FAN7554D [FAIRCHILD]

Versatile PWM Controller; 多功能PWM控制器
FAN7554D
型号: FAN7554D
厂家: FAIRCHILD SEMICONDUCTOR    FAIRCHILD SEMICONDUCTOR
描述:

Versatile PWM Controller
多功能PWM控制器

开关 光电二极管 控制器
文件: 总22页 (文件大小:986K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
www.fairchildsemi.com  
FAN7554  
Versatile PWM Controller  
Features  
Description  
• Current mode control  
The FAN7554 is a fixed frequency current mode PWM  
controller. It is specially designed for off-line and DC to DC  
converter applications with minimal external components.  
These integrated circuits feature a trimmed oscillator for  
precise duty cycle control, a temperature compensated  
reference, an ON/OFF control, a high gain error amplifier, a  
current sensing comparator, and a high current totem-pole  
output. The FAN7554 has various protection functions such  
as an over load protection, an over current protection, and  
the over voltage protection, which include built-in auto  
restart circuit. The FAN7554 is available in the 8-DIP  
package as well as the 8-SOP package.  
• Pulse by pulse current limiting  
• Low external components  
• Under voltage lockout(UVLO): 9V/15V  
• Stand-by current: typ. 100uA  
• Power saving mode current: typ. 200uA  
• Operating current: typ. 7mA  
• Soft start  
• On/off control  
• Over load protection(OLP)  
• Over voltage protection(OVP)  
• Over current protection(OCP)  
• Over current limit(OCL)  
• Operating frequency up to 500kHz  
• 1A totem-pole output current  
8-DIP  
1
Applications  
• Off-Line & DC-DC converter  
8-SOP  
1
Rev. 1.0.3  
©2003 Fairchild Semiconductor Corporation  
FAN7554  
Internal Block Diagram  
Rt/Ct  
4
Vcc  
7
Vref  
8
OVP  
+
3.5V  
_
+
S
R
_
34V  
Q
off  
UVLO  
Vref  
uA  
+
PWR  
/
SAVE  
Vref  
100  
_
_
+
on  
2
1
S/S  
15V/9V  
1k  
1.5V  
0.3V  
+
OSC  
CLK  
_
14V  
6
OUT  
S
PWM  
MAX. 1V  
R
Q
_
FB  
2R  
+
R
1mA  
Vref  
Vcc  
Offset(0.1V)  
UVLO-out  
3
5
I S  
5uA  
6V  
OCL  
+
OLP  
+
S
Q
_
_
2V  
R
OVP-out  
OCL-out  
GND  
Absolute Maximum Ratings  
( Ta = 25°C, unless otherwise specified )  
Parameter  
Symbol  
Value  
Unit  
Supply voltage  
Vcc  
30  
±1  
V
A
V
V
Output current  
I
O
Input voltage to FB pin  
Input voltage to IS pin  
V
FB  
-0.3 to V  
SD  
OC  
V
-0.3 to V  
IS  
Power dissipation at T 25°C  
A
8-DIP  
8-SOP  
P
0.85  
0.42  
W
D
Operating temperature  
Storage temperature  
T
-25 to +85  
°C  
°C  
OPR  
T
-55 to +150  
STG  
Thermal resistance, junction-to-air (Note1)  
8-DIP  
8-SOP  
Rθja  
147.8  
291.4  
°C/W  
Note:  
1. Junction -to -air thermal resistance test environments.  
- JESD51-2 : Integrated circuits thermal test method environmental conditions-natural convection (still air).  
- JESD51-3 : Low effective thermal conductivity test board for leaded surface mount packages.  
- JESD51-10 : Test boards for through-hole perimeter leaded package thermal measurements.  
2
FAN7554  
Temperature Characteristics  
( -25°C Ta 85°C )  
Parameter  
Symbol  
Value  
±0.5  
±5  
Unit  
Vref temperature stability  
Fosc temperature stability  
V  
3
REF  
%
%
F  
2
OSC  
PIN Array  
Vref  
Vcc  
OUT  
GND  
8
6
5
7
YWW  
F AN7 5 5 4  
1
2
3
4
Rt/Ct  
FB  
S/S  
IS  
PIN Definitions  
Pin Number  
Pin Name  
FB  
Pin Function Description  
1
2
3
4
5
6
7
8
Inverting(-) input of pwm comparator, on/off control & OLP sensing terminal.  
S/S  
Soft start  
IS  
Non-inverting(+) input of PWM comparator, OCL sensing terminal  
Rt/Ct  
GND  
OUT  
Vcc  
Oscillator time constant(Rt/Ct)  
Ground  
Output of gate driver  
Power supply  
Vref  
Output of 5V reference  
3
FAN7554  
Electrical Characteristics  
(Ta = 25°C, Vcc=16V, Rt=10k, Ct=3.3nF unless otherwise specified)  
Parameter  
Symbol  
Conditions  
Min.  
Typ.  
Max.  
Unit  
< REFERENCE SECTION >  
Reference output voltage  
Line regulation  
V
V  
V  
T =25°C , Iref =1mA  
4.90  
5.00  
6
5.10  
20  
V
REF  
j
Vcc =12V ~ 25V  
-
-
-
mV  
mV  
A
REF1  
REF2  
Load regulation  
Iref =1mA ~ 20mA  
6
25  
Short circuit output current  
< OSCILLATOR SECTION >  
Oscillation frequency  
Frequency change with Vcc  
Ramp high voltage  
I
T = 25°C  
j
0.1  
0.18  
SC  
F
T = 25°C  
j
45  
50  
0.05  
2.8  
1.2  
-
55  
1.0  
-
kHz  
%
OSC  
F  
Vcc = 12V ~ 25V  
-
-
OSC1  
V
-
-
V
RH  
Ramp low voltage  
V
-
-
V
RL  
Discharge current  
Idisch  
V
= 3.3V  
6.1  
9.4  
mA  
RT/CT  
< PWM SECTION >  
Sense threshold voltage  
Feedback threshold voltage  
Feedback source current  
Max. duty cycle  
V
V
V
V
= 5V  
0.8  
0.2  
-
1.0  
0.3  
1.0  
95  
-
1.2  
0.4  
-
V
V
TH(IS)  
FB  
IS  
V
= 0V  
= 0V, V  
TH(FB)  
I
= 5V  
mA  
%
FB  
FB  
S/S  
D
-
-
92  
-
98  
0
(MAX)  
Min. duty cycle  
D
%
(MIN)  
< PROTECTION SECTION >  
Shutdown delay current  
Shutdown feedback voltage  
Over current protection  
Over voltage protection  
< ON/OFF CONTROL SECTION >  
Off mode sink current  
Off threshold voltage  
< SOFT-START SECTION >  
Soft start current  
I
4V V V  
FB  
3.5  
5.4  
1.6  
30  
5
6
6.5  
6.6  
2.4  
38  
uA  
V
SD  
SD  
V
V
V
> 5V  
SD  
OC  
FB  
IS  
V
> 1.5V,  
ton > 500nS  
2
V
V
-
34  
V
OVP  
I
V
V
< V  
< V  
, V  
= 5V  
-
4
-
mA  
V
SINK  
FB  
FB  
TH(FB) S/S  
V
1.2  
1.5  
1.8  
OFF  
TH(FB)  
I
V
= 5V, V  
S/S  
= 0V  
-
-
1.1  
5.2  
-
-
mA  
V
S/S  
FB  
Soft start limit voltage  
<OUTPUT SECTION>  
Low output voltage1  
High output voltage1  
Low output voltage2  
High output voltage2  
Rising time (Note1)  
V
Vcc = 16V  
LIM(S/S)  
V
V
V
V
= 18V, I = 50mA  
-
13  
-
0.15  
15  
0.4  
17  
2.5  
16  
-
V
V
OL1  
CC  
CC  
CC  
O
V
= 18V, I = -50mA  
O
OH1  
V
= 18V, I = 200mA  
1.5  
14  
V
OL2  
O
V
Vcc = 18V, Io = -200mA  
T = 25°C, C = 1nF  
12  
-
V
OH2  
t
80  
ns  
ns  
R
j
L
Falling time (Note1)  
t
F
T = 25°C, C = 1nF  
-
40  
-
j
L
<UVLO SECTION>  
Start threshold voltage  
Min. operating voltage  
V
-
-
13.2  
8.2  
15  
9
16.2  
10.2  
V
V
TH(ST)  
V
OPR(M)  
4
FAN7554  
Electrical Characteristics (Continued)  
(Ta = 25°C, Vcc=16V, Rt =10k, Ct = 3.3nF unless otherwise specified)  
Parameter  
Symbol  
Conditions  
Min. Typ. Max. Unit  
<TOTAL STAND-BY CURRENT SECTION>  
Start-up current  
I
-
-
-
-
-
0.1  
7
0.2  
10  
mA  
mA  
mA  
ST  
Operating supply current  
Off State current  
I
OP  
I
V
<V  
,V <V  
FB TH(FB) S/S OFF  
0.2  
0.4  
OFF  
Note:  
1. These parameters, although guaranteed, are not 100% tested in production.  
5
FAN7554  
Typical Perfomance Characteristics  
100.000  
10.000  
1.000  
10000.0  
1000.0  
0. 33n  
1. 1n  
1K  
100.0  
2K  
3. 3n  
5K  
11n  
10K  
20K  
50K  
100K  
10.0  
33n  
1.0  
0.1  
0.100  
1
10  
100  
0.1  
1
10  
100  
Rt[ Kohm]  
Ct[ nF]  
Figure 1. Rt vs. Frequency  
Figure 2. Ct vs. Dead Time  
800  
700  
600  
500  
400  
300  
200  
100  
0
95.0  
85.0  
75.0  
65.0  
55.0  
45.0  
35.0  
25.0  
15.0  
1K  
2K  
5K  
Tr  
Tf  
10K  
20K  
50K  
100K  
0.1  
1
10  
100  
1
10  
100  
Ct [ nF]  
Cloa d [ nF]  
Figure 3. Ct vs. Duty  
Figure 4. Cload vs. Tr & Tf  
6
FAN7554  
Typical Performance Characteristics(Continued)  
Figure 6. Temperature vs. Operating Supply Current  
Figure 5. Temperature vs. Start-up Current  
Figure 7. Temperature vs. Reference Voltage  
Figure 8. Temperature vs. Oscillation frequency  
Figure 10. Temperature vs. Min. Operating Voltage  
Figure 9. Temperature vs. Start Threshold Voltage  
7
FAN7554  
Operation Description  
The FAN7554 has all the basic features of the current mode SMPS control IC. Its basic configuration includes the UVLO with  
6V hysteresis, a band gap reference, the oscillator that can oscillate up to 500kHz according to R /C (connected externally), a  
t
t
PWM logic circuit , a gate driver, and the feedback circuit that has the current source and soft start function. The FAN7554 has  
various functions such as an over load protection, an over current protection, and an over voltage protection. The over load  
protection forces the FAN7554 to stop its operation if the load current is higher than the preset value. The protection circuit  
can also be prevented from operating during transient states by ensuring that a certain amount of the time passes before the  
protection circuit operates. The shutdown circuit is configured for an auto-restart, so the FAN7554 automatically restarts when  
Vcc drops to 9V (stop voltage).  
Start-Up  
The start-up circuit is made up of an under voltage lock out (UVLO), the protection for low voltage conditions, and the 5V  
reference (V ), which supplies bias voltage to the control circuit after start-up. The start voltage of the UVLO is 15V , and  
ref  
the stop voltage after turn on is 9V. It has a 6V hysteresis. The minimum operating current for start-up threshold is typically  
100uA, and this can reduce the power dissipation on the start-up resistor. The Vref is composed of the band gap reference  
circuit with its superior temperature characteristics and supplies power to all the FAN7554 circuits and R /C , with the  
t
t
exceptions of the ULVO circuit and ON/OFF control circuit.  
DC Link  
Icc(mA)  
7.0  
VCC  
7
UVLO  
Internal bias  
5V  
Good logic  
Vref  
0.01  
15V/9V  
Vcc (V)  
FAN7554  
Figure 11. Low Current Start-Up & Bandgap Reference Circuit  
9
15  
Figure 12. Start-Up & Circuit Characteristics  
Soft Start  
The SMPS output load usually contains a capacitive load component. During initial start-up, the output voltage increases at a  
fixed time constant because of this component. If the feedback loop, which controls the output voltage, was to start without  
the soft start circuit, the feedback loop would appear to be open during initial start-up , so, at start-up, the feedback voltage  
applied to the PWM comparator’s inverting input (-) reaches its maximum value(1V).  
During this time, the peak value of the drain current would stay at the maximum value, and the maximum power would be  
delivered to the secondary load side from the start. When the maximum power is delivered to the secondary side for this initial  
fixed time, the entire circuit is seriously stressed. The use of a soft start can avoid such stresses. At start-up, the soft start  
capacitor Cs is charged by 1mA and 100uA current sources.  
The voltage of the inverting terminal of the PWM comparator increases to 1/3 of the Cs voltage at a fixed time constant.  
Subsequently, the drain peak current is limited by the gradual increase in the Cs voltage and this causes the output voltage to  
increase smoothly. When the Cs voltage becomes greater than 3V, the diode Ds turns off consequently, the feedback capacitor  
Cfb is charged by 1mA and 5uA current sources. This charge voltage determines the comparator’s inverting voltage. Then, Cs  
voltage charges to 5V by 100uA current source. The soft start capacitor Cs is discharged when the UVLO good logic starts, so  
the soft start is repeated at re-start.  
8
FAN7554  
S/S  
2
100uA  
5V  
Ds  
2R  
Output drive  
R
1mA  
Cfb  
Cs  
5V  
5uA  
Vcc  
FAN7554  
1
FB  
Figure 13. Soft Start Circuit & Circuit Flow  
Oscillator  
As shown in figure14, the oscillator frequency is programmed by values selected for timing components Rt and C . Capacitor  
t
C is charged to almost 2.8V through resistor Rt from the 5V reference and discharged to 1.2V by an internal current source.  
t
The oscillator generates the clock signal while the timing capacitor C is discharged. The gate drive output becomes low during  
t
the clock time. Rt and C selection determine the oscillator frequency and maximum duty cycle. Charge and discharge times  
t
can be calculated through the equations below.  
Charging time : tc = 0.55×R ×C  
t
t
Discharging time : td = R ×C ×ln[(0.0063×R - 2.8) / (0.0063×R - 3.8)]  
t
t
t
t
where the oscillator frequency : fosc = (tc + td)-1 (±10%)  
When R > 5k, fosc = 1 / (0.55×R ×C ) = 1.8 / (R ×C )  
t
t
t
t
t
Vhigh(2.8V)  
Vref  
Sawtooth waveform  
8
[ Rt > 5k]  
Vlow(1.2V)  
Rt  
Ct  
tc  
td  
CT  
4
Gate Drive  
Internal clock  
Vhigh(2.8V)  
Discharge  
2.8V  
/1.2V  
Sawtooth waveform  
Vlow(1.2V)  
[ Rt < 5k]  
td  
tc  
FAN7554  
Internal clock  
Figure 15. Sawtooth & Clock Waveform  
Figure 14. Oscillator Circuit  
9
FAN7554  
Feedback  
As shown in figure16, the internal oscillator clock turns on the MOSFET. The feedback comparator operates to turn it off  
again, when the MOSFET current reaches a set value proportional to Vfb. The feedback capacitor Cfb is charged by the inter-  
nal current sources , 1mA and 5uA, and is discharged by the secondary side photo-coupler to control the output voltage.  
DRIN  
OUT  
OSC  
6
2R  
Vfb/3  
Vfb  
Q
S
R
R
1mA  
5uA  
Cfb  
IS  
Vsense  
5V  
3
Vcc  
Rs  
FAN7554  
1
FB  
Figure 16. Feedback & PWM Circuit  
Delayed Shutdown  
During the normal operation, the feedback voltage is between 0~3V. If the output terminal overloads or an error happens to  
the feedback loop, the delayed shutdown circuit operates. When the feedback voltage is less than 3V, the feedback capacitor is  
charged by current sources, 1mA and 5uA; when the feedback voltage becomes greater than 3V, the capacitor is charged by the  
5uA current source because diode D1 turns off. When the feedback voltage is less than 3V, the charge slope becomes an expo-  
nential function and, when it is greater than 3V, the charge slope becomes linear. When the feedback voltage reaches almost  
6V, the FAN7554 shuts down. The shut down circuit is configured for  
auto-restart, so it automatically restarts when Vcc reaches the under voltage 9V.  
FB  
1
DRIN  
5uA  
OUT  
OSC  
6
Vcc  
2R  
Q
S
R
D1  
R
1mA  
Cfb  
IS  
5V  
3
Rs  
Over Current  
Comparator  
Shutdown  
Q
S
R
6V  
FAN7554  
UVLO - out  
Figure 17-A . Delayed Shutdown & Feedback Circuit  
10  
FAN7554  
Vfb  
6V  
Slope (dv/dt) = 5uA / Cfb  
Shutdown start point  
3V  
t1  
t
t2  
Figure 17-B . Delayed Shutdown & Feedback Waveform  
Gate Driver  
The gate drive circuit has the totem-pole output configuration. The output has 1A peak current and 200mA average current  
drive ability.  
7
DRAIN  
Clock  
Q
OUT  
6
Shutdown  
FAN7554  
Figure 18. Gate Drive Circuit  
ON/OFF Control  
The FAN7554 is able to use the feedback pin for ON/OFF control by placing NPN transistor between the cathode of the  
KA431 and ground as shown in figure 19. When the transistor turns on, the current flows through the photo diode and  
saturates the photo transistor. As a result, the feedback voltage is dropped to zero. When the feedback voltage is below 0.3V,  
the soft start voltage starts to discharge by connecting the internal resistor 1kin parallel with the external capacitor Cs. When  
the soft start voltage becomes less than 1.5V, all the blocks in the FAN7554 are turned off , with the exceptions of the UVLO  
block and ON/OFF control block. The operation current is about 200uA. So the stand-by power is reduced and SMPS  
efficiency is improved. When the feedback voltage exceeds 0.3V, the FAN7554 normally operates by turning on Vref block.  
11  
FAN7554  
VCC  
7
Vref  
3.5V  
1.5V  
S
R
Q
100uA  
UVLO  
OFF  
ON  
S/S  
FB  
PWR  
/
SAVE  
5V  
2
1
Vref  
15V/9V  
1K Ω  
0.3V  
Good logic  
Vo  
Cs  
Internal bias  
Cfb  
5uA  
FAN7554  
Vcc  
Remote control  
Figure 19. ON/OFF Control Circuit  
Vref  
Icc  
5V  
4.5mA  
0.2mA  
t
VS/S  
Slope (dv/dt) = 100uA / Cs  
5V  
Slope (dv/dt) = 1k* Cs  
3V  
Slope (dv/dt) = (1mA +100uA) / Cs  
1.5V  
t
Vfb  
Slope (dv/dt) = (1mA +5A) / Cfb  
OFF Signal  
0.3~3V  
Slope (dv/dt) = (5uA) / Cfb  
ON Signal  
0.3V  
Normal State  
Normal State  
OFF State  
t
Figure 20. ON-OFF Control Circuit Waveforms  
12  
FAN7554  
Protection Circuits  
The FAN7554 has many built-in protection circuits that do not need additional components, providing reliability without cost  
increase. These protection circuits have the auto-restart configuration. In this configuration, the protection circuits reset when  
Vcc is below UVLO stop threshold (9V) and restarts when Vcc is above UVLO start threshold voltage (15V)  
Over Voltage Protection  
Abnormalities may occur in the SMPS secondary side feedback circuit. First, when the feedback pin is short to the ground, the  
feedback voltage is zero and the FAN7554 is unable to start switching. Second, when the feedback circuit is open, the  
secondary voltage generally becomes much greater than the rated voltage as the primary side continues to switch at the  
maximum current level. This may cause the blowing off the fuse or, in serious cases, fires. It is possible that the devices  
directly connected to the secondary output without a regulator could be destroyed. Even in these cases, the over voltage  
protection circuit operates. Since Vcc is proportional to the output , in an over voltage situation, it also will increase. In the  
FAN7554, the protection circuit operates when Vcc exceeds 34V. Therefore ,in normal operation, Vcc must be set below 34V.  
Over Load Protection  
An overload is the state in which the load is operating normally but in excess of the preset load. The overload protection circuit  
can force the FAN7554 to stop its operation . The protection can also operate in transient states such as initial SMPS operation.  
Because the transient state returns to the normal state after a fixed time, the protection circuit need not to operate during this  
time. That is, the FAN7554 needs the time to detect and decide whether it is an overload condition or not. The protection  
circuit can be prevented from operating during transient states by ensuring that a certain amount of time passes before the  
protection circuit operates. The above operations are executed as follows: Since the FAN7554 adopts a current mode, it is  
impossible for current to flow above a maximum level. For a fixed input voltage, this limits power. Therefore, if the power at  
the output exceeds this maximum, Vo, shown in figure21, becomes less than the set voltage, and the KA431pulls in only the  
given minimum current. As a result, the photo-coupler’s secondary side current becomes zero. The same goes for the  
photo-coupler’s primary side current. Consequently, when the full current 1mA flows through the internal resistor  
(2R + R = 3R), Vfb becomes approximately 3V and from that time, the 5uA current source begins to charge Cfb, the  
photo-coupler’s secondary current is almost zero. The FAN7554 shuts down when Vfb reaches 6V.  
S
R
Q
Shutdown  
6V  
UVLO out  
OSC  
Vfb  
Vo  
2R  
R
1mA  
5uA  
Cfb  
S
R
Q
5V  
Vcc  
FAN7554  
1
KA431  
FB  
V
6V  
Shutdown start point  
3V  
t1  
Time Constant = 3R * Cfb  
t2  
t
5uA = (Cfb *3V)/t2  
Figure 21. Delayed Shutdown  
13  
FAN7554  
FAN7554 Flyback Converter Demo Circuit (Fsw:100kHz)  
12V/3.5A  
L201  
BD  
D201  
NTC  
T101  
R103  
C102  
R104  
C104  
R203  
R204  
C201  
C202  
R102  
R101  
D101  
C103  
C301 C302  
LF101  
R202  
R201  
IC301  
C101  
TNR  
Q101  
D102  
R106  
R105  
R205 C203  
IC201  
FUSE  
D103  
R108  
8
7
6
5
Vref Vcc OUT GND  
R107  
FAN7554 IC101  
Input:85 ~ 265VAC  
50/60Hz  
FB S/S IS Rt/Ct  
C109  
R109  
1
2
3
4
R110  
R111  
C105  
C108  
C106  
C107  
IC301  
14  
FAN7554  
Part List For FAN7554 Flyback Converter Demo Board  
Part  
FUSE  
NTC  
Value  
FUSE  
Note  
Part  
Value  
CAPACITOR  
100nF/ 275V  
100nF/ 275V  
470nF/ 400WV  
103/ 1kV  
104  
Note  
250 2A  
NTC  
-
-
C101  
C102  
C103  
C104  
C105  
C106  
C107  
C108  
C109  
C201  
C202  
C203  
C301  
C302  
Box Capacitor  
Box Capacitor  
Electrolytic  
Film Capacitor  
Ceramic  
5D-11  
RESISTOR  
330kΩ  
-
R101  
R102  
1W  
-
1uF/ 10V  
101  
Electrolytic  
Ceramic  
R103, R104  
R105  
100kΩ  
22Ω  
1W  
-
122  
Ceramic  
R106  
4.7kΩ  
12kΩ  
-
22uF/ 50V  
330uF  
Electrolytic  
Electrolytic  
Electrolytic  
Ceramic  
R107  
-
R108  
10Ω  
-
330uF  
R109  
1kΩ  
-
104  
R110  
0.5Ω  
2W  
-
-
R201  
1kΩ  
-
-
-
-
-
-
-
R202  
1kΩ  
R203  
4.7kΩ  
1.2kΩ  
-
INDUCTOR  
30mH  
R204  
LF101  
L201  
-
-
R205  
6.4uH  
MOSFET  
FQP6N70  
IC  
DIODE  
Q101  
Fairchild  
D201  
D101  
D102  
D103  
BD  
MBRF10100CT  
UF4007  
-
Fairchild  
IC101  
IC201  
IC301  
FAN7554  
KA431  
Opto-coupler  
Fairchild  
Fairchild  
Fairchild  
1N4148  
-
UF4004  
Fairchild  
-
G3SBA60  
15  
FAN7554  
Transformer Specification  
Schematic Diagram (Top view)  
3mm  
6mm  
2mm  
12  
1
10  
NP  
9
8
3
NB  
11  
N
P
N12V  
N
12V  
4
5
7
6
NB  
N
P
bottom  
top  
Winding Specification  
No. Pin(S F)  
Wire  
Turns  
44  
Winding Method  
N
1 3  
7 11  
1 3  
5 4  
0.35φ × 1  
0.35φ × 4  
0.35φ × 1  
0.35φ × 1  
-
-
-
-
P
N
12V  
12  
N
44  
P
B
N
13  
Electrical Characteristic  
Closure  
Pin  
Spec.  
Remarks  
Inductance  
1 - 3  
1 - 3  
400uH ±10%  
10uH MAX .  
100kHz, 1V  
2
nd All short  
Leakagel  
16  
FAN7554  
FAN7554 forward converter demo circuit ( fsw:100kHz)  
L201  
D201  
BD  
+12V/2A  
T101  
R103  
D102  
R104  
C104  
C201  
C202  
R105  
R106  
C102  
C103  
C301 C302  
D202  
+5V/3A  
L101  
D103  
R107  
D104  
L202  
R201  
C101  
C105  
C204  
C203  
R203  
R101  
R102  
R202  
IC2  
R108  
8
7
6
5
Q101  
R110  
FUSE  
Vref Vcc OUT GND  
R113  
FAN7554  
D101  
C106  
RT101  
F/B S/S IS Rt/Ct  
1
R109  
3
2
4
Input: 85 ~ 265VAC  
50/60Hz  
R112  
R111  
C110  
C111  
IC301  
C107  
C108  
C109  
R204  
IC301  
C205  
IC201  
17  
FAN7554  
Part List For FAN7554 Forward Converter Demo Board  
Part  
FUSE  
RT101  
Value  
FUSE  
Note  
Part  
Value  
CAPACITOR  
470nF/ 275V  
470nF/ 400WV  
223/ 630V  
33uF/ 35V  
104  
Note  
250 2A  
NTC  
-
-
C101  
C102, C103  
C104  
Box Capacitor  
Electrolytic  
Film  
DSC 10D-11  
RESISTOR  
330kΩ  
-
C105  
Film Capacitor  
Ceramic  
Electrolytic  
Ceramic  
Ceramic  
Film  
R101  
R102  
1W  
C106  
-
C107  
1uF/ 35V  
101  
R103, R104  
R105, R106  
R107  
56kΩ  
1W  
C108  
220kΩ  
10Ω  
1W  
C109  
122  
-
C110  
272  
R108  
20Ω  
-
C111  
333  
Film  
R109  
4.7kΩ  
-
C201, C202  
C203  
1000uF/ 35V  
330uF/ 16V  
2200uF/ 16V  
104  
Electrolytic  
Electrolytic  
Electrolytic  
Ceramic  
Ceramic  
R110  
1.2kΩ  
-
R111  
0.5//0.5//0.5Ω  
1kΩ  
2W  
C204  
R112  
-
-
-
-
-
C205  
R113  
12kΩ  
C301, C302  
332/ 1kV  
INDUCTOR  
30mH  
R201, R202  
R203  
10kΩ  
1kΩ  
LF101  
L201  
-
-
R204  
330Ω  
-
MOSFET  
SSH8N80  
IC  
DIODE  
Q101  
Fairchild  
D101  
D102  
D103  
D201  
D202  
BD  
1N4004  
-
-
-
-
-
FR157  
IC101  
IC201  
IC301  
-
FAN7554  
KA431  
Opto-Coupler  
-
Fairchild  
Fairchild  
Fairchild  
-
UF4007  
MBRF10100CT  
MBR3045PT  
PBS406GU  
18  
FAN7554  
Transformer specification  
Schematic Diagram (Top view)  
1
13, 14  
Np ; 32turn  
Ns,12 ; 5turn  
Nvcc ; 6turn  
Np ; 32turn  
Ns,12 ; 5turn  
Ns,5 ; 4turn  
Np ; 32turn  
3
8, 9  
6
Ns,5 ; 4turn  
Nvcc ; 5turn  
7
10,11,12  
Winding Specification  
No.  
Pin(S F)  
1 3  
Wire  
Turns  
N
P
0.65 φ × 1  
0.65 φ × 4  
0.65 φ × 4  
0.65 φ × 1  
0.65 φ × 1  
32  
4
N , 5  
S
8 11  
4 9  
N , 12  
S
5
N
P
1 3  
32  
5
N
7 6  
VCC  
Core : Powder 27 pi 16grade  
5V : 12T ( 1 φ × 2 )  
12V : 27T ( 1.2 φ × 1 )  
19  
FAN7554  
Mechanical Dimensions  
Package  
Dimensions in millimeters  
8-SOP  
Symbol  
Min  
-
Nom  
Max  
1.75  
0.25  
1.50  
0.51  
0.25  
5.00  
4.00  
A
A1  
A2  
B
-
0.15  
1.45  
0.37  
0.20  
4.90  
3.90  
1.27BSC  
5.99  
-
0.10  
1.25  
0.35  
0.19  
4.80  
3.80  
C
D
E
e
H
5.79  
0.25  
0.50  
6.20  
0.50  
0.90  
h
L
0.70  
0.36 BSC  
-
GP  
q
0
-
8
aaa  
bbb  
-
0.25  
0.10  
-
-
20  
FAN7554  
Mechanical Dimensions (Continued)  
Package  
Dimensions in millimeters  
8-DIP  
21  
FAN7554  
Ordering Information  
Product Number  
FAN7554  
Package  
8-DIP  
Operating Temperature  
-25°C ~ 85°C  
FAN7554D  
8-SOP  
DISCLAIMER  
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY  
PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY  
LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER  
DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.  
LIFE SUPPORT POLICY  
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES  
OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR  
CORPORATION. As used herein:  
1. Life support devices or systems are devices or systems  
which, (a) are intended for surgical implant into the body,  
or (b) support or sustain life, and (c) whose failure to  
perform when properly used in accordance with  
instructions for use provided in the labeling, can be  
reasonably expected to result in a significant injury of the  
user.  
2. A critical component in any component of a life support  
device or system whose failure to perform can be  
reasonably expected to cause the failure of the life support  
device or system, or to affect its safety or effectiveness.  
www.fairchildsemi.com  
10/2/03 0.0m 001  
Stock#DSxxxxxxxx  
2003 Fairchild Semiconductor Corporation  

相关型号:

FAN7554DTF

Switching Controller, Current-mode, 1A, 500kHz Switching Freq-Max, PDSO8, SOP-8
FAIRCHILD

FAN7554_03

Versatile PWM Controller
FAIRCHILD

FAN7556

Voltage Mode PWM Controller
FAIRCHILD

FAN7556M

SMPS Controller
FAIRCHILD

FAN7556MX

SMPS Controller
FAIRCHILD

FAN7563

Lithium-Ion Charger Controller
FAIRCHILD

FAN7563D

Battery Management
FAIRCHILD

FAN7563DTF

Power Supply Support Circuit, Fixed, 2 Channel, PDSO8, SOP-8
FAIRCHILD

FAN7564

Lithium-Ion Charger Controller
FAIRCHILD

FAN7564D

Battery Management
FAIRCHILD

FAN7585

Intelligent Voltage Mode PWM IC
FAIRCHILD

FAN7585SN

Switching Controller, Voltage-mode, 0.2A, PDIP24, SDIP-24
FAIRCHILD