FSA3200UMX [FAIRCHILD]

Two-Port, High-Speed USB2.0 Switch with Mobile High-Definition Link (MHL™); 双端口,高速USB 2.0开关,移动高清连接技术( MHLâ ?? ¢ )
FSA3200UMX
型号: FSA3200UMX
厂家: FAIRCHILD SEMICONDUCTOR    FAIRCHILD SEMICONDUCTOR
描述:

Two-Port, High-Speed USB2.0 Switch with Mobile High-Definition Link (MHL™)
双端口,高速USB 2.0开关,移动高清连接技术( MHLâ ?? ¢ )

开关
文件: 总13页 (文件大小:780K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
November 2012  
FSA3200 —Two-Port, High-Speed USB2.0 Switch with  
Mobile High-Definition Link (MHL™)  
Features  
Description  
.
Low On Capacitance: 2.7 pF / 3.1 pF MHL / USB  
(Typical)  
The FSA3200 is a bi-directional, low-power, two-port,  
high-speed, USB2.0 and video data switch. Configured  
as a double-pole, double-throw (DPDT) switch for data  
and a single-pole, double-throw (SPDT) switch for ID; it  
is optimized for switching between high- or full-speed  
USB and Mobile Digital Video sources (MDV), including  
supporting the MHL™ Rev. 2.0 specification.  
.
.
.
.
.
.
Low Power Consumption: 30μA Maximum  
Supports MHL Rev. 2.0  
MHL Data Rate: 4.68 Gbps  
VBUS Powers Device with No VCC  
Packaged in 16-Lead UMLP (1.8 x 2.6 mm)  
The FSA3200 contains special circuitry on the switch  
I/O pins, for applications where the VCC supply is  
powered off (VCC=0), that allows the device to withstand  
an over-voltage condition. This switch is designed to  
minimize current consumption even when the control  
voltage applied to the control pins is lower than the  
supply voltage (VCC). This feature is especially valuable  
to mobile applications, such as cell phones, allowing  
direct interface with the general-purpose I/Os of the  
baseband processor. Other applications include  
switching and connector sharing in portable cell phones,  
digital cameras, and notebook computers.  
Over-Voltage Tolerance (OVT) on all USB Ports  
Up to 5.25 V without External Components  
Applications  
.
Cell Phones and Digital Cameras  
Ordering Information  
Part Number Top Mark Operating Temperature Range  
Package  
16-Lead, Ultrathin Molded Leadless Package  
(UMLP), 1.8 x 2.6 mm  
FSA3200UMX  
GB  
-40 to +85°C  
Figure 1. Analog Symbol  
All trademarks are the property of their respective owners.  
© 2010 Fairchild Semiconductor Corporation  
FSA3200 • Rev. 1.0.8  
www.fairchildsemi.com  
Switch Power Operation  
In normal operation, the FSA3200 is powered from the  
VCC pin, which typically is derived from a regulated  
power management device. In special circumstances,  
such as production test or system firmware upgrade, the  
device can be powered from the VBUS pin. In this mode  
of operation, a valid VBUS voltage is present (per USB2.0  
specification) and VCC=0 V, typically due to a no-battery  
condition. With the SELn pins strapped LOW (via  
external resistor), the FSA3200 closes the USB path,  
enabling the initial programming of the system directly  
from the USB connector. Once the system has normal  
operating supply power with VCC present, the VBUS  
supply is not utilized and normal switch operation  
commences. Optionally, the Power Select Override  
(PSO) pin can be set HIGH to force the device to be  
powered from VBUS  
.
The VBUS / VCC detection capability is not intended to be  
an accurate determination of the voltages present,  
rather a state condition detection to determine which  
supply should be used. These state determinations rely  
on the voltage conditions as described in the Electrical  
Characterization tables below.  
VBUS  
VCC  
PSO  
Switch  
Power  
Selection  
Switch  
Power  
Source  
Charge Pump  
& Regulator  
Switch  
Power  
Figure 2. Simplified Logic of Switch Power Selection Circuit  
Table 1. Switch Power Selection Truth Table  
VCC  
0
VBUS  
PSO(1)  
Switch Power Source  
0
1
0
1
0
1
0
1
0
0
0
0
1
1
1
1
No switch power, switch paths high-Z  
0
VBUS  
1
VCC  
1
VCC  
0
No switch power, switch paths high-Z  
VBUS  
0
(2)  
1
VCC  
1
VBUS  
Notes:  
1. Control inputs should never be left floating or unconnected. If the PSO function is used, a weak pull-up resistor  
(3 M) should be used to minimize static current draw. If the PSO function is not used, tie directly to GND.  
2. PSO control is overridden with no VBUS and the power selection is switched to VCC  
.
Table 2. Data Switch Select Truth Table  
SEL1(3)  
SEL2(3)  
Function  
0
0
1
1
0
1
0
1
D+/D- connected to USB+/USB-, IDCO connected to IDUSB  
D+/D- connected to USB+/USB-, IDCOM connected to IDMDV  
D+/D- connected to MDV+/MDV-, IDCOM connected to IDUSB  
D+/D- connected to MDV+/MDV-, IDCOM connected to IDMDV  
Note:  
3. Control inputs should never be left floating or unconnected. To guarantee default switch closure to the USB  
position, the SEL pins should be tied to GND with a weak pull- down resistor (3 M) to minimize static current draw.  
© 2010 Fairchild Semiconductor Corporation  
FSA3200 • Rev. 1.0.8  
www.fairchildsemi.com  
2
Pin Configuration  
Figure 3. Pin Assignments (Top-Through View)  
Pin Definitions  
Pin#  
Name  
GND  
D+  
Description  
1
Ground  
2
Data Switch Output (Positive)  
Data Switch Output (Negative)  
Power Select Override  
3
D-  
4
PSO  
SEL1  
USB-  
USB+  
GND  
SEL2  
MDV-  
MDV+  
IDUSB  
IDMDV  
IDCOM  
VBUS  
5
Data Switch Select  
6
USB Differential Data (Negative)  
USB Differential Data (Positive)  
Ground  
7
8
9
ID Switch Select  
10  
MDV Differential Data (Negative)  
MDV Differential Data (Positive)  
ID Switch MUX Output for USB  
ID Switch MUX Output for MDV  
ID Switch Common  
11  
12  
13  
14  
15  
Device Power when VCC Not Available  
Device Power from System(4)  
16  
VCC  
Note:  
4. Device automatically switches from VBUS when valid VCC minimum voltage is present.  
© 2010 Fairchild Semiconductor Corporation  
www.fairchildsemi.com  
FSA3200 • Rev. 1.0.8  
3
Absolute Maximum Ratings  
Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be  
operable above the recommended operating conditions and stressing the parts to these levels is not recommended.  
In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability.  
The absolute maximum ratings are stress ratings only.  
Symbol  
Parameter  
Min.  
-0.5  
-0.5  
-0.50  
-50  
Max.  
5.5  
Unit  
V
VCC, VBUS Supply Voltage  
VCNTRL  
DC Input Voltage (SELn, PSO)(5)  
VCC  
V
(6)  
VSW  
DC Switch I/O Voltage(5)  
DC Input Diode Current  
DC Output Current  
5.25  
V
IIK  
mA  
mA  
°C  
IOUT  
TSTG  
MSL  
100  
+150  
1
Storage Temperature  
-65  
Moisture Sensitivity Level (JEDEC J-STD-020A)  
Human Body Model, JEDEC: JESD22-A114  
IEC 61000-4-2, Level 4, for D+/D- and VCC Pins(7)  
IEC 61000-4-2, Level 4, for D+/D- and VCC Pins(7)  
Charged Device Model, JESD22-C101  
All Pins  
Contact  
Air  
3.5  
8.0  
ESD  
kV  
15.0  
2.0  
Notes:  
5. The input and output negative ratings may be exceeded if the input and output diode current ratings are observed.  
6. SW refers to analog data switch paths (USB, MDV, and ID).  
V
7. Testing performed in a system environment using TVS diodes.  
Recommended Operating Conditions  
The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended  
operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not  
recommend exceeding them or designing to Absolute Maximum Ratings.  
Symbol  
VBUS  
Parameter  
Supply Voltage Running from VBUS Voltage  
Supply Voltage Running from VCC  
Min.  
4.20  
2.7  
Max.  
5.25  
4.5  
Unit  
V
VCC  
V
tRAMP(VBUS) Power Supply Slew Rate from VBUS  
100  
100  
1000  
1000  
336  
µs/V  
µs/V  
C°/W  
V
tRAMP(VCC)  
Power Supply Slew Rate from VCC  
Thermal Resistance  
ΘJA  
VCNTRL  
VSW(USB)  
VSW(MDV)  
TA  
Control Input Voltage (SELn, PSO)(8)  
Switch I/O Voltage (USB and ID Switch Paths)  
Switch I/O Voltage (MDV Switch Path)  
Operating Temperature  
0
4.5  
-0.5  
1.65  
-40  
3.6  
V
3.45  
+85  
V
°C  
Note:  
8. The control inputs must be held HIGH or LOW; they must not float.  
© 2010 Fairchild Semiconductor Corporation  
www.fairchildsemi.com  
FSA3200 • Rev. 1.0.8  
4
DC Electrical Characteristics  
All typical value are at TA=25°C unless otherwise specified.  
TA=- 40ºC to +85ºC  
Min. Typ. Max.  
-1.2  
Symbol  
Parameter  
Condition  
VCC (V)  
Unit  
VIK  
VIH  
Clamp Diode Voltage  
IIN=-18 mA  
2.7  
V
V
Control Input Voltage High  
SELn, PSO  
SELn, PSO  
2.7 to 4.3 1.25  
2.7 to 4.3  
VIL  
IIN  
Control Input Voltage Low  
Control Input Leakage  
0.6  
1
V
VSW=0 V to 3.6 V,  
VCNTRL=0 V to 1.98 V  
4.3  
4.3  
4.3  
4.3  
4.3  
4.3  
4.3  
0
-1  
-1  
µA  
Off-State Leakage for Open  
MDV Data Paths  
VSW=1.65 V MDV  
3.45 V  
IOZ(MDV)  
IOZ(USB)  
IOZ(ID)  
1
1
µA  
µA  
µA  
µA  
µA  
µA  
µA  
Ω
Off-State Leakage for Open  
USB Data Paths  
-1  
VSW=0 V USB 3.6 V  
VSW=0 V ID 3.6 V  
Off-State Leakage for Open ID  
Data Path  
-0.5  
-1  
0.5  
1
On-State Leakage for Closed VSW=1.65 V MDV  
ICL(MDV)  
ICL(USB)  
ICL(ID)  
MDV Data Paths(9)  
3.45 V  
On-State Leakage for Closed  
-1  
1
VSW=0 V USB 3.6 V  
VSW=0 V ID 3.6 V  
USB Data Paths(9)  
On-State Leakage for  
Closed(9) ID Data Path  
-0.5  
-1  
0.5  
1
Power-Off Leakage Current  
(All I/O Ports)  
IOFF  
VSW=0 V or 3.6 V, Figure 5  
HS Switch On Resistance  
(USB to D Path)  
VSW=0.4 V, ION=-8 mA  
Figure 4  
RON(USB)  
RON(MDV)  
RON(ID)  
2.7  
2.7  
2.7  
2.7  
2.7  
2.7  
2.7  
4.3  
4.3  
3.9  
5
6.5  
HS Switch On Resistance  
(MDV to D Path)  
VSW=VCC-1050mV,  
ON=-8mA, Figure 4  
Ω
I
LS Switch On Resistance  
(ID Path)  
VSW=3V, ION=-8mA  
Figure 4  
12  
Ω
Difference in RON Between  
MDV Positive-Negative  
VSW=VCC-1050 mV,  
ON=-8 mA, Figure 4,  
0.03  
0.18  
0.4  
1
RON(MDV)  
RON(USB)  
RON(ID)  
Ω
I
Difference in RON Between  
USB Positive-Negative  
VSW=0.4 V, ION=-8 mA  
Figure 4  
Ω
Difference in RON Between ID VSW=3 V, ION=-8 mA  
Switch Paths  
Ω
Figure 4  
VSW=1.65 V to 3.45 V,  
ION=-8 mA, Figure 4  
RONF(MDV) Flatness for RON MDV Path  
Ω
VBUS=5.25 V, VCNTRL=0 V or  
1.98 V, IOUT=0  
IVBUS  
ICC  
Note:  
VBUS Quiescent Current  
VCC Quiescent Current  
100  
30  
µA  
µA  
VBUS=0 V, VCNTRL=0 V or  
1.98 V, IOUT=0  
9. For this test, the data switch is closed with the respective switch pin floating.  
© 2010 Fairchild Semiconductor Corporation  
www.fairchildsemi.com  
FSA3200 • Rev. 1.0.8  
5
AC Electrical Characteristics  
All typical value are for VCC=3.3 V and TA=25°C unless otherwise specified.  
TA=- 40ºC to +85ºC  
Min. Typ. Max.  
Symbol  
Parameter  
Condition  
VCC (V)  
Unit  
RL=50 , CL=5 pF,  
Turn-On Time,  
SELn to Output  
VSW(USB)=0.8 V,  
VSW(MDV)=3.3 V,  
Figure 6, Figure 7  
tON  
2.7 to 3.6  
445  
600  
300  
ns  
RL=50 , CL=5 pF,  
Turn-Off Time,  
SELn to Output  
tOFF  
VSW(USB)=0.8 V, VSW(MDV)=3.3V, 2.7 to 3.6  
125  
ns  
ns  
ns  
Figure 6, Figure 7  
CL=5 pF, RL=50 ,  
Figure 6, Figure 8  
tPD  
Propagation Delay(10)  
Break-Before-Make(10)  
2.7 to 3.6  
2.7 to 3.6  
0.25  
RL=50 , CL=5 pF,  
VID=VMDV=3.3 V, VUSB=0.8 V,  
Figure 10  
tBBM  
2.0  
13  
VS=1 Vpk-pk, RL=50 ,  
f=240 MHz, Figure 12  
OIRR(MDV)  
OIRR(USB)  
XtalkMDV  
XtalkUSB  
2.7 to 3.6  
2.7 to 3.6  
2.7 to 3.6  
2.7 to 3.6  
-45  
-38  
-44  
-39  
dB  
dB  
dB  
dB  
Off Isolation(10)  
VS=400m Vpk-pk, RL=50,  
f=240MHz, Figure 12  
VS=1 Vpk-pk, RL=50 ,  
f=240 MHz, Figure 13  
Non-Adjacent Channel(10)  
Crosstalk  
VS=400 mVpk-pk, RL=50 ,  
f=240 MHz, Figure 13  
VIN=1 Vpk-pk, MDV Path,  
RL=50 , CL=0 pF,  
2.34  
Figure 11, Figure 16  
GHz  
MHz  
Differential -3 db  
Bandwidth(10)  
VIN=400 mVpk-pk, USB Path,  
RL=50 , CL=0 pF,  
Figure 11, Figure 17  
BW  
2.7 to 3.6  
1.59  
100  
ID Path, RL=50 , CL=0 pF,  
Figure 11  
Note:  
10. Guaranteed by characterization.  
© 2010 Fairchild Semiconductor Corporation  
FSA3200 • Rev. 1.0.8  
www.fairchildsemi.com  
6
USB High-Speed AC Electrical Characteristics  
Typical values are at TA= -40ºC to +85ºC.  
Symbol  
Parameter  
Condition  
VCC (V)  
3.0 to 3.6  
3.0 to 3.6  
Typ. Unit  
Skew of Opposite Transitions of the Same  
Output(11)  
tSK(P)  
CL=5 pF, RL=50 , Figure 9  
3
ps  
ps  
RL=50 , CL=5 pf,  
tR=tF=500 ps (10-90%) at  
480 Mbps, PN7  
tJ  
Total Jitter(11)  
15  
Note:  
11. Guaranteed by characterization.  
MDV AC Electrical Characteristics  
Typical values are at TA= -40ºC to +85ºC.  
Symbol  
Parameter  
Condition  
VCC (V)  
Typ. Unit  
Skew of Opposite Transitions of the Same  
Output(12)  
tSK(P)  
3.0 to 3.6  
3
ps  
ps  
RPU=50 Ω to VCC, CL=0 pF  
f=2.25 Gbps, PN7,  
tJ  
Total Jitter(12)  
3.0 to 3.6  
15  
RPU=50 Ω to VCC, CL=0 pF  
Note:  
12. Guaranteed by characterization.  
Capacitance  
Typical values are at TA= -40ºC to +85ºC.  
Symbol  
Parameter  
Condition  
Typ. Unit  
CIN  
Control Pin Input Capacitance(13)  
VCC=0 V, f= 1 MHz  
1.5  
3.1  
CON(USB) USB Path On Capacitance(13)  
COFF(USB) USB Path Off Capacitance(13)  
CON(MDV) MDV Path On Capacitance(13)  
COFF(MDV) MDV Path Off Capacitance(13)  
VCC=3.3 V, f=240 MHz, Figure 15  
VCC=3.3 V, f=240 MHz, Figure 14  
VCC=3.3 V, f=240 MHz, Figure 15  
VCC=3.3 V, f=240 MHz, Figure 14  
1.6  
2.7  
1.1  
pF  
Note:  
13. Guaranteed by characterization.  
© 2010 Fairchild Semiconductor Corporation  
FSA3200 • Rev. 1.0.8  
www.fairchildsemi.com  
7
Test Diagrams  
Note:  
14. HSD refers to the high-speed data USB or MDV paths.  
V
ON  
IDn(OFF)  
NC  
A
HSD  
n
Dn  
V
SW  
V
SW  
Select  
GND  
ION  
GND  
GND  
V
Sel= 0 orVcc  
Select  
**Each switch port is tested separately  
V
Sel= 0 orV C  
R
= VO / ION  
O
Figure 4. On Resistance  
Figure 5. Off Leakage  
tRISE  
tFALL  
= 2.5ns  
= 2.5ns  
V
CC  
90%  
90%  
V
GND  
Input–V , V  
SEL1  
SEL  
V
CNTRL-HI  
CNTRL-HI  
10%  
10%  
90%  
GND  
V
OH  
90%  
Output- V  
OUT  
VOL  
tON  
tOFF  
Figure 6. AC Test Circuit Load  
Figure 7. Turn-On / Turn-Off Waveforms  
tRISE  
tFALL  
= 500ps  
= 500ps  
+400mV  
-400mV  
400mV  
90%  
0V  
90%  
50%  
50%  
Input  
0V  
10%  
10%  
tPLH  
tPHL  
VOH  
Output  
50%  
50%  
Output  
VOL  
tPHL  
tPLH  
Figure 8. Propagation Delay (tRtF – 500 ps)  
Figure 9. Intra-Pair Skew Test tSK(P)  
© 2010 Fairchild Semiconductor Corporation  
FSA3200 • Rev. 1.0.8  
www.fairchildsemi.com  
8
Test Diagrams (Continued)  
tRISE = 2.5ns  
Vcc  
HSD  
n
90%  
Vcc/2  
Dn  
C
Input -  
V
V
Sel  
SW1  
10%  
0V  
VOUT  
GND  
L
R
V
L
SW2  
VOUT  
GND  
0.9*Vout  
GND  
0.9*Vout  
R
S
tBBM  
V
Sel  
RL , R and CL are function of application  
GND  
S
environment (see AC Tables for specific values)  
CL includes test fixture and stray capacitance  
Figure 10. Break-Before-Make Interval Timing  
Network Analyzer  
Network  
Analyzer  
Network Analyzer  
FSA3200  
R
S
V
V
IN  
IN  
V
GND  
S
R
T
GND  
OUT  
V
R
GND  
S
Sel  
V
GND  
V
GND  
IN  
R
V
S
T
RS and RT are functions of the application  
environment (see AC Tables for specific values).  
Off isolation = 20 Log (VOUT / VIN  
GND  
VS, RS and RT are function of application  
environment (see AC/DC Tables for values)  
)
Figure 11. Insertion Loss  
Figure 12. Channel Off Isolation  
Network Analyzer  
NC  
R
S
V
IN  
V
GND  
S
GND  
V
Sel  
GND  
R
T
GND  
V
OUT  
GND  
R
T
RS and RT are functions of the application environment  
(see AC Tables for specific values).  
GND  
Crosstalk = 20 Log (VOUT / VIN)  
Figure 13. Non-Adjacent Channel-to-Channel Crosstalk  
HSD  
HSD  
n
Capacitance  
n
S
Meter  
S
V
Capacitance  
Meter  
V
= 0 or V  
cc  
Sel  
= 0 or V  
cc  
Sel  
HSD  
HSD  
n
n
Figure 14. Channel Off Capacitance  
Figure 15. Channel On Capacitance  
© 2010 Fairchild Semiconductor Corporation  
FSA3200 • Rev. 1.0.8  
www.fairchildsemi.com  
9
Insertion Loss  
One of the key factors for using the FSA3200 in mobile  
digital video applications is the small amount of insertion  
loss experienced by the received signal as it passes  
through the switch. This results in minimal degradation  
of the received eye. One of the ways to measure the  
quality of the high data rate channels is using balanced  
ports and 4-port differential S-parameter analysis,  
particularly SDD21.  
Bandwidth is measured using the S-parameter SDD21  
methodology. Figure 16 shows the bandwidth (GHz) for  
the MDV path and Figure 17 the bandwidth curve for the  
USB path.  
Figure 17. USB Path SDD21 Insertion Loss Curve  
© 2010 Fairchild Semiconductor Corporation  
FSA3200 • Rev. 1.0.8  
www.fairchildsemi.com  
10  
Typical Applications  
Figure 18 shows the FSA3200 utilizing the VBUS  
connection from the micro-USB connector. The 3M  
resistor is used to ensure, for manufacturing test via the  
micro-USB connector, that the FSA3200 configures for  
connectivity through the FSA9280A accessory switch.  
Figure 19 shows the configuration for the FSA3200 “self  
powered” by the battery only.  
Figure 18. Typical FSA3200 Application Using VBUS  
Figure 19. Typical FSA3200 “Self-Powered” Application Using VBAT  
© 2010 Fairchild Semiconductor Corporation  
FSA3200 • Rev. 1.0.8  
www.fairchildsemi.com  
11  
Physical Dimensions  
2.10  
0.563(15X)  
0.10  
C
1.80  
A
B
0.663  
0.40  
2X  
1
2.60  
2.90  
PIN#1 IDENT  
0.10  
C
TOP VIEW  
0.225  
(16X)  
2X  
RECOMMENDED  
LAND PATTERN  
0.55 MAX.  
0.152  
0.10  
0.08  
C
C
TERMINAL SHAPE VARIANTS  
SEATING  
PLANE  
C
0.05  
0.00  
0.40  
0.60  
SIDE VIEW  
0.30  
0.50  
0.15  
0.25  
0.15  
0.25  
0.10  
15X  
15X  
0.45  
0.10  
0.35  
PIN 1  
NON-PIN 1  
5
Supplier 1  
9
0.40  
0.30  
0.50  
0.15  
0.25  
0.15  
15X  
0.25  
0.30  
0.50  
15X  
1
PIN 1  
NON-PIN 1  
PIN#1 IDENT  
Supplier 2  
13  
0.25  
0.15  
16  
0.55  
0.45  
0.10  
0.05  
C
C
A B  
BOTTOM VIEW  
R0.20  
PACKAGE  
EDGE  
NOTES:  
A. PACKAGE DOES NOT FULLY CONFORM TO  
JEDEC STANDARD.  
LEAD  
OPTION 2  
SCALE : 2X  
LEAD  
OPTION 1  
SCALE : 2X  
B. DIMENSIONS ARE IN MILLIMETERS.  
C. DIMENSIONS AND TOLERANCES PER  
ASME Y14.5M, 1994.  
D. LAND PATTERN RECOMMENDATION IS  
BASED ON FSC DESIGN ONLY.  
E. DRAWING FILENAME: MKT-UMLP16Arev4.  
F. TERMINAL SHAPE MAY VARY ACCORDING  
TO PACKAGE SUPPLIER, SEE TERMINAL  
SHAPE VARIANTS.  
Figure 20. 16-Lead, Ultrathin Molded Leadless Package (UMLP)  
Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner  
without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or  
obtain the most recent revision. Package specifications do not expand the terms of Fairchild’s worldwide terms and conditions,  
specifically the warranty therein, which covers Fairchild products.  
Always visit Fairchild Semiconductor’s online packaging area for the most recent package drawings:  
http://www.fairchildsemi.com/packaging/.  
© 2010 Fairchild Semiconductor Corporation  
FSA3200 • Rev. 1.0.8  
www.fairchildsemi.com  
12  
© 2010 Fairchild Semiconductor Corporation  
FSA3200 • Rev. 1.0.8  
www.fairchildsemi.com  
13  

相关型号:

FSA3200UMX-F106

两端口,高速 USB2.0 开关,带 Mobile High-Definition Link
ONSEMI

FSA321

USB2.0 Hi-Speed (480Mbps) and Audio Switches with Negative Signal Capability and Built-in Termination on Unselected Audio Paths
FAIRCHILD

FSA321UMX

USB2.0 Hi-Speed (480Mbps) and Audio Switches with Negative Signal Capability and Built-in Termination on Unselected Audio Paths
FAIRCHILD

FSA321UMX

多媒体和 USB 2.0 高速和音频开关,带负信号能力,以及无选择音频路径上的内置端接
ONSEMI

FSA321_12

USB2.0 Hi-Speed (480Mbps) and Audio Switches with Negative Signal Capability and Built-in Termination on Unselected Audio Paths
FAIRCHILD

FSA3230

High-Speed USB2.0 / Mobile High- Definition Link (MHL™) with Negative Swing Audio
FAIRCHILD

FSA3230UMX

High-Speed USB2.0 / Mobile High- Definition Link (MHL™) with Negative Swing Audio
FAIRCHILD

FSA3259

Dual SP3T Analog Switch
FAIRCHILD

FSA3259BQX

Dual SP3T Analog Switch
FAIRCHILD

FSA32G-100

SATA II standard interface
AXIOMTEK

FSA3341

High-Speed 4:1 USB2.0 / MHL™ Switch
FAIRCHILD

FSA3357

Low Voltage SP3T Analog Switch (3:1 Multiplexer/Demultiplexer)
FAIRCHILD