FDD8882_08 [FAIRCHILD]

N-Channel PowerTrench㈢ MOSFET; N沟道MOSFET的PowerTrench
FDD8882_08
型号: FDD8882_08
厂家: FAIRCHILD SEMICONDUCTOR    FAIRCHILD SEMICONDUCTOR
描述:

N-Channel PowerTrench㈢ MOSFET
N沟道MOSFET的PowerTrench

文件: 总12页 (文件大小:429K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
April 2008  
FDD8882 / FDU8882  
tm  
®
N-Channel PowerTrench MOSFET  
30V, 55A, 11.5mΩ  
General Description  
Features  
This N-Channel MOSFET has been designed specifically to  
improve the overall efficiency of DC/DC converters using  
either synchronous or conventional switching PWM  
controllers. It has been optimized for low gate charge, low  
! r  
= 11.5m, V = 10V, I = 35A  
GS D  
DS(ON)  
! r  
= 15m, V = 4.5V, I = 35A  
DS(ON)  
GS  
D
! High performance trench technology for extremely low  
r
r
and fast switching speed.  
DS(ON)  
DS(ON)  
! Low gate charge  
! High power and current handling capability  
„ RoHS Complicant  
Application  
! DC/DC converters  
D
S
D
G
G
I-PAK  
(TO-251AA)  
S
D-PAK  
(TO-252)  
G D S  
www.fairchildsemi.com  
©2008 Fairchild Semiconductor Corporation  
FDD8882/FDU8882 Rev. C  
1
Absolute Maximum Ratings T = 25°C unless otherwise noted  
C
Symbol  
Parameter  
Ratings  
30  
Units  
V
V
Drain to Source Voltage  
Gate to Source Voltage  
V
V
DSS  
GS  
±20  
Drain Current  
o
55  
50  
A
A
Continuous (T = 25 C, V = 10V) (Note 1)  
C
GS  
o
I
Continuous (T = 25 C, V = 4.5V) (Note 1)  
C GS  
D
o
o
Continuous (T  
= 25 C, V = 10V, with R = 52 C/W)  
θJA  
12.6  
A
amb  
GS  
Pulsed  
Figure 4  
41  
A
E
P
Single Pulse Avalanche Energy (Note 2)  
Power dissipation  
mJ  
W
AS  
55  
D
o
o
Derate above 25 C  
0.37  
W/ C  
o
T , T  
Operating and Storage Temperature  
-55 to 175  
C
J
STG  
Thermal Characteristics  
o
R
R
R
Thermal Resistance Junction to Case TO-252, TO-251  
Thermal Resistance Junction to Ambient TO-252, TO-251  
2.73  
100  
52  
C/W  
θJC  
θJA  
θJA  
o
C/W  
2
o
Thermal Resistance Junction to Ambient TO-252, 1in copper pad area  
C/W  
Package Marking and Ordering Information  
Device Marking  
Device  
FDD8882  
FDU8882  
Package  
TO-252AA  
TO-251AA  
Reel Size  
13”  
Tape Width  
Quantity  
FDD8882  
12mm  
N/A  
2500 units  
75 units  
FDU8882  
N/A (Tube)  
Electrical Characteristics T = 25°C unless otherwise noted  
C
Symbol  
Parameter  
Test Conditions  
Min  
Typ  
Max  
Units  
Off Characteristics  
B
Drain to Source Breakdown Voltage  
Zero Gate Voltage Drain Current  
Gate to Source Leakage Current  
I
= 250µA, V = 0V  
30  
-
-
-
-
-
-
V
VDSS  
D
GS  
V
V
V
= 24V  
= 0V  
1
DS  
GS  
GS  
I
I
µA  
nA  
DSS  
o
T
= 150 C  
-
250  
±100  
C
= ±20V  
-
GSS  
On Characteristics  
V
Gate to Source Threshold Voltage  
V
= V , I = 250µA  
1.2  
-
2.5  
V
GS(TH)  
GS  
DS  
D
I
I
I
= 35A, V = 10V  
-
-
0.0094 0.0115  
0.0130 0.0150  
D
D
D
GS  
= 35A, V = 4.5V  
GS  
r
Drain to Source On Resistance  
DS(ON)  
= 35A, V = 10V,  
GS  
-
0.0150 0.0190  
o
T = 175 C  
J
www.fairchildsemi.com  
2
FDD8882/FDU8882 Rev. C  
Dynamic Characteristics  
C
C
C
R
Input Capacitance  
-
-
-
-
-
-
-
-
-
-
1260  
240  
140  
2.4  
-
pF  
pF  
pF  
ISS  
OSS  
RSS  
G
V
= 15V, V = 0V,  
GS  
DS  
Output Capacitance  
-
f = 1MHz  
Reverse Transfer Capacitance  
Gate Resistance  
-
V
V
V
V
= 0.5V, f = 1MHz  
= 0V to 10V  
-
33  
17.6  
1.8  
-
GS  
GS  
GS  
GS  
Q
Q
Q
Q
Q
Q
Total Gate Charge at 10V  
Total Gate Charge at 5V  
Threshold Gate Charge  
Gate to Source Gate Charge  
Gate Charge Threshold to Plateau  
Gate to Drain MillerCharge  
22  
nC  
nC  
nC  
nC  
nC  
nC  
g(TOT)  
g(5)  
g(TH)  
gs  
= 0V to 5V  
11.7  
1.2  
V
= 15V  
DD  
= 35A  
= 0V to 1V  
I
D
3.7  
I = 1.0mA  
g
2.5  
-
gs2  
4.6  
-
gd  
Switching Characteristics (V = 10V)  
GS  
t
t
t
t
t
t
Turn-On Time  
Turn-On Delay Time  
Rise Time  
-
-
-
-
-
-
-
135  
ns  
ns  
ns  
ns  
ns  
ns  
ON  
8
-
-
d(ON)  
82  
40  
25  
-
V
V
= 15V, I = 35A  
r
DD  
GS  
D
= 10V, R = 13Ω  
Turn-Off Delay Time  
Fall Time  
-
GS  
d(OFF)  
-
f
Turn-Off Time  
98  
OFF  
Drain-Source Diode Characteristics  
I
I
I
I
= 35A  
= 15A  
-
-
-
-
-
-
-
-
1.25  
1.0  
32  
V
V
SD  
SD  
SD  
SD  
V
Source to Drain Diode Voltage  
SD  
t
Reverse Recovery Time  
= 35A, dI /dt = 100A/µs  
ns  
nC  
rr  
SD  
Q
Reverse Recovered Charge  
= 35A, dI /dt = 100A/µs  
21  
RR  
SD  
Notes:  
1: Package current limitation is 35A.  
2: Starting T = 25°C, L = 0.1mH, I = 28A, V = 27V, V = 10V.  
J
AS  
DD  
GS  
www.fairchildsemi.com  
3
FDD8882/FDU8882 Rev. C  
Typical Characteristics T = 25°C unless otherwise noted  
C
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
60  
40  
20  
0
CURRENT LIMITED  
BY PACKAGE  
V
= 10V  
150  
GS  
0
25  
50  
75  
100  
150  
175  
125  
o
25  
50  
75  
T , CASE TEMPERATURE ( C)  
C
100  
125  
175  
o
T
, CASE TEMPERATURE ( C)  
C
Figure 1. Normalized Power Dissipation vs Case  
Temperature  
Figure 2. Maximum Continuous Drain Current vs  
Case Temperature  
2
DUTY CYCLE - DESCENDING ORDER  
0.5  
0.2  
1
0.1  
0.05  
0.02  
0.01  
P
DM  
0.1  
t
1
t
2
SINGLE PULSE  
NOTES:  
DUTY FACTOR: D = t /t  
1
2
PEAK T = P  
J
x Z  
x R + T  
θJC C  
DM  
θJC  
0.01  
-5  
-4  
-3  
-2  
-1  
0
1
10  
10  
10  
10  
10  
10  
10  
t, RECTANGULAR PULSE DURATION (s)  
Figure 3. Normalized Maximum Transient Thermal Impedance  
600  
o
TRANSCONDUCTANCE  
MAY LIMIT CURRENT  
IN THIS REGION  
T
= 25 C  
C
FOR TEMPERATURES  
o
ABOVE 25 C DERATE PEAK  
CURRENT AS FOLLOWS:  
175 - T  
150  
C
I = I  
25  
V
= 4.5V  
GS  
100  
30  
-5  
-4  
-3  
-2  
-1  
0
1
10  
10  
10  
10  
t, PULSE WIDTH (s)  
10  
10  
10  
Figure 4. Peak Current Capability  
www.fairchildsemi.com  
4
FDD8882/FDU8882 Rev. C  
Typical Characteristics T = 25°C unless otherwise noted  
C
1000  
100  
10  
500  
If R = 0  
= (L)(I )/(1.3*RATED BV  
t
AV  
- V  
DD  
)
AS  
DSS  
If R 0  
= (L/R)ln[(I *R)/(1.3*RATED BV  
10µs  
100µs  
1ms  
t
- V ) +1]  
DD  
AV  
AS  
DSS  
100  
o
STARTING T = 25 C  
J
OPERATION IN THIS  
AREA MAY BE  
10  
LIMITED BY r  
DS(ON)  
1
o
STARTING T = 150 C  
J
SINGLE PULSE  
10ms  
DC  
T
T
= MAX RATED  
= 25 C  
J
o
C
0.1  
1
0.001  
0.01  
0.1  
t , TIME IN AVALANCHE (ms)  
AV  
1
10  
100  
1
10  
, DRAIN TO SOURCE VOLTAGE (V)  
60  
V
DS  
NOTE: Refer to Fairchild Application Notes AN7514 and AN7515  
Figure 6. Unclamped Inductive Switching  
Capability  
Figure 5. Forward Bias Safe Operating Area  
80  
80  
PULSE DURATION = 80µs  
DUTY CYCLE = 0.5% MAX  
PULSE DURATION = 80µs  
DUTY CYCLE = 0.5% MAX  
V
= 10V  
GS  
V
= 15V  
DD  
V = 4.5V  
GS  
60  
40  
20  
0
60  
40  
20  
0
V
= 3.5V  
GS  
o
T
= 25 C  
J
V
= 3V  
GS  
o
T
= 175 C  
o
J
T
= -55 C  
J
o
T
= 25 C  
C
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
0
0.5  
1.0  
1.5  
2.0  
2.5  
V
, GATE TO SOURCE VOLTAGE (V)  
V
DS  
, DRAIN TO SOURCE VOLTAGE (V)  
GS  
Figure 7. Transfer Characteristics  
Figure 8. Saturation Characteristics  
1.8  
20  
PULSE DURATION = 80µs  
DUTY CYCLE = 0.5% MAX  
PULSE DURATION = 80µs  
DUTY CYCLE = 0.5% MAX  
1.6  
1.4  
1.2  
1.0  
I
= 35A  
D
16  
12  
8
I
= 1A  
D
0.8  
0.6  
V
= 10V, I = 35A  
D
GS  
-80  
-40  
0
40  
80  
120  
160  
200  
2
4
6
8
10  
o
T , JUNCTION TEMPERATURE ( C)  
J
V
, GATE TO SOURCE VOLTAGE (V)  
GS  
Figure 9. Drain to Source On Resistance vs Gate  
Voltage and Drain Current  
Figure 10. Normalized Drain to Source On  
Resistance vs Junction Temperature  
www.fairchildsemi.com  
5
FDD8882/FDU8882 Rev. C  
Typical Characteristics T = 25°C unless otherwise noted  
C
1.2  
1.10  
1.05  
1.00  
0.95  
0.90  
V
= V , I = 250µA  
I = 250µA  
D
GS  
DS  
D
1.0  
0.8  
0.6  
0.4  
-80  
-40  
0
40  
80  
120  
160  
200  
-80  
-40  
0
40  
80  
120  
o
160  
200  
o
T , JUNCTION TEMPERATURE ( C)  
T , JUNCTION TEMPERATURE ( C)  
J
J
Figure 11. Normalized Gate Threshold Voltage vs  
Junction Temperature  
Figure 12. Normalized Drain to Source  
Breakdown Voltage vs Junction Temperature  
3000  
10  
V
= 15V  
DD  
C
= C + C  
GS GD  
ISS  
8
6
4
2
0
1000  
C
C
+ C  
OSS  
DS GD  
C
V
= C  
GD  
RSS  
WAVEFORMS IN  
DESCENDING ORDER:  
I
I
= 35A  
= 5A  
D
D
= 0V, f = 1MHz  
GS  
100  
0.1  
1
10  
30  
0
5
10  
15  
20  
25  
V
, DRAIN TO SOURCE VOLTAGE (V)  
Q , GATE CHARGE (nC)  
DS  
g
Figure 13. Capacitance vs Drain to Source  
Voltage  
Figure 14. Gate Charge Waveforms for Constant  
Gate Current  
www.fairchildsemi.com  
6
FDD8882/FDU8882 Rev. C  
Test Circuits and Waveforms  
V
DS  
BV  
DSS  
t
P
L
V
DS  
I
VARY t TO OBTAIN  
P
AS  
+
-
V
DD  
R
REQUIRED PEAK I  
G
AS  
V
DD  
V
GS  
DUT  
t
P
I
0V  
AS  
0
0.01Ω  
t
AV  
Figure 15. Unclamped Energy Test Circuit  
Figure 16. Unclamped Energy Waveforms  
V
DS  
V
Q
DD  
g(TOT)  
V
V
GS  
DS  
L
V
= 10V  
GS  
Q
V
g(5)  
GS  
+
-
Q
gs2  
V
V
= 5V  
DD  
GS  
DUT  
V
= 1V  
GS  
I
g(REF)  
0
Q
g(TH)  
Q
Q
gs  
gd  
I
g(REF)  
0
Figure 17. Gate Charge Test Circuit  
Figure 18. Gate Charge Waveforms  
V
DS  
t
t
ON  
OFF  
t
d(OFF)  
t
d(ON)  
R
L
t
t
f
r
V
DS  
90%  
90%  
+
-
V
GS  
V
DD  
10%  
10%  
0
DUT  
90%  
50%  
R
GS  
V
GS  
50%  
PULSE WIDTH  
V
10%  
GS  
0
Figure 19. Switching Time Test Circuit  
Figure 20. Switching Time Waveforms  
www.fairchildsemi.com  
7
FDD8882/FDU8882 Rev. C  
Thermal Resistance vs. Mounting Pad Area  
The maximum rated junction temperature, T , and the  
thermal resistance of the heat dissipating path determines  
JM  
125  
100  
75  
R
= 33.32+ 23.84/(0.268+Area) EQ.2  
= 33.32+ 154/(1.73+Area) EQ.3  
θJA  
the maximum allowable device power dissipation, P , in an  
DM  
R
application.  
Therefore the applications ambient  
θJA  
o
o
temperature, T ( C), and thermal resistance R  
( C/W)  
A
θJA  
must be reviewed to ensure that T  
is never exceeded.  
JM  
Equation 1 mathematically represents the relationship and  
serves as the basis for establishing the rating of the part.  
(T  
T )  
JM  
A
(EQ. 1)  
P
= -----------------------------  
50  
DM  
RθJA  
In using surface mount devices such as the TO-252  
package, the environment in which it is applied will have a  
significant influence on the parts current and maximum  
25  
0.01  
(0.0645)  
0.1  
(0.645)  
1
10  
(6.45)  
(64.5)  
power dissipation ratings. Precise determination of P  
complex and influenced by many factors:  
is  
DM  
2
2
AREA, TOP COPPER AREA in (cm )  
Figure 21. Thermal Resistance vs Mounting  
Pad Area  
1. Mounting pad area onto which the device is attached and  
whether there is copper on one side or both sides of the  
board.  
2. The number of copper layers and the thickness of the  
board.  
3. The use of external heat sinks.  
4. The use of thermal vias.  
5. Air flow and board orientation.  
6. For non steady state applications, the pulse width, the  
duty cycle and the transient thermal response of the part,  
the board and the environment they are in.  
Fairchild provides thermal information to assist the  
designers preliminary application evaluation. Figure 21  
defines the R  
for the device as a function of the top  
θJA  
copper (component side) area. This is for a horizontally  
positioned FR-4 board with 1oz copper after 1000 seconds  
of steady state power with no air flow. This graph provides  
the necessary information for calculation of the steady state  
junction temperature or power dissipation. Pulse  
applications can be evaluated using the Fairchild device  
Spice thermal model or manually utilizing the normalized  
maximum transient thermal impedance curve.  
Thermal resistances corresponding to other copper areas  
can be obtained from Figure 21 or by calculation using  
Equation 2 or 3. Equation 2 is used for copper area defined  
in inches square and equation 3 is for area in centimeters  
square. The area, in square inches or square centimeters is  
the top copper area including the gate and source pads.  
23.84  
(0.268 + Area)  
R
= 33.32 + ------------------------------------  
(EQ. 2)  
θJA  
θJA  
Area in Inches Squared  
154  
R
= 33.32 + ---------------------------------  
(EQ. 3)  
(1.73 + Area)  
Area in Centimeters Squared  
www.fairchildsemi.com  
8
FDD8882/FDU8882 Rev. C  
PSPICE Electrical Model  
.SUBCKT FDD8882 2 1 3 ; rev October 2004  
Ca 12 8 9e-10  
Cb 15 14 9e-10  
Cin 6 8 1.55e-9  
LDRAIN  
DPLCAP  
5
DRAIN  
2
10  
Dbody 7 5 DbodyMOD  
Dbreak 5 11 DbreakMOD  
Dplcap 10 5 DplcapMOD  
RLDRAIN  
RSLC1  
51  
DBREAK  
+
RSLC2  
5
ESLC  
11  
51  
Ebreak 11 7 17 18 34.1  
Eds 14 8 5 8 1  
Egs 13 8 6 8 1  
Esg 6 10 6 8 1  
Evthres 6 21 19 8 1  
-
+
50  
-
17  
DBODY  
RDRAIN  
6
8
EBREAK 18  
-
ESG  
EVTHRES  
+
16  
21  
+
-
19  
8
MWEAK  
Evtemp 20 6 18 22 1  
LGATE  
EVTEMP  
RGATE  
GATE  
1
6
+
-
18  
22  
MMED  
It 8 17 1  
9
20  
MSTRO  
8
RLGATE  
Lgate 1 9 8.6e-9  
Ldrain 2 5 1.0e-9  
Lsource 3 7 2.67e-9  
LSOURCE  
CIN  
SOURCE  
3
7
RSOURCE  
RLSOURCE  
RLgate 1 9 86  
RLdrain 2 5 10  
RLsource 3 7 26.7  
S1A  
S2A  
RBREAK  
12  
15  
13  
8
14  
13  
17  
18  
RVTEMP  
19  
S1B  
S2B  
Mmed 16 6 8 8 MmedMOD  
Mstro 16 6 8 8 MstroMOD  
Mweak 16 21 8 8 MweakMOD  
13  
CB  
CA  
IT  
14  
-
+
+
VBAT  
6
8
5
8
EGS  
EDS  
+
Rbreak 17 18 RbreakMOD 1  
Rdrain 50 16 RdrainMOD 2.5e-3  
Rgate 9 20 2.43  
-
-
8
22  
RVTHRES  
RSLC1 5 51 RSLCMOD 1e-6  
RSLC2 5 50 1e3  
Rsource 8 7 RsourceMOD 6.5e-3  
Rvthres 22 8 RvthresMOD 1  
Rvtemp 18 19 RvtempMOD 1  
S1a 6 12 13 8 S1AMOD  
S1b 13 12 13 8 S1BMOD  
S2a 6 15 14 13 S2AMOD  
S2b 13 15 14 13 S2BMOD  
Vbat 22 19 DC 1  
ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*600),10))}  
.MODEL DbodyMOD D (IS=2E-12 IKF=10 N=1.01 RS=5.7e-3 TRS1=8e-4 TRS2=2e-7  
+ CJO=4.6e-10 M=0.58 TT=1e-11 XTI=2.7)  
.MODEL DbreakMOD D (RS=1 TRS1=1e-3 TRS2=-8.9e-6)  
.MODEL DplcapMOD D (CJO=5.0e-10 IS=1e-30 N=10 M=0.45)  
.MODEL MmedMOD NMOS (VTO=2.11 KP=14 IS=1e-30 N=10 TOX=1 L=1u W=1u RG=2.43)  
.MODEL MstroMOD NMOS (VTO=2.65 KP=240 IS=1e-30 N=10 TOX=1 L=1u W=1u)  
.MODEL MweakMOD NMOS (VTO=1.82 KP=0.09 IS=1e-30 N=10 TOX=1 L=1u W=1u RG=24.3 RS=0.1)  
.MODEL RbreakMOD RES (TC1=8.0e-4 TC2=-8e-7)  
.MODEL RdrainMOD RES (TC1=-6e-3 TC2=6e-6)  
.MODEL RSLCMOD RES (TC1=8e-5 TC2=2e-6)  
.MODEL RsourceMOD RES (TC1=7.5e-3 TC2=1e-6)  
.MODEL RvthresMOD RES (TC1=-1.2e-3 TC2=-8.3e-6)  
.MODEL RvtempMOD RES (TC1=-2.5e-3 TC2=3.3e-7)  
.MODEL S1AMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-4 VOFF=-3.5)  
.MODEL S1BMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-3.5 VOFF=-4)  
.MODEL S2AMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-2 VOFF=-1.5)  
.MODEL S2BMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-1.5 VOFF=-2)  
.ENDS  
Note: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global  
Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank  
Wheatley.  
www.fairchildsemi.com  
9
FDD8882/FDU8882 Rev. C  
SABER Electrical Model  
rev October 2004  
template FDD8882 n2,n1,n3  
electrical n2,n1,n3  
{
var i iscl  
dp..model dbodymod = (isl=2.0e-12,ikf=10,nl=1.01,rs=5.7e-3,trs1=8e-4,trs2=2e-7,cjo=4.6e-10,m=0.58,tt=1e-11,xti=2.7)  
dp..model dbreakmod = (rs=1,trs1=1e-3,trs2=-8.9e-6)  
dp..model dplcapmod = (cjo=5.0e-10,isl=10e-30,nl=10,m=0.45)  
m..model mmedmod = (type=_n,vto=2.11,kp=14,is=1e-30, tox=1)  
m..model mstrongmod = (type=_n,vto=2.65,kp=240,is=1e-30, tox=1)  
m..model mweakmod = (type=_n,vto=1.82,kp=0.09,is=1e-30, tox=1,rs=0.1)  
sw_vcsp..model s1amod = (ron=1e-5,roff=0.1,von=-4,voff=-3.5)  
LDRAIN  
sw_vcsp..model s1bmod = (ron=1e-5,roff=0.1,von=-3.5,voff=-4)  
sw_vcsp..model s2amod = (ron=1e-5,roff=0.1,von=-2,voff=-1.5)  
sw_vcsp..model s2bmod = (ron=1e-5,roff=0.1,von=-1.5,voff=-2)  
c.ca n12 n8 = 9e-10  
c.cb n15 n14 = 9e-10  
c.cin n6 n8 = 1.1e-9  
DPLCAP  
5
DRAIN  
2
10  
RLDRAIN  
RSLC1  
51  
RSLC2  
ISCL  
dp.dbody n7 n5 = model=dbodymod  
dp.dbreak n5 n11 = model=dbreakmod  
dp.dplcap n10 n5 = model=dplcapmod  
DBREAK  
11  
50  
-
RDRAIN  
6
8
ESG  
DBODY  
EVTHRES  
+
16  
21  
+
-
19  
8
spe.ebreak n11 n7 n17 n18 = 34.1  
spe.eds n14 n8 n5 n8 = 1  
spe.egs n13 n8 n6 n8 = 1  
MWEAK  
LGATE  
EVTEMP  
RGATE  
GATE  
1
+
6
-
18  
22  
EBREAK  
+
MMED  
9
20  
spe.esg n6 n10 n6 n8 = 1  
spe.evthres n6 n21 n19 n8 = 1  
spe.evtemp n20 n6 n18 n22 = 1  
MSTRO  
8
17  
18  
-
RLGATE  
LSOURCE  
CIN  
SOURCE  
3
7
RSOURCE  
i.it n8 n17 = 1  
RLSOURCE  
S1A  
S2A  
l.lgate n1 n9 = 8.6e-9  
l.ldrain n2 n5 = 1.0e-9  
l.lsource n3 n7 = 2.67e-9  
RBREAK  
12  
15  
13  
8
14  
13  
17  
18  
RVTEMP  
19  
S1B  
S2B  
13  
CB  
res.rlgate n1 n9 = 86  
res.rldrain n2 n5 = 10  
res.rlsource n3 n7 = 26.7  
CA  
IT  
14  
-
+
+
VBAT  
6
8
5
8
EGS  
EDS  
+
-
-
8
22  
m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u  
RVTHRES  
m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u  
m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u  
res.rbreak n17 n18 = 1, tc1=8.0e-4,tc2=-8e-7  
res.rdrain n50 n16 = 2.5e-3, tc1=-6e-3,tc2=6e-6  
res.rgate n9 n20 = 2.43  
res.rslc1 n5 n51 = 1e-6, tc1=8e-5,tc2=2e-6  
res.rslc2 n5 n50 = 1e3  
res.rsource n8 n7 = 6.5e-3, tc1=7.5e-3,tc2=1e-6  
res.rvthres n22 n8 = 1, tc1=-1.2e-3,tc2=-8.3e-6  
res.rvtemp n18 n19 = 1, tc1=-2.5e-3,tc2=3.3e-7  
sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod  
sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod  
sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod  
sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod  
v.vbat n22 n19 = dc=1  
equations {  
i (n51->n50) +=iscl  
iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/600))** 10))  
}
}
www.fairchildsemi.com  
10  
FDD8882/FDU8882 Rev. C  
PSPICE Thermal Model  
JUNCTION  
th  
REV 23 October 2004  
FDD8882T  
CTHERM1 TH 6 5.6e-4  
CTHERM2 6 5 6.8e-4  
CTHERM3 5 4 2.0e-3  
CTHERM4 4 3 2.8e-3  
CTHERM5 3 2 5.7e-3  
CTHERM6 2 TL 5.8e-3  
RTHERM1  
RTHERM2  
RTHERM3  
RTHERM4  
RTHERM5  
RTHERM6  
CTHERM1  
6
RTHERM1 TH 6 5.3e-2  
RTHERM2 6 5 2.2e-1  
RTHERM3 5 4 2.9e-1  
RTHERM4 4 3 3.9e-1  
RTHERM5 3 2 6.0e-1  
RTHERM6 2 TL 6.6e-1  
CTHERM2  
CTHERM3  
CTHERM4  
CTHERM5  
CTHERM6  
5
SABER Thermal Model  
SABER thermal model FDD8882T  
template thermal_model th tl  
thermal_c th, tl  
{
ctherm.ctherm1 th 6 =5.6e-4  
ctherm.ctherm2 6 5 =6.8e-4  
ctherm.ctherm3 5 4 =2.0e-3  
ctherm.ctherm4 4 3 =2.8e-3  
ctherm.ctherm5 3 2 =5.7e-3  
ctherm.ctherm6 2 tl =5.8e-3  
4
3
2
rtherm.rtherm1 th 6 =5.3e-2  
rtherm.rtherm2 6 5 =2.2e-1  
rtherm.rtherm3 5 4 =2.9e-1  
rtherm.rtherm4 4 3 =3.9e-1  
rtherm.rtherm5 3 2 =6.0e-1  
rtherm.rtherm6 2 tl =6.6e-1  
}
tl  
CASE  
www.fairchildsemi.com  
11  
FDD8882/FDU8882 Rev. C  
TRADEMARKS  
The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global  
subsidianries, and is not intended to be an exhaustive list of all such trademarks.  
ACEx®  
FPS™  
PDP-SPM™  
The Power Franchise®  
Build it Now™  
CorePLUS™  
CorePOWER™  
CROSSVOLT™  
CTL™  
Current Transfer Logic™  
EcoSPARK®  
EfficentMax™  
F-PFS™  
Power-SPM™  
PowerTrench®  
Programmable Active Droop™  
QFET®  
QS™  
Quiet Series™  
RapidConfigure™  
FRFET®  
Global Power ResourceSM  
Green FPS™  
Green FPS™ e-Series™  
GTO™  
TinyBoost™  
TinyBuck™  
TinyLogic®  
TINYOPTO™  
TinyPower™  
IntelliMAX™  
ISOPLANAR™  
MegaBuck™  
MICROCOUPLER™  
MicroFET™  
Saving our world 1mW at a time™ TinyPWM™  
EZSWITCH™ *  
SmartMax™  
SMART START™  
SPM®  
STEALTH™  
SuperFET™  
SuperSOT™-3  
SuperSOT™-6  
SuperSOT™-8  
SuperMOS™  
®
TinyWire™  
µSerDes™  
®
MicroPak™  
Fairchild®  
MillerDrive™  
MotionMax™  
Motion-SPM™  
OPTOLOGIC®  
UHC®  
Ultra FRFET™  
UniFET™  
VCX™  
Fairchild Semiconductor®  
FACT Quiet Series™  
FACT®  
FAST®  
OPTOPLANAR®  
VisualMax™  
®
FastvCore™  
tm  
FlashWriter®  
*
* EZSWITCH™ and FlashWriter® are trademarks of System General Corporation, used under license by Fairchild Semiconductor.  
DISCLAIMER  
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS  
HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE  
APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER  
ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD’S  
WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.  
LIFE SUPPORT POLICY  
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR  
SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.  
As used herein:  
1. Life support devices or systems are devices or systems which,  
(a) are intended for surgical implant into the body or (b)  
support or sustain life, and (c) whose failure to perform when  
properly used in accordance with instructions for use provided  
in the labeling, can be reasonably expected to result in a  
significant injury of the user.  
2. A critical component in any component of a life support,  
device, or system whose failure to perform can be reasonably  
expected to cause the failure of the life support device or  
system, or to affect its safety or effectiveness.  
PRODUCT STATUS DEFINITIONS  
Definition of Terms  
Datasheet Identification  
Product Status  
Definition  
This datasheet contains the design specifications for product development.  
Specifications may change in any manner without notice.  
Advance Information  
Formative or In Design  
This datasheet contains preliminary data; supplementary data will be pub-  
lished at a later date. Fairchild Semiconductor reserves the right to make  
changes at any time without notice to improve design.  
Preliminary  
First Production  
This datasheet contains final specifications. Fairchild Semiconductor reserves  
the right to make changes at any time without notice to improve the design.  
No Identification Needed  
Obsolete  
Full Production  
This datasheet contains specifications on a product that is discontinued by  
Fairchild Semiconductor. The datasheet is for reference information only.  
Not In Production  
Rev. I34  
www.fairchildsemi.com  
FDD8882/FDU8882 Rev. C  

相关型号:

FDD8882_NL

N-Channel PowerTrench MOSFET
FAIRCHILD

FDD8896

N-Channel PowerTrench MOSFET
FAIRCHILD

FDD8896

N 沟道,PowerTrench® MOSFET, 30V,94A,4.7mΩ
ONSEMI

FDD8896-F085

30 V、94 A、4.7 mΩ、l DPAKN 沟道 PowerTrench®
ONSEMI

FDD8896_08

N-Channel PowerTrench㈢ MOSFET
FAIRCHILD

FDD8896_12

N-Channel PowerTrench® MOSFET 30V, 94A, 5.7mΩ
FAIRCHILD

FDD8896_NF054

Power Field-Effect Transistor, N-Channel, Metal-oxide Semiconductor FET
FAIRCHILD

FDD8896_NL

Power Field-Effect Transistor, 17A I(D), 30V, 0.068ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-252AA, LEAD FREE, DPAK-3
FAIRCHILD

FDD8896_SBSW004

Power Field-Effect Transistor, N-Channel, Metal-oxide Semiconductor FET
FAIRCHILD

FDD8N50NZTM

N-Channel UniFETTM II MOSFETï€
FAIRCHILD

FDD8N50NZTM

功率 MOSFET,N 沟道,UniFETTM II,500 V,6.5 A,850 mΩ,DPAK
ONSEMI

FDD9407-F085

N 沟道,PowerTrench®,40V,100A,2.0mΩ
ONSEMI