20N60A4 [FAIRCHILD]

600V, SMPS Series N-Channel IGBTs; 600V ,开关电源系列N沟道IGBT的
20N60A4
型号: 20N60A4
厂家: FAIRCHILD SEMICONDUCTOR    FAIRCHILD SEMICONDUCTOR
描述:

600V, SMPS Series N-Channel IGBTs
600V ,开关电源系列N沟道IGBT的

开关 双极性晶体管
文件: 总8页 (文件大小:833K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HGT1S20N60A4S9A  
Data Sheet  
March 2006  
600V, SMPS Series N-Channel IGBTs  
Features  
The HGT1S20N60A4S9Aꢀis MOS gated high voltage switching  
devices combining the best features of MOSFETs and bipolar  
transistors. These devices have the high input impedance of  
a MOSFET and the low on-state conduction loss of a bipolar  
transistor. The much lower on-state voltage drop varies only  
• >100kHz Operation at 390V, 20A  
• 200kHz Operation at 390V, 12A  
• 600V Switching SOA Capability  
o
Typical Fall Time. . . . . . . . . . . . . . . . . 55ns at T = 125 C  
J
o
o
moderately between 25 C and 150 C.  
• Low Conduction Loss  
Temperature Compensating SABER™ Model  
www.intersil.com  
This IGBT is ideal for many high voltage switching  
applications operating at high frequencies where low  
conduction losses are essential. This device has been  
optimized for high frequency switch mode power  
supplies.  
• Related Literature  
- TB334 “Guidelines for Soldering Surface Mount  
Components to PC Boards  
Formerly Developmental Type TA49339.  
Packaging  
JEDEC TO-263AB  
Ordering Information  
PART NUMBER  
PACKAGE  
BRAND  
COLLECTOR  
(FLANGE)  
HGT1S20N60A4S9A  
TO-263AB  
20N60A4  
NOTE: When ordering, use the entire part number.  
G
C
E
Symbol  
C
G
E
FAIRCHILD SEMICONDUCTOR IGBT PRODUCT IS COVERED BY ONE OR MORE OF THE FOLLOWING U.S. PATENTS  
4,364,073  
4,598,461  
4,682,195  
4,803,533  
4,888,627  
4,417,385  
4,605,948  
4,684,413  
4,809,045  
4,890,143  
4,430,792  
4,620,211  
4,694,313  
4,809,047  
4,901,127  
4,443,931  
4,631,564  
4,717,679  
4,810,665  
4,904,609  
4,466,176  
4,639,754  
4,743,952  
4,823,176  
4,933,740  
4,516,143  
4,639,762  
4,783,690  
4,837,606  
4,963,951  
4,532,534  
4,641,162  
4,794,432  
4,860,080  
4,969,027  
4,587,713  
4,644,637  
4,801,986  
4,883,767  
©2006 Fairchild Semiconductor Corporation  
HGT1S20N60A4S9A Rev. A  
HGT1S20N60A4S9A  
o
Absolute Maximum Ratings T = 25 C, Unless Otherwise Specified  
C
HGT1S20N60A4S9Aꢀ  
UNITS  
Collector to Emitter Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . BV  
600  
V
CES  
Collector Current Continuous  
o
At T = 25 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I  
C
70  
40  
A
A
A
V
V
C25  
o
At T = 110 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I  
C
C110  
Collector Current Pulsed (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I  
280  
CM  
GES  
GEM  
Gate to Emitter Voltage Continuous. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V  
±20  
Gate to Emitter Voltage Pulsed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V  
o
±30  
Switching Safe Operating Area at T = 150 C (Figure 2) . . . . . . . . . . . . . . . . . . . . . . . SSOA  
J
100A at 600V  
290  
o
Power Dissipation Total at T = 25 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P  
C
W
D
o
o
Power Dissipation Derating T > 25 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
2.32  
W/ C  
C
o
Operating and Storage Junction Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . T , T  
J
-55 to 150  
C
STG  
Maximum Lead Temperature for Soldering  
Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T  
Package Body for 10s, See Tech Brief 334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T  
o
300  
260  
C
C
L
o
PKG  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
NOTE:  
1. Pulse width limited by maximum junction temperature.  
o
Electrical Specifications T = 25 C, Unless Otherwise Specified  
J
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
-
UNITS  
V
Collector to Emitter Breakdown Voltage  
Emitter to Collector Breakdown Voltage  
Collector to Emitter Leakage Current  
BV  
BV  
I
I
= 250µA, V  
= 0V  
600  
-
CES  
ECS  
C
GE  
= 10mA, V  
= 0V  
15  
-
-
-
V
C
GE  
o
I
V
= 600V  
T = 25 C  
J
-
250  
2.0  
2.7  
2.0  
7.0  
±250  
-
µA  
mA  
V
CES  
CE  
o
T = 125 C  
J
-
-
o
Collector to Emitter Saturation Voltage  
V
I
= 20A,  
T = 25 C  
J
-
-
1.8  
1.6  
5.5  
-
CE(SAT)  
C
V
= 15V  
o
GE  
T = 125 C  
V
J
Gate to Emitter Threshold Voltage  
Gate to Emitter Leakage Current  
Switching SOA  
V
I
= 250µA, V  
= 600V  
4.5  
-
V
GE(TH)  
C CE  
I
V
= ±20V  
nA  
A
GES  
GE  
o
SSOA  
T = 150 C, R = 3Ω, V  
= 15V  
100  
-
J
G
GE  
L = 100µH, V = 600V  
CE  
Gate to Emitter Plateau Voltage  
On-State Gate Charge  
V
I
I
= 20A, V  
= 20A,  
= 300V  
CE  
-
-
-
-
-
-
-
-
-
-
8.6  
142  
182  
15  
-
V
GEP  
C
Q
V
= 15V  
162  
nC  
nC  
ns  
ns  
ns  
ns  
µJ  
µJ  
µJ  
g(ON)  
C
GE  
V
= 300V  
CE  
V
= 20V  
o
210  
GE  
Current Turn-On Delay Time  
Current Rise Time  
t
IGBT and Diode at T = 25 C  
-
d(ON)I  
J
I
= 20A  
CE  
t
12  
-
rI  
V
V
R
= 390V  
=15V  
CE  
Current Turn-Off Delay Time  
Current Fall Time  
t
73  
-
-
d(OFF)I  
GE  
= 3Ω  
G
t
32  
fI  
L = 500µH  
Test Circuit (Figure 20)  
Turn-On Energy (Note 3)  
Turn-On Energy (Note 3)  
Turn-Off Energy (Note 2)  
E
E
E
105  
280  
150  
-
ON1  
ON2  
OFF  
350  
200  
©2006 Fairchild Semiconductor Corporation  
HGT1S20N60A4S9A Rev. A  
HGT1S20N60A4S9Aꢀ  
o
Electrical Specifications T = 25 C, Unless Otherwise Specified (Continued)  
J
PARAMETER  
Current Turn-On Delay Time  
Current Rise Time  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
15  
MAX  
21  
UNITS  
ns  
o
t
IGBT and Diode at T = 125 C  
-
-
-
-
-
-
-
-
d(ON)I  
J
I
V
V
R
= 20A  
CE  
t
13  
18  
ns  
rI  
= 390V  
= 15V  
= 3Ω  
CE  
GE  
Current Turn-Off Delay Time  
Current Fall Time  
t
105  
55  
135  
73  
ns  
d(OFF)I  
G
t
ns  
fI  
L = 500µH  
Test Circuit (Figure 20)  
Turn-On Energy (Note 3)  
Turn-On Energy (Note 3)  
Turn-Off Energy (Note 2)  
Thermal Resistance Junction To Case  
NOTES:  
E
E
E
115  
510  
330  
-
-
µJ  
ON1  
ON2  
OFF  
600  
500  
0.43  
µJ  
µJ  
o
R
C/W  
θJC  
2. Turn-Off Energy Loss (E  
) is defined as the integral of the instantaneous power loss starting at the trailing edge of the input pulse and ending  
OFF  
at the point where the collector current equals zero (I  
= 0A). All devices were tested per JEDEC Standard No. 24-1 Method for Measurement  
CE  
of Power Device Turn-Off Switching Loss. This test method produces the true total Turn-Off Energy Loss.  
3. Values for two Turn-On loss conditions are shown for the convenience of the circuit designer. E  
is the turn-on loss of the IGBT only. E  
ON1 ON2  
is the turn-on loss when a typical diode is used in the test circuit and the diode is at the same T as the IGBT. The diode type is specified in  
J
Figure 20.  
Typical Performance Curves Unless Otherwise Specified  
100  
120  
V
= 15V  
o
GE  
DIE CAPABILITY  
T
= 150 C, R = 3, V = 15V, L = 100µH  
G GE  
J
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
PACKAGE LIMIT  
25  
50  
75  
100  
125  
150  
0
100  
200  
300  
400  
500  
600  
700  
o
T
, CASE TEMPERATURE ( C)  
V
, COLLECTOR TO EMITTER VOLTAGE (V)  
CE  
C
FIGURE 1. DC COLLECTOR CURRENT vs CASE  
TEMPERATURE  
FIGURE 2. MINIMUM SWITCHING SAFE OPERATING AREA  
500  
14  
12  
10  
8
450  
400  
350  
300  
250  
200  
150  
100  
o
T
V
V
= 390V, R = 3, T = 125 C  
G J  
C
o
GE  
15V  
CE  
75 C  
300  
I
SC  
f
f
P
= 0.05 / (t  
d(OFF)I  
+ t  
)
6
MAX1  
MAX2  
d(ON)I  
+ E )  
OFF  
= (P - P ) / (E  
100  
40  
D
C
ON2  
= CONDUCTION DISSIPATION  
4
C
t
SC  
(DUTY FACTOR = 50%)  
o
R
= 0.43 C/W, SEE NOTES  
o
ØJC  
2
T
= 125 C, R = 3, L = 500µH, V  
= 390V  
J
G
CE  
20  
0
10  
11  
12  
13  
14  
15  
5
10  
30  
40  
50  
V
, GATE TO EMITTER VOLTAGE (V)  
I
, COLLECTOR TO EMITTER CURRENT (A)  
GE  
CE  
FIGURE 3. OPERATING FREQUENCY vs COLLECTOR TO  
EMITTER CURRENT  
FIGURE 4. SHORT CIRCUIT WITHSTAND TIME  
©2006 Fairchild Semiconductor Corporation  
HGT1S20N60A4S9A Rev. A  
HGT1S20N60A4S9Aꢀ  
Typical Performance Curves Unless Otherwise Specified (Continued)  
100  
80  
100  
80  
60  
40  
20  
0
DUTY CYCLE < 0.5%, V  
PULSE DURATION = 250µs  
= 12V  
GE  
DUTY CYCLE < 0.5%, V  
= 15V  
PULSE DURATION = 250µs  
GE  
60  
40  
20  
0
o
o
T
= 125 C  
J
T
= 125 C  
J
o
o
o
o
T
= 150 C  
T = 25 C  
J
T
= 25 C  
J
T
= 150 C  
J
J
0
0
0.4  
V
0.8  
1.2  
1.6  
2.0  
2.4  
2.8  
0.4  
0.8  
1.2  
1.6  
2.0  
2.4  
2.8  
3.2  
V
, COLLECTOR TO EMITTER VOLTAGE (V)  
, COLLECTOR TO EMITTER VOLTAGE (V)  
CE  
CE  
FIGURE 5. COLLECTOR TO EMITTER ON-STATE VOLTAGE  
FIGURE 6. COLLECTOR TO EMITTER ON-STATE VOLTAGE  
1400  
800  
R
= 3, L = 500µH, V  
= 390V  
CE  
G
R
= 3, L = 500µH, V  
= 390V  
CE  
G
700  
600  
500  
400  
300  
200  
100  
0
1200  
1000  
800  
600  
400  
200  
0
o
T
= 125 C, V  
= 12V, V = 15V  
GE  
J
GE  
o
T
= 125 C, V  
= 12V OR 15V  
J
GE  
o
T
= 25 C, V  
= 12V OR 15V  
35 40  
J
GE  
30  
o
T
= 25 C, V  
= 12V, V = 15V  
GE  
J
GE  
5
10  
I
15  
20  
25  
5
10  
15  
20  
25  
30  
35  
40  
, COLLECTOR TO EMITTER CURRENT (A)  
I
, COLLECTOR TO EMITTER CURRENT (A)  
CE  
CE  
FIGURE 7. TURN-ON ENERGY LOSS vs COLLECTOR TO  
EMITTER CURRENT  
FIGURE 8. TURN-OFF ENERGY LOSS vs COLLECTOR TO  
EMITTER CURRENT  
22  
36  
R
= 3, L = 500µH, V  
= 390V  
CE  
R
= 3, L = 500µH, V = 390V  
CE  
G
G
32  
28  
24  
20  
16  
12  
8
20  
18  
16  
14  
12  
10  
8
o
o
T
= 25 C, T = 125 C, V  
= 12V  
GE  
J
J
o
o
T
= 25 C, T = 125 C, V  
= 12V  
GE  
J
J
o
o
T
= 25 C, T = 125 C, V  
= 15V  
35  
J
J
GE  
o
o
T
= 25 C OR T = 125 C, V  
= 15V  
J
J
GE  
4
5
10  
15  
20  
25  
30  
40  
5
10  
15  
20  
25  
30  
35  
40  
I
, COLLECTOR TO EMITTER CURRENT (A)  
I
, COLLECTOR TO EMITTER CURRENT (A)  
CE  
CE  
FIGURE 9. TURN-ON DELAY TIME vs COLLECTOR TO  
EMITTER CURRENT  
FIGURE 10. TURN-ON RISE TIME vs COLLECTOR TO  
EMITTER CURRENT  
©2006 Fairchild Semiconductor Corporation  
HGT1S20N60A4S9A Rev. A  
HGT1S20N60A4S9Aꢀ  
Typical Performance Curves Unless Otherwise Specified (Continued)  
120  
110  
80  
72  
64  
56  
48  
40  
32  
24  
16  
R
= 3, L = 500µH,  
R
= 3, L = 500µH, V  
= 390V  
V
= 390V  
G
G
CE  
o
CE  
o
V
= 12V, V  
GE  
= 15V, T = 125 C  
J
GE  
T
= 125 C, V  
= 12V OR 15V  
J
GE  
100  
90  
80  
70  
60  
o
= 25 C, V  
T
= 12V OR 15V  
GE  
J
o
V
= 12V, V  
GE  
= 15V, T = 25 C  
GE  
J
5
10  
15  
20  
25  
30  
35  
40  
5
10  
15  
20  
25  
30  
35  
40  
I
, COLLECTOR TO EMITTER CURRENT (A)  
I
CE  
, COLLECTOR TO EMITTER CURRENT (A)  
CE  
FIGURE 11. TURN-OFF DELAY TIME vs COLLECTOR TO  
EMITTER CURRENT  
FIGURE 12. FALL TIME vs COLLECTOR TO EMITTER  
CURRENT  
16  
240  
o
I
= 1mA, R = 15, T = 25 C  
G(REF)  
L
J
DUTY CYCLE < 0.5%, V  
= 10V  
CE  
PULSE DURATION = 250µs  
14  
12  
10  
8
200  
V
= 600V  
CE  
V
= 400V  
CE  
160  
120  
80  
40  
0
o
T
= 25 C  
J
V
= 200V  
CE  
6
o
T
= 125 C  
J
4
o
T
= -55 C  
J
2
0
6
7
8
9
10  
11  
12  
0
20  
40  
60  
80  
100  
120  
140  
160  
V
, GATE TO EMITTER VOLTAGE (V)  
Q , GATE CHARGE (nC)  
G
GE  
FIGURE 13. TRANSFER CHARACTERISTIC  
FIGURE 14. GATE CHARGE WAVEFORMS  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
o
T
= 125 C, L = 500µH, V  
= 390V, V = 15V  
GE  
R
= 3, L = 500µH, V  
= 390V, V = 15V  
GE  
J
CE  
G
CE  
E
= E  
+ E  
ON2 OFF  
E
= E  
ON2  
+ E  
TOTAL  
TOTAL  
OFF  
10  
I
= 30A  
CE  
I
= 30A  
CE  
1
I
I
= 20A  
= 10A  
CE  
CE  
I
I
= 20A  
= 10A  
CE  
CE  
0.1  
10  
100  
, GATE RESISTANCE ()  
1000  
3
25  
50  
75  
100  
125  
150  
R
o
G
T
, CASE TEMPERATURE ( C)  
C
FIGURE 15. TOTAL SWITCHING LOSS vs CASE  
TEMPERATURE  
FIGURE 16. TOTAL SWITCHING LOSS vs GATE RESISTANCE  
©2006 Fairchild Semiconductor Corporation  
HGT1S20N60A4S9A Rev. A  
HGT1S20N60A4S9Aꢀ  
Typical Performance Curves Unless Otherwise Specified (Continued)  
5
4
3
2
1
0
2.2  
2.1  
2.0  
1.9  
1.8  
1.7  
o
FREQUENCY = 1MHz  
DUTY CYCLE < 0.5%, T = 25 C  
J
PULSE DURATION = 250µs,  
C
I
= 30A  
= 20A  
IES  
CE  
I
I
CE  
CE  
C
OES  
= 10A  
C
RES  
0
20  
40  
60  
80  
100  
8
9
10  
V , GATE TO EMITTER VOLTAGE (V)  
GE  
11  
12  
13  
14  
15  
16  
V
, COLLECTOR TO EMITTER VOLTAGE (V)  
CE  
FIGURE 17. CAPACITANCE vs COLLECTOR TO EMITTER  
VOLTAGE  
FIGURE 18. COLLECTOR TO EMITTER ON-STATE VOLTAGE  
vs GATE TO EMITTER VOLTAGE  
0
10  
0.5  
0.2  
0.1  
-1  
10  
10  
t
1
0.05  
P
D
0.02  
0.01  
t
2
DUTY FACTOR, D = t / t  
PEAK T = (P X Z  
1
2
X R  
-2  
) + T  
J
D
θJC  
θJC C  
SINGLE PULSE  
-5  
-4  
10  
-3  
-2  
-1  
0
10  
10  
10  
10  
10  
t , RECTANGULAR PULSE DURATION (s)  
1
FIGURE 19. IGBT NORMALIZED TRANSIENT THERMAL RESPONSE, JUNCTION TO CASE  
Test Circuit and Waveforms  
HGTG20N60A4D  
DIODE TA49372  
90%  
OFF  
10%  
V
GE  
E
ON2  
L = 500µH  
E
V
CE  
R
= 3Ω  
G
90%  
DUT  
+
10%  
d(OFF)I  
I
CE  
V
= 390V  
t
t
DD  
rI  
-
t
fI  
t
d(ON)I  
FIGURE 20. INDUCTIVE SWITCHING TEST CIRCUIT  
FIGURE 21. SWITCHING TEST WAVEFORMS  
©2006 Fairchild Semiconductor Corporation  
HGT1S20N60A4S9A Rev. A  
HGT1S20N60A4S9Aꢀ  
Operating Frequency Information  
Handling Precautions for IGBTs  
Insulated Gate Bipolar Transistors are susceptible to  
gate-insulation damage by the electrostatic discharge of  
energy through the devices. When handling these devices,  
care should be exercised to assure that the static charge  
built in the handler’s body capacitance is not discharged  
through the device. With proper handling and application  
procedures, however, IGBTs are currently being extensively  
used in production by numerous equipment manufacturers in  
military, industrial and consumer applications, with virtually  
no damage problems due to electrostatic discharge. IGBTs  
can be handled safely if the following basic precautions are  
taken:  
Operating frequency information for a typical device  
(Figure 3) is presented as a guide for estimating device  
performance for a specific application. Other typical  
frequency vs collector current (I ) plots are possible using  
CE  
the information shown for a typical unit in Figures 6, 7, 8, 9  
and 11. The operating frequency plot (Figure 3) of a typical  
device shows f  
or f ; whichever is smaller at each  
MAX1  
MAX2  
point. The information is based on measurements of a  
typical device and is bounded by the maximum rated  
junction temperature.  
f
is defined by f  
= 0.05/(t  
MAX1  
+ t ).  
d(OFF)I d(ON)I  
MAX1  
Deadtime (the denominator) has been arbitrarily held to 10%  
of the on-state time for a 50% duty factor. Other definitions  
1. Prior to assembly into a circuit, all leads should be kept  
shorted together either by the use of metal shorting  
springs or by the insertion into conductive material such  
as “ECCOSORBD™ LD26” or equivalent.  
are possible. t  
and t are defined in Figure 21.  
d(OFF)I  
d(ON)I  
Device turn-off delay can establish an additional frequency  
limiting condition for an application other than T  
.
JM  
+ E  
2. When devices are removed by hand from their carriers,  
the hand being used should be grounded by any suitable  
means - for example, with a metallic wristband.  
f
is defined by f  
MAX2  
= (P - P )/(E  
OFF  
). The  
ON2  
MAX2  
D
C
allowable dissipation (P ) is defined by P = (T - T )/R  
.
D
D
JM θJC  
C
The sum of device switching and conduction losses must not  
exceed P . A 50% duty factor was used (Figure 3) and the  
3. Tips of soldering irons should be grounded.  
D
4. Devices should never be inserted into or removed from  
circuits with power on.  
conduction losses (P ) are approximated by  
C
P = (V x I )/2.  
C
CE CE  
5. Gate Voltage Rating - Never exceed the gate-voltage  
E
and E are defined in the switching waveforms  
OFF  
rating of V  
. Exceeding the rated V can result in  
ON2  
GEM  
GE  
permanent damage to the oxide layer in the gate region.  
shown in Figure 21. E  
is the integral of the  
ON2  
instantaneous power loss (I  
x V ) during turn-on and  
6. Gate Termination - The gates of these devices are  
essentially capacitors. Circuits that leave the gate  
open-circuited or floating should be avoided. These  
conditions can result in turn-on of the device due to  
voltage buildup on the input capacitor due to leakage  
currents or pickup.  
CE  
CE  
E
is the integral of the instantaneous power loss  
OFF  
(I  
x V ) during turn-off. All tail losses are included in the  
CE  
CE  
calculation for E  
; i.e., the collector current equals zero  
OFF  
(I  
= 0).  
CE  
7. Gate Protection - These devices do not have an internal  
monolithic Zener diode from gate to emitter. If gate  
protection is required an external Zener is recommended.  
©2006 Fairchild Semiconductor Corporation  
HGT1S20N60A4S9A Rev. A  
TRADEMARKS  
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not  
intended to be an exhaustive list of all such trademarks.  
®
ACEx™  
FAST  
ISOPLANAR™  
LittleFET™  
MICROCOUPLER™  
MicroFET™  
MicroPak™  
MICROWIRE™  
MSX™  
PowerEdge™  
PowerSaver™  
SuperFET™  
SuperSOT™-3  
SuperSOT™-6  
SuperSOT™-8  
SyncFET™  
TCM™  
ActiveArray™  
Bottomless™  
Build it Now™  
CoolFET™  
CROSSVOLT™  
DOME™  
FASTr™  
FPS™  
FRFET™  
GlobalOptoisolator™  
GTO™  
®
PowerTrench  
®
QFET  
QS™  
QT Optoelectronics™  
Quiet Series™  
RapidConfigure™  
RapidConnect™  
μSerDes™  
ScalarPump™  
SILENT SWITCHER  
SMART START™  
SPM™  
®
HiSeC™  
TinyLogic  
2
EcoSPARK™  
I C™  
MSXPro™  
OCX™  
TINYOPTO™  
TruTranslation™  
UHC™  
2
E CMOS™  
i-Lo™  
ImpliedDisconnect™  
IntelliMAX™  
EnSigna™  
FACT™  
FACT Quiet Series™  
OCXPro™  
OPTOLOGIC  
®
UniFET™  
®
®
OPTOPLANAR™  
PACMAN™  
POP™  
UltraFET  
Across the board. Around the world.™  
VCX™  
Wire™  
®
The Power Franchise  
Programmable Active Droop™  
Power247™  
Stealth™  
DISCLAIMER  
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY  
PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY  
LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN;  
NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE  
SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD’S WORLDWIDE TERMS AND CONDITIONS,  
SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.  
LIFE SUPPORT POLICY  
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT  
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR  
CORPORATION.  
As used herein:  
1. Life support devices or systems are devices or systems  
which, (a) are intended for surgical implant into the body,  
or (b) support or sustain life, or (c) whose failure to perform  
when properly used in accordance with instructions for use  
provided in the labeling, can be reasonably expected to  
result in significant injury to the user.  
2. A critical component is any component of a life support  
device or system whose failure to perform can be  
reasonably expected to cause the failure of the life support  
device or system, or to affect its safety or effectiveness.  
PRODUCT STATUS DEFINITIONS  
Definition of Terms  
Datasheet Identification  
Product Status  
Definition  
Advance Information  
Formative or In  
Design  
This datasheet contains the design specifications for  
product development. Specifications may change in  
any manner without notice.  
Preliminary  
First Production  
This datasheet contains preliminary data, and  
supplementary data will be published at a later date.  
Fairchild Semiconductor reserves the right to make  
changes at any time without notice in order to improve  
design.  
No Identification Needed  
Obsolete  
Full Production  
This datasheet contains final specifications. Fairchild  
Semiconductor reserves the right to make changes at  
any time without notice in order to improve design.  
Not In Production  
This datasheet contains specifications on a product  
that has been discontinued by Fairchild semiconductor.  
The datasheet is printed for reference information only.  
Rev. I19  

相关型号:

20N60B

HiPerFAST IGBT
IXYS

20N60BD1

HiPerFAST IGBT with Diode
IXYS

20N60G-T3P-T

20A, 600V N-CHANNEL POWER MOSFET
UTC

20N60G-T47-T

20A, 600V N-CHANNEL POWER MOSFET
UTC

20N60L-T3P-T

20A, 600V N-CHANNEL POWER MOSFET
UTC

20N60L-T47-T

20A, 600V N-CHANNEL POWER MOSFET
UTC

20N60_15

N-CHANNEL MOSFET FOR HIGH SPEED SWITCHING
UTC

20N65

20A, 650V N-CHANNEL POWER MOSFET
UTC

20N65C3

Super Junction MOSFET
NCEPOWER

20N65G-T47-T

20A, 650V N-CHANNEL POWER MOSFET
UTC

20N65L-T47-T

20A, 650V N-CHANNEL POWER MOSFET
UTC

20N65Y

20 Amps,650 Volts N-CHANNEL MOSFET
PINGWEI