HGTP20N60C3R [FAIRCHILD]

40A, 600V, Rugged UFS Series N-Channel IGBTs; 40A , 600V ,坚固UFS系列N沟道IGBT的
HGTP20N60C3R
型号: HGTP20N60C3R
厂家: FAIRCHILD SEMICONDUCTOR    FAIRCHILD SEMICONDUCTOR
描述:

40A, 600V, Rugged UFS Series N-Channel IGBTs
40A , 600V ,坚固UFS系列N沟道IGBT的

双极性晶体管
文件: 总6页 (文件大小:111K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HGTG20N60C3R, HGTP20N60C3R,  
HGT1S20N60C3R, HGT1S20N60C3RS  
S E M I C O N D U C T O R  
40A, 600V, Rugged UFS Series N-Channel IGBTs  
January 1997  
Features  
Description  
o
• 40A, 600V T = 25 C  
J
This family of IGBTs was designed for optimum performance  
in the demanding world of motor control operation as well as  
other high voltage switching applications. These devices  
demonstrate RUGGED performance capability when  
subjected to harsh SHORT CIRCUIT WITHSTAND TIME  
(SCWT) conditions. The parts have ULTRAFAST (UFS)  
switching speed while the on-state conduction losses have  
been kept at a low level.  
• 600V Switching SOA Capability  
o
• Typical Fall Time at T = 150 C . . . . . . . . . . . . . 330ns  
J
o
• Short Circuit Rating at T = 150 C. . . . . . . . . . . . . 10µs  
J
• Low Conduction Loss  
The electrical specifications include typical Turn-On and  
Turn-Off dv/dt ratings. These ratings and the Turn-On ratings  
include the effect of the diode in the test circuit (Figure 16).  
Ordering Information  
PART NUMBER  
HGTP20N60C3R  
PACKAGE  
TO-220AB  
TO-247  
BRAND  
20N60C3R  
20N60C3R  
20N60C3R  
20N60C3R  
The data was obtained with the diode at the same T as the  
J
IGBT under test.  
Formerly Developmental Type TA49047.  
HGTG20N60C3R  
HGT1S20N60C3R  
HGT1S20N60C3RS  
Terminal Diagram  
TO-262AA  
TO-263AB  
N-CHANNEL ENHANCEMENT MODE  
C
NOTE: When ordering, use the entire part number. Add the suffix 9A  
to obtain the TO-263AB variant in the tape and reel, i.e.,  
HGT1S20N60C3RS9A.  
G
E
Packaging  
JEDEC STYLE TO-247  
JEDEC TO-220AB (ALTERNATE VERSION)  
E
C
G
E
C
G
COLLECTOR  
(FLANGE)  
COLLECTOR  
(FLANGE)  
JEDEC TO-263AB  
COLLECTOR  
JEDEC TO-262AA  
E
C
M
A
G
(FLANGE)  
G
E
COLLECTOR  
(FLANGE)  
HARRIS SEMICONDUCTOR IGBT PRODUCT IS COVERED BY ONE OR MORE OF THE FOLLOWING U.S. PATENTS:  
4,364,073  
4,587,713  
4,641,162  
4,794,432  
4,860,080  
4,969,027  
4,417,385  
4,598,461  
4,644,637  
4,801,986  
4,883,767  
4,430,792  
4,605,948  
4,682,195  
4,803,533  
4,888,627  
4,443,931  
4,618,872  
4,684,413  
4,809,045  
4,890,143  
4,466,176  
4,620,211  
4,694,313  
4,809,047  
4,901,127  
4,516,143  
4,631,564  
4,717,679  
4,810,665  
4,904,609  
4,532,534  
4,639,754  
4,743,952  
4,823,176  
4,933,740  
4,567,641  
4,639,762  
4,783,690  
4,837,606  
4,963,951  
CAUTION: These devices are sensitive to electrostatic discharge. Users should follow proper ESD Handling Procedures.  
File Number 4226.1  
Copyright © Harris Corporation 1997  
5-3  
HGTP20N60C3R, HGTG20N60C3R, HGT1S20N60C3R, HGT1S20N60C3RS  
o
Absolute Maximum Ratings T = 25 C, Unless Otherwise Specified  
C
ALL TYPES  
UNITS  
Collector-Emitter Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . BV  
600  
V
CES  
Collector Current Continuous  
o
At T = 25 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I  
C
40  
20  
80  
±20  
±30  
A
A
A
V
V
C25  
o
At T = 110 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I  
C
C110  
Collector Current Pulsed (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .I  
Gate-Emitter Voltage Continuous. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V  
CM  
GES  
GEM  
Gate-Emitter Voltage Pulsed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V  
o
Switching Safe Operating Area at T = 150 C, Fig. 12 . . . . . . . . . . . . . . . . . . . . . .SSOA  
80A at 600V  
164  
J
o
Power Dissipation Total at T = 25 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P  
C
W
D
o
o
Power Dissipation Derating T > 25 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
1.32  
W/ C  
C
Reverse Voltage Avalanche Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E  
100  
-40 to 150  
260  
mJ  
ARV  
STG  
o
Operating and Storage Junction Temperature Range . . . . . . . . . . . . . . . . . . . . T , T  
C
o
J
Maximum Lead Temperature for Soldering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .T  
C
L
Short Circuit Withstand Time (Note 2) at V  
NOTES:  
= 15V . . . . . . . . . . . . . . . . . . . . . . . . . . t  
10  
µs  
GE  
SC  
1. Pulse width limited by maximum junction temperature.  
o
2. V  
= 440V, T = 150 C, R = 10Ω.  
GE  
CE(PK)  
J
o
Electrical Specifications T = 25 C, Unless Otherwise Specified  
C
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
-
UNITS  
Collector-Emitter Breakdown Voltage  
Emitter-Collector Breakdown Voltage  
Collector-Emitter Leakage Current  
BV  
BV  
I
I
= 250µA, V  
= 0V  
600  
-
-
V
V
CES  
C
GE  
= 10mA, V  
= 0V  
15  
-
ECS  
C
GE  
o
I
V
V
= BV  
= BV  
T
T
T
T
T
= 25 C  
-
-
250  
3.0  
2.2  
2.5  
7.5  
µA  
mA  
V
CES  
CE  
CE  
CES  
C
C
C
C
C
o
= 150 C  
-
-
-
CES  
o
Collector-Emitter Saturation Voltage  
Gate-Emitter Threshold Voltage  
V
I
= I  
,
= 25 C  
1.8  
2.1  
6.3  
CE(SAT)  
C
C110  
= 15V  
V
o
GE  
= 150 C  
-
V
o
V
I
= 250µA,  
= 25 C  
3.5  
V
GE(TH)  
C
V
= V  
GE  
CE  
Gate-Emitter Leakage Current  
Switching SOA (See Figure 12)  
I
V
= ±20V  
-
-
-
±100  
nA  
A
GES  
GE  
o
SSOA  
T = 150 C  
V
= 600V  
80  
-
J
CE(PK)  
L = 1mH  
R
= 10Ω  
G
V
= 15V  
GE  
= I  
Gate-Emitter Plateau Voltage  
On-State Gate Charge  
V
I
I
, V  
C110 CE  
= 0.5 BV  
CES  
-
-
-
-
-
-
-
-
-
-
-
-
9.0  
87  
-
V
nC  
nC  
ns  
GEP  
C
Q
= I  
,
V
GE  
= 15V  
= 20V  
110  
G(ON)  
C
C110  
V
= 0.5 BV  
CE  
ES  
V
116  
34  
150  
GE  
o
Current Turn-On Delay Time  
Current Rise Time  
t
T = 150 C  
-
D(ON)I  
J
I
= I  
CE  
C110  
t
40  
-
ns  
RI  
V
= 0.8 BV  
CE(PK)  
= 15V  
= 10Ω  
CES  
Current Turn-Off Delay Time  
Current Fall Time  
t
390  
330  
1.3  
7.0  
2.3  
3.0  
-
500  
ns  
V
D(OFF)I  
GE  
R
G
t
400  
ns  
FI  
L = 1mH  
Turn-Off Voltage dv/dt (Note 3)  
Turn-On Voltage dv/dt (Note 3)  
Turn-On Energy (Note 4)  
Turn-Off Energy (Note 5)  
Thermal Resistance  
dV /dt  
-
V/ns  
V/ns  
mJ  
mJ  
CE  
Diode used in test circuit  
dV /dt  
-
CE  
o
RURP1560 at 150 C  
E
-
-
ON  
E
OFF  
o
R
0.76  
C/W  
θJC  
NOTES:  
3. dV /dt depends on the diode used and the temperature of the diode.  
CE  
4. Turn-On Energy Loss (E ) includes diode losses and is defined as the integral of the instantaneous power loss starting at the leading  
ON  
edge of the input pulse and ending at the point where the collector voltage equals V  
. This value of E was obtained with a  
CE(ON)  
ON  
o
o
RURP1560 diode at T = 150 C. A different diode or temperature will result in a different E . For example with diode at T = 25 C E  
ON ON  
J
J
o
is about one half the value at 150 C.  
5. Turn-Off Energy Loss (E ) is defined as the integral of the instantaneous power loss starting at the trailing edge of the input pulse and  
OFF  
ending at the point where the collector current equals zero (I  
= 0A). All devices were tested per JEDEC standard No. 24-1 Method for  
CE  
Measurement of Power Device Turn-Off Switching Loss. This test method produces the true total Turn-Off Energy Loss.  
5-4  
HGTP20N60C3R, HGTG20N60C3R, HGT1S20N60C3R, HGT1S20N60C3RS  
Typical Performance Curves  
80  
70  
40  
35  
V
= 15.0V  
GE  
DUTY CYCLE <0.5%, V  
CE  
PULSE DURATION = 250µs  
= 10V  
o
DUTY CYCLE <0.5%, T = 25 C  
C
PULSE DURATION = 250µs  
60  
30  
25  
20  
15  
10  
12.0V  
10.0V  
50  
40  
o
o
T
= -40 C  
T
= 25 C  
C
C
30  
20  
10  
0
o
T
= 150 C  
9.0V  
8.5V  
C
5
0
8.0V  
7.5V  
0
1
2
3
4
5
6
7
8
9
10  
6
7
8
9
10  
11  
12  
13  
14  
15  
V
, GATE TO EMITTER VOLTAGE (V)  
V
, COLLECTOR TO EMITTER VOLTAGE (V)  
CE  
GE  
FIGURE 1. TRANSFER CHARACTERISTICS  
FIGURE 2. SATURATION CHARACTERISTICS  
40  
35  
90  
80  
PULSE DURATION = 250µs  
DUTY CYCLE <0.5%  
V
= 15V  
GE  
V
= 15V  
GE  
70  
60  
50  
40  
30  
20  
10  
0
30  
25  
20  
15  
10  
o
T
= -40 C  
C
o
T
= 25 C  
C
o
T
= 150 C  
C
5
0
25  
50  
75  
T , CASE TEMPERATURE ( C)  
C
100  
125  
150  
0
1
2
3
4
5
6
7
8
9
10  
o
V
, COLLECTOR TO EMITTER VOLTAGE (V)  
CE  
FIGURE 3. COLLECTOR EMITTER ON STATE VOLTAGE  
FIGURE 4. DC COLLECTOR CURRENT AS A FUNCTION OF  
CASE TEMPERATURE  
o
38  
o
425  
400  
T
= 150 C, R = 10, L = 1mH, V  
CE(PK)  
= 480V, V = 15V  
GE  
J
G
T
= 150 C, R = 10, L = 1mH, V  
= 480V  
CE(PK)  
J
G
V
= 15V  
GE  
36  
34  
32  
30  
375  
350  
325  
28  
26  
300  
275  
5
10  
15  
20  
25  
30  
35  
40  
5
10  
15  
20  
25  
30  
35  
40  
I
, COLLECTOR-EMITTER CURRENT (A)  
I
CE  
, COLLECTOR EMITTER CURRENT (A)  
CE  
FIGURE 5. TURN ON DELAY TIME AS A FUNCTION OF  
COLLECTOR EMITTER CURRENT  
FIGURE 6. TURN OFF DELAY TIME AS A FUNCTION OF  
COLLECTOR EMITTER CURRENT  
5-5  
HGTP20N60C3R, HGTG20N60C3R, HGT1S20N60C3R, HGT1S20N60C3RS  
Typical Performance Curves (Continued)  
450  
425  
400  
375  
350  
325  
300  
275  
120  
o
T
= 150 C, R = 10, L = 1mH, V  
CE(PK)  
= 480V,  
o
J
G
T
= 150 C, R = 10, L = 1mH, V  
CE(PK)  
= 480V, V = 15V  
GE  
J
G
V
= 15V  
GE  
100  
80  
60  
40  
20  
0
250  
5
10  
15  
20  
25  
30  
35  
40  
5
10  
15  
20  
25  
30  
35  
40  
I
, COLLECTOR-EMITTER CURRENT (A)  
I
CE  
, COLLECTOR EMITTER CURRENT (A)  
CE  
FIGURE 7. TURN ON RISE TIME AS A FUNCTION OF  
COLLECTOR EMITTER CURRENT  
FIGURE 8. TURN OFF FALL TIME AS A FUNCTION OF  
COLLECTOR EMITTER CURRENT  
6.0  
o
6.5  
o
T
= 150 C, R = 10, L = 1mH,  
G
T
= 150 C, R = 10, L = 1mH,  
G
J
J
V
= 480V, V = 15V  
V
= 480V, V = 15V  
CE(PK)  
GE  
CE(PK)  
GE  
5.0  
4.0  
3.0  
2.0  
1.0  
0
5.5  
4.5  
3.5  
2.5  
1.5  
0.5  
5
10  
15  
20  
25  
30  
35  
40  
5
10  
15  
20  
25  
30  
35  
40  
I
, COLLECTOR EMITTER CURRENT (A)  
I
CE  
, COLLECTOR EMITTER CURRENT (A)  
CE  
FIGURE 9. TURN ON ENERGY LOSS AS A FUNCTION OF  
COLLECTOR EMITTER CURRENT  
FIGURE 10. TURN OFF ENERGY LOSS AS A FUNCTION OF  
COLLECTOR EMITTER CURRENT  
100  
100  
o
o
T
= 150 C, R = 10, L = 1mH, V  
= 480V  
J
G
CE(PK)  
= 15V  
T
= 150 C, R = 10, V  
= 15V, L = 1mH  
J
G
GE  
o
T
= 75 C, V  
GE  
C
80  
60  
40  
20  
30  
20  
PARTS MAY CURRENT LIMIT IN THIS REGION.  
10  
f
f
= 0.05/(t  
D(OFF)I  
+ t )  
D(ON)I  
MAX1  
= (P - P )/(E  
+ E  
)
MAX2  
D
C
ON  
OFF  
P
P
= ALLOWABLE DISSIPATION  
= CONDUCTION DISSIPATION  
D
C
(DUTY FACTOR = 50%)  
o
R
= 0.76 C/W  
JC  
θ
0
1
0
100  
200  
300  
400  
500  
600  
700  
5
10  
20  
30  
40  
I
, COLLECTOR EMITTER CURRENT (A)  
V , COLLECTOR TO EMITTER VOLTAGE (V)  
CE(PK)  
CE  
FIGURE 11. OPERATING FREQUENCY AS A FUNCTION OF  
COLLECTOR EMITTER CURRENT  
FIGURE 12. SWITCHING SAFE OPERATING AREA  
5-6  
HGTP20N60C3R, HGTG20N60C3R, HGT1S20N60C3R, HGT1S20N60C3RS  
Typical Performance Curves (Continued)  
4500  
o
I
REF = 1.376mA, R = 30, T = 25 C  
G
L
C
FREQUENCY = 1MHz  
15  
12  
9
600  
480  
4000  
3500  
3000  
C
IES  
V
= 600V  
CE  
2500  
2000  
1500  
1000  
360  
240  
120  
V
= 200V  
CE  
V
= 400V  
CE  
6
C
3
0
OES  
500  
0
C
RES  
0
0
5
10  
15  
20  
25  
0
10  
20  
30  
Q , GATE CHARGE (nC)  
G
40  
50  
60  
70  
80  
90  
V
, COLLECTOR TO EMITTER VOLTAGE (V)  
CE  
FIGURE 13. CAPACITANCE AS A FUNCTION OF COLLECTOR-  
EMITTER VOLTAGE  
FIGURE 14. GATE CHARGE WAVEFORMS  
0
10  
0.5  
0.2  
0.1  
-1  
10  
0.05  
0.02  
t
1
P
D
t
2
0.01  
-2  
10  
SINGLE PULSE  
DUTY FACTOR, D = t / t  
1
2
PEAK T = (P X Z  
X R  
) + T  
JC  
θ
J
D
JC  
C
θ
-3  
10  
-5  
-4  
10  
-3  
10  
-2  
10  
-1  
0
1
10  
10  
10  
10  
t , RECTANGULAR PULSE DURATION (s)  
1
FIGURE 15. IGBT NORMALIZED TRANSIENT THERMAL IMPEDANCE, JUNCTION TO CASE  
Test Circuit and Waveform  
90%  
OFF  
L = 1mH  
10%  
V
RURP1560  
GE  
E
E
ON  
V
CE  
R
= 10Ω  
G
90%  
+
-
10%  
D(OFF)I  
V
= 480V  
I
DD  
CE  
t
t
RI  
t
FI  
t
D(ON)I  
FIGURE 16. INDUCTIVE SWITCHING TEST CIRCUIT  
FIGURE 17. SWITCHING TEST WAVEFORMS  
5-7  
HGTP20N60C3R, HGTG20N60C3R, HGT1S20N60C3R, HGT1S20N60C3RS  
Handling Precautions for IGBTs Operating Frequency Information  
Insulated Gate Bipolar Transistors are susceptible to gate- Operating frequency information for  
insulation damage by the electrostatic discharge of energy (Figure 11) is presented as a guide for estimating device  
through the devices. When handling these devices, care performance for specific application. Other typical  
a typical device  
a
should be exercised to assure that the static charge built in frequency vs collector current (ICE) plots are possible using  
the handler’s body capacitance is not discharged through the information shown for a typical unit in Figures 3, 5, 6, 9  
the device. With proper handling and application procedures, and 10. The operating frequency plot (Figure 11) of a typical  
however, IGBTs are currently being extensively used in device shows f  
or f  
whichever is smaller at each  
MAX1  
MAX2  
production by numerous equipment manufacturers in point. The information is based on measurements of a  
military, industrial and consumer applications, with virtually typical device and is bounded by the maximum rated  
no damage problems due to electrostatic discharge. IGBT’s junction temperature.  
can be handled safely if the following basic precautions are  
taken:  
f
is defined by f  
= 0.05/(t  
MAX1  
+ t ). Dead-  
D(OFF)I D(ON)I  
MAX1  
time (the denominator) has been arbitrarily held to 10% of  
1. Prior to assembly into a circuit, all leads should be kept  
the on- state time for a 50% duty factor. Other definitions are  
shorted together either by the use of metal shorting possible. t  
and t  
are defined in Figure 17.  
D(OFF)I  
D(ON)I  
springs or by the insertion into conductive material such Device turn-off delay can establish an additional frequency  
as “ECCOSORBD LD26” or equivalent.  
limiting condition for an application other than T .  
JMAX  
t
is important when controlling output ripple under a  
D(OFF)I  
lightly loaded condition.  
2. When devices are removed by hand from their carriers,  
the hand being used should be grounded by any suitable  
means - for example, with a metallic wristband.  
f
is defined by f  
MAX2  
= (P - P )/(E + E ). The  
OFF ON  
MAX2  
D
C
allowable dissipation (P ) is defined by P = (T  
-
D
D
JMAX  
3. Tips of soldering irons should be grounded.  
T )/R . The sum of device switching and conduction  
θJC  
C
losses must not exceed P . A 50% duty factor was used  
(Figure 11) and the conduction losses (P ) are approxi-  
C
4. Devices should never be inserted into or removed from  
circuits with power on.  
D
mated by P = (V  
x I )/2.  
C
CE CE  
5. Gate Voltage Rating - Never exceed the gate-voltage  
E
and E  
OFF  
are defined in the switching waveforms  
is the integral of the instantaneous  
is the inte-  
rating of V  
. Exceeding the rated V can result in  
ON  
GEM  
GE  
shown in Figure 17. E  
power loss (I  
gral of the instantaneous power loss (I x V ) during turn-  
off. All tail losses are included in the calculation for E  
OFF  
permanent damage to the oxide layer in the gate region.  
ON  
CE  
x V ) during turn-on and E  
CE  
OFF  
6. Gate Termination - The gates of these devices are  
essentially capacitors. Circuits that leave the gate open-  
circuited or floating should be avoided. These conditions  
can result in turn-on of the device due to voltage buildup  
on the input capacitor due to leakage currents or pickup.  
CE CE  
; i.e.  
the collector current equals zero (I  
= 0).  
CE  
7. Gate Protection - These devices do not have an internal  
monolithic zener diode from gate to emitter. If gate  
protection is required an external zener is recommended.  
ECCOSORBD is a Trademark of Emerson and Cumming, Inc.  
All Harris Semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.  
Harris Semiconductor products are sold by description only. Harris Semiconductor reserves the right to make changes in circuit design and/or specifications at  
any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Harris is  
believed to be accurate and reliable. However, no responsibility is assumed by Harris or its subsidiaries for its use; nor for any infringements of patents or other  
rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Harris or its subsidiaries.  
Sales Office Headquarters  
For general information regarding Harris Semiconductor and its products, call 1-800-4-HARRIS  
NORTH AMERICA  
EUROPE  
ASIA  
Harris Semiconductor  
P. O. Box 883, Mail Stop 53-210  
Melbourne, FL 32902  
TEL: 1-800-442-7747  
(407) 729-4984  
Harris Semiconductor  
Mercure Center  
100, Rue de la Fusee  
1130 Brussels, Belgium  
TEL: (32) 2.724.2111  
FAX: (32) 2.724.22.05  
Harris Semiconductor PTE Ltd.  
No. 1 Tannery Road  
Cencon 1, #09-01  
Singapore 1334  
TEL: (65) 748-4200  
FAX: (65) 748-0400  
FAX: (407) 729-5321  
S E M I C O N D U C T O R  
5-8  

相关型号:

HGTP2N120BN

12A, 1200V, NPT Series N-Channel IGBT
INTERSIL

HGTP2N120BND

12A, 1200V, NPT Series N-Channel IGBT with Anti-Parallel Hyperfast Diode
INTERSIL

HGTP2N120BND

暂无描述
RENESAS

HGTP2N120CN

13A, 1200V, NPT Series N-Channel IGBT
FAIRCHILD

HGTP2N120CN

13A, 1200V, NPT Series N-Channel IGBT
INTERSIL

HGTP2N120CN9A

Insulated Gate Bipolar Transistor, 13A I(C), 1200V V(BR)CES, N-Channel
FAIRCHILD

HGTP2N120CND

13A, 1200V, NPT Series N-Channel IGBTs with Anti-Parallel Hyperfast Diodes
INTERSIL

HGTP2N120CNDS

Insulated Gate Bipolar Transistor
FAIRCHILD

HGTP2N120CNDS9A

Insulated Gate Bipolar Transistor
FAIRCHILD

HGTP2N120CNS

13A, 1200V, NPT Series N-Channel IGBT
FAIRCHILD

HGTP2N120CN_NL

Insulated Gate Bipolar Transistor, 13A I(C), 1200V V(BR)CES, N-Channel, TO-220AB, TO-220AB, 3 PIN
FAIRCHILD

HGTP3N60A4

600V, SMPS Series N-Channel IGBT
FAIRCHILD