FDS2572 [FAIRCHILD]

150V, 0.047 Ohms, 4.9A, N-Channel UltraFET Trench MOSFET; 150V , 0.047欧姆, 4.9A , N沟道UltraFET沟道MOSFET
FDS2572
型号: FDS2572
厂家: FAIRCHILD SEMICONDUCTOR    FAIRCHILD SEMICONDUCTOR
描述:

150V, 0.047 Ohms, 4.9A, N-Channel UltraFET Trench MOSFET
150V , 0.047欧姆, 4.9A , N沟道UltraFET沟道MOSFET

文件: 总12页 (文件大小:275K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
October 2001  
FDS2572  
®
150V, 0.047 Ohms, 4.9A, N-Channel UltraFET Trench MOSFET  
General Description  
Features  
®
UltraFET devices combine characteristics that enable  
R
= 0.040(Typ.), V = 10V  
DS(ON)  
GS  
benchmark efficiency in power conversion applications.  
Optimized for Rds(on), low ESR, low total and Miller gate  
charge, these devices are ideal for high frequency DC to  
DC converters.  
Q
= 29nC (Typ.), V = 10V  
g(TOT)  
GS  
Low Q Body Diode  
RR  
Maximized efficiency at high frequencies  
UIS Rated  
Applications  
DC/DC converters  
Telecom and Data-Com Distributed Power Architectures  
48-volt I/P Half-Bridge/Full-Bridge  
24-volt Forward and Push-Pull topologies  
D
5
6
7
8
4
3
2
1
D  
D
D
G
SO-8  
S
S
S
Pin 1  
MOSFET Maximum Ratings T =25°C unless otherwise noted  
A
Symbol  
Parameter  
Ratings  
150  
Units  
V
V
Drain to Source Voltage  
Gate to Source Voltage  
V
V
DSS  
GS  
±20  
Drain Current  
o
o
4.9  
3.1  
A
A
Continuous (T = 25 C, V = 10V, R  
= 50 C/W)  
C
GS  
θJA  
I
D
o
o
Continuous (T = 100 C, V = 10V, R  
= 50 C/W)  
C
GS  
θJA  
Pulsed  
Figure 4  
A
Power dissipation  
Derate above 25 C  
2.5  
20  
W
mW/ C  
P
o
o
D
o
T , T  
Operating and Storage Temperature  
-55 to 150  
C
J
STG  
Thermal Characteristics  
o
R
R
R
Thermal Resistance Junction to Case  
(NOTE1)  
(NOTE2)  
(NOTE2)  
25  
50  
85  
C/W  
θJC  
θJA  
θJA  
o
Thermal Resistance Junction to Case at 10 seconds  
Thermal Resistance Junction to Case at steady state  
C/W  
o
C/W  
Package Marking and Ordering Information  
Device Marking  
Device  
Reel Size  
Tape Width  
12mm  
Quantity  
FDS2572  
FDS2572  
330mm  
2500units  
©2001 Fairchild Semiconductor Corporation  
FDS2572 Rev. B, October 2001  
Electrical Characteristics T = 25°C unless otherwise noted  
A
Symbol  
Parameter  
Test Conditions  
Min  
Typ  
Max  
Units  
Off Characteristics  
B
Drain to Source Breakdown Voltage  
Zero Gate Voltage Drain Current  
Gate to Source Leakage Current  
I
= 250µA, V = 0V  
150  
-
-
-
-
-
V
VDSS  
D
GS  
V
V
V
= 120V  
= 0V  
-
-
-
1
DS  
GS  
GS  
I
µA  
nA  
DSS  
GSS  
o
T
= 150  
250  
±100  
C
I
= ±20V  
On Characteristics  
V
r
Gate to Source Threshold Voltage  
V
I
= V , I = 250µA  
2
-
-
4
V
GS(TH)  
GS  
DS  
D
Drain to Source On Resistance  
Drain to Source On Resistance  
= 4.9A, V = 10V  
0.040  
0.044  
0.047  
0.053  
DS(ON)  
DS(ON)  
D
GS  
r
I
= 4.9A, V = 6V  
-
D
GS  
Dynamic Characteristics  
C
C
C
Input Capacitance  
-
-
-
-
-
-
-
-
2050  
220  
48  
29  
4
-
-
pF  
pF  
pF  
nC  
nC  
nC  
nC  
nC  
ISS  
V
= 25V, V = 0V,  
GS  
DS  
Output Capacitance  
OSS  
RSS  
f = 1MHz  
Reverse Transfer Capacitance  
Total Gate Charge at 10V  
Threshold Gate Charge  
-
Q
Q
Q
Q
Q
V
V
= 0V to 10V  
= 0V to 2V  
38  
6
-
g(TOT)  
g(TH)  
gs  
GS  
GS  
V
= 75V  
DD  
= 4.9A  
I
D
Gate to Source Gate Charge  
Gate to Drain “Miller” Charge  
Gate Charge Threshold to Plateau  
8
I = 1.0mA  
g
6
-
gd  
4
-
gs2  
Switching Characteristics  
t
t
t
t
t
t
Turn-On Time  
Turn-On Delay Time  
Rise Time  
-
-
-
-
-
-
-
27  
ns  
ns  
ns  
ns  
ns  
ns  
ON  
14  
4
-
d(ON)  
-
V
V
= 75V, I = 4.9A  
r
DD  
GS  
D
= 10V, R = 10Ω  
Turn-Off Delay Time  
Fall Time  
44  
22  
-
-
-
G
d(OFF)  
f
Turn-Off Time  
100  
OFF  
Drain-Source Diode Characteristics  
I
I
I
I
= 4.9A  
= 3.1A  
-
-
-
-
-
-
-
-
1.25  
1.0  
V
V
SD  
SD  
SD  
SD  
V
t
Source to Drain Diode Voltage  
SD  
Reverse Recovery Time  
= 4.9A, dI /dt =100A/µs  
= 4.9, dI /dt =100A/µs  
72  
ns  
nC  
rr  
SD  
Q
Reverse Recovered Charge  
158  
RR  
Notes:  
1. R  
SD  
is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal referance is defined as the solder mounting surface of the  
θJA  
drain pins. R  
is guaranteed by design while R  
is determined by the user’s board design.  
θJC  
θCA  
2
2. R  
is measured with 1.0in copper on FR-4 board  
θJA  
©2001 Fairchild Semiconductor Corporation  
FDS2572 Rev. B, October 2001  
Typical Characteristic  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
6
4
2
0
V
= 10V  
GS  
0
25  
50  
75  
100  
125  
150  
25  
50  
75  
100  
125  
150  
o
o
T
, AMBIENT TEMPERATURE ( C)  
T , CASE TEMPERATURE ( C)  
A
C
Figure 1. Normalized Power Dissipation vs  
Ambient Temperature  
Figure 2. Maximum Continous Drain Current vs  
Case Temperature  
2
DUTY CYCLE - DESCENDING ORDER  
1
0.5  
0.2  
0.1  
0.05  
0.02  
0.01  
0.1  
P
DM  
t
1
0.01  
0.001  
t
2
NOTES:  
DUTY FACTOR: D = t /t  
SINGLE PULSE  
1
2
PEAK T = P  
J
x Z  
x R  
+ T  
θJA A  
DM  
θJA  
-5  
-4  
-3  
-2  
-1  
0
1
2
3
10  
10  
10  
10  
10  
10  
10  
10  
10  
t, RECTANGULAR PULSE DURATION (s)  
Figure 3. Normalized Maximum Transient Thermal Impedance  
600  
100  
o
T
= 25 C  
C
TRANSCONDUCTANCE  
MAY LIMIT CURRENT  
IN THIS REGION  
FOR TEMPERATURES  
o
ABOVE 25 C DERATE PEAK  
CURRENT AS FOLLOWS:  
V
= 10V  
GS  
150 - T  
125  
C
I = I  
25  
10  
1
-5  
-4  
-3  
-2  
-1  
0
1
2
3
10  
10  
10  
10  
10  
t, PULSE WIDTH (s)  
10  
10  
10  
10  
Figure 4. Peak Current Capability  
©2001 Fairchild Semiconductor Corporation  
FDS2572 Rev. B, October 2001  
Typical Characteristic (Continued)  
10  
30  
20  
10  
0
PULSE DURATION = 80µs  
DUTY CYCLE = 0.5% MAX  
o
STARTING T = 25 C  
J
V
= 15V  
DD  
o
o
STARTING T = 150 C  
T
= 25 C  
J
J
1
o
T
= 150 C  
J
If R = 0  
= (L)(I )/(1.3*RATED BV  
o
T
= -55 C  
t
- V  
)
J
AV  
AS  
DSS  
DD  
If R 0  
= (L/R)ln[(I *R)/(1.3*RATED BV - V ) +1]  
DSS DD  
t
AV  
AS  
0.1  
3
4
5
6
160  
160  
0.001  
0.1  
1
10  
100  
t
, TIME IN AVALANCHE (ms)  
V
, GATE TO SOURCE VOLTAGE (V)  
AV  
GS  
Figure 5. Unclamped Inductive Switching  
Capability  
Figure 6. Transfer Characteristics  
30  
20  
10  
0
2.5  
PULSE DURATION = 80µs  
V
= 10V  
GS  
DUTY CYCLE = 0.5% MAX  
2.0  
1.5  
1.0  
0.5  
0
V
= 5V  
GS  
V
= 6V  
GS  
V
= 4.5V  
GS  
PULSE DURATION = 80µs  
DUTY CYCLE = 0.5% MAX  
V
= 10V, I = 4.9A  
D
GS  
o
T
= 25 C  
C
-80  
-40  
0
40  
80  
120  
o
0
0.5  
1.0  
1.5  
2.0  
V
, DRAIN TO SOURCE VOLTAGE (V)  
T , JUNCTION TEMPERATURE ( C)  
J
DS  
Figure 7. Saturation Characteristics  
Figure 8. Normalized Drain to Source On  
Resistance vs Junction Temperature  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
1.2  
V
= V , I = 250µA  
I = 250µA  
D
GS  
DS  
D
1.1  
1.0  
0.9  
-80  
-40  
0
40  
80  
120  
160  
-80  
-40  
0
40  
80  
120  
o
o
T , JUNCTION TEMPERATURE ( C)  
T , JUNCTION TEMPERATURE ( C)  
J
J
Figure 9. Normalized Gate Threshold Voltage vs  
Junction Temperature  
Figure 10. Normalized Drain to Source  
Breakdown Voltage vs Junction Temperature  
©2001 Fairchild Semiconductor Corporation  
FDS2572 Rev. B, October 2001  
Typical Characteristic (Continued)  
5000  
10  
8
C
= C + C  
GS GD  
ISS  
V
= 75V  
DD  
1000  
100  
10  
C
C + C  
DS GD  
OSS  
6
C
= C  
GD  
RSS  
4
WAVEFORMS IN  
DESCENDING ORDER:  
2
I
I
= 4.9A  
= 1A  
D
D
V
= 0V, f = 1MHz  
GS  
0
0.1  
1
10  
150  
0
5
10  
15  
20  
25  
30  
35  
V
, DRAIN TO SOURCE VOLTAGE (V)  
DS  
Q , GATE CHARGE (nC)  
g
Figure 11. Capacitance vs Drain to Source  
Voltage  
Figure 12. Gate Charge Waveforms for Constant  
Gate Currents  
Test Circuits and Waveforms  
V
DS  
BV  
DSS  
t
P
V
L
DS  
I
AS  
V
VARY t TO OBTAIN  
P
DD  
+
-
R
REQUIRED PEAK I  
G
AS  
V
DD  
V
GS  
DUT  
t
P
I
0V  
AS  
0
0.01Ω  
t
AV  
Figure 13. Unclamped Energy Test Circuit  
Figure 14. Unclamped Energy Waveforms  
D1  
V
DS  
V
Q
DD  
g(TOT)  
V
DS  
L
V
= 10V  
GS  
V
GS  
+
-
V
DD  
V
GS  
DUT  
V
= 2V  
GS  
Q
gs2  
I
0
g(REF)  
Q
g(TH)  
Q
Q
gd  
gs  
I
g(REF)  
0
Figure 15. Gate Charge Test Circuit  
Figure 16. Gate Charge Waveforms  
©2001 Fairchild Semiconductor Corporation  
FDS2572 Rev. B, October 2001  
Test Circuits and Waveforms (Continued)  
V
t
t
DS  
ON  
OFF  
t
d(OFF)  
t
d(ON)  
t
t
f
R
L
r
V
DS  
90%  
90%  
+
V
GS  
V
DD  
10%  
10%  
0
-
DUT  
90%  
50%  
R
GS  
V
GS  
50%  
PULSE WIDTH  
10%  
V
GS  
0
Figure 17. Switching Time Test Circuit  
Figure 18. Switching Time Waveforms  
©2001 Fairchild Semiconductor Corporation  
FDS2572 Rev. B, October 2001  
Thermal Resistance vs. Mounting Pad Area  
The maximum rated junction temperature, T , and the  
thermal resistance of the heat dissipating path  
determines the maximum allowable device power  
utilizing the normalized maximum transient thermal  
impedance curve.  
JM  
Thermal resistances corresponding to other copper  
areas can be obtained from Figure 19 or by calculation  
using Equation 2. The area, in square inches is the top  
copper area including the gate and source pads.  
dissipation, P , in an application. Therefore the  
DM  
o
application’s ambient temperature, T ( C), and thermal  
A
o
resistance R  
( C/W) must be reviewed to ensure that  
θJA  
T
is never exceeded. Equation 1 mathematically  
JM  
represents the relationship and serves as the basis for  
establishing the rating of the part.  
26  
R
= 64 + -----------------------------  
(EQ. 2)  
θJA  
0.23 + Area  
(T  
T )  
A
JM  
R
(EQ. 1)  
P
= -----------------------------  
DM  
The transient thermal impedance (Z ) is also effected  
θJA  
θJA  
by varied top copper board area. Figure 20 shows the  
effect of copper pad area on single pulse transient  
thermal impedance. Each trace represents a copper pad  
area in square inches corresponding to the descending  
list in the graph. Spice and SABER thermal models are  
provided for each of the listed pad areas.  
In using surface mount devices such as the SO8  
package, the environment in which it is applied will have  
a significant influence on the part’s current and maximum  
power dissipation ratings. Precise determination of P  
is complex and influenced by many factors:  
DM  
Copper pad area has no perceivable effect on transient  
thermal impedance for pulse widths less than 100ms.  
For pulse widths less than 100ms the transient thermal  
impedance is determined by the die and package.  
Therefore, CTHERM1 through CTHERM5 and  
RTHERM1 through RTHERM5 remain constant for each  
of the thermal models. A listing of the model component  
values is available in Table 1.  
1. Mounting pad area onto which the device is attached  
and whether there is copper on one side or both sides  
of the board.  
2. The number of copper layers and the thickness of the  
board.  
3. The use of external heat sinks.  
4. The use of thermal vias.  
200  
5. Air flow and board orientation.  
R
= 64 + 26/(0.23+Area)  
θJA  
6. For non steady state applications, the pulse width, the  
duty cycle and the transient thermal response of the  
part, the board and the environment they are in.  
150  
Fairchild provides thermal information to assist the  
designer’s preliminary application evaluation. Figure 19  
100  
50  
defines the R  
for the device as a function of the top  
θJA  
copper (component side) area. This is for a horizontally  
positioned FR-4 board with 1oz copper after 1000  
seconds of steady state power with no air flow. This  
graph provides the necessary information for calculation  
of the steady state junction temperature or power  
dissipation. Pulse applications can be evaluated using  
the Fairchild device Spice thermal model or manually  
0.001  
0.01  
0.1  
1
2
10  
AREA, TOP COPPER AREA (in )  
Figure 19. Thermal Resistance vs Mounting  
Pad Area  
150  
COPPER BOARD AREA - DESCENDING ORDER  
2
0.04 in  
2
0.28 in  
120  
2
0.52 in  
0.76 in  
1.00 in  
2
2
90  
60  
30  
0
-1  
0
1
2
3
10  
10  
10  
t, RECTANGULAR PULSE DURATION (s)  
10  
10  
Figure 20. Thermal Impedance vs Mounting Pad Area  
©2001 Fairchild Semiconductor Corporation  
FDS2572 Rev. B, October 2001  
PSPICE Electrical Model  
.SUBCKT FDS2572 2 1 3 ;  
CA 12 8 8e-10  
rev August 2001  
Cb 15 14 8e-10  
Cin 6 8 2e-9  
LDRAIN  
DPLCAP  
DRAIN  
2
5
10  
Dbody 7 5 DbodyMOD  
Dbreak 5 11 DbreakMOD  
Dplcap 10 5 DplcapMOD  
RLDRAIN  
RSLC1  
51  
DBREAK  
+
RSLC2  
5
ESLC  
Ebreak 11 7 17 18 157.4  
Eds 14 8 5 8 1  
Egs 13 8 6 8 1  
Esg 6 10 6 8 1  
Evthres 6 21 19 8 1  
Evtemp 20 6 18 22 1  
11  
51  
-
+
50  
-
17  
18  
-
DBODY  
RDRAIN  
6
8
EBREAK  
ESG  
EVTHRES  
+
+
16  
21  
-
19  
8
MWEAK  
LGATE  
EVTEMP  
It 8 17 1  
RGATE  
GATE  
1
+
6
-
18  
22  
MMED  
9
20  
Lgate 1 9 5.61e-9  
Ldrain 2 5 1.0e-9  
Lsource 3 7 1.98e-9  
MSTRO  
8
RLGATE  
LSOURCE  
CIN  
SOURCE  
3
7
RSOURCE  
RLgate 1 9 56.1  
RLdrain 2 5 10  
RLsource 3 7 19.8  
RLSOURCE  
S1A  
S2A  
S2B  
RBREAK  
12  
15  
13  
14  
13  
17  
18  
8
Mstro 16 6 8 8 MstroMOD  
Mmed 16 6 8 8 MmedMOD  
Mweak 16 21 8 8 MweakMOD  
RVTEMP  
19  
S1B  
13  
CB  
CA  
IT  
14  
-
+
+
VBAT  
Rbreak 17 18 RbreakMOD 1  
Rdrain 50 16 RdrainMOD 2.1e-2  
Rgate 9 20 1.47  
RSLC1 5 51 RSLCMOD 1e-6  
RSLC2 5 50 1e3  
6
8
5
8
EGS  
EDS  
+
-
-
8
22  
RVTHRES  
Rsource 8 7 RsourceMOD 1.5e-2  
Rvthres 22 8 RvthresMOD 1  
Rvtemp 18 19 RvtempMOD 1  
S1a 6 12 13 8 S1AMOD  
S1b 13 12 13 8 S1BMOD  
S2a 6 15 14 13 S2AMOD  
S2b 13 15 14 13 S2BMOD  
Vbat 22 19 DC 1  
ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*65),3))}  
.MODEL DbodyMOD D (IS=4e-11 N=1.131 RS=4.4e-3 TRS1=2e-3 TRS2=1e-6  
+ CJO=1.44e-9 M=0.67 TT=7.4e-8 XTI=4.2)  
.MODEL DbreakMOD D (RS=0.38 TRS1=2e-3 TRS2=-8.9e-6)  
.MODEL DplcapMOD D (CJO=5e-10 IS=1e-30 N=10 M=0.7)  
.MODEL MstroMOD NMOS (VTO=4.05 KP=85 IS=1e-30 N=10 TOX=1 L=1u W=1u)  
.MODEL MmedMOD NMOS (VTO=3.35 KP=5 IS=1e-30 N=10 TOX=1 L=1u W=1u RG=1.47)  
.MODEL MweakMOD NMOS (VTO=2.76 KP=0.05 IS=1e-30 N=10 TOX=1 L=1u W=1u RG=14.7 RS=0.1)  
.MODEL RbreakMOD RES (TC1=1.1e-3 TC2=-3e-7)  
.MODEL RdrainMOD RES (TC1=1e-2 TC2=3e-5)  
.MODEL RSLCMOD RES (TC1=3e-3 TC2=1e-6)  
.MODEL RsourceMOD RES (TC1=4.5e-3 TC2=1e-6)  
.MODEL RvtempMOD RES (TC1=-5e-3 TC2=2e-6)  
.MODEL RvthresMOD RES (TC1=-3e-3 TC2=-1.4e-5)  
.MODEL S1AMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-10 VOFF=-2)  
.MODEL S1BMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-2 VOFF=-10)  
.MODEL S2AMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-0.8 VOFF=0.3)  
.MODEL S2BMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=0.3 VOFF=-0.8)  
.ENDS  
Note: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global  
Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank  
Wheatley.  
©2001 Fairchild Semiconductor Corporation  
FDS2572 Rev. B, October 2001  
SABER Electrical Model  
REV August 2001  
template FDS2572 n2,n1,n3  
electrical n2,n1,n3  
{
var i iscl  
dp..model dbodymod = (isl=4e-11,nl=1.131,rs=4.4e-3,trs1=2e-3,trs2=1e-6,cjo=1.44e-9,m=0.67,tt=7.4e-8,xti=4.2)  
dp..model dbreakmod = (rs=0.38,trs1=2e-3,trs2=-8.9e-6)  
dp..model dplcapmod = (cjo=5e-10,isl=10e-30,nl=10,m=0.7)  
m..model mstrongmod = (type=_n,vto=4.05,kp=85,is=1e-30, tox=1)  
m..model mmedmod = (type=_n,vto=3.35,kp=5,is=1e-30, tox=1)  
m..model mweakmod = (type=_n,vto=2.76,kp=0.05,is=1e-30, tox=1,rs=0.1)  
sw_vcsp..model s1amod = (ron=1e-5,roff=0.1,von=-10,voff=-2)  
sw_vcsp..model s1bmod = (ron=1e-5,roff=0.1,von=-2,voff=-10)  
sw_vcsp..model s2amod = (ron=1e-5,roff=0.1,von=-0.8,voff=0.3)  
LDRAIN  
sw_vcsp..model s2bmod = (ron=1e-5,roff=0.1,von=0.3,voff=-0.8)  
c.ca n12 n8 = 8e-10  
c.cb n15 n14 = 8e-10  
DPLCAP  
5
DRAIN  
2
10  
RLDRAIN  
RSLC1  
51  
c.cin n6 n8 = 2e-9  
RSLC2  
dp.dbody n7 n5 = model=dbodymod  
dp.dbreak n5 n11 = model=dbreakmod  
dp.dplcap n10 n5 = model=dplcapmod  
ISCL  
DBREAK  
11  
50  
-
RDRAIN  
6
8
ESG  
spe.ebreak n11 n7 n17 n18 = 157.4  
spe.eds n14 n8 n5 n8 = 1  
spe.egs n13 n8 n6 n8 = 1  
spe.esg n6 n10 n6 n8 = 1  
spe.evthres n6 n21 n19 n8 = 1  
DBODY  
EVTHRES  
+
16  
21  
+
-
19  
8
MWEAK  
LGATE  
EVTEMP  
RGATE  
GATE  
1
+
6
-
18  
22  
EBREAK  
+
MMED  
9
20  
MSTRO  
17  
18  
-
spe.evtemp n20 n6 n18 n22 = 1  
RLGATE  
LSOURCE  
CIN  
SOURCE  
3
8
7
i.it n8 n17 = 1  
RSOURCE  
RLSOURCE  
l.lgate n1 n9 = 5.61e-9  
l.ldrain n2 n5 = 1.0e-9  
l.lsource n3 n7 = 1.98e-9  
S1A  
12  
S2A  
RBREAK  
15  
13  
8
14  
13  
17  
18  
RVTEMP  
19  
S1B  
S2B  
res.rlgate n1 n9 = 56.1  
res.rldrain n2 n5 = 10  
res.rlsource n3 n7 = 19.8  
13  
CB  
CA  
IT  
14  
-
+
+
VBAT  
6
8
5
8
EGS  
EDS  
+
m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u  
m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u  
m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u  
-
-
8
22  
RVTHRES  
res.rbreak n17 n18 = 1, tc1=1.1e-3,tc2=-3e-7  
res.rdrain n50 n16 = 2.1e-2, tc1=1e-2,tc2=3e-5  
res.rgate n9 n20 = 1.47  
res.rslc1 n5 n51 = 1e-6, tc1=3e-3,tc2=1e-6  
res.rslc2 n5 n50 = 1e3  
res.rsource n8 n7 = 1.5e-2, tc1=4.5e-3,tc2=1e-6  
res.rvthres n22 n8 = 1, tc1=-3e-3,tc2=-1.4e-5  
res.rvtemp n18 n19 = 1, tc1=-5e-3,tc2=2e-6  
sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod  
sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod  
sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod  
sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod  
v.vbat n22 n19 = dc=1  
equations {  
i (n51->n50) +=iscl  
iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/65))** 3))  
}
©2001 Fairchild Semiconductor Corporation  
FDS2572 Rev. B, October 2001  
SPICE Thermal Model  
JUNCTION  
th  
REV August 2001  
FDS2572  
Copper Area = 1 in2  
CTHERM1 TH 8 2.0e-3  
CTHERM2 8 7 5.0e-3  
CTHERM3 7 6 1.0e-2  
CTHERM4 6 5 4.0e-2  
CTHERM5 5 4 9.0e-2  
CTHERM6 4 3 2.0e-1  
CTHERM7 3 2 1  
RTHERM1  
RTHERM2  
RTHERM3  
RTHERM4  
RTHERM5  
RTHERM6  
RTHERM7  
RTHERM8  
CTHERM1  
CTHERM2  
CTHERM3  
CTHERM4  
CTHERM5  
CTHERM6  
CTHERM7  
CTHERM8  
8
7
CTHERM8 2 TL 3  
RTHERM1 TH 8 1.0e-1  
RTHERM2 8 7 5.0e-1  
RTHERM3 7 6 1  
RTHERM4 6 5 5  
RTHERM5 5 4 8  
RTHERM6 4 3 12  
RTHERM7 3 2 18  
RTHERM8 2 TL 25  
6
5
SABER Thermal Model  
Copper Area = 1 in2  
template thermal_model th tl  
thermal_c th, tl  
{
ctherm.ctherm1 th c2 =2.0e-3  
ctherm.ctherm2 c2 c3 =5.0e-3  
ctherm.ctherm3 c3 c4 =1.0e-2  
ctherm.ctherm4 c4 c5 =4.0e-2  
ctherm.ctherm5 c5 c6 =9.0e-2  
ctherm.ctherm6 c6 c7 =2.0e-1  
ctherm.ctherm7 c7 c8 =1  
ctherm.ctherm8 c8 tl =3  
4
3
2
rtherm.rtherm1 th c2 =1.0e-1  
rtherm.rtherm2 c2 c3 =5.0e-1  
rtherm.rtherm3 c3 c4 =1  
rtherm.rtherm4 c4 c5 =5  
rtherm.rtherm5 c5 c6 =8  
rtherm.rtherm6 c6 c7 =12  
rtherm.rtherm7 c7 c8 =18  
rtherm.rtherm8 c8 tl =25  
}
tl  
CASE  
TABLE 1. THERMAL MODELS  
2
2
2
2
2
COMPONANT  
CTHERM6  
CTHERM7  
CTHERM8  
RTHERM6  
RTHERM7  
RTHERM8  
0.04 in  
1.2e-1  
0.5  
0.28 in  
0.52 in  
0.76 in  
1.0 in  
1.5e-1  
1.0  
2.0e-1  
1.0  
2.0e-1  
1.0  
2.0e-1  
1.0  
3.0  
12  
1.3  
2.8  
3.0  
3.0  
26  
20  
15  
13  
39  
24  
21  
19  
18  
55  
38.7  
31.3  
29.7  
25  
©2001 Fairchild Semiconductor Corporation  
FDS2572 Rev. B, October 2001  
MS-012AA  
8 LEAD JEDEC MS-012AA SMALL OUTLINE PLASTIC PACKAGE  
INCHES  
MIN MAX  
MILLIMETERS  
E
E
A
SYMBOL  
NOTES  
A
1
1
MIN  
1.35  
0.10  
0.33  
0.19  
4.80  
5.80  
3.80  
MAX  
1.75  
0.25  
0.51  
0.25  
5.00  
6.20  
4.00  
A
0.0532 0.0688  
0.004 0.0098  
-
-
e
A
1
D
b
0.013  
0.020  
-
b
c
D
E
0.0075 0.0098  
0.189 0.1968  
0.2284 0.244  
0.1497 0.1574  
0.050 BSC  
-
2
-
o
h x 45  
c
E
3
-
1
e
1.27 BSC  
0.004 IN  
0.10 mm  
L
o
o
H
0.0099 0.0196  
0.25  
0.40  
0.50  
1.27  
-
0 -8  
0.060  
1.52  
L
0.016  
0.050  
4
NOTES:  
1. All dimensions are within allowable dimensions of  
Rev. C of JEDEC MS-012AA outline dated 5-90.  
0.050  
1.27  
2. Dimension “D” does not include mold flash, protru-  
sions or gate burrs. Mold flash, protrusions or gate  
burrs shall not exceed 0.006 inches (0.15mm) per  
side.  
0.024  
0.6  
0.155  
4.0  
0.275  
7.0  
3. Dimension “E ” does not include inter-lead flash or  
1
MINIMUM RECOMMENDED FOOTPRINT FOR  
SURFACE-MOUNTED APPLICATIONS  
protrusions. Inter-lead flash and protrusions shall  
not exceed 0.010 inches (0.25mm) per side.  
4. “L” is the length of terminal for soldering.  
5. The chamfer on the body is optional. If it is not  
present, a visual index feature must be located with-  
in the crosshatched area.  
6. Controlling dimension: Millimeter.  
7. Revision 8 dated 5-99.  
4.0mm  
2.0mm  
USER DIRECTION OF FEED  
MS-012AA  
12mm TAPE AND REEL  
1.5mm  
DIA. HOLE  
1.75mm  
C
L
12mm  
8.0mm  
40mm MIN.  
ACCESS HOLE  
18.4mm  
COVER TAPE  
13mm  
50mm  
330mm  
GENERAL INFORMATION  
1. 2500 PIECES PER REEL.  
2. ORDER IN MULTIPLES OF FULL REELS ONLY.  
3. MEETS EIA-481 REVISION “A” SPECIFICATIONS.  
12.4mm  
©2001 Fairchild Semiconductor Corporation  
FDS2572 Rev. B, October 2001  
TRADEMARKS  
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is  
not intended to be an exhaustive list of all such trademarks.  
â
SMART START™  
STAR*POWER™  
Stealth™  
VCX™  
FAST  
ACEx™  
Bottomless™  
CoolFET™  
OPTOLOGIC™  
OPTOPLANAR™  
PACMAN™  
FASTr™  
FRFET™  
SuperSOT™-3  
SuperSOT™-6  
SuperSOT™-8  
SyncFET™  
GlobalOptoisolator™  
GTO™  
HiSeC™  
ISOPLANAR™  
LittleFET™  
MicroFET™  
MicroPak™  
MICROWIRE™  
CROSSVOLT™  
DenseTrench™  
DOME™  
POP™  
Power247™  
PowerTrenchâ  
QFET™  
EcoSPARK™  
E2CMOSTM  
TinyLogic™  
QS™  
EnSignaTM  
TruTranslation™  
UHC™  
QT Optoelectronics™  
Quiet Series™  
SILENTSWITCHERâ  
FACT™  
FACT Quiet Series™  
UltraFETâ  
STAR*POWER is used under license  
DISCLAIMER  
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER  
NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD  
DOES NOT ASSUME ANY LIABILITYARISING OUT OF THE APPLICATION OR USE OFANY PRODUCT  
OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT  
RIGHTS, NOR THE RIGHTS OF OTHERS.  
LIFE SUPPORT POLICY  
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT  
DEVICESORSYSTEMSWITHOUTTHEEXPRESSWRITTENAPPROVALOFFAIRCHILDSEMICONDUCTORCORPORATION.  
As used herein:  
1. Life support devices or systems are devices or  
systems which, (a) are intended for surgical implant into  
the body, or (b) support or sustain life, or (c) whose  
failure to perform when properly used in accordance  
with instructions for use provided in the labeling, can be  
reasonably expected to result in significant injury to the  
user.  
2. A critical component is any component of a life  
support device or system whose failure to perform can  
be reasonably expected to cause the failure of the life  
support device or system, or to affect its safety or  
effectiveness.  
PRODUCT STATUS DEFINITIONS  
Definition of Terms  
Datasheet Identification  
Product Status  
Definition  
Advance Information  
Formative or  
In Design  
This datasheet contains the design specifications for  
product development. Specifications may change in  
any manner without notice.  
Preliminary  
First Production  
This datasheet contains preliminary data, and  
supplementary data will be published at a later date.  
Fairchild Semiconductor reserves the right to make  
changes at any time without notice in order to improve  
design.  
No Identification Needed  
Obsolete  
Full Production  
This datasheet contains final specifications. Fairchild  
Semiconductor reserves the right to make changes at  
any time without notice in order to improve design.  
Not In Production  
This datasheet contains specifications on a product  
that has been discontinued by Fairchild semiconductor.  
The datasheet is printed for reference information only.  
Rev. H4  

相关型号:

FDS2572-G

Power Field-Effect Transistor, N-Channel, Metal-oxide Semiconductor FET
FAIRCHILD

FDS2572_NL

Power Field-Effect Transistor, 4.9A I(D), 150V, 0.053ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, MS-012AA, PLASTIC, SO-8
FAIRCHILD

FDS2582

N-Channel PowerTrench MOSFET 150V, 4.1A, 66mз
FAIRCHILD

FDS2582

N 沟道,PowerTrench® MOSFET,150V,4.1A,66mΩ
ONSEMI

FDS2582_NL

Power Field-Effect Transistor, 4.1A I(D), 150V, 0.066ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, LEAD FREE, SO-8
FAIRCHILD

FDS2670

200V N-Channel PowerTrench MOSFET
FAIRCHILD

FDS2670

200V N 沟道 PowerTrench® MOSFET 3.0A,130mΩ
ONSEMI

FDS2670D84Z

Small Signal Field-Effect Transistor, 3A I(D), 200V, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, SOIC-8
FAIRCHILD

FDS2670F011

Small Signal Field-Effect Transistor, 3A I(D), 200V, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, SOIC-8
FAIRCHILD

FDS2670L86Z

Small Signal Field-Effect Transistor, 3A I(D), 200V, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, SOIC-8
FAIRCHILD

FDS2670L99Z

Power Field-Effect Transistor, 3A I(D), 200V, 0.13ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, SO-8
FAIRCHILD

FDS2670_01

200V N-Channel PowerTrench MOSFET
FAIRCHILD