle within 40% to 60%. The function of MCLK is to  
provide timing source for the PLL clock recovery circuit, reference clock  
to insert All Ones data in the transmit as well as the receive paths.  
71  
72  
TGND_5  
TRING_5  
Gnd  
O
Transmitter 5 Supply Ground  
Transmitter 5 Ring Output: Negative bipolar data output to the line  
6
áç  
XRT81L27  
SEVEN CHANNEL E1 LINE INTERFACE UNIT WITH CLOCK RECOVERY  
REV. 1.1.0  
PIN DESCRIPTIONS  
NOTE: I -H indicates an input pin with a 50kpull-up Resistor, I-L indicates an input pin with a 50kpull-down resistor.  
PIN #  
NAME  
TVDD_5  
TTIP_5  
PDTx_5  
RRING_5  
RTIP_5  
AGND  
TYPE  
Vdd  
O
DESCRIPTION  
Transmitter 5 Positive Supply (3.3V± 5%)  
Transmitter 5 Tip Output: Positive bipolar data output to the line.  
Power-down Transmitter 5: (see pin 6)  
Receiver 5 Bipolar Negative Input:  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
I-H  
I
I
Receiver 5 Bipolar Positive Input:  
Gnd  
I
Analog Supply Ground  
RRING_3  
RTIP_3  
AVDD  
Receiver 3 Bipolar Negative Input:  
I
Receiver 3 Bipolar Positive Input:  
AVdd  
Gnd  
O
Analog Positive Supply(3.3V± 5%)  
TGND_3  
TRING_3  
TVDD_3  
TTIP_3  
PDTx_3  
TGND_1  
TRING_1  
TVDD_1  
TTIP_1  
PDTx_1  
RRING_1  
RTIP_1  
ICT  
Transmitter 3 Supply Ground  
Transmitter 3 Ring Output: Negative bipolar data output to the line.  
Transmitter 3 Positive Supply(3.3V± 5%)  
Transmitter 3 Tip Output: Positive bipolar data output to the line.  
Power-down Transmitter 3: (see pin 6)  
Transmitter 1 Supply Ground.  
Vdd  
O
I-H  
Gnd  
O
Transmitter 1 Ring Output: Negative bipolar data output to the line.  
Transmitter 1 Positive Supply(3.3V± 5%)  
Transmitter 1 Tip Output: Positive bipolar data output to the line.  
Power-down Transmitter 1: (see pin 6)  
Receiver 1 Bipolar Negative Input:  
Vdd  
O
I-H  
I
I
Receiver 1 Bipolar Positive Input:  
I-H  
In-Circuit Testing (Active Low):  
When this pin is tied to "Low", all output pins are forced to high imped-  
ance state for in-circuit testing.  
95  
96  
97  
LOS_1  
RClk_1  
O
O
O
Receiver 1 Loss of Signal: (see pin 2)  
Receiver 1 Clock Output:  
RNEG_1/  
LCV_1  
Receiver 1 Negative Data Output: (see pin 34)  
98  
RPO_1S/  
RDATA_1  
O
Receiver 1 Positive/NRZ Data Output: (see pin 35)  
99  
LOS_3  
RClk_3  
O
O
O
Receiver 3 Loss of Signal: (see pin 2)  
Receiver 3 Clock Output:  
100  
101  
RNEG_3/  
LCV_3  
Receiver 3 Negative Data Output: (see pin 34)  
7
XRT81L27  
áç  
SEVEN CHANNEL E1 LINE INTERFACE UNIT WITH CLOCK RECOVERY  
REV. 1.1.0  
PIN DESCRIPTIONS  
NOTE: I -H indicates an input pin with a 50kpull-up Resistor, I-L indicates an input pin with a 50kpull-down resistor.  
PIN #  
NAME  
TYPE  
DESCRIPTION  
102  
RPOS_3/  
RDATA_3  
O
Receiver 3 Positive/NRZ Data Output: (see pin 35)  
103  
104  
105  
106  
AVDD  
AGND  
TClk_1  
AVdd  
Analog Positive Supply(3.3V± 5%)  
Gnd  
Analog Supply Ground  
I
I
Transmitter 1 Clock Input: E1 rate at 2.048MHz ± 50ppm.  
Transmitter 1 Positive/ NRZ Data Input: (see pin 38)  
TPOS_1/  
TDATA_1  
107  
TNEG_1/  
CODE_1  
I-L  
Transmitter 1 Negative Data Input: (see pin 39)  
108  
109  
110  
TAOS_1  
TClk_3  
I-L  
Transmit All Ones Channel_1: (see pin 40)  
I
I
Transmitter 3 Clock Input: E1 rate at 2.048MHz ± 50ppm.  
Transmitter 3 Positive/ NRZ Data Input: (see pin 38)  
TPOS_3/  
TDATA_3  
111  
TNEG_3/  
CODE_3  
I-L  
Transmitter 3 Negative Data Input: (see pin 39)  
112  
113  
114  
TAOS_3  
TAOS_2  
I-L  
I-L  
I-L  
Transmit All Ones Channel_4: (see pin 40)  
Transmit All Ones Channel_ 2: (see pin 40)  
Transmitter 2 Negative Data Input: (see pin 39)  
TNEG_2/  
CODE_2  
115  
TPOS_2/  
TDATA_2  
I
Transmitter 2 Positive/ NRZ Data Input: (see pin 38)  
116  
117  
118  
TClk_2  
I
Transmitter 2 Clock Input: E1 rate at 2.048MHz ± 50ppm.  
Transmit All Ones Channel_ 0: (see pin 40)  
TAOS_0  
I-L  
I-L  
TNEG_0/  
CODE_0  
Transmitter 0 Negative Data Input: (see pin 39)  
119  
TPOS_0/  
TDATA_0  
I
Transmitter 0 Positive/ NRZ Data Input: (see pin 38)  
120  
121  
122  
123  
TClk_0  
GND  
I
Transmitter 0 Clock Input: E1 rate at 2.048MHz ± 50ppm.  
Digital Supply Ground  
Gnd  
Vdd  
O
VDD  
Digital Positive Supply(3.3V± 5%)  
RPOS_2/  
RDATA_2  
Receiver 2 Positive/NRZ Data Output: (see pin 35)  
124  
RNEG_2/  
LCV_2  
O
Receiver 2 Negative Data Output: (see pin 34)  
125  
126  
RClk_2  
LOS_2  
O
O
Receiver 2 Clock Output:  
Receiver 2 Loss of Signal: (see pin 2)  
8
áç  
XRT81L27  
SEVEN CHANNEL E1 LINE INTERFACE UNIT WITH CLOCK RECOVERY  
REV. 1.1.0  
PIN DESCRIPTIONS  
NOTE: I -H indicates an input pin with a 50kpull-up Resistor, I-L indicates an input pin with a 50kpull-down resistor.  
PIN #  
NAME  
TYPE  
DESCRIPTION  
127  
RPOS_0/  
RDATA_0  
O
Receiver 0 Positive /NRZ Data Output: (see pin 35)  
128  
RNEG_0/  
LCV_0  
O
Receiver 0 Negative Data Output: (see pin 34)  
TABLE 1: PIN NUMBER BY PIN NAME  
CHANNEL RTIP RRING TTIP TRING RCLK RPOS RNEG  
LOS  
2
TCLK  
120  
105  
116  
109  
37  
TPOS TNEG PDT TAOS TVDD TGND  
0
1
2
3
4
5
6
4
5
7
9
1
127  
98  
128  
97  
119  
106  
115  
110  
38  
118  
107  
114  
111  
39  
6
117  
108  
113  
112  
40  
8
10  
87  
15  
82  
26  
71  
31  
93  
17  
80  
20  
77  
68  
92  
18  
79  
21  
76  
67  
90  
12  
85  
23  
74  
28  
88  
14  
83  
25  
72  
30  
96  
95  
91  
11  
86  
22  
75  
27  
89  
13  
84  
24  
73  
29  
125  
100  
33  
123  
102  
35  
124  
101  
34  
126  
99  
36  
60  
58  
59  
57  
54  
53  
52  
51  
64  
62  
63  
61  
43  
44  
45  
46  
GLOBAL SIGNALS  
RST  
3
RClkP  
MClk  
TClkP  
ICT  
65  
70  
66  
94  
MODE  
SR/DR  
32  
69  
CONTROLLER INTERFACE  
SDO 47  
POWER PINS  
SDI  
48  
SClk  
49  
CS  
50  
VDD  
GND  
41  
56  
55  
81  
78  
122  
121  
103  
104  
42  
16  
19  
AVDD  
AGND  
9
XRT81L27  
áç  
SEVEN CHANNEL E1 LINE INTERFACE UNIT WITH CLOCK RECOVERY  
REV. 1.1.0  
ELECTRICAL CHARACTERISTICS  
TABLE 2: ABSOLUTE MAXIMUM RATINGS  
-65°C to +150°C  
-40°C to +85°C  
STORAGE TEMPERATURE  
OPERATING TEMPERATURE  
ESD RATING  
2000V on all pinsa  
-0.5 to 6.0V  
SUPPLY VOLTAGE  
THETA-JA  
43 °C/Wb | 32 Degrees,C/Wc  
6 °C/W | 5 Degrees, C/W  
THETA-JC  
a. Human Body Model  
b. mounted on 4 (or more) layer board  
c. mounted on 3 (or less) layer board  
TABLE 3: DC ELECTRICAL CHARACTERISTICS  
PARAMETER  
SYMBOL  
MIN  
MAX  
UNIT  
Input High Voltage  
VIH  
2.0  
5.0  
V
Input Low Voltage  
VIL  
VOH  
VOL  
IL  
-0.5  
2.4  
0.8  
3.5  
V
V
Output High Voltage @ IOH = 5mA  
Output Low Voltage @ IOL = 5mA  
-0.5  
----  
0.4  
V
Input Leakage Current  
+ 10  
µA  
(except input pins with pull-up or  
pull-down resistors)  
Output Load Capacitance  
CL  
----  
25  
pF  
TABLE 4: TRANSMITTER ELECTRICAL CHARACTERISTICS  
(VDD=3.3V + 5%, TA= -40°C to +85°C Unless Otherwise Specified)  
PARAMETER  
MIN  
MAX  
UNIT  
TEST CONDITIONS  
AMI Output Pulse Amplitude:  
75Application  
120Application  
Use transformer with 1:2 ratio  
and 9.1resistor in series with  
each end of primary.  
2.13  
2.70  
2.60  
3.30  
V
V
Output Pulse Width  
224  
0.95  
0.95  
264  
1.05  
1.05  
ns  
----  
----  
Output Pulse Width Ratio  
Output Pulse Amplitude Ratio  
ITU-G.703  
ITU-G.703  
Output Return Loss:  
51KHz --102KHz  
102KHz--2048KHz  
2048KHz--3072KHz  
8
14  
10  
----  
----  
----  
dB  
dB  
dB  
ETSI 300 166, CHPTT  
10  
áç  
XRT81L27  
SEVEN CHANNEL E1 LINE INTERFACE UNIT WITH CLOCK RECOVERY  
REV. 1.1.0  
TABLE 5: PER CHANNEL POWER CONSUMPTION INCLUDING LINE POWER DISSIPATION, TRANSMISSION AND RECEIVE  
PATHS ALL ACTIVE  
SYMBO  
PARAMETER  
MIN  
MAX  
UNIT  
CONDITIONS  
L
Power Consumption  
Power Consumption  
Power Consumption  
Power Consumption  
PC  
PC  
PC  
PC  
-
-
-
-
107  
92  
mW  
mW  
mW  
mW  
75load, operating at 50% Mark Density  
120load, operating at 50% Mark Density.  
75load, operating at 100% Mark Density.  
120load, operating at 100% Mark Density.  
180  
155  
TABLE 6: RECEIVER ELECTRICAL CHARACTERISTICS  
(VDD=3.3V + 5%, TA= -40°C to +85°C Unless Otherwise Specified)  
PARAMETER  
MIN  
MAX  
UNIT  
TEST CONDITIONS  
Receiver loss of signal:  
Number of consecutive zeros  
before LOS is set  
10  
255  
bit  
Number of consecutive Zeros  
----  
4096  
before EXLOS is set  
Input signal level at LOS  
LOS Delay  
12  
---  
255  
2
dB  
bit  
Cable attenuation @1024KHz  
ITU-G.775, ETSI 300 233  
Hysteresis  
dB  
dB  
Receiver Sensitivity  
11  
----  
With nominal pulse amplitude of 3.0V for  
120and 2.37V for 75application.  
Interference Margin  
Input Impedance  
-18  
10  
----  
----  
dB  
With 6dB cable loss.  
KΩ  
Between RTIP or RRING to ground  
Jitter Tolerance:  
20 Hz  
700Hz  
10  
5
----  
0.5  
UIpp  
dB  
ITU G.823  
10KHz ¾100KHz  
0.3  
Recovered Clock Jitter Transfer  
Peaking Amplitude  
Corner Frequency = 36KHz  
ITU G.736  
----  
Return Loss:  
51KHz -- 102KHz  
102KHz -- 2048KHz  
2048KHz -- 3072KHz  
14  
20  
16  
----  
----  
----  
dB  
dB  
dB  
ITU-G.703  
11  
XRT81L27  
áç  
SEVEN CHANNEL E1 LINE INTERFACE UNIT WITH CLOCK RECOVERY  
REV. 1.1.0  
FIGURE 3. RECEIVE OUTPUT TIMING  
RClk  
T1  
RClkP=0  
TPD  
TRPW  
RPOS/RNEG  
RClkP=1  
TRPW  
TPD  
RPOS/RNEG  
FIGURE 4. TRANSMIT INPUT TIMING  
TClk  
T 1  
TClkP=0  
TPOS/TNEG  
T SU  
T HD  
TClkP=1  
TPOS/TNEG  
T SU  
T HD  
TABLE 7: AC ELECTRICAL CHARACTERISTICS  
(VDD=3.3V + 5%, TA= -40°C to +85°C Unless Otherwise Specified)  
PARAMETER  
SYMBOL  
MIN  
MAX  
UNIT  
TCLK Clock Period  
T1  
488.25  
488.30  
ns  
TCLK Duty Cycle  
TDC  
TSU  
THO  
TR  
30  
50  
50  
-
70  
-
%
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Transmit Data Setup Time  
Transmit Data Hold Time  
TCLK Rise Time(10%/90%)  
TCLK Fall Time(90%/10%)  
Receive Data Rise Time  
Receive Data Fall Time  
Receive Data Prop. Delay  
Receive Data Pulse Width  
-
40  
40  
40  
40  
-
TF  
-
TR  
-
TF  
-
TPD  
TRPW  
20  
450  
-
12  
áç  
XRT81L27  
SEVEN CHANNEL E1 LINE INTERFACE UNIT WITH CLOCK RECOVERY  
REV. 1.1.0  
If the TAOSX pin of a channel is pulled "High", the  
FUNCTIONAL DESCRIPTION  
channel will Transmit all ones using the MClk signal  
for a timing reference. If "Low", "normal" data will be  
transmitted using the TClk.  
The XRT81L27 operates in two modes; Hardware or  
Host. As described below, Hardware mode allows the  
chip to be controlled by digital signals to put it into  
various configurations. The Host mode allows a Micro  
to control these configurations through a serial inter-  
face.  
THE HOST MODE  
To configure the XRT81L27 to operate in the HOST  
Mode, connect the MODE input pin (pin 32) to  
Ground or leave unconnected.  
THE HARDWARE MODE  
When the XRT81L27 is operating in the HOST Mode,  
the Microprocessor Serial Interface block is enabled.  
Configuration selections are made by writing the ap-  
propriate data into the on-chip Command Registers  
via the Microprocessor Serial Interface.  
The XRT81L27 is placed into the Hardware mode by  
connecting the Mode pin (pin 32) to VDD ("High").  
When the chip is in the Hardware mode the following  
control pins are active: RST/LBEN (pin 3), SDO/LBM  
(pin 47), SDI/B1 (pin 48), SClk/B2 (pin 49), CS/B3  
(pin 50), SR/DR (pin 69), RClkP (pin 65), TClkP (pin  
66). The TAOSx pins (40, 46, 51, 108, 112, 113, 117)  
are used to insert "all ones" data into the individual  
channels. In addition, the PDTx pins (6, 11, 22, 27,  
75, 86, 91) are active in both Hardware and Host  
modes to control the individual Transmit line buffers.  
1.0 THE MICROPROCESSOR SERIAL INTER-  
FACE (MSI)  
The on-chip Command Registers of the XRT81L27  
E1 Line Interface Unit IC are accessed to configure  
the XRT81L27 into a variety of modes. This section  
describes how to use the Microprocessor Serial Inter-  
face and the Command Registers.  
The RST/LBEN pin (3) is used to enable Loopback  
mode. When pulled "Low" Loopback is active. SDO/  
LBM (pin 47) selects the type of Loopback. With LBM  
(pin 47) "High", Analog Loopback is active (Terminal  
Equipment Transmit through the channel(s) selected  
and back to the Receive out pins). If LBM is "Low",  
Remote Loopback is selected (Receive line through  
the channel and back out onto the Transmit TIP/RING  
buffer onto the Transmit line. Digital Local Loopback  
is not supported in Hardware mode.  
1.1 MICROPROCESSOR SERIAL INTERFACE DESCRIP-  
TION.  
The XRT81L27 MSI uses a simple four wire interface  
that is compatible with most microcontrollers. Either  
hardware blocks in the micro can supply the data or  
“bit-banging” can be used. This interface consists of  
the following signals:  
CS  
(pin 50) Chip Select (Active Low)  
SCLK (pin 49) Serial Clock  
Pins B1, B2, and B3 are used to select the desired  
Loopback channel as shown on page 5. This allows  
the selection of any one of the seven channels or all  
seven. SR/DR (pin 69) is used to select between Sin-  
gle Rail or Dual Rail mode for data to and from the  
Terminal equipment. With pin 69 tied "High", Single  
Rail is selected. Dual Rail will be active if the pin is  
pulled "Low". An internal pull-down will accomplish  
that if the if the pin is left open.  
SDI  
(pin 48) Serial Data Input  
(pin 47) Serial Data Output  
SDO  
USING THE MICROPROCESSOR SERIAL INTER-  
FACE (MSI)  
The user performs Read and Write operations to the  
on-chip Command Registers (via the MSI) in two dis-  
tinct phases:  
With RClkP "Low" or open, all RPOS & RNEG lines  
are updated on the falling edge of RClk. When RClkP  
is "High", RPOS & RNEG are updated on the rising  
edge of RClk. In Host mode the update edge is con-  
trolled by the RClkP bit in the Global control latch  
(R0, bit 1).  
The “Selection Phase”, and  
The “Data Phase”  
The procedure for performing each of these phases is  
presented below.The following descriptions for using  
the Microprocessor Serial Interface are best under-  
stood by referring to the diagram in Figure 6.  
When TClkP is "Low" or open, all TPOS & TNEG  
lines are sampled on the falling edge of TCLK. When  
TClkP is "High", TPOS & TNEG are sampled on the  
rising edge of TClk. In Host mode the sampling edge  
is controlled by the TClkP bit in the Global control  
register (R0, bit 0).  
1.1.1 Selection Phase  
In order to use the Microprocessor Serial Interface, a  
chip select CS signal must be supplied to the CS in-  
put pin. It is important to assert the CS pin (“Low”) at  
least 50ns prior to the first rising edge of the clock  
signal.  
13  
XRT81L27  
áç  
SEVEN CHANNEL E1 LINE INTERFACE UNIT WITH CLOCK RECOVERY  
REV. 1.1.0  
Once the CS input pin has been asserted, the type of  
operation and the target register address must be  
specified. This information is supplied to the MSI by  
writing eight serial bits of information into the SDI in-  
put. Each of these bits is clocked into the MSI from  
the SDI input on the rising edge of SCLK. These eight  
bits are identified and described next.  
Bits 6 and 7:  
The next two bits, (A4 and A5) must be set to “0” as  
shown in Figure 6.  
Bit 8:  
The value of A6 is a “don’t care” but must be clocked.  
1.1.2 Data phase of the (MSI) operation  
The Microprocessor Serial Interface (MSI) must next  
be supplied with 8 additional clocks with the relative  
timing of Figure 5. Table 10 provides essential values  
for both the selection and data phases of the MSI op-  
eration. If the operation specified is a Read, the  
XRT81L27 will output data on the SDO pin from the  
addressed register. Data is output in ascending order  
with the LSB first  
Bit 1 - R/W (Read/Write) Bit  
This bit is clocked into the SDI input on the first rising  
edge of SCLK after CS has been asserted. This bit  
indicates whether the current operation is a Read or  
Write operation. A “1” in this bit specifies a Read from  
the XRT81L27, a “0” in this bit specifies a Write to the  
device.  
Bits 2 through 5: The four (4) bit Address Values  
(labeled A0, A1, A2 and A3)  
If a Write operation has been activated, the external  
hardware/Micro must supply the first seven (7) bits to  
be written into the selected register. The eighth bit is  
a “Don’t care” as only seven bits are used in each of  
the registers. These bits are input LSB first.  
The next four rising edges of the SCLK provide the 4-  
bit address value for this operation. The address se-  
lects the appropriate Command/Control Register in  
the XRT81L27. The address bits must be supplied to  
the SDI input pin in ascending order with the LSB  
(least significant bit) first.  
At the end of the serial shift phase the data is loaded  
in parallel into the addressed register. If any register  
bit was already set, that bit must be included in the in-  
put bit stream. Therefore one must either keep an im-  
age of the register status in the micro or do a “read-  
modify-write” operation to maintain the state of each  
bit that isn’t changing.  
FIGURE 5. TIMING DIAGRAM FOR THE MICROPROCESSOR SERIAL INTERFACE  
t29  
t21  
CS  
t27  
t28  
t22  
t25  
SCLK  
SDI  
t26  
A1  
t24  
R/W  
t23  
A0  
CS  
SCLK  
t31  
t30  
Hi-Z  
t33  
t32  
D0  
D2  
D7  
SDO  
SDI  
D1  
Hi-Z  
14  
áç  
XRT81L27  
SEVEN CHANNEL E1 LINE INTERFACE UNIT WITH CLOCK RECOVERY  
REV. 1.1.0  
TABLE 8: MICROPROCESSOR SERIAL INTERFACE TIMING (SEE FIGURE 5)  
SYMBOL  
PARAMETER  
MIN.  
MAX.  
UNITS  
t21  
CS "Low" to Rising Edge of SCLK Setup Time  
50  
ns  
t22  
t23  
t24  
t25  
t26  
t27  
t28  
t29  
t30  
t31  
t32  
t33  
CS "High" to Rising Edge of SCLK Hold Time  
SDI to Rising Edge of SCLK Setup Time  
Rising Edge of SCLK to SDI Hold Time  
SCLK “Low” Time  
20  
50  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
50  
240  
240  
500  
50  
SCLK “High” Time  
SCLK Period  
Rising Edge of SCLK to Rising Edge of CS Hold Time  
CS Inactive Time  
250  
Falling Edge of SCLK to SDO Valid Time  
Falling Edge of SCLK to SDO Invalid Time  
Falling Edge of SCLK or Rising Edge of CS to high Z  
Rise/Fall time of SDO Output  
200  
100  
100  
40  
FIGURE 6. MICROPROCESSOR SERIAL INTERFACE DATA STRUCTURE  
CS  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
SClk  
SDI  
R/W A0  
A1  
A2  
A3  
0
0
A6  
D0  
D1  
D2  
D3  
D4  
D4  
D6  
D7  
D5  
D5  
High Z  
High Z  
D0  
D1  
D2  
D3  
D6  
D7  
SDO  
Notes:  
- Denotes a “don’t care” value  
A4 and A5 are always “0”.  
R/W = “1” for “Read” Operations  
R/W = “0” for “Write” Operations  
15  
XRT81L27  
áç  
SEVEN CHANNEL E1 LINE INTERFACE UNIT WITH CLOCK RECOVERY  
REV. 1.1.0  
1.2 Description of the Command Registers  
1111) (0x07 through 0x0F) in the address range are  
reserved.  
A listing of these Command Registers, their binary/  
hex Addresses and their Bit-Formats are in Table 9.  
All bits are reset to zero by activation of the Reset sig-  
nal (RST, pin 3). All other registers (0111 through  
TABLE 9: MICROPROCESSOR REGISTER ADDRESS AND CONTROL  
BIT 6 BIT 5 BIT 4 BIT 3 BIT 2  
GLOBAL COMMAND CONTROL REGISTER (READ/WRITE)  
REGISTER  
ADDRESS  
BIT 7  
BIT 1  
BIT 0  
0000/0x00  
reserved  
ARAOS  
EXLOS  
MUTE  
SR/DR  
CODE  
RClkP  
TClkP  
CHANNEL CONTROL REGISTERS (READ/WRITE)  
0001/0x01  
0010/0x02  
0011/0x03  
0100/0x04  
0101/0x05  
0110/0x06  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
LLB6  
RLB6  
LLB5  
RLB5  
LLB4  
RLB4  
LLB3  
RLB3  
LLB2  
RLB2  
LLB1  
RLB1  
LLB0  
RLB0  
ALB6  
ALB5  
ALB4  
ALB3  
ALB2  
ALB1  
ALB0  
TAOS6  
RAOS6  
PDTx6  
TAOS5  
RAOS5  
PDTx5  
TAOS4  
RAOS4  
PDTx4  
TAOS3  
RAOS3  
PDTx3  
TAOS2  
RAOS2  
PDTx2  
TAOS1  
RAOS1  
PDTx1  
TAOS0  
RAOS0  
PDTx0  
TABLE 10: COMMAND CONTROL REGISTER - ADDRESS 0000 - HEX 0X00  
(COMMON TO ALL SEVEN CHANNELS)  
BIT #  
NAME  
FUNCTION  
REGISTER TYPE  
6
ARAOS  
Automatic Receive All Ones:  
R/W  
Writing a "1" to this bit globally enables receive “all one data” insertion at  
RPOS/RNEG upon receive LOS condition.  
5
4
3
2
1
0
EXLOS  
MUTE  
SR/DR  
CODE  
RClkP  
TClkP  
Extended LOS:  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Writing a "1" to this bit extends the number of zeros at the receive input to  
4096 bits before LOS is declared.  
Receive Output Muting:  
Writing a "1" to this bit mutes the receive data output at RPOS/RNEG to a  
“Low” state upon LOS detection EXCEPT when AROAS is set.  
Single-rail/Dual-rail:  
Writing a "1" to this bit selects single-rail mode operation.  
Writing a "0" to select dual-rail mode operation.  
Coding and Decoding:  
In Single-Rail mode ONLY, selects HDB3 encoding and decoding when set.  
Under all other conditions, AMI encoding and decoding is selected.  
Receive Clock Polarity:  
Writing a "1" to this bit selects, receive output data to be updated on the rising  
edge of RCLK and a "0" to update on the falling edge of RClk.  
Transmit Clock Polarity:  
Writing a "1" to this bit selects, input data to be sampled on the rising edge of  
TClk and a "0" to sample on the falling edge of TClk.  
16  
áç  
XRT81L27  
SEVEN CHANNEL E1 LINE INTERFACE UNIT WITH CLOCK RECOVERY  
REV. 1.1.0  
TABLE 11: LOCAL LOOP-BACK REGISTERS - ADDRESS: 0001, HEX 0X01  
BIT #.  
NAME  
FUNCTION  
REGISTER TYPE  
0-6  
LLB0-LLB6 Local Loop-Back:  
R/W  
Writing a "1" to this bit enables Local Loop-back for the channel(s) selected.  
During Local loop-back, transmit input data continues to be sent to the line  
unless overridden by TAOS control.  
TABLE 12: REMOTE LOOP-BACK REGISTERS - ADDRESS: 0010, HEX 0X02  
FUNCTION  
BIT #.  
NAME  
REGISTER TYPE  
0-6  
RLB0-RLB6  
Remote Loop-back:  
R/W  
Wring a "1" to this bit enables Remote Loop-back for the channel(s)  
selected. During Remote Loop-back, receive output data is available at  
RPOS/RNEG unless overridden by RAOS request  
TABLE 13: ANALOG LOOP-BACK REGISTERS - ADDRESS: 0011, HEX 0X03  
FUNCTION  
BIT #.  
NAME  
REGISTER TYPE  
0-6  
ALB0-ALB6  
Analog Loop-back:  
R/W  
Writing a “1” to this bit enables Analog Local Loop-back for the channel(s)  
selected. Analog Loop-back ignores input data on RTIP and RRING and  
internally routes data at TTIP and TRING back to the receive input. This  
loop-back mode exercises most of the functional blocks of the channel. Ana-  
log Loop-back has priority over other Loop-back, TAOS and RAOS requests.  
TABLE 14: TAOS REGISTERS - ADDRESS: 0100, HEX 0X04  
BIT #.  
NAME  
FUNCTION  
REGISTER TYPE  
0-6  
TAOS0-TAOS6 Transmit All Ones  
Writing a "1" to this bit enables an AMI encoded all ones data to be transmit-  
R/W  
ted to the line for the channel(s) selected. Transmit input data is ignored  
when TAOS bit is set. Remote Loop-Back has priority over TAOS request.  
TABLE 15: RAOS REGISTERS - ADDRESS: 0101, HEX 0X05  
BIT NO.  
NAME  
FUNCTION  
REGISTER TYPE  
0-6  
RAOS0-  
RAOS6  
Receive All Ones:  
R/W  
Writing a "1" to this bit enables all ones data to be inserted on the receive side  
for the channel(s) selected. In Single-Rail mode, all ones data is a continuous  
"High" signal at RPOS output and in Dual-Rail mode, a "1010" pattern is sent  
to RPOS and RNEG while the receive input signal at RRTIP and RRING is  
ignored. Local Loop-Back has priority over RAOS and ARAOS request.  
17  
XRT81L27  
áç  
SEVEN CHANNEL E1 LINE INTERFACE UNIT WITH CLOCK RECOVERY  
REV. 1.1.0  
TABLE 16: PDTX REGISTERS - ADDRESS: 0110, HEX 0X06  
BIT NO.  
NAME  
FUNCTION  
REGISTER TYPE  
0-6  
PDTx0-  
PDTx6  
Power-down Transmitter:  
R/W  
Writing a "1" to this bit shut down the transmitter channel selected and places  
the TTIP/TRing driver in high impedance mode. Individual pin control is also  
available to switch off the transmitter for fast redundancy application both in  
Host and Hardware mode.  
1.3 OPERATION OF THE COMMAND CONTROL REGIS-  
TER BITS (ADDRESS: 0000, HEX 0X00)  
1.4 CHANNEL CONTROL REGISTERS  
These registers provide a channel by channel control  
of the operation and diagnostic mode of the chip. An  
individual or combination of the channels can be con-  
trolled. Certain combinations of modes can not be set  
as pointed out in the descriptions.  
TCLKP (BIT 0)  
Set to a “1”, all 7 channels will sample TPOS/TNEG  
data on the rising edge of TClk. It will default to a “0”,  
sampling on the falling edge.  
LLB[6:0] (ADDRESS 0001)  
RCLKP (BIT 1)  
Setting a bit in this register causes that channel’s  
transmit input data to be sent back out of the RPOS/  
RNEG receive port. The transmit data will continue to  
be sent to the line unless the TAOS control is en-  
abled.  
Set to a “1”, all channels will output RPOS/RNEG re-  
ceive data on the rising edge of RClk. The default val-  
ue is “0” where it will output on the falling edge.  
CODE (BIT 2)  
If set and if the SR/DR bit is set, will select HDB3 en-  
coding for Transmit and decoding for Receive on all  
channels. If CODE or SR/DR bits are “0”, AMI encod-  
ing/decoding is specified.  
RLB[6:0] (ADDRESS 0010)  
Setting a bit in this register causes that channel’s re-  
ceive data to be sent back out of the TTIP/TRING on  
the line to the Remote end. The receive data will con-  
tinue to be sent to the DTE unless the RAOS control  
is enabled.  
SR/DR (BIT 3)  
If set, single rail mode for the DTE side TPOS in and  
RPOS out signals. RNEG is used for Line Code Vio-  
lation (LCV) status. Default state is “0”, selecting du-  
al-rail operation.  
ALBX (ADDRESS 0011)  
Setting a bit in this register will cause the analog sig-  
nal at the output to be sent back through the receive  
section to the DTE equipment. This will effectively ex-  
ercise most of the internal functions of that channel.  
The Analog loopback has priority over the other loop-  
back modes.  
MUTE (BIT 4)  
If set, will mute the receive outputs of a channel when  
the LOS condition is detected and ARAOS is not as-  
serted.  
TAOS[6:0] (ADDRESS 0100)  
EXLOS (BIT 5)  
Setting this bit enables transmitting all ones data. A  
Remote loopback (RLB) on the channel has priority  
over this function.  
When set, will extend the number of contiguous re-  
ceived zeros to 4096 before the LOS condition is de-  
clared.  
RAOS[6:0] (ADDRESS 0101)  
ARAOS (BIT 6)  
Setting this bit inserts all ones into the receive data  
stream. Local loopback has priority over RAOS and  
the ARAOS signal.  
When set this bit enables insertion of “all ones data”  
at RPOS/RNEG when LOS is detected on that chan-  
nel.  
PDTX[6:0] (ADDRESS 0110)  
Setting this bit places the Transmit driver into a high  
impedance state. Individual pin control is also avail-  
able in both the Host and Hardware modes. Care  
should be taken in the usage of this feature. While the  
default (reset) state of this register is zero, hence en-  
abling the outputs of the channel, the “PDT” pin has  
18  
áç  
XRT81L27  
SEVEN CHANNEL E1 LINE INTERFACE UNIT WITH CLOCK RECOVERY  
REV. 1.1.0  
priority. This priority allows fast switching of channels  
using “external hardware”. However, if software con-  
trol is to be used, the PDTx pin must be tied low as  
there is an internal pull-up resistor.  
The Timing Control block  
The TX Pulse Shaper block  
The Line Driver block  
2.1 THE TRANSMIT LOGIC BLOCK.  
2.0 THE TRANSMIT SECTION  
The purpose of the Transmit Logic Block is to accept  
either Dual-Rail or Single-Rail TTL/CMOS level data  
and timing information from the Terminal Equipment.  
The Transmit section of the XRT81L27 consists of the  
following blocks:  
THE TRANSMIT LOGIC BLOCK  
The Encoder block  
The MUX block  
Figure 7 illustrates the typical interface for the trans-  
mission of data between the Terminal Equipment and  
the Transmit Section of the XRT81L27.  
FIGURE 7. THE INTERFACE FOR THE TRANSMISSION OF DATA FROM THE TRANSMITTING TERMINAL EQUIPMENT TO  
THE TRANSMIT SECTION OF THE XRT81L27  
TxPOS  
Transmit  
Digital  
TxNEG  
TxClk  
Logic  
Terminal  
Block  
Equipment  
(DTE)  
2.1.1 Dual-rail input mode  
positive polarity pulse via the TTIP and TRING output  
pins. If the XRT81L27 samples a “1” on the TNEG in-  
put pin, the Transmit Section of the device generates  
a negative polarity pulse via the TTIP and TRING out-  
put pins. HDB3 Encoding will already have been done  
on this data.  
The manner that the LIU handles Dual-Rail data is  
described below and illustrated in Figure 8. The  
XRT81L27samples the data on the TPOS and TNEG  
input pins on the falling edge of TCLK. If the  
XRT81L27 samples a “1” on the TPOS input pin, the  
Transmit Section of the device ultimately generates a  
FIGURE 8. DUAL RAIL DATA FROM THE TERMINAL  
Data  
1
1
0
0
TPOS  
TNEG  
TCLK  
2.1.2 Single-rail input mode  
binary data stream) without having to convert it into a  
Dual-Rail format. The Transmit Logic Block accepts  
Single-Rail data via the TPOS input pin. The TClk sig-  
Used if data is to be transmitted from the Terminal  
Equipment to the XRT81L27 in Single-Rail format (a  
19  
XRT81L27  
áç  
SEVEN CHANNEL E1 LINE INTERFACE UNIT WITH CLOCK RECOVERY  
REV. 1.1.0  
nal samples this input pin on the falling edge of the  
TCLK clock signal and encodes it into the appropriate  
bipolar line signal across the TTIP and TRING output  
pins.In this mode the Transmit Logic Block ignores  
the TNEG input pin.  
Figure 9 illustrates the behavior of the TPOS and  
TCLK signals when the Transmit Logic Block has  
been configured to accept Single-Rail data from the  
Terminal Equipment.  
FIGURE 9. SINGLE-RAIL DATA FROM THE TERMINAL  
Data  
1
1
0
0
TPDATA  
TCLK  
2.1.3 TClk input  
consecutive zeros (“0000”). If the HDB3 Encoder  
finds an occurrence of four consecutive zeros, it then  
substitutes these four “0’s” with either a “000V” or a  
“B00V” pattern to insure that an odd number of bipo-  
lar pulses exist between any two consecutive viola-  
tion pulses.  
TCLK is a clock input signal of 2.048 MHz. The global  
signal TClkP can be used to invert the polarity of the  
sampling clock relative to the TClk input pin for both  
SD and DR modes.  
2.2 THE ENCODER BLOCK  
“B” represents a Bipolar pulse that is compliant with  
the Alternating Polarity requirements of the AMI (Al-  
ternate Mark Inversion) line code and “V” represents  
a bipolar Violation (e.g., a bipolar pulse that violates  
the Alternating Polarity requirements of the AMI line  
code).  
The purpose of the Encoder Block is to aid in the  
Clock Recovery process at the Remote Terminal  
Equipment by ensuring an upper limit on the number  
of consecutive zeros that can exist in the line signal.  
2.2.1 HDB3 Encoding  
When the Encoder is enabled (by the global CODE  
bit set and Single-Rail mode selected), it parses  
through and searches the Transmit Data Stream from  
the Transmit Logic Block for the occurrence of four (4)  
Figure 10 illustrates the HDB3 Encoder at work with  
two separate strings of four (or more) consecutive ze-  
ros showing a “000V and a “B00V” usage  
FIGURE 10. HDB3 ENCODING  
TClk  
TPOS  
SR data  
1
1
0
0
0
0
1
0
1
1
1
0
0
0
0
0
0
1
1
1
1
0
1
1
0
1
1
0
0
1
1
0
0
0
0
1
1
0
0
1
0
0
Encoded  
PDATA  
0
0
0
1
0
0
1
0
1
0
0
1
0
0
1
0
0
0
1
0
0
0
0
1
0
0
0
1
0
0
Encoded  
NDATA  
0
0
0
0
0
1
0
1
0
0
1
0
0
1
0
0
0
1
0
1
0
0
1
0
1
0
0
0
0
0
0
0
0
V
Line signal  
B
0
0
V
2.3 THE MUX BLOCK  
and send it to the timing control block. Remote loop-  
back provides a path for the XRT81L27 to send re-  
ceived data back over the Transmit line (TTIP -  
TRING) to the “other” end of the Timing Control block  
The MUX block accepts data inputs from the Encoder  
block and the Remote loopback. Under control of the  
channel control bits it will select the desired bit stream  
20  
áç  
XRT81L27  
SEVEN CHANNEL E1 LINE INTERFACE UNIT WITH CLOCK RECOVERY  
REV. 1.1.0  
2.3.1 Timing Control Block  
from 30% to 70% and to regenerate these signals  
with a 50% duty cycle.  
The Timing Control block contains several sub-  
blocks. These functions are used to control the timing  
on the input data stream such that the output meets  
all system timing specifications.  
The XRT81L27 Transmit Clock Duty Cycle Adjust cir-  
cuit alleviates the need to supply a signal with a 50%  
duty cycle to the TCLK input pin.  
2.3.2 The Transmit Clock Duty Cycle Adjust Cir-  
cuit  
2.3.3 Transmit All Ones  
In some conditions the system will control the chip  
such that it will transmit “all ones” data onto the line. It  
is possible that a valid TClk is not available and so the  
MClk signal will be used to provide the timing. It  
should be noted that the Local feedback will NOT in-  
clude the “all ones” bit stream so this data is diverted  
before going into the pulse shaper circuit.  
The on-chip Pulse-Shaping circuitry in the Transmit  
Section of the XRT81L27 has the responsibility for  
generating pulses of the shape and width to comply  
with the applicable pulse template requirement. The  
widths of these output pulses are defined by the width  
of the half-period pulses in the TCLK signal.  
Allowing the widths of the pulses in the TCLK clock  
signal to vary significantly could jeopardize the chip’s  
ability to generate Transmit Output pulses of the ap-  
propriate width, thereby failing the applicable Pulse  
Template Requirement Specification. The chips ability  
to generate compliant pulses could depend upon the  
duty cycle of the clock signal applied to the TCLK in-  
put pin.  
2.4 THE PULSE SHAPING CIRCUIT  
The purpose of the "Transmit Pulse Shaping" Circuit  
is to generate Transmit Output pulses that comply  
with the ITU-T G.703 Pulse Template Requirements  
for E1 applications, even with TClk duty cycle be-  
tween 30 and 70%.  
As a consequence, each channel (within the  
XRT81L27) will take each mark which is provided to it  
via the Transmit Input Interface block, and will gener-  
ate a pulse that complies with the pulse template,  
presented in Figure 11, (when measured on the sec-  
ondary-side of the Transmit Output Transformer).  
In order to combat this phenomenon, the Transmit  
Clock Duty Cycle Adjust circuit was designed into the  
XRT81L27. The Transmit Clock Duty Cycle Adjust  
Circuitry is a PLL that was designed to accept clock  
pulses via the TCLK input pin at duty cycles ranging  
21  
XRT81L27  
áç  
SEVEN CHANNEL E1 LINE INTERFACE UNIT WITH CLOCK RECOVERY  
REV. 1.1.0  
FIGURE 11. ITU-T G.703 PULSE TEMPLATE  
269 ns  
(244 + 25)  
V = 100%  
194 ns  
(244 – 50)  
Nominal pulse  
50%  
244 ns  
219 ns  
(244 – 25)  
0%  
488 ns  
(244 + 244)  
Note  
– V corresponds to the nominal peak value.  
2.5 THE LINE DRIVER BLOCK  
2.6 INTERFACING THE TRANSMIT SECTIONS OF THE  
XRT81L27 TO THE LINE  
The driver block will take the TP and TN pulses out of  
the Pulse Shaping circuit and apply these to the TTIP  
and TRING pins. Output drive control is available  
from either a dedicated signal or (in Host mode) from  
one of register control bits to turn the channel “off” by  
placing the drivers in a high impedance state.  
In both (75or 120) applications, the user is ad-  
vised to interface the Transmitter to the Line, using  
the termination as shown in Figure 12. This includes  
1:2 transformer with the intrinsic impedance of the  
line used as a termination resistance.  
The configuration differs only in the type of line con-  
nects, The internal circuit adjusts to the load imped-  
ance  
22  
áç  
XRT81L27  
SEVEN CHANNEL E1 LINE INTERFACE UNIT WITH CLOCK RECOVERY  
REV. 1.1.0  
FIGURE 12. ILLUSTRATION OF HOW TO INTERFACE THE TRANSMIT SECTIONS OF THE XRT81L27 TO THE LINE (FOR  
75 OR 120APPLICATIONS)  
TPOS_n  
9.1  
TTIP_n  
Line  
Input  
1:2  
Coax  
75  
TNEG_n  
120  
TRING_n  
Twisted  
Pair  
9.1  
TClk_n  
XRT81L27  
3.0 THE RECEIVE SECTION  
couple the Receive Section to the line. Additionally,  
as mentioned earlier, the specification documents for  
E1 specify 75termination loads, when transmitting  
over coaxial cable, and 120loads, when transmit-  
ting over twisted-pair. Figure 13, Figure 14 and  
Figure 15 present the various methods that can be  
employ to interface the Receivers (of the XRT81L27)  
to the line. The receive circuits of Figure 13,  
The Receive Sections of the XRT81L27 consists of  
the following blocks:  
The Receive Equalizer block  
The Peak Detector and Slicer block  
The LOS Detector block  
The Receive Output Interface block  
Figure 14 and Figure 15 differ in the impedance at the  
inputs and the line connections.  
3.1 INTERFACING THE RECEIVE SECTIONS TO THE  
LINE  
The design of each channel (within the XRT81L27)  
permits the user to transformer-couple or capacitive-  
23  
XRT81L27  
áç  
SEVEN CHANNEL E1 LINE INTERFACE UNIT WITH CLOCK RECOVERY  
REV. 1.1.0  
FIGURE 13. SCHEMATIC FOR INTERFACING THE RECEIVE SECTIONS OF THE XRT81L27 TO THE LINE FOR 75Ω  
(TRANSFORMER-COUPLED) APPLICATIONS  
RPOS_n  
RNEG_n  
RClk_n  
RTIP_n  
Line  
Input  
1: 2  
LOS_n  
RRING_n  
XRT81L27  
FIGURE 14. SCHEMATIC FOR INTERFACING THE RECEIVE SECTIONS OF THE XRT81L27 TO THE LINE FOR 120Ω  
(TRANSFORMER-COUPLED) APPLICATIONS  
RPOS_n  
RTIP_n  
1:2  
RNEG_n  
Line  
Input  
RClk_n  
RRing_n  
LOS_n  
XRT81L27  
The Transformer used should be 1:2 step up for  
Transmit direction and 2:1 step down for the Receive  
direction. The following transformers are recommend-  
ed: Pulse PE-65681, Pulse T1090, and HALO TG08-  
1505N1.  
24  
áç  
XRT81L27  
SEVEN CHANNEL E1 LINE INTERFACE UNIT WITH CLOCK RECOVERY  
REV. 1.1.0  
3.2 CAPACITIVE-COUPLING THE RECEIVER TO THE  
LINE  
Figure 15 presents a recommended method to use  
when capacitive-coupling the Receive Section to the  
line.  
FIGURE 15. CAPACITIVE - COUPLED RECEIVE SECTIONS OF THE XRT81L27 TO THE LINE (FOR BALANCED 120Ω  
APPLICATIONS)  
RPOS1  
RNEG1  
RClk1  
C1  
30.1  
RTIP1  
0.1uF  
C2  
30.1 Ω  
RRing1  
RLOS1  
0.1uF  
3.3 THE RECEIVE EQUALIZER BOCK  
amount of attenuation than the lower frequency com-  
ponents. If this line signal travels over reasonably  
long cable lengths, then the original square shape of  
the pulses will be distorted and with inter-symbol in-  
terference increases.  
After a given Channel (within the XRT81L27) has re-  
ceived the incoming line signal, via the RTIP_n  
(where _n is the channel number) and RRING_n in-  
put pins, the first block that this signal will pass  
through is the Receive Equalizer block.  
The purpose of this block is to equalize the incoming  
distorted signal, due to cable loss. In essence, the  
Receive Equalizer block accomplishes this by sub-  
jecting the received line signal to frequency-depen-  
dent amplification (which attempts to counter the fre-  
quency-dependent loss that the line signal has expe-  
rienced). By doing this, the Receive Equalizer is at-  
tempting to restore the shape of the line signal so that  
the received data can be recovered reliably.  
As the line signal is transmitted from a given Trans-  
mitting terminal, the pulse shapes (at that location)  
are basically square. Hence, these pulses consist of a  
combination of low and high frequency Fourier com-  
ponents. As this line signal travels from the transmit-  
ting terminal (via the coaxial cable or twisted pair) to  
the receiving terminal, it will be subjected to frequen-  
cy-dependent loss. The higher frequency compo-  
nents of the signal will be subjected to a greater  
25  
XRT81L27  
áç  
SEVEN CHANNEL E1 LINE INTERFACE UNIT WITH CLOCK RECOVERY  
REV. 1.1.0  
3.4 THE PEAK DETECTOR AND SLICER BLOCK  
LOS Condition if the signal amplitude rises back up to  
–15dB typically, or above. The XRT81L27 was de-  
signed to meet the ITU-T G.775 specification timing  
requirements for declaring and clearing the LOS indi-  
cator. In particular, the XRT81L27 will declare an LOS  
between 10 and 255 UI (or E1 bit periods) after the  
actual time the LOS condition occurred. Further, the  
XRT81L27 will clear the LOS indicator within 10 to  
255 UI after restoration of the incoming line signal.  
After the incoming line signal has passed through the  
Receive Equalizer block, it will next be routed to the  
Slicer block. The purpose of the Slicer block is to  
quantify a given bit-period (or symbol) within the in-  
coming line signal as either a “1” or a “0”.  
3.5 THE LOS DETECTOR BLOCK  
The LOS Detector block, within each channel (of the  
XRT81L27) was specifically designed to comply with  
the LOS Declaration/Clearance requirements per  
ITU-T G.775. As a consequence, the channel will de-  
clare an LOS Condition, (by driving the LOS output  
pin “High”) if the received line signal amplitude drops  
to –20dB or below. Further, the channel will clear the  
When operating in the Host mode, the LOS time can  
be extended to 4096 zeros by the activation of the  
EXLOS bit in the Command Control Register. This  
will provide for those cases where the G.775 specifi-  
cation value is not long enough,  
26  
áç  
XRT81L27  
SEVEN CHANNEL E1 LINE INTERFACE UNIT WITH CLOCK RECOVERY  
REV. 1.1.0  
FIGURE 16. PACKAGE OUTLINE DRAWING  
D
D1  
102  
65  
103  
64  
E1  
E
128  
39  
1
38  
A2  
B
e
A
α
C
A1  
L
Note: The control dimension is the millimeter column  
INCHES  
MAX  
MILLIMETERS  
SYMBOL  
MIN  
MIN  
MAX  
1.60  
0.15  
A
0.055  
0.002  
0.063  
0.006  
1.40  
0.05  
A1  
0.053  
0.057  
1.35  
1.45  
A2  
B
0.007  
0.004  
0.858  
0.783  
0.011  
0.008  
0.874  
0.791  
0.17  
0.09  
0.27  
0.20  
C
D
D1  
E
21.80  
19.90  
22.20  
20.10  
0.622  
0.547  
0.638  
0.555  
15.80  
13.90  
16.20  
14.10  
E1  
e
0.020 BSC  
0.50 BSC  
L
0.018  
0.030  
0.45  
0.75  
α
0°  
7°  
0°  
7°  
27  
áç  
XRT81L27SEVEN CHANNEL E1 LINE INTERFACE UNIT WITH CLOCK RECOVERY  
REV. 1.1.0  
REVISIONS  
Rev. 1.0.1 changed package from 14x14mm 128 pins to 14x20mm 128 pins.  
Rev. 1.0.2 Added info on serial processor interface. Corrected pin out for pins 33, 34, 35, 36, 37, 38, 97, 98,  
101 and 102.  
Rev. 1.0.3 Corrected typos in pin list (pin 29, 51, 64 and 118) and Pin out diagram (pins 47, 48 and 69).  
Rev 1.0.4 “Jack Irwin” 10/19/01  
Rev 1.0.5 John edits.  
NOTICE  
EXAR Corporation reserves the right to make changes to the products contained in this publication in order  
to improve design, performance or reliability. EXAR Corporation assumes no responsibility for the use of  
any circuits described herein, conveys no license under any patent or other right, and makes no represen-  
tation that the circuits are free of patent infringement. Charts and schedules contained here in are only for  
illustration purposes and may vary depending upon a user’s specific application. While the information in  
this publication has been carefully checked; no responsibility, however, is assumed for inaccuracies.  
EXAR Corporation does not recommend the use of any of its products in life support applications where  
the failure or malfunction of the product can reasonably be expected to cause failure of the life support sys-  
tem or to significantly affect its safety or effectiveness. Products are not authorized for use in such applica-  
tions unless EXAR Corporation receives, in writing, assurances to its satisfaction that: (a) the risk of injury  
or damage has been minimized; (b) the user assumes all such risks; (c) potential liability of EXAR Corpo-  
ration is adequately protected under the circumstances.  
Copyright 2001 EXAR Corporation  
Datasheet November 2001.  
Reproduction, in part or whole, without the prior written consent of EXAR Corporation is prohibited.  
28  

相关型号:

XRT81L27IV

SEVEN CHANNEL E1 LINE INTERFACE UNIT WITH CLOCK RECOVERY
EXAR

XRT81L27IV-F

IC LIU EI 7CH 3.3V 128TQFP
EXAR

XRT82D20

SINGLE CHANNEL E1 LINE INTERFACE UNIT
EXAR

XRT82D20IW

SINGLE CHANNEL E1 LINE INTERFACE UNIT
EXAR

XRT82D20IW-F

PCM Transceiver, 1-Func, PDSO28, 0.300 INCH, LEAD FREE, SOJ-28
EXAR

XRT82D20_06

SINGLE CHANNEL E1 LINE INTERFACE UNIT
EXAR

XRT82L24

QUAD E1 LINE TRANSCEIVER WITH CLOCK RECOVERY AND JITTER ATTENUATOR
EXAR

XRT82L24A

QUAD E1 LINE TRANSCEIVER WITH CLOCK RECOVERY AND JITTER ATTENUATOR
EXAR

XRT82L24AIV

QUAD E1 LINE TRANSCEIVER WITH CLOCK RECOVERY AND JITTER ATTENUATOR
EXAR

XRT82L24AIV-F

PCM Transceiver, 1-Func, CEPT PCM-30/E-1, CMOS, PQFP100, 14 X 14 MM, 1.4 MM HEIGHT, GREEN, TQFP-100
EXAR

XRT82L24IV

QUAD E1 LINE TRANSCEIVER WITH CLOCK RECOVERY AND JITTER ATTENUATOR
EXAR

XRT82L34IV

Interface IC
ETC