FDS2582 [FAIRCHILD]

N-Channel PowerTrench MOSFET 150V, 4.1A, 66mз; N沟道PowerTrench MOSFET的150V , 4.1A , 66mз
FDS2582
型号: FDS2582
厂家: FAIRCHILD SEMICONDUCTOR    FAIRCHILD SEMICONDUCTOR
描述:

N-Channel PowerTrench MOSFET 150V, 4.1A, 66mз
N沟道PowerTrench MOSFET的150V , 4.1A , 66mз

晶体 晶体管 功率场效应晶体管 开关 光电二极管
文件: 总11页 (文件大小:277K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
September 2002  
FDS2582  
N-Channel PowerTrench® MOSFET  
150V, 4.1A, 66mΩ  
Features  
Applications  
rDS(ON) = 57m(Typ.), VGS = 10V, ID = 4.1A  
Qg(tot) = 19nC (Typ.), VGS = 10V  
Low Miller Charge  
DC/DC converters and Off-Line UPS  
Distributed Power Architectures and VRMs  
Primary Switch for 24V and 48V Systems  
High Voltage Synchronous Rectifier  
Direct Injection / Diesel Injection Systems  
42V Automotive Load Control  
Low QRR Body Diode  
Optimized efficiency at high frequencies  
UIS Capability (Single Pulse and Repetitive Pulse)  
Formerly developmental type 82855  
Electronic Valve Train Systems  
Branding Dash  
5
6
7
8
4
3
2
1
5
1
2
3
4
SO-8  
MOSFET Maximum Ratings TA = 25°C unless otherwise noted  
Symbol  
VDSS  
VGS  
Parameter  
Ratings  
150  
Units  
Drain to Source Voltage  
Gate to Source Voltage  
Drain Current  
V
V
±20  
Continuous (TA = 25oC, VGS = 10V, RθJA = 50oC/W)  
Continuous (TA = 100oC, VGS = 10V, RθJA = 50oC/W)  
Pulsed  
4.1  
A
ID  
2.6  
Figure 4  
252  
A
A
EAS  
Single Pulse Avalanche Energy (Note 1)  
mJ  
Power dissipation  
Derate above 25oC  
2.5  
W
PD  
20  
mW/oC  
oC  
TJ, TSTG  
Operating and Storage Temperature  
-55 to 150  
Thermal Characteristics  
RθJA  
RθJA  
RθJC  
Thermal Resistance, Junction to Ambient at 10 seconds (Note 3)  
50  
80  
25  
oC/W  
oC/W  
oC/W  
Thermal Resistance, Junction to Ambient at 1000 seconds (Note 3)  
Thermal Resistance, Junction to Case (Note 2)  
Package Marking and Ordering Information  
Device Marking  
Device  
Package  
Reel Size  
Tape Width  
12mm  
Quantity  
2500 units  
FDS2582  
FDS2582  
SO-8  
330mm  
©2002 Fairchild Semiconductor Corporation  
FDS2582 Rev. B  
Electrical Characteristics TA = 25°C unless otherwise noted  
Symbol  
Parameter  
Test Conditions  
Min  
Typ  
Max  
Units  
Off Characteristics  
BVDSS  
Drain to Source Breakdown Voltage  
Zero Gate Voltage Drain Current  
Gate to Source Leakage Current  
ID = 250µA, VGS = 0V  
150  
-
-
-
-
-
V
V
DS = 120V  
-
-
-
1
IDSS  
µA  
nA  
VGS = 0V  
TC = 150oC  
250  
±100  
IGSS  
VGS = ±20V  
On Characteristics  
VGS(TH)  
Gate to Source Threshold Voltage  
VGS = VDS, ID = 250µA  
2
-
-
4
V
ID = 4.1A, VGS = 10V  
0.057 0.066  
0.065 0.098  
I
D = 2A, VGS = 6V  
-
rDS(ON)  
Drain to Source On Resistance  
I
T
D = 4.1A, VGS = 10V,  
-
0.125 0.146  
C = 150oC  
Dynamic Characteristics  
CISS  
Input Capacitance  
-
-
-
-
-
-
-
-
1290  
150  
32  
-
-
pF  
pF  
pF  
nC  
nC  
nC  
nC  
nC  
VDS = 25V, VGS = 0V,  
f = 1MHz  
COSS  
CRSS  
Qg(TOT)  
Qg(TH)  
Qgs  
Output Capacitance  
Reverse Transfer Capacitance  
Total Gate Charge at 10V  
Threshold Gate Charge  
-
VGS = 0V to 10V  
19  
25  
3.0  
-
VGS = 0V to 2V  
2.3  
5.4  
3.1  
4.4  
VDD = 75V  
D = 4.1A  
Ig = 1.0mA  
Gate to Source Gate Charge  
Gate Charge Threshold to Plateau  
Gate to Drain MillerCharge  
I
Qgs2  
-
Qgd  
-
Resistive Switching Characteristics (VGS = 10V)  
tON  
td(ON)  
tr  
Turn-On Time  
Turn-On Delay Time  
Rise Time  
-
-
-
-
-
-
-
45  
-
ns  
ns  
ns  
ns  
ns  
ns  
11  
19  
36  
26  
-
-
V
V
DD = 75V, ID = 4.1A  
GS = 10V, RGS = 16Ω  
td(OFF)  
tf  
Turn-Off Delay Time  
Fall Time  
-
-
tOFF  
Turn-Off Time  
92  
Drain-Source Diode Characteristics  
I
I
SD = 4.1A  
SD = 2A  
-
-
-
-
-
-
-
-
1.25  
1.0  
63  
V
V
VSD  
Source to Drain Diode Voltage  
trr  
Reverse Recovery Time  
ISD= 4.1A, dISD/dt= 100A/µs  
ISD= 4.1A, dISD/dt= 100A/µs  
ns  
nC  
QRR  
Reverse Recovered Charge  
116  
Notes:  
1: Starting T = 25°C, L = 56mH, I = 3A.  
J
AS  
2: R  
is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal referance is defined as the solder mounting surface of the  
θJA  
drain pins. R  
is guaranteed by design while R  
is determined by the users board design.  
θJC  
θCA  
2
3: R  
is measured with 1.0 in copper on FR-4 board  
θJA  
©2002 Fairchild Semiconductor Corporation  
FDS2582 Rev. B  
Typical Characteristics TA = 25°C unless otherwise noted  
5
4
3
2
1
0
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
V
= 10V  
GS  
0
25  
50  
75  
100  
125  
150  
25  
50  
75  
T , CASE TEMPERATURE ( C)  
C
100  
125  
150  
o
o
T
, AMBIENT TEMPERATURE ( C)  
A
Figure 1. Normalized Power Dissipation vs  
Ambient Temperature  
Figure 2. Maximum Continuous Drain Current vs  
Case Temperature  
2
DUTY CYCLE - DESCENDING ORDER  
1
0.5  
o
R
=50 C/W  
0.2  
θJA  
0.1  
0.05  
0.02  
0.01  
0.1  
P
DM  
t
1
0.01  
0.001  
t
2
SINGLE PULSE  
NOTES:  
DUTY FACTOR: D = t /t  
1
2
PEAK T = P  
J
x Z  
x R  
+ T  
DM  
θJA  
θJA A  
-5  
-4  
-3  
-2  
-1  
0
1
2
3
10  
10  
10  
10  
10  
10  
10  
10  
10  
t, RECTANGULAR PULSE DURATION (s)  
Figure 3. Normalized Maximum Transient Thermal Impedance  
400  
o
T
= 25 C  
A
FOR TEMPERATURES  
o
ABOVE 25 C DERATE PEAK  
CURRENT AS FOLLOWS:  
100  
10  
1
150 - T  
C
I = I  
25  
125  
TRANSCONDUCTANCE  
MAY LIMIT CURRENT  
IN THIS REGION  
V
= 10V  
GS  
-5  
-4  
-3  
-2  
-1  
0
1
2
3
10  
10  
10  
10  
10  
10  
10  
10  
10  
t, PULSE WIDTH (s)  
Figure 4. Peak Current Capability  
©2002 Fairchild Semiconductor Corporation  
FDS2582 Rev. B  
Typical Characteristics TA = 25°C unless otherwise noted  
100  
10  
1
7
10µs  
o
STARTING T = 25 C  
J
100µs  
o
1
STARTING T = 150 C  
J
1ms  
OPERATION IN THIS  
AREA MAY BE  
10ms  
LIMITED BY r  
DS(ON)  
100ms  
0.1  
If R = 0  
= (L)(I )/(1.3*RATED BV  
SINGLE PULSE  
t
AV  
- V  
)
AS  
DSS  
DD  
T
T
= MAX RATED  
J
1s  
If R 0  
o
= 25 C  
C
t
= (L/R)ln[(I *R)/(1.3*RATED BV  
- V ) +1]  
DD  
AV  
AS  
DSS  
0.01  
0.1  
0.1  
1
10  
100  
400  
0.01  
0.1  
1
10  
100  
V
, DRAIN TO SOURCE VOLTAGE (V)  
t , TIME IN AVALANCHE (ms)  
AV  
DS  
NOTE: Refer to Fairchild Application Notes AN7514 and AN7515  
Figure 6. Unclamped Inductive Switching  
Capability  
Figure 5. Forward Bias Safe Operating Area  
30  
30  
o
PULSE DURATION = 80µs  
T
= 25 C  
A
DUTY CYCLE = 0.5% MAX  
V
= 10V  
GS  
V
= 15V  
25  
20  
15  
10  
5
DD  
25  
20  
15  
10  
5
V
= 7V  
GS  
o
T
= 150 C  
J
V
= 6V  
GS  
o
T
= 25 C  
J
V
= 5V  
GS  
o
T
= -55 C  
J
PULSE DURATION = 80µs  
DUTY CYCLE = 0.5% MAX  
0
0
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
0
0.5  
1.0  
1.5  
2.0  
V
, GATE TO SOURCE VOLTAGE (V)  
V
, DRAIN TO SOURCE VOLTAGE (V)  
GS  
DS  
Figure 7. Transfer Characteristics  
Figure 8. Saturation Characteristics  
66  
2.5  
2.0  
1.5  
1.0  
0.5  
V
= 6V  
PULSE DURATION = 80µs  
DUTY CYCLE = 0.5% MAX  
GS  
64  
62  
60  
58  
56  
PULSE DURATION = 80µs  
DUTY CYCLE = 0.5% MAX  
V
= 10V  
GS  
V
= 10V, I = 4.1A  
GS  
D
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
-80  
-40  
0
40  
80  
120  
160  
o
I , DRAIN CURRENT (A)  
T , JUNCTION TEMPERATURE ( C)  
D
J
Figure 9. Drain to Source On Resistance vs Drain  
Current  
Figure 10. Normalized Drain to Source On  
Resistance vs Junction Temperature  
©2002 Fairchild Semiconductor Corporation  
FDS2582 Rev. B  
Typical Characteristics TA = 25°C unless otherwise noted  
1.2  
1.0  
0.8  
0.6  
1.2  
1.1  
1.0  
0.9  
I
= 250µA  
D
V
= V , I = 250µA  
DS D  
GS  
-80  
-40  
0
40  
80  
120  
160  
-80  
-40  
0
40  
80  
120  
160  
o
o
T , JUNCTION TEMPERATURE ( C)  
T , JUNCTION TEMPERATURE ( C)  
J
J
Figure 11. Normalized Gate Threshold Voltage vs  
Junction Temperature  
Figure 12. Normalized Drain to Source  
Breakdown Voltage vs Junction Temperature  
3000  
10  
C
= C + C  
GS GD  
ISS  
V
= 75V  
DD  
1000  
100  
10  
8
6
4
2
0
C
C
+ C  
OSS  
DS GD  
C
= C  
GD  
RSS  
WAVEFORMS IN  
DESCENDING ORDER:  
I
I
= 4.1A  
= 2A  
D
D
V
= 0V, f = 1MHz  
1
GS  
0.1  
10  
150  
0
5
10  
Q , GATE CHARGE (nC)  
15  
20  
V
, DRAIN TO SOURCE VOLTAGE (V)  
DS  
g
Figure 13. Capacitance vs Drain to Source  
Voltage  
Figure 14. Gate Charge Waveforms for Constant  
Gate Currents  
©2002 Fairchild Semiconductor Corporation  
FDS2582 Rev. B  
Test Circuits and Waveforms  
V
BV  
DSS  
DS  
t
P
V
DS  
L
I
AS  
V
DD  
VARY t TO OBTAIN  
P
+
-
R
REQUIRED PEAK I  
G
AS  
V
DD  
V
GS  
DUT  
t
P
I
0V  
0
AS  
0.01Ω  
t
AV  
Figure 15. Unclamped Energy Test Circuit  
Figure 16. Unclamped Energy Waveforms  
V
DS  
V
Q
DD  
g(TOT)  
V
DS  
L
V
= 10V  
GS  
V
GS  
+
V
DD  
V
GS  
-
V
= 2V  
DUT  
GS  
Q
gs2  
0
I
g(REF)  
Q
g(TH)  
Q
Q
gd  
gs  
I
g(REF)  
0
Figure 17. Gate Charge Test Circuit  
Figure 18. Gate Charge Waveforms  
V
DS  
t
t
ON  
OFF  
t
d(OFF)  
t
d(ON)  
R
t
t
f
L
r
V
0
DS  
90%  
90%  
+
V
GS  
V
DD  
10%  
10%  
-
DUT  
90%  
50%  
R
GS  
V
GS  
50%  
PULSE WIDTH  
10%  
V
GS  
0
Figure 19. Switching Time Test Circuit  
Figure 20. Switching Time Waveforms  
©2002 Fairchild Semiconductor Corporation  
FDS2582 Rev. B  
Thermal Resistance vs. Mounting Pad Area  
The maximum rated junction temperature, TJM, and the  
thermal resistance of the heat dissipating path determines  
the maximum allowable device power dissipation, PDM, in an  
maximum transient thermal impedance curve.  
Thermal resistances corresponding to other copper areas  
can be obtained from Figure 21 or by calculation using  
Equation 2. The area, in square inches is the top copper  
area including the gate and source pads.  
application.  
Therefore the applications ambient  
temperature, TA (oC), and thermal resistance RθJA (oC/W)  
must be reviewed to ensure that TJM is never exceeded.  
Equation 1 mathematically represents the relationship and  
serves as the basis for establishing the rating of the part.  
26  
R
= 64 + -------------------------------  
(EQ. 2)  
θ JA  
0.23 + Area  
(T  
T )  
JM  
A
(EQ. 1)  
P
= ------------------------------  
DM  
RθJA  
The transient thermal impedance (ZθJA) is also effected by  
varied top copper board area. Figure 22 shows the effect of  
copper pad area on single pulse transient thermal  
impedance. Each trace represents a copper pad area in  
square inches corresponding to the descending list in the  
graph. Spice and SABER thermal models are provided for  
each of the listed pad areas.  
In using surface mount devices such as the SO8 package,  
the environment in which it is applied will have a significant  
influence on the parts current and maximum power  
dissipation ratings. Precise determination of PDM is complex  
and influenced by many factors:  
Copper pad area has no perceivable effect on transient  
thermal impedance for pulse widths less than 100ms. For  
pulse widths less than 100ms the transient thermal  
impedance is determined by the die and package.  
Therefore, CTHERM1 through CTHERM5 and RTHERM1  
through RTHERM5 remain constant for each of the thermal  
models. A listing of the model component values is available  
in Table 1.  
1. Mounting pad area onto which the device is attached and  
whether there is copper on one side or both sides of the  
board.  
2. The number of copper layers and the thickness of the  
board.  
3. The use of external heat sinks.  
4. The use of thermal vias.  
200  
5. Air flow and board orientation.  
R
= 64 + 26/(0.23+Area)  
θJA  
6. For non steady state applications, the pulse width, the  
duty cycle and the transient thermal response of the part,  
the board and the environment they are in.  
150  
Fairchild provides thermal information to assist the  
designers preliminary application evaluation. Figure 21  
defines the RθJA for the device as a function of the top  
copper (component side) area. This is for a horizontally  
positioned FR-4 board with 1oz copper after 1000 seconds  
of steady state power with no air flow. This graph provides  
the necessary information for calculation of the steady state  
junction temperature or power dissipation. Pulse  
applications can be evaluated using the Fairchild device  
Spice thermal model or manually utilizing the normalized  
100  
50  
0.001  
0.01  
0.1  
1
2
10  
AREA, TOP COPPER AREA (in )  
Figure 21. Thermal Resistance vs Mounting  
Pad Area  
150  
COPPER BOARD AREA - DESCENDING ORDER  
2
0.04 in  
2
0.28 in  
120  
2
0.52 in  
2
0.76 in  
2
90  
60  
30  
0
1.00 in  
-1  
0
1
2
3
10  
10  
10  
t, RECTANGULAR PULSE DURATION (s)  
10  
10  
Figure 22. Thermal Impedance vs Mounting Pad Area  
©2002 Fairchild Semiconductor Corporation  
FDS2582 Rev. B  
PSPICE Electrical Model  
.SUBCKT FDS2582 2 1 3 ;  
Ca 12 8 4.5e-10  
rev July 2002  
Cb 15 14 5.0e-10  
Cin 6 8 1.25e-9  
LDRAIN  
DPLCAP  
DRAIN  
2
5
10  
Dbody 7 5 DbodyMOD  
Dbreak 5 11 DbreakMOD  
Dplcap 10 5 DplcapMOD  
RLDRAIN  
RSLC1  
51  
DBREAK  
+
RSLC2  
5
51  
ESLC  
11  
Ebreak 11 7 17 18 155.5  
Eds 14 8 5 8 1  
Egs 13 8 6 8 1  
Esg 6 10 6 8 1  
Evthres 6 21 19 8 1  
Evtemp 20 6 18 22 1  
-
+
50  
-
17  
DBODY  
RDRAIN  
6
8
EBREAK 18  
-
ESG  
EVTHRES  
+
16  
21  
+
-
19  
8
MWEAK  
LGATE  
EVTEMP  
RGATE  
GATE  
1
6
+
-
18  
22  
It 8 17 1  
MMED  
9
20  
MSTRO  
8
RLGATE  
Lgate 1 9 5.61e-9  
Ldrain 2 5 1e-9  
Lsource 3 7 1.98e-9  
LSOURCE  
CIN  
SOURCE  
3
7
RSOURCE  
RLSOURCE  
RLgate 1 9 56.1  
RLdrain 2 5 10  
RLsource 3 7 19.8  
S1A  
S2A  
RBREAK  
12  
15  
13  
8
14  
13  
17  
18  
RVTEMP  
19  
-
S1B  
S2B  
Mmed 16 6 8 8 MmedMOD  
Mstro 16 6 8 8 MstroMOD  
Mweak 16 21 8 8 MweakMOD  
13  
CB  
CA  
IT  
14  
+
+
VBAT  
6
8
5
8
EGS  
EDS  
+
-
-
8
Rbreak 17 18 RbreakMOD 1  
Rdrain 50 16 RdrainMOD 30.0e-3  
Rgate 9 20 1.5  
22  
RVTHRES  
RSLC1 5 51 RSLCMOD 1e-6  
RSLC2 5 50 1e3  
Rsource 8 7 RsourceMOD 20.0e-3  
Rvthres 22 8 Rvthresmod 1  
Rvtemp 18 19 RvtempMOD 1  
S1a 6 12 13 8 S1AMOD  
S1b 13 12 13 8 S1BMOD  
S2a 6 15 14 13 S2AMOD  
S2b 13 15 14 13 S2BMOD  
Vbat 22 19 DC 1  
ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*60),2.5))}  
.MODEL DbodyMOD D (IS=2.4E-12 N=1.0 RS=10.0e-3 TRS1=2.1e-3 TRS2=4.7e-7  
+ CJO=9.0e-10 M=0.64 TT=3.9e-8 XTI=4.6)  
.MODEL DbreakMOD D (RS=1.0 TRS1=1.4e-3 TRS2=-5e-5)  
.MODEL DplcapMOD D (CJO=2.8e-10 IS=1e-30 N=10 M=0.64)  
.MODEL MmedMOD NMOS (VTO=3.5 KP=4.0 IS=1e-30 N=10 TOX=1 L=1u W=1u RG=1.5)  
.MODEL MstroMOD NMOS (VTO=4.2 KP=50 IS=1e-30 N=10 TOX=1 L=1u W=1u)  
.MODEL MweakMOD NMOS (VTO=2.92 KP=0.04 IS=1e-30 N=10 TOX=1 L=1u W=1u RG=15 RS=0.1)  
.MODEL RbreakMOD RES (TC1=1.1e-3 TC2=-1.0e-8)  
.MODEL RdrainMOD RES (TC1=1.15e-2 TC2=3.0e-5)  
.MODEL RSLCMOD RES (TC1=4.4e-3 TC2=2.9e-6)  
.MODEL RsourceMOD RES (TC1=1e-3 TC2=1e-6)  
.MODEL RvthresMOD RES (TC1=-3.9e-3 TC2=-1.6e-5)  
.MODEL RvtempMOD RES (TC1=-3.5e-3 TC2=1.5e-6)  
.MODEL S1AMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-3.0 VOFF=-2.0)  
.MODEL S1BMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-2.0 VOFF=-3.0)  
.MODEL S2AMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-1.5 VOFF=1.0)  
.MODEL S2BMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=1.0 VOFF=-1.5)  
.ENDS  
Note: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global  
Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank  
Wheatley.  
©2002 Fairchild Semiconductor Corporation  
FDS2582 Rev. B  
SABER Electrical Model  
REV July 2002  
template FDS2582 n2,n1,n3  
electrical n2,n1,n3  
{
var i iscl  
dp..model dbodymod = (isl=2.4e-12,nl=1.0,rs=10.0e-3,trs1=2.1e-3,trs2=4.7e-7,cjo=9.0e-10,m=0.64,tt=3.9e-8,xti=4.6)  
dp..model dbreakmod = (rs=1.0,trs1=1.4e-3,trs2=-5e-5)  
dp..model dplcapmod = (cjo=2.8e-10,isl=10e-30,nl=10,m=0.64)  
m..model mmedmod = (type=_n,vto=3.5,kp=4.0,is=1e-30, tox=1)  
m..model mstrongmod = (type=_n,vto=4.2,kp=50,is=1e-30, tox=1)  
m..model mweakmod = (type=_n,vto=2.92,kp=0.04,is=1e-30, tox=1,rs=0.1)  
sw_vcsp..model s1amod = (ron=1e-5,roff=0.1,von=-3.0,voff=-2.0)  
LDRAIN  
sw_vcsp..model s1bmod = (ron=1e-5,roff=0.1,von=-2.0,voff=-3.0)  
sw_vcsp..model s2amod = (ron=1e-5,roff=0.1,von=-1.5,voff=1.0)  
sw_vcsp..model s2bmod = (ron=1e-5,roff=0.1,von=1.0,voff=-1.5)  
c.ca n12 n8 = 4.5e-10  
c.cb n15 n14 = 5.0e-10  
c.cin n6 n8 = 1.25e-9  
DPLCAP  
5
DRAIN  
2
10  
RLDRAIN  
RSLC1  
51  
RSLC2  
ISCL  
dp.dbody n7 n5 = model=dbodymod  
dp.dbreak n5 n11 = model=dbreakmod  
dp.dplcap n10 n5 = model=dplcapmod  
DBREAK  
11  
50  
-
RDRAIN  
6
8
ESG  
DBODY  
EVTHRES  
+
16  
21  
+
-
spe.ebreak n11 n7 n17 n18 = 155.5  
19  
8
MWEAK  
LGATE  
EVTEMP  
spe.eds n14 n8 n5 n8 = 1  
spe.egs n13 n8 n6 n8 = 1  
RGATE  
GATE  
+
6
-
18  
22  
EBREAK  
+
MMED  
1
9
20  
spe.esg n6 n10 n6 n8 = 1  
spe.evthres n6 n21 n19 n8 = 1  
spe.evtemp n20 n6 n18 n22 = 1  
MSTRO  
8
17  
18  
-
RLGATE  
LSOURCE  
CIN  
SOURCE  
3
7
RSOURCE  
i.it n8 n17 = 1  
RLSOURCE  
S1A  
S2A  
l.lgate n1 n9 = 5.61e-9  
l.ldrain n2 n5 = 1e-9  
l.lsource n3 n7 = 1.98e-9  
RBREAK  
12  
15  
13  
8
14  
13  
17  
18  
RVTEMP  
19  
S1B  
S2B  
13  
CB  
res.rlgate n1 n9 = 56.1  
res.rldrain n2 n5 = 10  
res.rlsource n3 n7 = 19.8  
CA  
IT  
14  
-
+
+
VBAT  
6
8
5
8
EGS  
EDS  
+
-
-
8
m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u  
22  
m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u  
m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u  
RVTHRES  
res.rbreak n17 n18 = 1, tc1=1.1e-3,tc2=-1.0e-8  
res.rdrain n50 n16 = 30.0e-3, tc1=1.15e-2,tc2=3.0e-5  
res.rgate n9 n20 = 1.5  
res.rslc1 n5 n51 = 1e-6, tc1=4.4e-3,tc2=2.9e-6  
res.rslc2 n5 n50 = 1e3  
res.rsource n8 n7 = 20.0e-3, tc1=1e-3,tc2=1e-6  
res.rvthres n22 n8 = 1, tc1=-3.9e-3,tc2=-1.6e-5  
res.rvtemp n18 n19 = 1, tc1=-3.5e-3,tc2=1.5e-6  
sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod  
sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod  
sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod  
sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod  
v.vbat n22 n19 = dc=1  
equations {  
i (n51->n50) +=iscl  
iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/60))** 2.5))  
}
©2002 Fairchild Semiconductor Corporation  
FDS2582 Rev. B  
SPICE Thermal Model  
JUNCTION  
th  
REV July 2002  
FDS2582  
Copper Area =1.0 in2  
CTHERM1 TH 8 4e-4  
CTHERM2 8 7 5e-3  
CTHERM3 7 6 6e-2  
CTHERM4 6 5 9e-2  
CTHERM5 5 4 3e-1  
CTHERM6 4 3 4e-1  
CTHERM7 3 2 9e-1  
CTHERM8 2 TL 2  
RTHERM1  
RTHERM2  
RTHERM3  
RTHERM4  
RTHERM5  
RTHERM6  
RTHERM7  
RTHERM8  
CTHERM1  
CTHERM2  
CTHERM3  
CTHERM4  
CTHERM5  
CTHERM6  
CTHERM7  
CTHERM8  
8
7
RTHERM1 TH 8 5e-1  
RTHERM2 8 7 6e-1  
RTHERM3 7 6 4  
RTHERM4 6 5 5  
RTHERM5 5 4 8  
RTHERM6 4 3 9  
RTHERM7 3 2 15  
RTHERM8 2 TL 23  
6
5
SABER Thermal Model  
Copper Area = 1.0 in2  
template thermal_model th tl  
thermal_c th, tl  
{
CTHERM1 TH 8 4e-4  
CTHERM2 8 7 5e-3  
CTHERM3 7 6 6e-2  
CTHERM4 6 5 9e-2  
CTHERM5 5 4 3e-1  
CTHERM6 4 3 4e-1  
CTHERM7 3 2 9e-1  
CTHERM8 2 TL 2  
4
3
2
RTHERM1 TH 8 5e-1  
RTHERM2 8 7 6e-1  
RTHERM3 7 6 4  
RTHERM4 6 5 5  
RTHERM5 5 4 8  
RTHERM6 4 3 9  
RTHERM7 3 2 15  
RTHERM8 2 TL 23  
}
tl  
CASE  
TABLE 1. THERMAL MODELS  
COMPONANT  
CTHERM6  
CTHERM7  
CTHERM8  
RTHERM6  
RTHERM7  
RTHERM8  
0.04 in2  
3.2e-1  
8.5e-1  
0.3  
0.28 in2  
3.5e-1  
9.0e-1  
1.8  
0.52 in2  
4.0e-1  
9.0e-1  
2.0  
0.76 in2  
4.0e-1  
9.0e-1  
2.0  
1.0 in2  
4.0e-1  
9.0e-1  
2.0  
24  
18  
12  
10  
9
36  
21  
18  
16  
15  
53  
37  
30  
28  
23  
©2002 Fairchild Semiconductor Corporation  
FDS2582 Rev. B  
TRADEMARKS  
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not  
intended to be an exhaustive list of all such trademarks.  
ACEx™  
FACT™  
ImpliedDisconnectPACMAN™  
SPM™  
ActiveArray™  
Bottomless™  
CoolFET™  
CROSSVOLTFRFET™  
DOME™  
FACT Quiet SeriesISOPLANAR™  
POP™  
Stealth™  
®
FAST  
FASTr™  
LittleFET™  
MicroFET™  
MicroPak™  
Power247™  
PowerTrench  
QFET™  
SuperSOT-3  
SuperSOT-6  
SuperSOT-8  
SyncFET™  
®
GlobalOptoisolatorMICROWIRE™  
QS™  
EcoSPARK™  
E CMOS™  
EnSigna™  
Across the board. Around the world.OCXPro™  
The Power Franchise™  
Programmable Active Droop™  
GTO™  
MSX™  
MSXPro™  
OCX™  
QT OptoelectronicsTinyLogic™  
2
HiSeC™  
Quiet Series™  
TruTranslation™  
2
I C™  
RapidConfigure™  
RapidConnect™  
SILENT SWITCHER VCX™  
SMART START™  
UHC™  
UltraFET  
®
®
®
OPTOLOGIC  
OPTOPLANAR™  
DISCLAIMER  
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY  
PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY  
LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN;  
NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.  
LIFE SUPPORT POLICY  
FAIRCHILDS PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT  
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR  
CORPORATION.  
As used herein:  
1. Life support devices or systems are devices or systems  
which, (a) are intended for surgical implant into the body,  
or (b) support or sustain life, or (c) whose failure to perform  
when properly used in accordance with instructions for use  
provided in the labeling, can be reasonably expected to  
result in significant injury to the user.  
2. A critical component is any component of a life support  
device or system whose failure to perform can be  
reasonably expected to cause the failure of the life support  
device or system, or to affect its safety or effectiveness.  
PRODUCT STATUS DEFINITIONS  
Definition of Terms  
Datasheet Identification  
Product Status  
Definition  
Advance Information  
Formative or In  
Design  
This datasheet contains the design specifications for  
product development. Specifications may change in  
any manner without notice.  
Preliminary  
First Production  
This datasheet contains preliminary data, and  
supplementary data will be published at a later date.  
Fairchild Semiconductor reserves the right to make  
changes at any time without notice in order to improve  
design.  
No Identification Needed  
Obsolete  
Full Production  
This datasheet contains final specifications. Fairchild  
Semiconductor reserves the right to make changes at  
any time without notice in order to improve design.  
Not In Production  
This datasheet contains specifications on a product  
that has been discontinued by Fairchild semiconductor.  
The datasheet is printed for reference information only.  
Rev. I1  

相关型号:

FDS2582_NL

Power Field-Effect Transistor, 4.1A I(D), 150V, 0.066ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, LEAD FREE, SO-8
FAIRCHILD

FDS2670

200V N-Channel PowerTrench MOSFET
FAIRCHILD

FDS2670

200V N 沟道 PowerTrench® MOSFET 3.0A,130mΩ
ONSEMI

FDS2670D84Z

Small Signal Field-Effect Transistor, 3A I(D), 200V, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, SOIC-8
FAIRCHILD

FDS2670F011

Small Signal Field-Effect Transistor, 3A I(D), 200V, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, SOIC-8
FAIRCHILD

FDS2670L86Z

Small Signal Field-Effect Transistor, 3A I(D), 200V, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, SOIC-8
FAIRCHILD

FDS2670L99Z

Power Field-Effect Transistor, 3A I(D), 200V, 0.13ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, SO-8
FAIRCHILD

FDS2670_01

200V N-Channel PowerTrench MOSFET
FAIRCHILD

FDS2670_NL

Small Signal Field-Effect Transistor, 3A I(D), 200V, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, SOIC-8
FAIRCHILD

FDS2672

N-Channel UltraFET Trench㈢ MOSFET 200V, 3.9A, 70mз
FAIRCHILD

FDS2672

N 沟道,UltraFET Trench® MOSFET,200V,3.9A,70mΩ
ONSEMI

FDS2672-F085

N 沟道,UltraFET® 沟槽,200V,3.9A,70mΩ
ONSEMI