FAN7316M [FAIRCHILD]

LCD Backlight Inverter Drive IC; LCD背光逆变器驱动IC
FAN7316M
型号: FAN7316M
厂家: FAIRCHILD SEMICONDUCTOR    FAIRCHILD SEMICONDUCTOR
描述:

LCD Backlight Inverter Drive IC
LCD背光逆变器驱动IC

显示驱动器 驱动程序和接口 接口集成电路 光电二极管 CD
文件: 总21页 (文件大小:1103K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
January 2008  
FAN7316  
LCD Backlight Inverter Drive IC  
Features  
Description  
The FAN7316 is a LCD backlight inverter drive IC that  
controls N-N half-bridge topology. The FAN7316 can  
also drive push-pull topology.  
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
High-Efficiency Single-Stage Power Conversion  
Wide Input Voltage Range: 4.5V to 24V  
Backlight Lamp Ballast and Soft Dimming  
Reduces Required External Components  
Precision Voltage Reference Trimmed to 2%  
N-N Half-Bridge Topology  
The FAN7316 provides a low-cost solution by integrating  
the external open-lamp protection circuit. The operating  
voltage of the FAN7316 is wide, so the FAN7316 doesn’t  
need an external regulator to supply the voltage to the  
IC. The FAN7316 has the internal bootstrap driver, so  
the external fast recovery diode can be avoided.  
PWM Control at Fixed Frequency  
Analog and Burst Dimming Function  
Selectable Burst Dimming Polarity by ADIM Voltage  
Striking Frequency Depending on Normal  
Frequency  
The FAN7316 provides various protections, such as  
open-lamp regulation, arc protection, open-lamp  
protection, short-circuit protection, and CMP-high  
protection to increase the system reliability. The  
FAN7316 provides analog dimming, burst dimming, and  
burst dimming polarity selection functions.  
ƒ
ƒ
ƒ
ƒ
Open-Lamp Protection  
Open-Lamp Regulation  
Short-Circuit Protection  
The FAN7316 is available in a 20-SOIC package.  
20-Pin SOIC  
Applications  
ƒ
ƒ
LCD TV  
LCD Monitor  
Ordering Information  
Part Number  
Package  
Operating Temperature  
Packing Method  
FAN7316M  
20-SOIC  
20-SOIC  
-25 to +85°C  
-25 to +85°C  
RAIL  
FAN7316MX  
TAPE & REEL  
All packages are lead free per JEDEC: J-STD-020B standard.  
Protected under U.S. patent number 5,652,479.  
© 2007 Fairchild Semiconductor Corporation  
FAN7316 • 1.0.1  
www.fairchildsemi.com  
Block Diagram  
Figure 1. Internal Block Diagram  
© 2007 Fairchild Semiconductor Corporation  
FAN7316 • 1.0.1  
www.fairchildsemi.com  
2
Pin Assignments  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
F
PXYTT  
FAN7316  
1
2
3
4
5
6
7
8
9
10  
F : Fairchild logo  
P : Assembly site code  
XY : Year & weekly code  
TT : Die run code  
FAN7316 : Device name  
Figure 2. Package Diagram  
© 2007 Fairchild Semiconductor Corporation  
FAN7316 • 1.0.1  
www.fairchildsemi.com  
3
Pin Definitions  
Pin #  
Name  
Description  
This pin is for open-lamp protection. If OLP is lower than 1.5V at initial operation, the IC  
operates at striking mode for BCT 450 cycles. If OLP is lower than 1.5V in normal mode, the  
IC is shut down after a delay of three BCT cycles.  
1
OLP1  
2
OLP2  
Error amplifier output. A compensation capacitor should be connected between this pin and  
ground.  
3
4
5
CMP  
FB  
Error amplifier inverting input. This pin voltage is regulated at 2V or ADIM voltage.  
This pin is for burst dimming input. The voltage range of 0.5 to 2V at this pin controls burst  
mode duty cycle from 0% to 100%.  
BDIM  
This pin is for positive analog dimming input. This voltage to 2V at this pin controls the  
amplitude of the lamp current.  
6
ADIM  
7
8
ENA  
GND  
This pin is for turning on/off the IC.  
Ground.  
Low-side driver output. The output stage can deliver about 500mA source and sink current,  
typically.  
9
OUTL  
10  
11  
VREF  
VIN  
6V reference voltage.  
IC supply voltage.  
High-side floating supply. The bootstrap capacitor should be connected between this pin  
and VS pin, which can be fed by an internal bootstrap MOSFET.  
12  
13  
14  
15  
16  
VB  
OUTH  
VS  
High-side driver output. The output stage can deliver about 500mA source and sink current,  
typically.  
High-side floating supply return. Layout care should be taken to avoid below-ground spikes  
on this pin.  
This pin is for short-circuit protection. If SCP is higher than 2V, IC enters shutdown mode  
after a delay of 32 BCT cycles.  
SCP  
RT  
This pin programs the switching frequency. The resistor should be connected between this  
pin and ground.  
This pin programs the burst dimming frequency. A capacitor should be connected between  
this pin and ground. The waveform of this pin is the triangular waveform whose amplitude is  
from 0.5V to 2V. This pin voltage goes up to 4V when the IC enters shutdown mode.  
17  
18  
BCT/FT  
OLR  
This pin is for open-lamp regulation. If the voltage at OLR reaches 2V, the IC makes this pin  
voltage be controlled not to exceed 2V. If OLR voltage is higher than 1.75V, the IC enters  
shutdown mode after delays of 451 BCT cycles in striking mode and three BCT cycles in  
normal mode, respectively. If this pin voltage is higher than 3V, the IC enters shutdown  
mode without delay.  
This pin is for open lamp protection. If OLP is lower than 1.5V at initial operation, the IC  
operates at striking mode for BCT 450 cycles. If OLP is lower than 1.5V in normal mode, the  
IC is shut down after a delay of three BCT cycles.  
19  
20  
OLP4  
OLP3  
© 2007 Fairchild Semiconductor Corporation  
FAN7316 • 1.0.1  
www.fairchildsemi.com  
4
Absolute Maximum Ratings  
Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be  
operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In  
addition, extended exposure to stresses above the recommended operating conditions may affect device reliability.  
The absolute maximum ratings are stress ratings only.  
Symbol  
VIN  
Parameter  
Min.  
4.5  
Max.  
24  
Unit  
V
IC Supply Voltage  
VB  
High-Side Floating Supply  
-0.3  
-2(3)  
-40  
33  
V
VS  
High-Side Floating Supply Return  
Operating Junction Temperature  
Storage Temperature Range  
Thermal Resistance Junction-Air(1,2)  
Power Dissipation  
VB-7  
+150  
+150  
90  
V
TJ  
°C  
TSTG  
θJA  
-65  
°C  
°C /W  
W
PD  
1.4  
Notes:  
1. Thermal resistance test board. Size: 76.2mm x 114.3mm x 1.6mm (1S0P); JEDEC standard: JESD51-2, JESD51-3.  
2. Assume no ambient airflow.  
Recommended Operating Ratings  
The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended  
operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not  
recommend exceeding them or designing to absolute maximum ratings.  
Symbol  
Parameter  
Min.  
Max.  
22  
Unit  
V
VIN  
VB  
VS  
TA  
IC Supply Voltage  
4.5  
High-Side Floating Supply  
VS-0.3  
(3)  
VS+6.5  
25  
V
High-Side Floating Supply Return  
Operating Ambient Temperature  
V
-25  
+85  
°C  
Notes:  
3. The VS is tolerant to short negative transient spikes.  
Pin Breakdown Voltage  
Pin #  
Name  
OLP1  
OLP2  
CMP  
FB  
Value  
Unit  
Pin #  
11  
Name  
Value  
Unit  
1
2
7
7
7
7
7
7
7
VIN  
VB  
24  
33  
7
12  
3
13  
OUTH  
VS  
4
14  
33  
7
5
BDIM  
ADIM  
ENA  
15  
SCP  
RT  
V
V
6
16  
7
7
17  
BCT/FT  
OLR  
OLP4  
OLP3  
7
8
GND  
OUTL  
VREF  
18  
7
9
7
7
19  
7
10  
20  
7
© 2007 Fairchild Semiconductor Corporation  
FAN7316 • 1.0.1  
www.fairchildsemi.com  
5
Electrical Characteristics  
For typical values, TA=25°C, VIN=18V, and -25°C TA 85°C, unless otherwise specified. Specifications to -25°C ~  
85°C are guaranteed by design based on final characterization results.  
Symbol  
Parameter  
Test Conditions  
Min.  
Typ.  
Max.  
Unit  
VREF Section (Recommend X7R Capacitor)  
V6  
6V Regulation Voltage  
6V Line Regulation  
6V Load Regulation  
CMP=0V  
5.76  
6.00  
6.24  
25  
V
V6line  
V6load  
VIN=7V, 18V  
mV  
mV  
60  
10µA165mA  
Oscillator Section (Main)  
Vfbth  
Vcth  
Vctl  
FB Threshold Voltage  
ADIM=1, OLP=0V  
0.45  
2.0  
V
V
V
CT High Voltage(4)  
CT Low Voltage(4)  
0.5  
Oscillator Section (Burst)  
TA=25°C, BCT=10nF  
BCT=10nF  
288  
282  
300  
300  
2
312  
318  
Hz  
Hz  
V
foscb  
Oscillation Frequency  
Vbcth  
Vbctl  
Vbctft  
BCT High Voltage  
BCT Low Voltage  
BCT Fault Voltage  
BCT=10nF  
BCT=10nF  
0.5  
4
V
SCP=2.5V  
V
Error Amplifier Section  
Gm1  
AV  
Error Amplifier Trans-conductance  
Error Amplifier Open-loop Gain(4)  
CMP=1, ADIM=1V  
100  
360  
50  
600  
umho  
dB  
TA=25°C, ADIM=2.5V  
1.97  
2.00  
2.03  
V
V2  
2V Regulation Voltage  
260  
100  
-100  
1.6  
0
ppm/°C  
µA  
lsin  
CMP Sink Current  
ADIM=1V, FB=2.5V  
CMP=1V, FB=0V  
1.75V<OLR<2V  
OLR>2V  
66  
134  
-66  
lsur1  
Isur2  
Isur3  
CMP Source Current 1  
CMP Source Current 2  
CMP Source Current 3(4)  
-134  
µA  
µA  
µA  
Under-Voltage Lockout Section (UVLO)  
Vth  
Start Threshold Voltage  
Start Threshold Voltage Hysteresis  
Start-up Current  
ENA=2.5V  
ENA=2.5V  
VIN=Vth-0.2  
Not switching  
3.9  
0.2  
20  
4.2  
0.4  
60  
4.5  
0.6  
150  
2.0  
V
V
Vthhys  
Ist  
µA  
mA  
Iop  
ENA Section  
Vena  
Operating Supply Current  
1.5  
Enable State Input Voltage  
Disable Stage Input Voltage  
Stand-by Current  
2
5
V
V
Vdis  
0.7  
150  
Isb  
ENA=0  
100  
µA  
Note:  
4. These parameters, although guaranteed, are not 100% tested in production.  
© 2007 Fairchild Semiconductor Corporation  
www.fairchildsemi.com  
FAN7316 • 1.0.1  
6
Electrical Characteristics (Continued)  
For typical values, TA=25°C, VIN=18V, and -25°C TA 85°C, unless otherwise specified. Specifications to -25°C ~  
85°C are guaranteed by design based on final characterization results.  
Symbol  
Parameter  
Test Conditions  
Min.  
Typ.  
Max. Unit  
Protection Section  
Vscp  
Vcmpr  
Volp  
Short-Circuit Protection Voltage  
CMP Protection Voltage  
1.9  
2.8  
2.0  
3.0  
2.1  
3.2  
V
V
Open-Lamp Protection Voltage  
Over-Voltage Protection  
1.4  
1.5  
1.6  
V
Vovp  
Volr1  
Volr2  
Volrhy  
2.85  
1.60  
1.9  
3.00  
1.75  
2.0  
3.15  
1.90  
2.1  
V
Open-Lamp Regulation Voltage 1  
Open-Lamp Regulation Voltage 2  
Open-Lamp Regulation Hysteresis(5)  
V
V
250  
1.5  
mV  
s
Striking, foscb=300Hz  
Normal, foscb=300Hz  
Striking, foscb=300Hz  
Normal, foscb=300Hz  
Striking, foscb=300Hz  
Normal, foscb=300Hz  
Striking, foscb=300Hz  
Normal, foscb=300Hz  
1.4  
80  
1.4  
80  
1.4  
6
1.6  
120  
1.6  
120  
1.6  
10  
tscp  
tcmp  
tolp  
Short-Circuit Protection Delay(5)  
100  
1.5  
ms  
s
CMP Protection Delay(5)  
100  
1.5  
ms  
s
Open-Lamp Protection Delay(5)  
ms  
s
1.4  
80  
1.5  
100  
150  
1.6  
120  
tolr  
Open-Lamp Regulation Delay(5)  
Thermal Shutdown(5)  
ms  
°C  
TSD  
Output Section  
47.4  
47  
49.0  
49  
50.6  
51  
TA=25°C, RT=27kΩ  
RT=27kΩ  
fnrmo Output Normal Frequency  
kHz  
kHz  
61.5  
61  
64.0  
64  
66.4  
67  
TA=25°C, RT=27kΩ  
RT=27kΩ  
fstr  
Output Striking Frequency  
Vouvh  
Vouvl  
Vosth  
Vost  
OUTH Voltage Before Start-up  
OUTL Voltage Before Start-up  
High-Side Output Voltage at VENA=0V  
Low-Side Output Voltage at VENA=0V  
High-Side Output Voltage  
VIN=Vth-0.6  
VIN=Vth-0.6  
VIN=18V  
-0.45  
-0.45  
-0.45  
-0.45  
5.5  
0
0.45  
0.45  
0.45  
0.45  
6.5  
V
V
0
0
V
VIN=18V  
0
V
Vohh  
Vohl  
VIN=18V  
6.0  
6.0  
500  
500  
500  
500  
500  
V
Low-Side Output Voltage  
VIN=18V  
5.5  
6.5  
V
Idsurh  
Idsinh  
Idsurl  
Idsinl  
tdead  
High-Side Output Drive Source Current(5)  
High-Side Output Drive Sink Current(5)  
Low-Side Output Drive Source Current(5)  
Low-Side Output Drive Sink Current(5)  
Dead Time(5)  
VIN=18V  
mA  
mA  
mA  
mA  
ns  
VIN=18V  
VIN=18V  
VIN=18V  
Note:  
5. These parameters, although guaranteed, are not 100% tested in production.  
© 2007 Fairchild Semiconductor Corporation  
www.fairchildsemi.com  
FAN7316 • 1.0.1  
7
Typical Performance Characteristics  
Figure 3. Start Threshold Voltage vs. Temp.  
Figure 5. Start-up Current vs. Temp.  
Figure 4. Start Threshold Voltage Hys. vs. Temp.  
Figure 6. Standby Current vs. Temp.  
Figure 7. Operating Frequency vs. Temp.  
Figure 8. Striking Frequency vs. Temp.  
© 2007 Fairchild Semiconductor Corporation  
FAN7316 • 1.0.1  
www.fairchildsemi.com  
8
Typical Performance Characteristics (Continued)  
Figure 9. Burst Dimming Frequency vs. Temp.  
Figure 10. VREF Voltage vs. Temp.  
Figure 12. VREF Load Regulation Voltage vs. Temp.  
Figure 14. CMP Source Current 1 vs. Temp.  
Figure 11. VREF Line Regulation Voltage vs. Temp.  
Figure 13. CMP Sink Current vs. Temp.  
© 2007 Fairchild Semiconductor Corporation  
www.fairchildsemi.com  
FAN7316 • 1.0.1  
9
Typical Performance Characteristics (Continued)  
Figure 15. CMP Source Current 2 vs. Temp.  
Figure 16. Operating Current vs. Temp.  
Figure 18. Open-Lamp Protection Voltage vs. Temp.  
Figure 20. Over-Voltage Protection vs. Temp.  
Figure 17. Error Amplifier 2V Voltage vs. Temp.  
Figure 19. Open-Lamp Regulation Voltage 2 vs. Temp.  
© 2007 Fairchild Semiconductor Corporation  
www.fairchildsemi.com  
FAN7316 • 1.0.1  
10  
Typical Performance Characteristics (Continued)  
Figure 21. Short-Circuit Protection Voltage vs. Temp.  
Figure 23. Low-Side Output Voltage vs. Temp.  
Figure 22. High-Side Output Voltage vs. Temp.  
© 2007 Fairchild Semiconductor Corporation  
www.fairchildsemi.com  
FAN7316 • 1.0.1  
11  
Functional Description  
UVLO: The under-voltage lockout (UVLO) circuit  
guarantees the stable operation of the IC’s control circuit  
by stopping and starting it as a function of the VIN value.  
The UVLO circuit turns on the control circuit when VIN  
exceeds 4.5V. When VIN is lower than 3.9V, the IC’s  
start-up current is less than 150µA.  
tch  
tdch  
2V  
-
9µA  
Ich  
+
S
R
Q
Q
BCT  
-
18µA  
Idch  
ENA: Applying voltage higher than 2V to the ENA pin  
enables the IC. Applying voltage lower than 0.7V to the  
ENA pin disables the IC.  
0.5V  
+
Internal Main Oscillator: The internal timing capacitor  
(CT), 20pF, is charged by the reference current source,  
which is formed by the timing resistor (RT). The RT  
voltage is regulated at 1.728V. The sawtooth waveform  
charges up to 2V. Once CT voltage is reached, the CT  
begins discharging down to 0.5V. Next, the CT starts  
charging again and a new switching cycle begins, as  
shown in Figure 24. The main frequency is programmed  
by adjusting the RT value. The main frequency is  
calculated as:  
Figure 25. Burst Dimming Oscillator Circuit  
Analog Dimming: There are two kinds of analog  
dimming polarity: positive analog dimming and negative  
analog dimming.  
For positive analog dimming, the lamp intensity is  
controlled with the ADIM signal. The lamp intensity is  
proportional to ADIM signal; as ADIM voltage increases,  
the lamp intensity increases. Figure 26 shows how to  
implement negative analog dimming circuit and Figure  
27 shows the lamp current waveform vs. DIM in positive  
analog dimming mode.  
2736  
fOSC  
[KHz]  
(1)  
RT [KΩ]  
Figure 24. Main Oscillator Circuit  
Figure 26. Positive Analog Implementation Circuit  
The striking frequency is 1.3 times as high as the main  
frequency.  
Burst Dimming Oscillator: The burst capacitor timing  
(BCT) is charged by the internal reference current  
source. The triangular waveform charges up to 2V. Once  
the BCT voltage is reached, the capacitor begins  
discharging down to 0.5V. Next, the BCT starts charging  
again and a new switching cycle begins, as shown in  
Figure 25. The burst dimming frequency is programmed  
by adjusting BCT value. The burst dimming frequency is  
calculated as:  
3 103  
BCT[nF]  
fOSCB  
[Hz]  
(2)  
Figure 27. Positive Analog Dimming Waveform  
To avoid visible flicker, the burst dimming frequency  
should be greater than 120Hz.  
© 2007 Fairchild Semiconductor Corporation  
FAN7316 • 1.0.1  
www.fairchildsemi.com  
12  
For negative analog dimming, the lamp intensity is  
controlled with the external DIM signal and the resistors.  
The lamp intensity is inversely proportional to DIM  
voltage. As DIM voltage increases, the lamp intensity  
decreases. Figure 28 shows how to implement a  
negative analog dimming circuit and Figure 29 shows the  
lamp current waveform vs. DIM in negative analog  
dimming mode.  
2V  
BDIM  
BCT  
0.5V  
3.5V  
ADIM  
Lamp  
current  
0V  
6V  
OUTH  
6V  
OUTL  
Figure 28. Negative Analog Implementation Circuit  
Figure 31. Negative Burst Dimming Chosen  
Burst Dimming: There are also two kinds of burst  
dimming polarity: positive analog dimming and negative  
analog dimming. The lamp intensity is controlled with the  
BDIM voltage. By comparing the BDIM voltage with the  
0.5~2V triangular waveform of burst dimming oscillator  
(BCT), the PWM pulse is generated. The PWM pulse  
controls the CMP voltage by discharging and charging  
the CMP capacitor.  
For positive burst dimming, when BDIM voltage is higher  
than BCT voltage, the lamp current is turned on. So, 2V  
on BDIM commands full brightness. The duty cycle of the  
PWM pulse determines the lamp brightness. The lamp  
intensity is proportional to BDIM voltage. As BDIM  
voltage increases, the lamp intensity also increases.  
Figure 32 shows the lamp current waveform vs. DIM in  
positive analog dimming mode.  
Figure 29. Negative Analog Dimming Waveform  
Burst Dimming Polarity Selection: FAN7316 provides  
the function to select burst dimming polarity by ADIM pin  
voltages. If ADIM pin voltage is lower than 3V, positive  
burst dimming is chosen. Refer to Figure 30.  
2V  
BDIM  
BCT  
0.5V  
2V  
Disharge  
current  
100uA  
Charge  
current  
100uA  
BDIM  
CMP  
FB  
BCT  
0.5V  
0.5V  
0V  
ADIM3.0V  
0V  
0V  
Lamp  
current  
0V  
Lamp  
current  
6V  
OUTH  
6V  
6V  
OUTH  
OUTL  
OUTL  
6V  
Figure 30. Positive Burst Dimming Chosen  
If the ADIM pin voltage is higher than 3.5V, negative  
dimming polarity is chosen. Refer to Figure 31.  
Figure 32. Positive Burst Dimming Operation  
© 2007 Fairchild Semiconductor Corporation  
FAN7316 • 1.0.1  
www.fairchildsemi.com  
13  
For negative burst dimming, when BDIM voltage is lower  
than BCT voltage, the lamp current is turned on. So, 0V  
on BDIM commands full brightness. The duty cycle of the  
PWM pulse determines the lamp brightness. The lamp  
intensity is inversely proportional to BDIM voltage. As  
BDIM voltage increases, the lamp intensity decreases.  
Figure 32 shows the lamp current waveform vs. DIM in  
negative analog dimming mode.  
Positive dimming polarity  
2V  
BDIM  
BCT  
0.5V  
1.5V  
6V  
Lamp isn t ignited  
Lamp is ignited  
OLP  
OUTH  
6V  
OUTL  
Burst dimming disable  
Burst dimming enable  
Figure 33. Positive Burst Dimming Operation  
Burst dimming can be implemented by not only DC  
voltage, also PWM pulse as BDIM signal. Figure 34  
shows how to implement burst dimming by using PWM  
pulse as BDIM signal.  
Figure 35. Burst Dimming During Striking Mode  
Output Drives: FAN7316 is designed to drive high-side  
and low-side MOSFETs with symmetrical duty cycle. A  
fixed dead time of 500ns is introduced between two  
outputs at maximum duty cycle, as shown Figure 36.  
tch  
tdch  
2V  
-
Ich  
+
9µA  
S
R
Q
Q
BCT  
-
Idch  
18µA  
0.5V  
+
Comparator  
External  
Pulse Signal  
-
Burst Signal  
to Error Amplifier  
BDIM  
+
Figure 34. Burst Dimming Using an External Pulse  
During striking mode, burst dimming operation is  
disabled to guarantee the continuous striking time.  
Figure 35 shows that burst dimming is disabled during  
striking mode.  
Figure 36. MOSFETs Gate Drive Signal  
© 2007 Fairchild Semiconductor Corporation  
FAN7316 • 1.0.1  
www.fairchildsemi.com  
14  
Bootstrap Operation: To choose the proper CBS value,  
the external MOSFET can be seen as an equivalent  
capacitor. This capacitor, CIN, is related to the MOSFET  
total gate charge as:  
QGATE  
CIN  
=
(3)  
VGATE  
The ratio between capacitors CIN and CBS is proportional  
to the cyclical voltage loss:  
CBS >> CIN  
(4)  
For example: if QGATE is 24nC and VGATE is 10V, CIN is  
2.4nF. With CBS=100nF, the drop is 240mV.  
The bootstrap driver introduces a voltage drop due to  
MOSFET RDSON (typical value: 100Ω). The following  
equation is useful to compute the voltage drop on the  
bootstrap MOSFET:  
QGATE  
VDROP = ICHARGE RDSON VDROP  
=
RDSON  
(5)  
TCHARGE  
Figure 37. Open-Lamp Regulation in Striking Mode  
where QGATE is the gate charge of the external MOSFET,  
RDSON is the on resistance of the bootstrap MOSFET,  
and TCHARGE is the charging time of the bootstrap  
capacitor.  
For example: If QGATE is 24nC and TCHARGE is 10µs, the  
drop on the bootstrap MOSFET is about 0.24V.  
24nC  
VDROP  
=
100Ω = 0.24V  
(6)  
10µs  
Protections: The FAN7316 has several protections:  
Open-Lamp Regulation (OLR), Arc Protection, Open-  
Lamp Protection (OLP), Short-Circuit Protection (SCP),  
CMP-High Protection, and Thermal Shutdown (TSD). All  
protections are latch-mode protections. The latch is reset  
when VIN falls to the UVLO voltage or ENA is pulled  
down to GND.  
Open-Lamp Regulation: When a voltage higher than  
2V is applied to the OLR pin, the IC enters regulation  
mode and controls CMP voltage. The IC limits the lamp  
voltage by decreasing CMP source current. If the OLR  
voltage is higher than 1.75V, CMP source current  
decreases from 100µA to 1.6µA. If the OLR voltage  
reaches at 2V, CMP source current decreases to 0µA,  
so CMP voltage remains constant and the lamp voltage  
also remains constant, as shown in Figure 37. At the  
same time, the counter based on BCT time starts  
counting 450 cycles and 32 cycles at striking mode and  
normal mode, respectively, then the IC enters shutdown,  
as shown in Figure 38 and Figure 39.  
Figure 38. Open-Lamp Regulation in Striking Mode  
Figure 39. Open-Lamp Regulation in Normal Mode  
© 2007 Fairchild Semiconductor Corporation  
FAN7316 • 1.0.1  
www.fairchildsemi.com  
15  
Arc Protection: If OLR voltage is higher than 3V, the IC  
enters shutdown mode after a delay of two CT cycles, as  
shown in Figure 40.  
Short-Circuit Protection: If SCP is higher than 2V, the  
counter based on BCT time starts counting 450 cycles  
and 32 cycles at striking mode and normal mode,  
respectively, then the IC enters shutdown, as shown in  
Figure 43 and Figure 44.  
4V  
Striking time=1.5s @ BCT=300Hz  
2V  
BCT  
0.5V  
450 cycles  
Lamp isnt ignited  
1.5V  
OLP  
2V  
SCP  
6V  
OUTH  
6V  
OUTL  
Figure 40. Arc Protection  
Open-Lamp Protection: If OLP is lower than 1.5V at  
initial operation, the IC operates at striking mode for BCT  
450 cycles, as shown in Figure 41. If OLP is lower than  
1.5V at normal mode, the IC is shut down after a delay of  
three BCT cycles, as shown in Figure 42.  
Shutdown  
Figure 43. Short-Circuit Protection in Striking Mode  
4V  
Protection Delay 100ms @ BCT=300Hz  
2V  
BCT  
0.5V  
32 cycles  
Lamp is ignited  
1.5V  
2V  
OLP  
SCP  
6V  
6V  
Shutdown  
Figure 41. Open-Lamp Protection in Striking Mode  
Figure 44. Short-Circuit Protection in Normal Mode  
CMP-High Protection: If CMP is higher than 3V, the  
counter based on BCT time starts counting 450 cycles  
and 32 cycles at striking mode and normal mode,  
respectively, then the IC enters shutdown, as shown in  
Figure 45 and Figure 46.  
Figure 42. Open-Lamp Protection in Normal Mode  
© 2007 Fairchild Semiconductor Corporation  
FAN7316 • 1.0.1  
www.fairchildsemi.com  
16  
CMP-High Protection: If CMP is higher than 3V, the  
counter based on BCT time starts counting 450 cycles  
and 32 cycles at striking mode and normal mode,  
respectively, then the IC enters shutdown, as shown in  
Figure 45 and Figure 46.  
4V  
Striking time=1.5s @ BCT=300Hz  
2V  
BCT  
0.5V  
450 cycles  
Lamp isnt ignited  
1.5V  
OLP  
3V  
CMP  
6V  
OUTH  
6V  
OUTL  
Shutdown  
Figure 45. CMP-High Protection in Striking Mode  
Figure 46. CMP-High Protection in Normal Mode  
Thermal Shutdown: The IC provides the function to  
detect the abnormal over-temperature. If the IC  
temperature exceeds approximately 150°C, the thermal  
shutdown triggers.  
© 2007 Fairchild Semiconductor Corporation  
FAN7316 • 1.0.1  
www.fairchildsemi.com  
17  
Typical Application Circuit (LCD Backlight Inverter)  
Application  
Device  
Input Voltage Range  
Number of lamps  
19-Inch LCD Monitor  
FAN7316  
14.5±10%  
4
1. Features  
ƒ
ƒ
ƒ
ƒ
High-Efficiency Single-Stage Power Conversion  
N-N Half-Bridge Topology  
Reduces Required External Components  
Enhanced System Reliability through Protection Functions  
F1  
CN2  
35001WR-02A  
LTM190EX  
TX1  
1
FUSE  
C1  
330u  
C2  
1u  
C3  
1u  
1
CN1  
0
2
35001WR-02A  
2
0
0
1
0
0
0
1
OLP3 OLP4 OLR  
C9  
0
C8  
3p  
3p  
2
C6  
1u  
2
C5  
R1  
R24  
0R  
R2  
R3  
10n 30k  
OLP4  
OLP3  
100k 100k  
R4  
C10  
R5  
10k  
C11  
M1  
D2  
10k  
2.7n  
2.7n  
BAV70  
CN5  
SN1  
DN1  
DN1  
DN2  
DN2  
R6  
680  
R7  
680  
0
0
0
0
1
2
3
4
5
6
7
8
9
10  
IC1  
R31  
D3  
BAV70  
15V  
GN1  
SN2  
GN2  
10R  
0
C4 10u  
C7 10u  
CN4  
0
0
FAN7316  
35001WR-02A  
DIM(0~3.3V)  
ON/OFF  
R30  
TX2  
1
1
10R  
CN3  
AOP800  
2
35001WR-02A  
2
12505WR-10  
1
0
1
R8  
R9  
0
100k 100k  
R25  
N.C.  
C15  
3p  
C16  
3p  
0
2
C12  
33n  
2
OLP2  
OLP1  
R22  
0R  
OLP1 OLP2  
REF  
C13  
1u  
R27  
10k  
R14 C18  
10k 2.7n  
R15 C19  
10k 2.7n  
0
R13  
100k  
R29  
D4  
0
BAV70  
C23 R23  
N.C. N.C.  
0
OLR  
R10  
12k  
R12  
75k  
R17  
680  
R16  
680  
0
0
0
0
D5  
BAV70  
R18  
0
0
100k  
C21  
R11  
4.7n  
0
0
C14  
9.1k  
0.1u  
0
0
R28  
0
0
R20  
10k  
20k  
R21  
C20  
1n  
R19  
10k  
C17  
10n  
20k  
0
0
0
Figure 47. Typical Application Circuit  
2. Transformer Schematic Diagram  
Figure 48. Transformer Schematic Diagram  
3. Core & Bobbin  
ƒ
ƒ
ƒ
Core: EFD2126  
Material: PL7  
Bobbin: EFD2126  
© 2007 Fairchild Semiconductor Corporation  
FAN7316 • 1.0.1  
www.fairchildsemi.com  
18  
4. Winding Specification  
Pin No.  
5 Æ 2  
Wire  
Turns  
12  
Inductance  
94µH  
Leakage Inductance  
Remarks  
1kHz, 1V  
1kHz, 1V  
9.1µH  
1 UEW 0.45φ  
1 UEW 0.04φ  
3.88H  
420mH  
7 Æ 9  
2560(=0+360•7)  
5. BOM of the Application Circuit  
Part Ref.  
Value  
Fuse  
Description  
Part Ref.  
Value  
Description  
C5  
10nF  
1µF  
50V 1608 K  
50V 2012 K  
16V 3216  
F1  
24V 3A  
FUSE  
C6  
Resistor (SMD)  
C7  
10µF  
2.7nF  
2.7nF  
33nF  
1µF  
R1  
R2  
30k  
100k  
100k  
10k  
1608 F  
1608 J  
1608 J  
1608 F  
1608 F  
1608 F  
1608 F  
1608 J  
1608 J  
1608 F  
1608 F  
1608 F  
1608 J  
1608 F  
1608 F  
1608 F  
1608 F  
1608 F  
1608 F  
1608 J  
1608 F  
C10  
C11  
C12  
C13  
C14  
C17  
C18  
C19  
C20  
C21  
C23  
50V 1608 K  
50V 1608 K  
50V 1608 K  
50V 3216 K  
50V 1608 K  
50V 1608 K  
50V 1608 K  
50V 1608 K  
50V 1608 K  
50V 1608 K  
R3  
R4  
R5  
10k  
10nF  
10nF  
2.7nF  
2.7nF  
1nF  
R6  
680  
R7  
680  
R8  
100k  
100k  
12k  
R9  
R10  
R11  
R12  
R13  
R14  
R15  
R16  
R17  
R18  
R19  
R20  
R21  
R22  
R23  
R24  
R25  
R27  
R28  
R29  
R30  
R31  
4.7nF  
NC  
9.1k  
75k  
Capacitor (DIP)  
100k  
10k  
C8  
C9  
3p  
3p  
3p  
3p  
3KV  
3KV  
3KV  
3KV  
10k  
C15  
C16  
680  
680  
Diode (SMD)  
100k  
10k  
D2  
D3  
D4  
D5  
BAV70  
BAV70  
BAV70  
BAV70  
Fairchild Semiconductor  
Fairchild Semiconductor  
Fairchild Semiconductor  
Fairchild Semiconductor  
10k  
20k  
0
Electrolytic capacitor  
NC  
C1  
M1  
330µ  
25V  
0
MOSFET (SMD)  
NC  
AOP800  
Alpha & Omega  
10k  
1608 F  
1608 F  
Wafer (SMD)  
20k  
CN1  
CN2  
CN3  
CN4  
CN5  
35001WR-02A  
35001WR-02A  
35001WR-02A  
35001WR-02A  
12505WR-10  
0
10  
1608 J  
1608 J  
10  
Capacitor (SMD)  
1µF  
1µF  
10µF  
C2  
C3  
C4  
50V 3216 K  
50V 3216 K  
16V 3216  
Transformer (DIP)  
TX1  
TX2  
EFD2126  
EFD2126  
© 2007 Fairchild Semiconductor Corporation  
FAN7316 • 1.0.1  
www.fairchildsemi.com  
19  
Physical Dimensions  
13.00  
12.60  
A
11.43  
20  
11  
B
9.50  
10.65 7.60  
10.00 7.40  
2.25  
1
PIN ONE  
INDICATOR  
10  
0.65  
0.51  
0.35  
1.27  
1.27  
M
0.25  
C B A  
LAND PATTERN RECOMMENDATION  
SEE DETAIL A  
2.65 MAX  
0.33  
0.20  
C
0.10  
C
0.30  
0.10  
SEATING PLANE  
0.75  
0.25  
X 45°  
NOTES: UNLESS OTHERWISE SPECIFIED  
(R0.10)  
(R0.10)  
A) THIS PACKAGE CONFORMS TO JEDEC  
MS-013, VARIATION AC, ISSUE E  
GAGE PLANE  
B) ALL DIMENSIONS ARE IN MILLIMETERS.  
C) DIMENSIONS DO NOT INCLUDE MOLD  
FLASH OR BURRS.  
0.25  
8°  
0°  
D) CONFORMS TO ASME Y14.5M-1994  
1.27  
0.40  
SEATING PLANE  
E) LANDPATTERN STANDARD: SOIC127P1030X265-20L  
F) DRAWING FILENAME: MKT-M20BREV3  
(1.40)  
DETAIL A  
SCALE: 2:1  
Figure 49. 20-SOIC Package  
Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner  
without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or  
obtain the most recent revision. Package specifications do not expand the terms of Fairchild’s worldwide terms and conditions,  
specifically the warranty therein, which covers Fairchild products.  
Always visit Fairchild Semiconductor’s online packaging area for the most recent package drawings:  
http://www.fairchildsemi.com/packaging/  
© 2007 Fairchild Semiconductor Corporation  
FAN7316 • 1.0.1  
www.fairchildsemi.com  
20  
© 2007 Fairchild Semiconductor Corporation  
FAN7316 • 1.0.1  
www.fairchildsemi.com  
21  

相关型号:

FAN7316MX

LCD Backlight Inverter Drive IC
FAIRCHILD

FAN7316_08

LCD Backlight Inverter Drive IC
FAIRCHILD

FAN7317

LCD Backlight Inverter Drive IC
FAIRCHILD

FAN7317B

FAN7317B LCD Backlight Inverter Drive IC
FAIRCHILD

FAN7317BM

FAN7317B LCD Backlight Inverter Drive IC
FAIRCHILD

FAN7317BMX

FAN7317B LCD Backlight Inverter Drive IC
FAIRCHILD

FAN7317M

LCD Backlight Inverter Drive IC
FAIRCHILD

FAN7317MX

LCD Backlight Inverter Drive IC
FAIRCHILD

FAN7317_08

LCD Backlight Inverter Drive IC
FAIRCHILD

FAN7318

LCD Backlight Inverter Drive IC
FAIRCHILD

FAN7318A

LCD Backlight Inverter Drive IC
FAIRCHILD

FAN7318AM

LCD Backlight Inverter Drive IC
FAIRCHILD