FAN53600AUC33X [FAIRCHILD]

3 MHz, 600 mA / 1A Synchronous Buck Regulator; 3 MHz的600毫安/ 1A同步降压稳压器
FAN53600AUC33X
型号: FAN53600AUC33X
厂家: FAIRCHILD SEMICONDUCTOR    FAIRCHILD SEMICONDUCTOR
描述:

3 MHz, 600 mA / 1A Synchronous Buck Regulator
3 MHz的600毫安/ 1A同步降压稳压器

稳压器
文件: 总16页 (文件大小:1359K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
August 2012  
FAN53600 / FAN53610  
3 MHz, 600 mA / 1A Synchronous Buck Regulator  
Features  
Description  
The FAN53600/10 is a 3 MHz step-down switching voltage  
regulator, available in 600 mA or 1 A options, that delivers a  
fixed output from an input voltage supply of 2.3 V to 5.5 V.  
.
.
.
.
.
.
.
.
.
.
.
.
.
.
600 mA or 1 A Output Current Capability  
26 µA Typical Quiescent Current  
3 MHz Fixed-Frequency Operation  
Best-in-Class Load Transient Response  
Best-in-Class Efficiency  
Using  
a
proprietary architecture with synchronous  
rectification, the FAN53600/10 is capable of delivering a  
peak efficiency of 92%, while maintaining efficiency over  
80% at load currents as low as 1 mA.  
The regulator operates at a nominal fixed frequency of  
3 MHz, which reduces the value of the external components  
to as low as 1 µH for the output inductor and 4.7 µF for the  
output capacitor. In addition, the Pulse-Width Modulation  
(PWM) modulator can be synchronized to an external  
frequency source.  
2.3 V to 5.5 V Input Voltage Range  
0.8 V to 3.3 V Fixed Output Voltage  
Low Ripple Light-Load PFM Mode  
Forced PWM and External Clock Synchronization  
Internal Soft-Start  
At moderate and light loads, Pulse Frequency Modulation  
(PFM) is used to operate the device in Power-Save Mode  
with a typical quiescent current of 26 µA. Even with such a  
low quiescent current, the part exhibits excellent transient  
response during large load swings. At higher loads, the  
system automatically switches to fixed-frequency control,  
operating at 3 MHz. In Shutdown Mode, the supply current  
drops below 1 µA, reducing power consumption. For  
applications that require minimum ripple or fixed frequency,  
PFM Mode can be disabled using the MODE pin.  
Input Under-Voltage Lockout (UVLO)  
Thermal Shutdown and Overload Protection  
Optional Output Discharge  
6-Bump WLCSP, 0.4 mm Pitch  
Applications  
.
.
.
.
3G, 4G, WiFi®, WiMAX™, and WiBro® Data Cards  
The FAN53600/10 is available in 6-bump, 0.4 mm pitch,  
Wafer-Level Chip-Scale Package (WLCSP).  
Tablets  
DSC, DVC  
Netbooks®, Ultra-Mobile PCs  
All trademarks are the property of their respective owners.  
Figure 1.  
Typical Application  
Temperature  
Ordering Information  
Output  
Max. Output  
Current  
Active  
Part Number  
Package  
Packing  
Voltage(1)  
Discharge(2)  
Range  
FAN53600AUC33X  
FAN53610AUC29X  
Notes:  
3.3 V  
2.9 V  
600 mA  
1 A  
Yes  
Yes  
WLCSP-6,  
0.4 mm Pitch  
Tape and  
Reel  
–40 to +85°C  
1. Other voltage options available on request. Contact a Fairchild representative.  
2. All voltage and output current options are available with or without active discharge. Contact a Fairchild representative.  
© 2010 Fairchild Semiconductor Corporation  
FAN53600 / FAN56310 • Rev. 1.0.0  
www.fairchildsemi.com  
Pin Configurations  
A1  
B1  
C1  
A2  
B2  
C2  
MODE  
SW  
VIN  
EN  
FB  
GND  
Figure 2. Bumps Facing Down  
Figure 3. Bumps Facing Up  
Pin Definitions  
Pin #  
Name  
Description  
MODE. Logic 1 on this pin forces the IC to stay in PWM Mode. Logic 0 allows the IC to automatically  
A1  
MODE switch to PFM Mode during light loads. The regulator also synchronizes its switching frequency to  
two times the frequency provided on this pin. Do not leave this pin floating.  
B1  
C1  
C2  
SW  
FB  
Switching Node. Connect to output inductor.  
Feedback. Connect to output voltage.  
GND  
Ground. Power and IC ground. All signals are referenced to this pin.  
Enable. The device is in Shutdown Mode when voltage to this pin is <0.4 V and enabled when  
>1.2 V. Do not leave this pin floating.  
B2  
A2  
EN  
VIN  
Input Voltage. Connect to input power source.  
© 2010 Fairchild Semiconductor Corporation  
FAN53600 / FAN53610 • Rev. 1.0.0  
www.fairchildsemi.com  
2
Absolute Maximum Ratings  
Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above  
the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended  
exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings  
are stress ratings only.  
Symbol  
VIN  
Parameter  
Min.  
–0.3  
–0.3  
–0.3  
–0.3  
Max.  
7.0  
VIN + 0.3(3)  
VIN + 0.3(3)  
VIN + 0.3(3)  
Unit  
V
Input Voltage  
VSW  
Voltage on SW Pin  
EN and MODE Pin Voltage  
Other Pins  
V
VCTRL  
V
V
Human Body Model per JESD22-A114  
Charged Device Model per JESD22-C101  
3.5  
1.5  
Electrostatic Discharge  
Protection Level  
ESD  
kV  
TJ  
TSTG  
TL  
Junction Temperature  
Storage Temperature  
–40  
–65  
+150  
+150  
+260  
°C  
°C  
°C  
Lead Soldering Temperature, 10 Seconds  
Note:  
3. Lesser of 7 V or VIN+0.3 V.  
Recommended Operating Conditions  
The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating  
conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding  
them or designing to Absolute Maximum Ratings.  
Symbol  
Parameter  
Min.  
2.3  
0
Typ.  
Max.  
5.5  
600  
1
Unit  
V
VCC  
Supply Voltage Range  
Output Current  
FAN53600  
FAN53610  
mA  
A
IOUT  
0
L
Inductor  
1
µH  
µF  
µF  
CIN  
Input Capacitor  
2.2  
4.7  
10  
Output Capacitor VOUT<2.7 V  
VOUT 2.7 V  
1.6  
12.0  
COUT  
TA  
TJ  
Operating Ambient Temperature  
Operating Junction Temperature  
–40  
–40  
+85  
°C  
°C  
+125  
Thermal Properties  
Junction-to-ambient thermal resistance is a function of application and board layout. This data is measured with two-layer 1s2p  
boards in accordance to JEDEC standard JESD51. Special attention must be paid not to exceed junction temperature TJ(max) at a  
given ambient temperature TA.  
Symbol  
Parameter  
Typical  
Unit  
Junction-to-Ambient Thermal Resistance  
150  
°C/W  
θJA  
© 2010 Fairchild Semiconductor Corporation  
FAN53600 / FAN53610 • Rev. 1.0.0  
www.fairchildsemi.com  
3
Electrical Characteristics  
Minimum and maximum values are at VIN = VEN = 2.3 V to 5.5 V, VMODE = 0V (AUTO Mode), and TA = -40°C to +85°C; circuit of  
Figure 1, unless otherwise noted. Typical values are at TA = 25°C, VIN = VEN = 3.6 V, VOUT=2.9 V.  
Symbol  
Parameter  
Conditions  
Min.  
Typ.  
Max.  
Unit  
Power Supplies  
No Load, Not Switching  
PWM Mode  
26  
3
µA  
mA  
µA  
V
IQ  
Quiescent Current  
I(SD)  
Shutdown Supply Current  
VIN = 3.6 V, EN = GND  
0.25  
2.15  
200  
1.00  
2.27  
VUVLO Under-Voltage Lockout Threshold Rising VIN  
VUVHYST Under-Voltage Lockout Hysteresis  
Logic Inputs: EN and MODE Pins  
mV  
VIH  
VIL  
Enable HIGH-Level Input Voltage  
Enable LOW-Level Input Voltage  
1.2  
V
V
0.4  
VLHYST Logic Input Hysteresis Voltage  
IIN Enable Input Leakage Current  
Switching and Synchronization  
100  
mV  
µA  
Pin to VIN or GND  
0.01  
1.00  
fSW  
Switching Frequency(4)  
VIN = 3.6 V, TA = 25°C  
2.7  
1.3  
3.0  
1.5  
3.3  
1.7  
MHz  
MHz  
fSYNC  
MODE Synchronization Range(4)  
Square Wave at MODE Input  
Regulation  
ILOAD = 0 to 600 mA  
PWM Mode  
1.207  
1.207  
1.784  
1.784  
1.233  
1.233  
1.820  
1.820  
1.272  
1.259  
1.875  
1.856  
V
V
V
V
1.233V  
1.820V  
ILOAD = 0 to 600 mA  
PWM Mode  
VO  
Output Voltage Accuracy  
I
LOAD = 0 to 400 mA, VIN VOUT  
+
+
2.755  
(-5%)  
2.987  
(+3%)  
2.900  
V
150mV  
2.900V  
ILOAD = 0 to 600 mA, VIN VOUT  
300 mV  
2.813  
(-3%)  
2.987  
(+3%)  
2.900  
180  
V
tSS  
Output Driver  
PMOS On Resistance  
NMOS On Resistance  
Soft-Start  
From EN Rising Edge  
300  
µs  
VIN = VGS = 3.6 V  
VIN = VGS = 3.6 V  
Open-Loop for FAN53600  
Open-Loop for FAN53610  
EN = GND  
175  
165  
1100  
1750  
230  
150  
15  
mΩ  
mΩ  
mA  
mA  
Ω
RDS(on)  
900  
1250  
2000  
ILIM(OL) PMOS Peak Current Limit  
1500  
RDIS  
Output Discharge Resistance  
TTSD  
THYS  
Thermal Shutdown  
CCM Only  
°C  
Thermal Shutdown Hysteresis  
°C  
Notes:  
4. Limited by the effect of tOFF minimum (see Operation Description section).  
5. The Electrical Characteristics table reflects open-loop data.  
© 2010 Fairchild Semiconductor Corporation  
www.fairchildsemi.com  
FAN53600 / FAN53610 • Rev. 1.0.0  
4
Typical Performance Characteristics  
Unless otherwise noted, VIN = VEN = 3.6 V, VMODE = 0 V (AUTO Mode), and TA = 25°C.  
98%  
95%  
92%  
89%  
86%  
83%  
80%  
100%  
95%  
90%  
85%  
80%  
75%  
70%  
- 40C, AUTO  
+25C, AUTO  
+85C, AUTO  
- 40C, PWM  
+25C, PWM  
+85C, PWM  
3.6 VIN  
4.2 VIN  
5.0 VIN  
5.5 VIN  
0
200  
400  
600  
800  
1000  
0
200  
400  
600  
800  
1000  
Load Current (mA)  
Load Current (mA)  
Figure 4. Efficiency vs. Load Current and Input  
Voltage, VOUT=3.3 V, Dotted for Decreasing Load  
Figure 5. Efficiency vs. Load Current and  
Temperature VIN=5 V, VOUT=3.3 V, Dotted for FPWM  
98%  
95%  
92%  
89%  
86%  
100%  
95%  
90%  
85%  
80%  
- 40C, AUTO  
+25C, AUTO  
+85C, AUTO  
- 40C, PWM  
+25C, PWM  
3.2 VIN  
3.6 VIN  
4.2 VIN  
83%  
75%  
5.0 VIN  
+85C, PWM  
80%  
70%  
0
200  
400  
600  
800  
1000  
0
200  
400  
600  
800 1000  
Load Current (mA)  
Load Current (mA)  
Figure 6. Efficiency vs. Load Current and Input  
Voltage, VOUT=2.9 V, Dotted for Decreasing Load  
Figure 7. Efficiency vs. Load Current and  
Temperature, VOUT=2.9 V, Dotted for FPWM  
95%  
93%  
91%  
89%  
87%  
85%  
83%  
81%  
95%  
90%  
85%  
80%  
75%  
70%  
65%  
- 40C, AUTO  
+25C, AUTO  
+85C, AUTO  
- 40C, PWM  
+25C, PWM  
+85C, PWM  
79%  
2.7 VIN  
3.6 VIN  
4.2 VIN  
5.0 VIN  
77%  
75%  
0
200  
400  
600  
800  
1000  
0
200  
400  
600  
800  
1000  
Load Current (mA)  
Load Current (mA)  
Figure 8. Efficiency vs. Load Current and Input  
Voltage, VOUT=1.82 V, Dotted for Decreasing Load  
Figure 9. Efficiency vs. Load Current  
and Temperature, VOUT=1.82 V, Dotted for FPWM  
© 2010 Fairchild Semiconductor Corporation  
FAN53600 / FAN53610 • Rev. 1.0.0  
www.fairchildsemi.com  
5
Typical Performance Characteristics (Continued)  
Unless otherwise noted, VIN = VEN = 3.6 V, VMODE = 0 V (AUTO Mode), and TA = 25°C.  
91%  
88%  
85%  
82%  
79%  
76%  
73%  
70%  
90%  
85%  
80%  
75%  
70%  
65%  
60%  
- 40C, AUTO  
+25C, AUTO  
+85C, AUTO  
- 40C, PWM  
+25C, PWM  
+85C, PWM  
2.7 VIN  
3.6 VIN  
4.2 VIN  
5.0 VIN  
0
200  
400  
600  
800  
1000  
0
200  
400  
600  
800  
1000  
Load Current (mA)  
Load Current (mA)  
Figure 10. Efficiency vs. Load Current and Input  
Voltage, VOUT=1.23 V, Dotted for Decreasing Load  
Figure 11. Efficiency vs. Load Current and  
Temperature, VOUT=1.23 V, Dotted for FPWM  
3
3
2.7VIN, AUTO  
2.7VIN, AUTO  
3.6VIN, AUTO  
4.2VIN, AUTO  
3.6VIN, AUTO  
4.2VIN, AUTO  
2
2
5.0VIN, AUTO  
5.0VIN, AUTO  
2.7VIN, PWM  
3.6VIN, PWM  
2.7VIN, PWM  
3.6VIN, PWM  
1
1
0
4.2VIN, PWM  
5.0VIN, PWM  
4.2VIN, PWM  
5.0VIN, PWM  
0
-1  
-2  
-1  
-2  
0
200  
400  
600  
800  
1000  
0
200  
400  
600  
800  
1000  
Load Current (mA)  
Load Current (mA)  
Figure 12. VOUT (%) vs. Load Current and Input  
Voltage, VOUT=1.82 V, Normalized to 3.6 VIN, 500mA  
Load, FPWM, Dotted for Auto Mode  
Figure 13. VOUT (%) vs. Load Current and Input  
Voltage, VOUT=1.23 V, Normalized to 3.6 VIN, 500 mA  
Load, FPWM, Dotted for Auto Mode  
500  
400  
300  
200  
500  
400  
300  
200  
100  
100  
PWM  
PWM  
PFM  
PFM  
100% d.c.  
100% d.c.  
0
0
2.9  
3.4  
3.9  
4.4  
4.9 5.4  
3.3  
3.8  
4.3  
4.8  
5.3  
Input Voltage (V)  
Input Voltage (V)  
Figure 14. PFM / PWM /100% Duty Cycle Boundary  
vs. Input Voltage, VOUT=3.3 V  
Figure 15. PFM / PWM /100% Duty Cycle Boundary  
vs. Input Voltage, VOUT=2.9 V  
© 2010 Fairchild Semiconductor Corporation  
FAN53600 / FAN53610 • Rev. 1.0.0  
www.fairchildsemi.com  
6
Typical Performance Characteristics (Continued)  
Unless otherwise noted, VIN = VEN = 3.6 V, VMODE = 0 V (AUTO Mode), and TA = 25°C.  
500  
500  
400  
300  
200  
100  
0
400  
300  
200  
100  
0
PWM  
PFM  
PWM  
PFM  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
Input Voltage (V)  
Input Voltage (V)  
Figure 16. PFM / PWM Boundary vs. Input Voltage,  
OUT=1.82 V  
Figure 17. PFM / PWM Boundary vs. Input Voltage,  
VOUT=1.23 V  
V
40  
35  
30  
25  
20  
15  
10  
40  
35  
30  
25  
20  
- 40C, EN=VIN  
+25C, EN=VIN  
+85C, EN=VIN  
- 40C, EN=1.8V  
+25C, EN=1.8V  
+85C, EN=1.8V  
- 40C, EN=VIN  
+25C, EN=VIN  
+85C, EN=VIN  
- 40C, EN=1.8V  
+25C, EN=1.8V  
+85C, EN=1.8V  
15  
10  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0 5.5  
Input Voltage (V)  
Input Voltage (V)  
Figure 18. Quiescent Current vs. Input Voltage and  
Temperature, VOUT=2.9 V, EN=VIN Solid, Dotted for  
EN=1.8 V  
Figure 19. Quiescent Current vs. Input Voltage and  
Temperature, VOUT=1.82 V, EN=VIN Solid, Dotted for  
EN=1.8 V  
25  
20  
15  
10  
25  
20  
15  
10  
5
5
- 40C  
- 40C  
+25C  
+25C  
+85C  
+85C  
0
0
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
Input Voltage (V)  
Input Voltage (V)  
Figure 20. Quiescent Current vs. Input Voltage and  
Temperature, VOUT=2.9 V, Mode=EN=VIN (FPWM)  
Figure 21. Quiescent Current vs. Input Voltage and  
Temperature, VOUT=1.82 V, Mode=EN=VIN (FPWM)  
© 2010 Fairchild Semiconductor Corporation  
FAN53600 / FAN53610 • Rev. 1.0.0  
www.fairchildsemi.com  
7
Typical Performance Characteristics (Continued)  
Unless otherwise noted, VIN = VEN = 3.6 V, VMODE = 0 V (AUTO Mode), and TA = 25°C.  
100  
80  
60  
40  
20  
0
50  
40  
30  
20  
10  
0
3.2VIN, AUTO  
3.6VIN, AUTO  
5.0VIN, AUTO  
3.2VIN, PWM  
3.6VIN, PWM  
5.0VIN, PWM  
2.7VIN, AUTO  
3.6VIN, AUTO  
5.0VIN, AUTO  
2.7VIN, PWM  
3.6VIN, PWM  
5.0VIN, PWM  
0
200  
400  
600  
800  
1000  
0
200  
400  
600  
800  
1000  
Load Current (mA)  
Load Current (mA)  
Figure 22. Output Ripple vs. Load Current and Input  
Voltage, VOUT=2.9 V, FPWM, Dotted for Auto Mode  
Figure 23. Output Ripple vs. Load Current and Input  
Voltage, VOUT=2.9 V, FPWM, Dotted for Auto Mode  
3,500  
3,000  
2,500  
3,500  
3,000  
2,500  
2,000  
2,000  
3.2VIN, AUTO  
3.6VIN, AUTO  
1,500  
1,500  
5.0VIN, AUTO  
2.7VIN, AUTO  
3.2VIN, PWM  
3.6VIN, AUTO  
1,000  
1,000  
3.6VIN, PWM  
5.0VIN, AUTO  
5.0VIN, PWM  
2.7VIN, PWM  
500  
500  
3.6VIN, PWM  
5.0VIN, PWM  
0
0
0
200  
400  
600  
800  
1000  
0
200  
400  
600  
800 1000  
Load Current (mA)  
Load Current (mA)  
Figure 24. . Frequency vs. Load Current and Input  
Voltage, VOUT=2.9 V, Auto Mode, Dotted for FPWM  
Figure 25. Frequency vs. Load Current and Input  
Voltage, VOUT=1.82 V, Auto Mode, Dotted for FPWM  
Figure 26. Load Transient, VIN=5 V, VOUT=3.3 V,  
10-200-10 mA, 100 ns Edge  
Figure 27. Load Transient, VIN=5 V, VOUT=3.3 V, 200-  
800-200 mA, 100 ns Edge  
© 2010 Fairchild Semiconductor Corporation  
FAN53600 / FAN53610 • Rev. 1.0.0  
www.fairchildsemi.com  
8
Typical Performance Characteristics (Continued)  
Unless otherwise noted, VIN = VEN = 3.6 V, VMODE = 0 V (AUTO Mode), and TA = 25°C.  
Figure 28. Load Transient, VIN=5 V, VOUT=2.9 V,  
10-200-10 mA, 100 ns Edge  
Figure 29. Load Transient, VIN=5 V, VOUT=2.9 V,  
200-800-200 mA, 100 ns Edge  
Figure 30. Line Transient, 3.3-3.9-3.3 VIN, 10 µs Edge,  
Figure 31. Line Transient, 3.3-3.9-3.3 VIN, 10 µs Edge,  
V
OUT=2.9 V, 58 mA Load  
VOUT=2.9 V, 600 mA Load  
Figure 32. Combined Line / Load Transient,  
OUT=2.9V, 3.9-3.3-3.9 VIN, 10 µs Edge, 58-500-58 mA  
Load, 100 ns Edge  
Figure 33. Startup, 50 Load  
V
© 2010 Fairchild Semiconductor Corporation  
FAN53600 / FAN53610 • Rev. 1.0.0  
www.fairchildsemi.com  
9
Typical Performance Characteristics (Continued)  
Unless otherwise noted, VIN = VEN = 3.6 V, VMODE = 0 V (AUTO Mode), and TA = 25°C.  
Figure 34. Startup, 4.7 Load  
Figure 35. Over-Current, Load Increasing Past Current  
Limit, FAN53600  
Figure 36. 250 mFault, Rapid Fault, FAN53600  
© 2010 Fairchild Semiconductor Corporation  
FAN53600 / FAN53610 • Rev. 1.0.0  
www.fairchildsemi.com  
10  
Operation Description  
The FAN53600/10 is a 3 MHz, step-down switching voltage  
regulator, available in 600 mA or 1 A options, that delivers a  
fixed output from an input voltage supply of 2.3 V to 5.5 V.  
All voltage options can be ordered with a feature that actively  
discharges FB to ground through a 230 Ω path when EN is  
LOW. Raising EN above its threshold voltage activates the  
part and starts the soft-start cycle. During soft-start, the  
internal reference is ramped using an exponential RC shape  
to prevent overshoot of the output voltage. Current limiting  
minimizes inrush during soft-start.  
Using  
a
proprietary architecture with synchronous  
rectification, the FAN53600/10 is capable of delivering a  
peak efficiency of 92%, while maintaining efficiency over  
80% at load currents as low as 1 mA.  
The regulator operates at a nominal fixed frequency of  
3 MHz, which reduces the value of the external components  
to as low as 1 µH for the output inductor and 4.7 µF for the  
output capacitor. In addition, the PWM modulator can be  
synchronized to an external frequency source.  
The IC may fail to start if heavy load is applied during startup  
and/or if excessive COUT is used. This is due to the current-  
limit fault response, which protects the IC in the event of an  
over-current condition present during soft-start.  
The current required to charge COUT during soft-start,  
commonly referred to as “displacement current,” is given as:  
Control Scheme  
dV  
The FAN53600/10 uses a proprietary, non-linear, fixed-  
frequency PWM modulator to deliver a fast load transient  
response, while maintaining a constant switching frequency  
over a wide range of operating conditions. The regulator  
performance is independent of the output capacitor ESR,  
allowing the use of ceramic output capacitors. Although this  
type of operation normally results in a switching frequency  
that varies with input voltage and load current, an internal  
frequency loop holds the switching frequency constant over  
a large range of input voltages and load currents.  
IDISP = COUT  
(2)  
dt  
dV  
dt  
where the  
term refers to the soft-start slew rate above.  
To prevent shutdown during soft-start, the following condition  
must be met:  
IDISP + ILOAD < IMAX(DC)  
(3)  
where IMAX(DC) is the maximum load current the IC is  
guaranteed to support.  
For very light loads, the FAN53600/10 operates in  
Discontinuous Current (DCM), single-pulse, PFM Mode;  
which produces low output ripple compared with other PFM  
architectures. Transition between PWM and PFM is  
seamless, with a glitch of less than 18 mV at VOUT during the  
transition between DCM and CCM modes.  
Startup into Large COUT  
Multiple soft-start cycles are required for no-load startup if  
COUT is greater than 15 μF. Large COUT requires light initial  
load to ensure the FAN53600/10 starts appropriately. The IC  
shuts down for 1.3 ms when IDISP exceeds ILIMIT for more  
than 210 μs of current limit. The IC then begins a new soft-  
start cycle. Since COUT retains its charge when the IC is off,  
the IC reaches regulation after multiple soft-start attempts.  
Combined  
with  
exceptional  
transient  
response  
characteristics, the very low quiescent current of the  
controller (26 µA) maintains high efficiency, even at very light  
loads, while preserving fast transient response for  
applications requiring tight output regulation.  
MODE Pin  
100% Duty Cycle Operation  
Logic 1 on this pin forces the IC to stay in PWM Mode. Logic  
0 allows the IC to automatically switch to PFM during light  
loads. If the MODE pin is toggled, with a frequency between  
1.3 MHz and 1.7 MHz, the converter synchronizes its  
switching frequency to two times the frequency on the  
MODE pin (fMODE).  
When VIN approaches VOUT, the regulator increases its duty  
cycle until 100% duty cycle is reached. As the duty cycle  
approaches 100%, the switching frequency declines due to  
the minimum off-time (tOFF(MIN)) of about 50 ns imposed by  
the control circuit. When 100% duty cycle is reached, VOUT  
follows VIN with a drop-out voltage (VDROPOUT) determined by  
the total resistance between VIN and VOUT as calculated by:  
The MODE pin is internally buffered with a Schmitt trigger,  
which allows the MODE pin to be driven with slow rise and  
fall times. An asymmetric duty cycle for frequency  
synchronization is also permitted as long as the minimum  
time below VIL(MAX) or above VIH(MAX) is 100 ns.  
VDROPOUT = ILOAD  
(
PMOSRDS(ON) + DCRL  
)
(1)  
Enable and Soft-Start  
When EN is LOW, all circuits are off and the IC draws  
~50 nA of current. When EN is HIGH and VIN is above its  
UVLO threshold, the regulator begins a soft-start cycle. The  
output ramp during soft-start is a fixed slew rate of 50 mV/μs  
from 0 to 1 VOUT, then 12.5 mV/μs until the output reaches its  
setpoint. Regardless of the state of the MODE pin, PFM  
Mode is enabled to prevent current from being discharged  
from COUT if soft-start begins when COUT is charged.  
© 2010 Fairchild Semiconductor Corporation  
FAN53600 / FAN53610 • Rev. 1.0.0  
www.fairchildsemi.com  
11  
Current Limit, Fault Shutdown, and Restart  
Minimum Off-Time and Switching Frequency  
A heavy load or short circuit on the output causes the current  
in the inductor to increase until a maximum current threshold  
is reached in the high-side switch. Upon reaching this point,  
the high-side switch turns off, preventing high currents from  
causing damage. The regulator continues to limit the current  
cycle by cycle. After 16 cycles of current limit, the regulator  
triggers an over-current fault, causing the regulator to shut  
down for about 1.3 ms before attempting a restart.  
tOFF(MIN) is 50 ns. This imposes constraints on the maximum  
VOUT  
that the FAN53600/10 can provide, or the maximum  
VIN  
output voltage it can provide at low VIN while maintaining a  
fixed switching frequency in PWM Mode.  
When VIN is LOW, fixed switching frequency is maintained as  
long as:  
If the fault was caused by short circuit, the soft-start circuit  
attempts to restart and produces an over-current fault after  
about 250 μs, which results in a duty cycle of less than 0%,  
limiting power dissipation.  
VOUT  
1tOFF(MIN) fSW 0.85 .  
V
IN  
The switching frequency drops when the regulator cannot  
provide sufficient duty cycle at 3 MHz to maintain regulation.  
This occurs when VOUT >0.85 VIN at high load currents. The  
calculation for switching frequency is given by:  
The closed-loop peak-current limit, ILIM(PK), is not the same as  
the open-loop tested current limit, ILIM(OL), in the Electrical  
Characteristics table. This is primarily due to the effect of  
propagation delays of the IC current-limit comparator.  
1
fSW = min  
,3MHz  
(4)  
tSW (MAX )  
Under-Voltage Lockout (UVLO)  
When EN is HIGH, the under-voltage lockout keeps the part  
from operating until the input supply voltage rises high  
enough to properly operate. This ensures no misbehavior of  
the regulator during startup or shutdown.  
where:  
VOUT + IOUT ROFF  
VIN IOUT RON VOUT  
tSW (MAX ) = 50ns 1+  
(5)  
Thermal Shutdown (TSD)  
where:  
When the die temperature increases, due to a high load  
condition and/or a high ambient temperature, the output  
switching is disabled until the temperature on the die has  
fallen sufficiently. The junction temperature at which the  
thermal shutdown activates is nominally 150°C with a  
15°C hysteresis.  
ROFF =RDSON _ N + DCRL  
RON =RDSON _ P + DCRL .  
© 2010 Fairchild Semiconductor Corporation  
FAN53600 / FAN53610 • Rev. 1.0.0  
www.fairchildsemi.com  
12  
Applications Information  
Selecting the Inductor  
The increased RMS current produces higher losses through  
the RDS(ON) of the IC MOSFETs, as well as the inductor DCR.  
The output inductor must meet both the required inductance  
and the energy handling capability of the application. The  
inductor value affects average current limit, the PWM-to-  
PFM transition point, output voltage ripple, and efficiency.  
Increasing the inductor value produces lower RMS currents,  
but degrades transient response. For a given physical  
inductor size, increased inductance usually results in an  
inductor with lower saturation current and higher DCR.  
The ripple current (I) of the regulator is:  
Table 1 shows the effects of inductance higher or lower than  
the recommended 1 μH on regulator performance.  
VOUT  
VIN  
VIN VOUT  
L fSW  
ΔI ≈  
(6)  
Output Capacitor  
The maximum average load current, IMAX(LOAD), is related to  
the peak current limit, ILIM(PK), by the ripple current, given by:  
Table 2 suggests 0402 capacitors. 0603 capacitors may  
further improve performance in that the effective capacitance  
is higher. This improves transient response and output ripple.  
ΔI  
2
IMAX(LOAD) = ILIM(PK )  
(7)  
Increasing COUT has no effect on loop stability and can  
therefore be increased to reduce output voltage ripple or to  
improve transient response. Output voltage ripple, VOUT, is:  
The transition between PFM and PWM operation is  
determined by the point at which the inductor valley current  
crosses zero. The regulator DC current when the inductor  
current crosses zero, IDCM, is:  
2
f
C  
2D⋅  
ESR  
1
SW  
OUT  
ΔV  
= ΔI  
+
OUT  
L
(10)  
(
1D  
)
8f  
C  
SW OUT  
ΔI  
2
(8)  
IDCM  
=
Input Capacitor  
The 2.2 μF ceramic input capacitor should be placed as  
close as possible between the VIN pin and GND to minimize  
parasitic inductance. If a long wire is used to bring power to  
the IC, additional “bulk” capacitance (electrolytic or tantalum)  
should be placed between CIN and the power source lead to  
reduce ringing that can occur between the inductance of the  
power source leads and CIN.  
The FAN53600/10 is optimized for operation with L = 1 μH,  
but is stable with inductances up to 2.2 μH (nominal). The  
inductor should be rated to maintain at least 80% of its value  
at ILIM(PK)  
.
Efficiency is affected by inductor DCR and inductance value.  
Decreasing the inductor value for a given physical size  
typically decreases DCR; but since I increases, the RMS  
current increases, as do the core and skin effect losses:  
The effective capacitance value decreases as VIN increases  
due to DC bias effects.  
ΔI2  
12  
2
(9)  
IRMS  
=
IOUT(DC)  
+
Table 1. Effects of Changes in Inductor Value (470 nH Recommended Value) on Regulator Performance  
Inductor Value  
Increase  
IMAX(LOAD)  
Increase  
Decrease  
VOUT  
Decrease  
Increase  
Transient Response  
Degraded  
Decrease  
Improved  
Table 2. Recommended Passive Components and Variation Due to DC Bias  
Component  
Description  
Vendor  
Min.  
Typ.  
Comment  
1 μH, 2012, 190 mΩ,  
Murata LQM21PN1R0MC0  
Not recommended for 1A load  
1 μH  
0.8 A  
L1  
Utilized to generate graphs,  
Figure 4 — Figure 36  
1 μH, 1.4 A, 85 mΩ,  
Murata LQM2MPN1R0M  
1 μH  
2.2 μF  
4.7 μF  
2016  
Murata or Equivalent  
GRM155R60J225ME15  
GRM188R60J225KE19D  
Decrease primarily due to DC bias  
(VIN) and elevated temperature  
2.2 μF, 6.3 V, X5R,  
CIN  
1.0 μF  
1.6 μF  
0402  
Murata or Equivalent  
GRM188R60G106ME47D  
Decrease primarily due to DC bias  
(VOUT) and elevated temperature  
COUT  
4.7 μF, X5R 0603  
© 2010 Fairchild Semiconductor Corporation  
FAN53600 / FAN53610 • Rev. 1.0.0  
www.fairchildsemi.com  
13  
PCB Layout Guidelines  
There are only three external components: the inductor and  
the input and output capacitors. For any buck switcher IC,  
including the FAN53600/10, it is important to place a low-ESR  
input capacitor very close to the IC, as shown in Figure 37.  
The input capacitor ensures good input decoupling, which  
helps reduce noise at the output terminals and ensures that  
the control sections of the IC do not behave erratically due to  
excessive noise. This reduces switching cycle jitter and  
ensures good overall performance. It is important to place the  
common GND of CIN and COUT as close as possible to the C2  
terminal. There is some flexibility in moving the inductor further  
away from the IC; in that case, VOUT should be considered at  
the COUT terminal.  
Figure 37. 3 MHz PCB Layout Guidance  
© 2010 Fairchild Semiconductor Corporation  
FAN53600 / FAN53610 • Rev. 1.0.0  
www.fairchildsemi.com  
14  
Physical Dimensions  
Figure 38. 6-Bump WLCSP, 0.4mm Pitch  
Product-Specific Dimensions  
Product  
D
E
X
Y
FAN53600AUC33X  
FAN53610AUC29X  
FAN53610UC33X  
1.160 ±0.030  
1.160 ±0.030  
1.160 ±0.030  
0.860 ±0.030  
0.860 ±0.030  
0.860 ±0.030  
0.230  
0.230  
0.230  
0.180  
0.180  
0.180  
Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without  
notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most  
recent revision. Package specifications do not expand the terms of Fairchild’s worldwide terms and conditions, specifically the warranty therein, which  
covers Fairchild products.  
Always visit Fairchild Semiconductor’s online packaging area for the most recent package drawings:  
http://www.fairchildsemi.com/packaging/.  
© 2010 Fairchild Semiconductor Corporation  
FAN53600 / FAN53610 • Rev. 1.0.0  
www.fairchildsemi.com  
15  
© 2010 Fairchild Semiconductor Corporation  
FAN53600 / FAN53610 • Rev. 1.0.0  
www.fairchildsemi.com  
16  

相关型号:

FAN53600UC33X

Switching Regulator
FAIRCHILD

FAN53601

6 MHz 600 mA / 1 A Synchronous Buck Regulator
FAIRCHILD

FAN53601

6 MHz, 600mA / 1 A Synchronous Buck Regulator
ONSEMI

FAN53601AUC105X

6 MHz, 600mA / 1 A Synchronous Buck Regulator
ONSEMI

FAN53601AUC10X

6 MHz, 600mA / 1 A Synchronous Buck Regulator
ONSEMI

FAN53601UC182X

6 MHz 600 mA / 1 A Synchronous Buck Regulator
FAIRCHILD

FAN53601UC182X

6 MHz, 600mA / 1 A Synchronous Buck Regulator
ONSEMI

FAN53602UC123X

1.2A Synchronous Buck Regulator
ONSEMI

FAN5361

6MHz, 600mA TinyBuck⑩ Synchronous Buck Regulator
FAIRCHILD

FAN5361

6 MHz, 600 mA / 750 mA Synchronous Buck Regulator
ONSEMI

FAN53610AUC29X

3 MHz, 600 mA / 1A Synchronous Buck Regulator
FAIRCHILD

FAN53610AUC29X

3 MHz, 600 mA / 1A Synchronous Buck Regulator
ONSEMI