FM8PE53B [FEELING]

OTP-Based 8-Bit Microcontroller;
FM8PE53B
型号: FM8PE53B
厂家: Feeling Technology    Feeling Technology
描述:

OTP-Based 8-Bit Microcontroller

微控制器
文件: 总53页 (文件大小:2258K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EELING  
FM8PE53B  
ECHNOLOGY  
OTP-Based 8-Bit Microconer  
Devices Included in this Data Sheet:  
FM8PE53B : OTP device  
FEATURES  
Only 42 single word instructions  
All instructions are single cycle except for program branches which are two-cycle  
13-bit wide instructions  
All OTP area GOTO instruction  
All OTP area subroutine CALL instruction  
8-bit wide data path  
5-level deep hardware stack  
Operating speed: DC-20 MHz clock input  
DC-100 ns instruction cycle  
Device  
Pins # I/O #  
OTP (Word)  
RAM (Byte)  
FM8PE53B  
14 12  
1K  
49  
Direct, indirect addressing modes for data accessing  
8-bit real time clock/counter (Timer0) with 8-bit programmable prescaler  
Internal Power-on Reset (POR)  
Built-in Low Voltage Detector (LVD) for Brown-out Reset (BOR)  
Power-up Reset Timer (PWRT) and Oscillator Start-up Timer(OST)  
On chip Watchdog Timer (WDT) with internal oscillator for reliable operation and soft-ware watch-dog  
enable/disable control  
Two I/O ports IOA and IOB with independent direction control  
Soft-ware I/O pull-high/pull-down or open-drain control  
One internal interrupt source: Timer0 overflow; Two external interrupt source: INT pin, Port B input change  
Wake-up from SLEEP by INT pin or Port B input change  
Power saving SLEEP mode  
Built-in 8MHz, 4MHz, 1MHz, and 455KHz internal RC oscillator  
Programmable Code Protection  
Selectable oscillator options:  
- ERC: External Resistor/Capacitor Oscillator  
- HF: High Frequency Crystal/Resonator Oscillator  
- XT: Crystal/Resonator Oscillator  
- LF: Low Frequency Crystal Oscillator  
- IRC: Internal Resistor/Capacitor Oscillator  
- ERIC: External Resistor/Internal Capacitor Oscillator  
Operating voltage range: 1.8V to 3.5V  
This datasheet contains on. Feeling Technology reserves the rights to modify the product specification without notice.  
No liability is assumed as a rethis product. No rights under any patent accompany the sales of the product.  
Web site: http://www.feeling-teom.tw  
Rev1.02.011 Aug 21, 2014  
P.1/FM8PE53B  
EELING  
FM8PE53B  
ECHNOLOGY  
GENERAL DESCRIPTION  
The FM8PE53B is a low-cost, high speed, high noise immunity, OTP-based 8-bit CMOS microcontrollers. It  
employs a RISC architecture with only 42 instructions. All instructions are single cycle except for program  
branches which take two cycles. The easy to use and easy to remember instruction set reduces development  
time significantly.  
The FM8PE53B consists of Power-on Reset (POR), Brown-out Reset (BOR), Power-up Reset Timer (PWRT),  
Oscillator Start-up Timer(OST), Watchdog Timer, OTP, SRAM, tri-state I/O port, I/O pull-high/open-drain/pull-down  
control, Power saving SLEEP mode, real time programmable clock/counter, Interrupt, Wake-up from SLEEP  
mode, and Code Protection for OTP products. There are three oscillator configurations to choose from, including  
the power-saving LF (Low Frequency) oscillator and cost saving RC oscillator.  
The FM8PE53B address 1K×13 of program memory.  
The FM8PE53B can directly or indirectly address its register files and data memory. All special function registers  
including the program counter are mapped in the data memory.  
BLOCK DIAGRAM  
DATA BUS  
Oscillator  
Circuit  
5-level  
STACK  
Control  
Interrupt  
Watchdog  
Timer  
Program  
Counter  
FSR  
SRAM  
PORTA  
PORTB  
Instruction  
Decoder  
ALU  
OTP-ROM  
Interrupt  
Control  
8-bit Timer0  
Accumulator  
Web site: http://www.feeling-techcom.tw  
Rev1.02.011 Aug 21, 2014  
P.2/FM8PE53B  
EELING  
FM8PE53B  
ECHNOLOGY  
PIN CONNECTION  
PDIP, SOP  
IOA0  
IOB7  
1
2
3
4
5
6
7
14 IOA1  
13 IOA2  
12 IOA3  
11 VSS  
IOB6  
FM8PE53B  
VDD  
IOB5/OSCI  
IOB4/OSCO  
IOB3/RSTB  
10 IOB0/INT  
9
8
IOB1  
IOB2/T0CKI  
PIN DESCRIPTIONS  
Name  
I/O  
I/O  
Description  
IOA0 ~ IOA3 as bi-direction I/O pin  
Software controlled pull-down  
IOA0 ~ IOA3  
Bi-direction I/O pin with system wake-up function  
IOB0/INT  
IOB1  
I/O Software controlled pull-high/open-drain/pull-down  
External interrupt input  
Bi-direction I/O pin with system wake-up function  
I/O  
Software controlled pull-high/open-drain/pull-down  
Bi-direction I/O pin with system wake-up function  
I/O Software controlled pull-high/open-drain/pull-down  
External clock input to Timer0  
IOB2/T0CKI  
Input pin or open-drain output pin with system wake-up function  
System clear (RESET) input. Active low RESET to the device. Weak pull-high  
always on if configured as RSTB.  
Voltage on this pin must not exceed VDD, See IOB3 diagram for detail  
description.  
IOB3/RSTB  
IOB4/OSCO  
I/O  
Bi-direction I/O pin with system wake-up function (RCOUT optional in IRC/ERIC,  
ERC mode)  
I/O Software controlled pull-high/open-drain  
Oscillator crystal output (HF, XT, LF mode)  
Outputs with the instruction cycle rate (RCOUT optional in IRC/ERIC, ERC mode)  
Bi-direction I/O pin with system wake-up function (IRC mode)  
Software controlled pull-high/open-drain  
Oscillator crystal input (HF, XT, LF mode)  
IOB5/OSCI  
I/O  
External clock source input (ERIC, ERC mode)  
Bi-direction I/O pin with system wake-up function  
Software controlled pull-high/open-drain  
IOB6 ~ IOB7  
I/O  
Vdd  
Vss  
-
-
Positive supply  
Ground  
Legend: I=input, O=output, I/O=input/output  
Web site: http://www.feeling-techcom.tw  
Rev1.02.011 Aug 21, 2014  
P.3/FM8PE53B  
EELING  
FM8PE53B  
ECHNOLOGY  
1.0 MEMORY ORGANIZATION  
FM8PE53B memory is organized into program memory and data memory.  
1.1 Program Memory Organization  
The FM8PE53B has a 10-bit Program Counter capable of addressing a 1K×13 program memory space.  
The RESET vector for the FM8PE53B is at 3FFh.  
The H/W interrupt vector is at 008h. And the S/W interrupt vector is at 002h.  
FM8PE53B supports all OTP area CALL/GOTO instructions without page.  
Figure 1.1: Program Memory Map and STACK  
PC<9:0>  
Stack 1  
Stack 2  
Stack 3  
Stack 4  
Stack 5  
3FFh  
Reset Vector  
:
:
008h H/W Interrupt Vector  
002h S/W Interrupt Vector  
000h  
FM8PE53B  
Web site: http://www.feeling-techcom.tw  
Rev1.02.011 Aug 21, 2014  
P.4/FM8PE53B  
EELING  
FM8PE53B  
ECHNOLOGY  
1.2 Data Memory Organization  
Data memory is composed of Special Function Registers and General Purpose Registers.  
The General Purpose Registers are accessed either directly or indirectly through the FSR register.  
The Special Function Registers are registers used by the CPU and peripheral functions to control the operation of  
the device.  
Table 1.1: Registers File Map for FM8PE53B  
Address  
00h  
Description  
INDF  
TMR0  
01h  
02h  
PCL  
N/A  
OPTION  
03h  
STATUS  
04h  
FSR  
05h  
PORTA  
05h  
06h  
IOSTA  
IOSTB  
06h  
PORTB  
07h  
General Purpose Register  
PCON  
08h  
09h  
WUCON  
0Ah  
PCHBUF  
0Bh  
PDCON  
0Ch  
0Dh  
0Eh  
ODCON  
PHCON  
INTEN  
0Fh  
INTFLAG  
General Purpose Registers  
10h ~ 3Fh  
Table 1.2: The Registers Controlled by OPTION or IOST Instructions  
Address  
N/A (w)  
05h (w)  
06h (w)  
Name  
OPTION  
IOSTA  
B7  
*
B6  
B5  
B4  
B3  
B2  
B1  
B0  
INTEDG  
T0CS  
T0SE  
PSA  
PS2  
PS1  
PS0  
Port A I/O Control Register  
Port B I/O Control Register  
IOSTB  
Table 1.3: Operational Registers Map  
Address  
00h (r/w)  
01h (r/w)  
02h (r/w)  
03h (r/w)  
04h (r/w)  
05h (r/w)  
06h (r/w)  
07h (r/w)  
08h (r/w)  
09h (r/w)  
0Ah (r/w)  
0Bh (r/w)  
0Ch (r/w)  
0Dh (r/w)  
0Eh (r/w)  
0Fh (r/w)  
Name  
INDF  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
C
Uses contents of FSR to address data memory (not a physical register)  
8-bit real-time clock/counter  
TMR0  
PCL  
Low order 8 bits of PC  
̅̅̅̅  
̅̅̅̅  
PD  
STATUS  
FSR  
RST  
*
GP1  
*
GP0  
TO  
Z
DC  
Indirect data memory address pointer  
PORTA  
PORTB  
SRAM  
IOA3  
IOB3  
IOA2  
IOB2  
IOA1  
IOB1  
IOA0  
IOB0  
IOB7  
IOB6  
IOB5  
IOB4  
General Purpose Register  
PCON  
WDTE  
WUB7  
-
EIS  
WUB6  
-
LVDTE  
WUB5  
-
*
*
*
*
*
WUCON  
PCHBUF  
PDCON  
ODCON  
PHCON  
INTEN  
INTFLAG  
WUB4  
WUB3  
-
WUB2  
-
WUB1  
WUB0  
-
2 MSBs Buffer of PC  
/PDB2  
ODB6  
/PHB6  
*
/PDB1  
ODB5  
/PHB5  
*
/PDB0  
ODB4  
/PHB4  
*
/PDA3  
/PDA2  
ODB2  
/PHB2  
INTIE  
INTIF  
/PDA1  
ODB1  
/PHB1  
PBIE  
/PDA0  
ODB0  
/PHB0  
T0IE  
ODB7  
/PHB7  
GIE  
*
-
-
-
-
-
PBIF  
T0IF  
Legend: - = unimplemented, read as ‘0’, * = unimplemented, read as ‘1’,  
Web site: http://www.feeling-techcom.tw  
Rev1.02.011 Aug 21, 2014  
P.5/FM8PE53B  
 
EELING  
FM8PE53B  
ECHNOLOGY  
2.0 FUNCTIONAL DESCRIPTIONS  
2.1 Operational Registers  
2.1.1  
INDF (Indirect Addressing Register)  
Address  
00h (r/w)  
Name  
INDF  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
Uses contents of FSR to address data memory (not a physical register)  
The INDF Register is not a physical register. Any instruction accessing the INDF register can actually access the  
register pointed by FSR Register. Reading the INDF register itself indirectly (FSR=”0”) will read 00h. Writing to the  
INDF register indirectly results in a no-operation (although status bits may be affected).  
The bits 5-0 of FSR register are used to select up to 64 registers (address: 00h ~ 3Fh).  
Example 2.1: INDIRECT ADDRESSING  
Register file 38 contains the value 10h  
Register file 39 contains the value 0Ah  
Load the value 38 into the FSR Register  
A read of the INDF Register will return the value of 10h  
Increment the value of the FSR Register by one (@FSR=39h)  
A read of the INDF register now will return the value of 0Ah.  
Figure 2.1: Direct/Indirect Addressing  
Direct Addressing  
From opcode  
Indirect Addressing  
From FSR register 0  
5
0
5
00h  
location select  
addressing INDF register  
location select  
3Fh  
Web site: http://www.feeling-techcom.tw  
Rev1.02.011 Aug 21, 2014  
P.6/FM8PE53B  
 
EELING  
FM8PE53B  
ECHNOLOGY  
2.1.2  
TMR0 (Time Clock/Counter register)  
Address  
01h (r/w)  
Name  
TMR0  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
8-bit real-time clock/counter  
The Timer0 is a 8-bit timer/counter. The clock source of Timer0 can come from the instruction cycle clock or by an  
external clock source (T0CKI pin) defined by T0CS bit (OPTION<5>). If T0CKI pin is selected, the Timer0 is  
increased by T0CKI signal rising/falling edge (selected by T0SE bit (OPTION<4>)).  
The prescaler is assigned to Timer0 by clearing the PSA bit (OPTION<3>). In this case, the prescaler will be  
cleared when TMR0 register is written with a value.  
2.1.3  
PCL (Low Bytes of Program Counter) & Stack  
Address  
02h (r/w)  
Name  
PCL  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
Low order 8 bits of PC  
FM8PE53B device has a 10-bit wide Program Counter (PC) and five-level deep 10-bit hardware push/pop stack.  
The low byte of PC is called the PCL register. This register is readable and writable. The high byte of PC is called  
the PCH register. This register contains the PC<9:8> bits and is not directly readable or writable. All updates to  
the PCH register go through the PCHBUF register. As a program instruction is executed, the Program Counter  
will contain the address of the next program instruction to be executed. The PC value is increased by one, every  
instruction cycle, unless an instruction changes the PC.  
For a GOTO instruction, the PC<9:0> is provided by the GOTO instruction word. The PCL register is mapped to  
PC<7:0>, and the PCHBUF register is not updated.  
For a CALL instruction, the PC<9:0> is provided by the CALL instruction word. The next PC will be loaded  
(PUSHed) onto the top of STACK. The PCL register is mapped to PC<7:0>, and the PCHBUF register is not  
updated.  
For a RETIA, RETFIE, or RETURN instruction, the PC are updated (POPed) from the top of STACK. The PCL  
register is mapped to PC<7:0>, and the PCHBUF register is not updated.  
For any instruction where the PCL is the destination, the PC<7:0> is provided by the instruction word or ALU  
result. However, the PC<9:8> will come from the PCHBUF<1:0> bits (PCHBUF PCH).  
PCHBUF register is never updated with the contents of PCH.  
Web site: http://www.feeling-techcom.tw  
Rev1.02.011 Aug 21, 2014  
P.7/FM8PE53B  
 
 
EELING  
FM8PE53B  
ECHNOLOGY  
Figure 2.2: Loading of PC in Different Situations  
Situation 1: GOTO Instruction  
PCH  
PCL  
9
8
-
7
-
0
PC  
Opcode <9:0>  
-
-
-
-
PCHBUF  
Situation 2: CALL Instruction  
STACK<9:0>  
Opcode <9:0>  
PCH  
PCL  
9
8
7
-
0
PC  
-
-
-
-
-
PCHBUF  
Situation 3: RETIA, RETFIE, or RETURN Instruction  
PCH PCL  
STACK<9:0>  
9
8
7
0
PC  
-
-
-
-
-
-
PCHBUF  
Situation 4: Instruction with PCL as destination  
PCH PCL  
8
9
7
0
PC  
ALU result <7:0>  
Or Opcode <7:0>  
PCHBUF<1:0>  
-
-
-
-
-
-
PCHBUF  
Note: PCHBUF is used only for instruction with PCL as destination for FM8PE53B.  
Web site: http://www.feeling-techcom.tw  
Rev1.02.011 Aug 21, 2014  
P.8/FM8PE53B  
EELING  
FM8PE53B  
ECHNOLOGY  
2.1.4  
STATUS (Status Register)  
Address  
03h (r/w)  
Name  
B7  
B6  
B5  
B4  
B3  
̅̅̅̅  
PD  
B2  
Z
B1  
B0  
C
̅̅̅̅  
STATUS  
RST  
GP1  
GP0  
TO  
DC  
This register contains the arithmetic status of the ALU, the RESET status.  
If the STATUS Register is the destination for an instruction that affects the Z, DC or C bits, then the write to these  
̅̅̅̅  
̅̅̅̅  
three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the TO and PD  
bits are not writable. Therefore, the result of an instruction with the STATUS Register as destination may be  
different than intended. For example, CLRR STATUS will clear the upper three bits and set the Z bit. This leaves  
the STATUS Register as 000u u1uu (where u = unchanged).  
C : Carry/borrow bit.  
ADDAR, ADDIA  
= 1, Carry occurred.  
= 0, No Carry occurred.  
SUBAR, SUBIA  
= 1, No borrow occurred.  
= 0, Borrow occurred.  
Note : A subtraction is executed by adding the two’s complement of the second operand. For rotate (RRR,  
RLR) instructions, this bit is loaded with either the high or low order bit of the source register.  
DC : Half carry/half borrow bit  
ADDAR, ADDIA  
= 1, Carry from the 4th low order bit of the result occurred.  
= 0, No Carry from the 4th low order bit of the result occurred.  
SUBAR, SUBIA  
= 1, No Borrow from the 4th low order bit of the result occurred.  
= 0, Borrow from the 4th low order bit of the result occurred.  
Z : Zero bit.  
= 1, The result of a logic operation is zero.  
= 0, The result of a logic operation is not zero.  
̅̅̅̅  
PD : Power down flag bit.  
= 1, after power-up or by the CLRWDT instruction.  
= 0, by the SLEEP instruction.  
̅̅̅̅  
TO : Time overflow flag bit.  
= 1, after power-up or by the CLRWDT or SLEEP instruction  
= 0, a watch-dog time overflow occurred  
GP1:GP0 : General purpose read/write bits.  
RST : Bit for wake-up type.  
= 1, Wake-up from SLEEP on Port B input change.  
= 0, Wake-up from other reset types.  
Web site: http://www.feeling-techcom.tw  
Rev1.02.011 Aug 21, 2014  
P.9/FM8PE53B  
 
EELING  
FM8PE53B  
ECHNOLOGY  
2.1.5  
FSR (Indirect Data Memory Address Pointer)  
Address  
04h (r/w)  
Name  
FSR  
B7  
*
B6  
*
B5  
B4  
B3  
B2  
B1  
B0  
Indirect data memory address pointer  
Bit5:Bit0 : Select registers address in the indirect addressing mode. See 2.1.1 for detail description.  
Bit7:Bit6 : Not used. Read as “1”s.  
2.1.6  
PORTA, PORTB (Port Data Registers)  
Address  
Name  
PORTA  
PORTB  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
05h (r/w)  
06h (r/w)  
IOA3  
IOB3  
IOA2  
IOB2  
IOA1  
IOB1  
IOA0  
IOB0  
IOB7  
IOB6  
IOB5  
IOB4  
Reading the port (PORTA, PORTB register) reads the status of the pins independent of the pin’s input/output  
modes. Writing to these ports will write to the port data latch.  
PORTA is a 4-bit port data Register. Only the low order 4 bits are used (PORTA<3:0>). Bits 7-4 are general  
purpose read/write bits.  
IOA3:IOA0 : PORTA I/O pin.  
= 1, Port pin is high level.  
= 0, Port pin is low level.  
IOB7:IOB0 : PORTB I/O pin.  
= 1, Port pin is high level.  
= 0, Port pin is low level.  
Note: IOB3 is open-drain output only if IOSTB3 = 0. See 2.1.17 for detail description.  
2.1.7  
PCON (Power Control Register)  
Address  
08h (r/w)  
Name  
PCON  
B7  
B6  
B5  
B4  
*
B3  
*
B2  
*
B1  
*
B0  
*
WDTE  
EIS  
LVDTE  
Bit4:Bit0 : Not used. Read as “1”s.  
LVDTE : LVDT (low voltage detector) enable bit.  
= 1, Enable LVDT.  
= 0, Disable LVDT.  
EIS : Define the function of IOB0/INT pin.  
= 1, INT (external interrupt pin) is selected. In this case, the I/O control bit of IOB0 must be set to “1”. The  
path of Port B input change of IOB0 pin is masked by hardware, the status of INT pin can also be read  
by way of reading PORTB.  
= 0, IOB0 (bi-directional I/O pin) is selected. The path of INT is masked.  
WDTE : WDT (watch-dog timer) enable bit.  
= 1, Enable WDT.  
= 0, Disable WDT.  
Web site: http://www.feeling-techcom.tw  
Rev1.02.011 Aug 21, 2014  
P.10/FM8PE53B  
 
 
 
 
EELING  
FM8PE53B  
ECHNOLOGY  
2.1.8  
WUCON (Port B Input Change Interrupt/Wake-up Control Register)  
Address  
09h (r/w)  
Name  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
WUCON  
WUB7  
WUB6  
WUB5  
WUB4  
WUB3  
WUB2  
WUB1  
WUB0  
WUB0 : = 1, Enable the input change interrupt/wake-up function of IOB0 pin.  
= 0, Disable the input change interrupt/wake-up function of IOB0 pin.  
WUB1 : = 1, Enable the input change interrupt/wake-up function of IOB1 pin.  
= 0, Disable the input change interrupt/wake-up function of IOB1 pin.  
WUB2 : = 1, Enable the input change interrupt/wake-up function of IOB2 pin.  
= 0, Disable the input change interrupt/wake-up function of IOB2 pin.  
WUB3 : = 1, Enable the input change interrupt/wake-up function of IOB3 pin.  
= 0, Disable the input change interrupt/wake-up function of IOB3 pin.  
WUB4 : = 1, Enable the input change interrupt/wake-up function of IOB4 pin.  
= 0, Disable the input change interrupt/wake-up function of IOB4 pin.  
WUB5 : = 1, Enable the input change interrupt/wake-up function of IOB5 pin.  
= 0, Disable the input change interrupt/wake-up function of IOB5 pin.  
WUB6 : = 1, Enable the input change interrupt/wake-up function of IOB6 pin.  
= 0, Disable the input change interrupt/wake-up function of IOB6 pin.  
WUB7 : = 1, Enable the input change interrupt/wake-up function of IOB7 pin.  
= 0, Disable the input change interrupt/wake-up function of IOB7 pin.  
2.1.9  
PCHBUF (High Byte Buffer of Program Counter)  
Address  
0Ah (r/w)  
Name  
B7  
-
B6  
-
B5  
-
B4  
-
B3  
-
B2  
-
B1  
B0  
PCHBUF  
2 MSBs Buffer of PC  
Bit1:Bit0 : See 2.1.3 for detail description.  
Bit7:Bit2 : Not used. Read as “0”s.  
2.1.10 PDCON (Pull-down Control Register)  
Address  
Name  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
0Bh (r/w)  
PDCON  
/PDB2  
/PDB1  
/PDB0  
/PDA3  
/PDA2  
/PDA1  
/PDA0  
/PDA0 : = 1, Disable the internal pull-down of IOA0 pin.  
= 0, Enable the internal pull-down of IOA0 pin.  
/PDA1 : = 1, Disable the internal pull-down of IOA1 pin.  
= 0, Enable the internal pull-down of IOA1 pin.  
/PDA2 : = 1, Disable the internal pull-down of IOA2 pin.  
= 0, Enable the internal pull-down of IOA2 pin.  
Web site: http://www.feeling-techcom.tw  
Rev1.02.011 Aug 21, 2014  
P.11/FM8PE53B  
 
 
 
EELING  
ECHNOLOGY  
FM8PE53B  
/PDA3 : = 1, Disable the internal pull-down of IOA3 pin.  
= 0, Enable the internal pull-down of IOA3 pin.  
/PDB0 : = 1, Disable the internal pull-down of IOB0 pin.  
= 0, Enable the internal pull-down of IOB0 pin.  
/PDB1 : = 1, Disable the internal pull-down of IOB1 pin.  
= 0, Enable the internal pull-down of IOB1 pin.  
/PDB2 : = 1, Disable the internal pull-down of IOB2 pin.  
= 0, Enable the internal pull-down of IOB2 pin.  
Bit7 : General purpose read/write bit.  
2.1.11 ODCON (Open-drain Control Register)  
Address  
Name  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
0Ch (r/w)  
ODCON  
ODB7  
ODB6  
ODB5  
ODB4  
ODB2  
ODB1  
ODB0  
ODB0 : = 1, Enable the internal open-drain of IOB0 pin.  
= 0, Disable the internal open-drain of IOB0 pin.  
ODB1 : = 1, Enable the internal open-drain of IOB1 pin.  
= 0, Disable the internal open-drain of IOB1 pin.  
ODB2 : = 1, Enable the internal open-drain of IOB2 pin.  
= 0, Disable the internal open-drain of IOB2 pin.  
Bit3 : General purpose read/write bit.  
ODB4 : = 1, Enable the internal open-drain of IOB4 pin.  
= 0, Disable the internal open-drain of IOB4 pin.  
ODB5 : = 1, Enable the internal open-drain of IOB5 pin.  
= 0, Disable the internal open-drain of IOB5 pin.  
ODB6 : = 1, Enable the internal open-drain of IOB6 pin.  
= 0, Disable the internal open-drain of IOB6 pin.  
ODB7 : = 1, Enable the internal open-drain of IOB7 pin.  
= 0, Disable the internal open-drain of IOB7 pin.  
2.1.12 PHCON (Pull-high Control Register)  
Address  
Name  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
0Dh (r/w)  
PHCON  
/PHB7  
/PHB6  
/PHB5  
/PHB4  
/PHB2  
/PHB1  
/PHB0  
/PHB0 : = 1, Disable the internal pull-high of IOB0 pin.  
= 0, Enable the internal pull-high of IOB0 pin.  
/PHB1 : = 1, Disable the internal pull-high of IOB1 pin.  
= 0, Enable the internal pull-high of IOB1 pin.  
Web site: http://www.feeling-techcom.tw  
Rev1.02.011 Aug 21, 2014  
P.12/FM8PE53B  
 
 
EELING  
ECHNOLOGY  
FM8PE53B  
/PHB2 : = 1, Disable the internal pull-high of IOB2 pin.  
= 0, Enable the internal pull-high of IOB2 pin.  
Bit3 : General purpose read/write bit.  
/PHB4 : = 1, Disable the internal pull-high of IOB4 pin.  
= 0, Enable the internal pull-high of IOB4 pin.  
/PHB5 : = 1, Disable the internal pull-high of IOB5 pin.  
= 0, Enable the internal pull-high of IOB5 pin.  
/PHB6 : = 1, Disable the internal pull-high of IOB6 pin.  
= 0, Enable the internal pull-high of IOB6 pin.  
/PHB7 : = 1, Disable the internal pull-high of IOB7 pin.  
= 0, Enable the internal pull-high of IOB7 pin.  
2.1.13 INTEN (Interrupt Mask Register)  
Address  
Name  
B7  
B6  
*
B5  
*
B4  
*
B3  
*
B2  
B1  
B0  
0Eh (r/w)  
INTEN  
GIE  
INTIE  
PBIE  
T0IE  
T0IE : Timer0 overflow interrupt enable bit.  
= 1, Enable the Timer0 overflow interrupt.  
= 0, Disable the Timer0 overflow interrupt.  
PBIE : Port B input change interrupt enable bit.  
= 1, Enable the Port B input change interrupt.  
= 0, Disable the Port B input change interrupt.  
INTIE : External INT pin interrupt enable bit.  
= 1, Enable the External INT pin interrupt.  
= 0, Disable the External INT pin interrupt.  
Bit6:Bit3 : Not used. Read as “1”s.  
GIE : Global interrupt enable bit.  
= 1, Enable all un-masked interrupts. For wake-up from SLEEP mode through an interrupt event, the device  
will branch to the interrupt address (008h).  
= 0, Disable all interrupts. For wake-up from SLEEP mode through an interrupt event, the device will  
continue execution at the instruction after the SLEEP instruction.  
Note : When an interrupt event occur with the GIE bit and its corresponding interrupt enable bit are all set,  
the GIE bit will be cleared by hardware to disable any further interrupts. The RETFIE instruction will  
exit the interrupt routine and set the GIE bit to re-enable interrupt.  
Web site: http://www.feeling-techcom.tw  
Rev1.02.011 Aug 21, 2014  
P.13/FM8PE53B  
 
EELING  
FM8PE53B  
ECHNOLOGY  
2.1.14 INTFLAG (Interrupt Status Register)  
Address  
0Fh (r/w)  
Name  
B7  
-
B6  
-
B5  
-
B4  
-
B3  
-
B2  
B1  
B0  
INTFLAG  
INTIF  
PBIF  
T0IF  
T0IF : Timer0 overflow interrupt flag. Set when Timer0 overflows, reset by software.  
PBIF : Port B input change interrupt flag. Set when Port B input changes, reset by software.  
INTIF : External INT pin interrupt flag. Set by rising/falling (selected by INTEDG bit (OPTION<6>)) edge on INT  
pin, reset by software.  
Bit7:Bit3 : Not used. Read as “0”s.  
2.1.15 ACC (Accumulator)  
Address  
N/A (r/w)  
Name  
ACC  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
Accumulator  
Accumulator is an internal data transfer, or instruction operand holding. It cannot be addressed.  
2.1.16 OPTION Register  
Address  
N/A (w)  
Name  
B7  
*
B6  
B5  
B4  
B3  
B2  
B1  
B0  
OPTION  
INTEDG  
T0CS  
T0SE  
PSA  
PS2  
PS1  
PS0  
Accessed by OPTION instruction.  
By executing the OPTION instruction, the contents of the ACC Register will be transferred to the OPTION  
Register.  
The OPTION Register is a 7-bit wide, write-only register which contains various control bits to configure the  
Timer0/WDT prescaler, Timer0, and the external INT interrupt.  
The OPTION Register are “write-only” and are set all “1”s except INTEDG bit.  
PS2:PS0 : Prescaler rate select bits.  
PS2:PS0  
0 0 0  
0 0 1  
0 1 0  
0 1 1  
1 0 0  
1 0 1  
1 1 0  
1 1 1  
Timer0 Rate  
1:2  
WDT Rate  
1:1  
1:4  
1:8  
1:16  
1:32  
1:64  
1:128  
1:256  
1:2  
1:4  
1:8  
1:16  
1:32  
1:64  
1:128  
PSA : Prescaler assign bit.  
= 0, TMR0 (Timer0).  
= 1, WDT (watch-dog timer).  
T0SE : TMR0 source edge select bit.  
= 0, Rising edge on T0CKI pin.  
= 1, Falling edge on T0CKI pin.  
Web site: http://www.feeling-techcom.tw  
Rev1.02.011 Aug 21, 2014  
P.14/FM8PE53B  
 
 
 
EELING  
ECHNOLOGY  
FM8PE53B  
T0CS : TMR0 clock source select bit.  
= 0, internal instruction clock cycle.  
= 1, External T0CKI pin. Pin IOB2/T0CKI is forced to be an input even if IOST IOB2 = “0”.  
INTEDG : Interrupt edge select bit.  
= 0, interrupt on falling edge of INT pin.  
= 1, interrupt on rising edge of INT pin.  
Bit7 : Not used.  
2.1.17 IOSTA & IOSTB (Port I/O Control Registers)  
Address  
N/A (w)  
N/A (w)  
Name  
IOSTA  
IOSTB  
B7  
B6  
B5  
B4  
B3  
IOSTA3 IOSTA2 IOSTA1 IOSTA0  
IOSTB7 IOSTB6 IOSTB5 IOSTB4 IOSTB3 IOSTB2 IOSTB1 IOSTB0  
B2  
B1  
B0  
Accessed by IOST instruction.  
The Port I/O Control Registers are loaded with the contents of the ACC Register by executing the IOST R  
(05h~06h) instruction.  
The IOST Registers are “write-only” and are set (output drivers disabled) upon RESET.  
IOSTA3:IOSTA0 : PORTA I/O control bit.  
= 1, PORTA pin configured as an input (tri-stated).  
= 0, PORTA pin configured as an output.  
IOSTB7:IOSTB0 : PORTB I/O control bit.  
= 1, PORTB pin configured as an input (tri-stated).  
= 0, PORTB pin configured as an output.  
Note: 1. IOB3 is open-drain output only if IOSTB3 = 0.  
2. The IOB3 open-drain function will be fixed to “Disable” by H/W if the  
configuration bit IOB3OD= Disable, even if bit IOSTB3 = 0.  
Web site: http://www.feeling-techcom.tw  
Rev1.02.011 Aug 21, 2014  
P.15/FM8PE53B  
 
 
EELING  
FM8PE53B  
ECHNOLOGY  
2.2 I/O Ports  
Port A and port B are bi-directional tri-state I/O ports. Port A is a 4-pin I/O port. Port B is a 8-pin I/O port. Please  
note that IOB3 is an input or open-drain output pin.  
All I/O pins have data direction control registers (IOSTA, IOSTB) which can configure these pins as output or  
input. The exceptions are IOB2 which may be controlled by the T0CS bit (OPTION<5>).  
IOB<7:4> and IOB<2:0> have its corresponding pull-high control bits (PHCON register) to enable the weak  
internal pull-high. The weak pull-high is automatically turned off when the pin is configured as an output pin.  
IOA<3:0> and IOB<2:0> have its corresponding pull-down control bits (PDCON register) to enable the weak  
internal pull-down. The weak pull-down is automatically turned off when the pin is configured as an output pin.  
IOB<7:4> and IOB<2:0> have its corresponding open-drain control bits (ODCON register) to enable the open-  
drain output when these pins are configured to be an output pin.  
IOB<7:0> also provides the input change interrupt/wake-up function. Each pin has its corresponding input change  
interrupt/wake-up enable bits (WUCON) to select the input change interrupt/wake-up source.  
The IOB0 is also an external interrupt input signal by setting the EIS bit (PCON<6>). In this case, IOB0 input  
change interrupt/wake-up function will be disabled by hardware even if it is enabled by software.  
The CONFIGURATION words can set several I/Os to alternate functions. When acting as alternate functions the  
pins will read as “0” during port read.  
Figure 2.3: Block Diagram of I/O Pins  
IOA3 ~ IOA0:  
DATA BUS  
D
Q
IOST  
Latch  
IOST R  
EN  
Q
Q
I/O PIN  
D
DATA  
Latch  
WR PORT  
RD PORT  
EN  
Q
Pull-down is not shown in the figure  
Web site: http://www.feeling-techcom.tw  
Rev1.02.011 Aug 21, 2014  
P.16/FM8PE53B  
EELING  
ECHNOLOGY  
FM8PE53B  
IOB0/INT:  
DATA BUS  
D
Q
IOST  
Latch  
IOST R  
EN  
Q
Q
I/O PIN  
D
DATA  
Latch  
WR PORT  
EN  
Q
D
RD PORT  
Set PBIF  
Q
Q
Latch  
WUB0  
EIS  
EN  
INT  
INTEDG  
EIS  
Pull-high/pull-down and open-drain are not shown in the figure  
IOB3:  
DATA BUS  
D
Q
IOST  
Latch  
IOST R  
EN  
Q
Q
I/O PIN  
D
DATA  
Latch  
WR PORT  
RD PORT  
EN  
Q
D
RSTBIN  
Q
Q
Set PBIF  
WUB3  
Latch  
EN  
Voltage on this pin must not exceed VDD.  
Web site: http://www.feeling-techcom.tw  
Rev1.02.011 Aug 21, 2014  
P.17/FM8PE53B  
EELING  
ECHNOLOGY  
FM8PE53B  
IOB7 ~ IOB4, IOB2 ~ IOB1:  
DATA BUS  
D
Q
IOST  
Latch  
IOST R  
EN  
Q
Q
I/O PIN  
D
DATA  
Latch  
WR PORT  
RD PORT  
EN  
Q
D
Q
Q
Set PBIF  
WUBn  
Latch  
EN  
Pull-high/pull-down and open-drain are not shown in the figure  
Web site: http://www.feeling-techcom.tw  
Rev1.02.011 Aug 21, 2014  
P.18/FM8PE53B  
EELING  
FM8PE53B  
ECHNOLOGY  
2.3 Timer0/WDT & Prescler  
2.3.1  
Timer0  
The Timer0 is a 8-bit timer/counter. The clock source of Timer0 can come from the internal clock or by an external  
clock source (T0CKI pin).  
2.3.1.1 Using Timer0 with an Internal Clock: Timer mode  
Timer mode is selected by clearing the T0CS bit (OPTION<5>). In timer mode, the timer0 register (TMR0) will  
increment every instruction cycle (without prescaler). If TMR0 register is written, the increment is inhibited for the  
following two cycles.  
2.3.1.2 Using Timer0 with an External Clock: Counter mode  
Counter mode is selected by setting the T0CS bit (OPTON<5>). In this mode, Timer0 will increment either on  
every rising or falling edge of pin T0CKl. The incrementing edge is determined by the source edge select bit  
T0SE (OPTION<4>).  
The external clock requirement is due to internal phase clock (TOSC) synchronization. Also, there is a delay in the  
actual incrementing of Timer0 after synchronization.  
When no prescaler is used, the external clock input is the same as the prescaler output. The synchronization of  
T0CKI with the internal phase clocks is accomplished by sampling the prescaler output on the T2 and T4 cycles of  
the internal phase clocks. Therefore, it is necessary for T0CKI to be high for at least 2 TOSC and low for at least 2  
TOSC  
.
When a prescaler is used, the external clock input is divided by the asynchronous prescaler. For the external  
clock to meet the sampling requirement, the ripple counter must be taken into account. Therefore, it is necessary  
for T0CKI to have a period of at least 4Tosc divided by the prescaler value.  
2.3.2  
Watchdog Timer (WDT)  
The Watchdog Timer (WDT) is a free running on-chip RC oscillator which does not require any external  
components. So the WDT will still run even if the clock on the OSCI and OSCO pins is turned off, such as in  
SLEEP mode. During normal operation or in SLEEP mode, a WDT time-out will cause the device reset and the  
̅̅̅̅  
TO bit (STATUS<4>) will be cleared.  
The WDT can be disabled by clearing the control bit WDTE (PCON<7>) to “0”.  
The WDT has a nominal time-out period of 18ms, 4.5ms, 288ms or 72ms selected by SUT bit of configuration  
word (without prescaler). If a longer time-out period is desired, a prescaler with a division ratio of up to 1:128 can  
be assigned to the WDT controlled by the OPTION register. Thus, the longest time-out period is approxmately  
36.8 seconds.  
The CLRWDT instruction clears the WDT and the prescaler, if assigned to the WDT, and prevents it from timing  
out and generating a device reset.  
The SLEEP instruction resets the WDT and the prescaler, if assigned to the WDT. This gives the maximum  
SLEEP time before a WDT Wake-up Reset.  
2.3.3  
Prescaler  
An 8-bit counter (down counter) is available as a prescaler for the Timer0, or as a postscaler for the Watchdog  
Timer (WDT). Note that the prescaler may be used by either the Timer0 module or the WDT, but not both. Thus,  
a prescaler assignment for the Timer0 means that there is no prescaler for the WDT, and vice-versa.  
The PSA bit (OPTION<3>) determines prescaler assignment. The PS<2:0> bits (OPTION<2:0>) determine  
prescaler ratio.  
When the prescaler is assigned to the Timer0 module, all instructions writing to the TMR0 register will clear the  
prescaler. When it is assigned to WDT, a CLRWDT instruction will clear the prescaler along with the WDT.  
The prescaler is neither readable nor writable. On a RESET, the prescaler contains all ‘1’s.  
To avoid an unintended device reset, CLRWDT or CLRR TMR0 instructions must be executed when changing the  
Web site: http://www.feeling-techcom.tw  
Rev1.02.011 Aug 21, 2014  
P.19/FM8PE53B  
EELING  
FM8PE53B  
ECHNOLOGY  
prescaler assignment from Timer0 to the WDT, and vice-versa.  
Figure 2.4: Block Diagram of the Timer0/WDT Prescaler  
Instruction Cycle  
(Fosc/2, Fosc/4, Fosc/8)  
8
0
1
Data Bus  
Sync  
TMR0  
T0SE  
2 Cycles  
Register  
Set T0IF flag  
on overflow  
1
0
T0CKI (IOB2)  
T0CS  
PSA  
0
1
8-Bit  
WDT Time-out  
Prescaler  
1
0
Watchdog  
Timer  
PSA  
PSA  
PS2:PS0  
2.4 Interrupts  
The FM8PE53B has up to three sources of interrupt:  
1. External interrupt INT pin.  
2. TMR0 overflow interrupt.  
3. Port B input change interrupt (pins IOB7:IOB0).  
INTFLAG is the interrupt flag register that recodes the interrupt requests in the relative flags.  
A global interrupt enable bit, GIE (INTEN<7>), enables (if set) all un-masked interrupts or disables (if cleared) all  
interrupts. Individual interrupts can be enabled/disabled through their corresponding enable bits in INTEN register  
regardless of the status of the GIE bit.  
When an interrupt event occur with the GIE bit and its corresponding interrupt enable bit are all set, the GIE bit  
will be cleared by hardware to disable any further interrupts, and the next instruction will be fetched from address  
008h. The interrupt flag bits must be cleared by software before re-enabling GIE bit to avoid recursive interrupts.  
The RETFIE instruction exits the interrupt routine and set the GIE bit to re-enable interrupt.  
The flag bit (except PBIF bit) in INTFLAG register is set by interrupt event regardless of the status of its mask bit.  
Reading the INTFLAG register will be the logic AND of INTFLAG and INTEN.  
When an interrupt is generated by the INT instruction, the next instruction will be fetched from address 002h.  
2.4.1  
External INT Interrupt  
External interrupt on INT pin is rising or falling edge triggered selected by INTEDG (OPTION<6>).  
When a valid edge appears on the INT pin the flag bit INTIF (INTFLAG<2>) is set. This interrupt can be disabled  
by clearing INTIE bit (INTEN<2>).  
The INT pin interrupt can wake-up the system from SLEEP condition, if bit INTIE was set before going to SLEEP.  
If GIE bit was set, the program will execute interrupt service routine after wake-up; or if GIE bit was cleared, the  
program will execute next PC after wake-up.  
2.4.2  
Timer0 Interrupt  
An overflow (FFh 00h) in the TMR0 register will set the flag bit T0IF (INTFLAG<0>). This interrupt can be  
disabled by clearing T0IE bit (INTEN<0>).  
2.4.3  
Port B Input Change Interrupt  
An input change on IOB<7:0> set flag bit PBIF (INTFLAG<1>). This interrupt can be disabled by clearing PBIE bit  
(INTEN<1>).  
Web site: http://www.feeling-techcom.tw  
Rev1.02.011 Aug 21, 2014  
P.20/FM8PE53B  
EELING  
ECHNOLOGY  
FM8PE53B  
Before the port B input change interrupt is enabled, reading PORTB (any instruction accessed to PORTB,  
including read/write instructions) is necessary. Any pin which corresponding WUBn bit (WUCON<7:0>) is cleared  
to “0” or configured as output or IOB0 pin configured as INT pin will be excluded from this function.  
The port B input change interrupt also can wake-up the system from SLEEP condition, if bit PBIE was set before  
going to SLEEP. And GIE bit also decides whether or not the processor branches to the interrupt vector following  
wake-up. If GIE bit was set, the program will execute interrupt service routine after wake-up; or if GIE bit was  
cleared, the program will execute next PC after wake-up.  
2.5 Power-down Mode (SLEEP)  
Power-down mode is entered by executing a SLEEP instruction.  
̅̅̅̅  
̅̅̅̅  
When SLEEP instruction is executed, the PD bit (STATUS<3>) is cleared, the TO bit is set, the watchdog timer  
will be cleared and keeps running, and the oscillator driver is turned off.  
All I/O pins maintain the status they had before the SLEEP instruction was executed.  
2.5.1  
Wake-up from SLEEP Mode  
The device can wake-up from SLEEP mode through one of the following events:  
1. RSTB reset.  
2. WDT time-out reset (if enabled).  
3. Interrupt from RB0/INT pin, or PORTB change interrupt.  
External RSTB reset and WDT time-out reset will cause a device reset. The PD and TO bits can be used to  
̅̅̅̅  
̅̅̅̅  
̅̅̅̅  
determine the cause of device reset. The PD bit is set on power-up and is cleared when SLEEP instruction is  
̅̅̅̅  
executed. The TO bit is cleared if a WDT time-out occurred.  
For the device to wake-up through an interrupt event, the corresponding interrupt enable bit must be set. Wake-up  
is regardless of the GIE bit. If GIE bit is cleared, the device will continue execution at the instruction after the  
SLEEP instruction. If the GIE bit is set, the device will branch to the interrupt address (008h).  
In HF or LF oscillation mode, the system wake-up delay time is 18/4.5/288/72ms (selected by SUT bit of  
configuration word).  
And in IRC/ERIC or ERC oscillation mode, the system wake-up delay time is 650us.  
2.6 Reset  
FM8PE53B devices may be RESET in one of the following ways:  
1. Power-on Reset (POR)  
2. Brown-out Reset (BOR)  
3. RSTB Pin Reset  
4. WDT time-out Reset  
Some registers are not affected in any RESET condition. Their status is unknown on Power-on Reset and  
unchanged in any other RESET. Most other registers are reset to a “reset state” on Power-on Reset, RSTB or  
WDT Reset.  
A Power-on RESET pulse is generated on-chip when Vdd rise is detected. To use this feature, the user merely  
ties the RSTB pin to Vdd.  
On-chip Low Voltage Detector (LVD) places the device into reset when Vdd is below a fixed voltage. This ensures  
that the device does not continue program execution outside the valid operation Vdd range. Brown-out RESET is  
typically used in AC line or heavy loads switched applications.  
A RSTB or WDT Wake-up from SLEEP also results in a device RESET, and not a continuation of operation before  
SLEEP.  
̅̅̅̅  
̅̅̅̅  
The TO and PD bits (STATUS<4:3>) are set or cleared depending on the different reset conditions.  
2.6.1  
Power-up Reset Timer (PWRT)  
The Power-up Reset Timer provides a nominal 18/4.5/288/72ms (selected by SUT bit of configuration word) (or  
650us, varies based on oscillator selection and reset condition) delay after Power-on Reset (POR), Brown-out  
Web site: http://www.feeling-techcom.tw  
Rev1.02.011 Aug 21, 2014  
P.21/FM8PE53B  
EELING  
FM8PE53B  
ECHNOLOGY  
Reset (BOR), RSTB Reset or WDT time-out Reset. The device is kept in reset state as long as the PWRT is  
active.  
The PWDT delay will vary from device to device due to Vdd, temperature, and process variation.  
Table 2.1: PWRT Period  
Power-on Reset  
Brown-out Reset  
RSTB Reset  
WDT time-out Reset  
Oscillator Mode  
ERC & IRC/ERIC 18/4.5/288/72ms or 650us  
HF & XT & LF 18/4.5/288/72ms  
650 us  
18/4.5/288/72ms  
2.6.2  
Oscillator Start-up Timer (OST)  
The OST timer provides a 64 oscillator cycle delay (from OSCI input) after the PWRT delay (18/4.5/288/72ms or  
650us) is over. This delay ensures that the X’tal oscillator or resonator has started and stabilized. The device is  
kept in reset state as long as the OST is active.  
This counter only starts incrementing after the amplitude of the OSCI signal reaches the oscillator input  
thresholds.  
2.6.3  
Reset Sequence  
When Power-on Reset (POR), Brown-out Reset (BOR), RSTB Reset or WDT time-out Reset is detected, the  
reset sequence is as follows:  
1. The reset latch is set and the PWRT & OST are cleared.  
2. When the internal POR, BOR, RSTB Reset or WDT time-out Reset pulse is finished, then the PWRT begins  
counting.  
3. After the PWRT time-out, the OST is activated.  
4. And after the OST delay is over, the reset latch will be cleared and thus end the on-chip reset signal.  
In HF, XT or LF oscillation mode, the totally system reset delay time is 18/4.5/288/72ms plus 64 oscillator cycle  
time.  
And in IRC/ERIC or ERC oscillation mode, the totally system reset delay time is 18/4.5/288/72ms or 650us after  
Power-on Reset (POR), Brown-out Reset (BOR), or 650us after RSTB Reset or WDT time-out Reset.  
Figure 2.5: Simplified Block Diagram of on-chip Reset Circuit  
WDT  
Time-out  
WDT  
Module  
RSTB  
Vdd  
S
R
Q
Q
Reset  
Latch  
Low Voltage  
Detector  
(LVD)  
BOR  
CHIP RESET  
Power-on  
Reset  
POR  
(POR)  
RESET  
RESET  
On-Chip  
RC OSC  
Power-up  
Reset Timer  
(PWRT)  
Oscillator  
Start-up Timer  
(OST)  
OSCI  
Web site: http://www.feeling-techcom.tw  
Rev1.02.011 Aug 21, 2014  
P.22/FM8PE53B  
EELING  
FM8PE53B  
ECHNOLOGY  
Table 2.2: Reset Conditions for All Registers  
Power-on Reset  
Brown-out Reset  
RSTB Reset  
WDT Reset  
Register  
Address  
ACC  
OPTION  
N/A  
N/A  
xxxx xxxx  
-011 1111  
---- 1111  
1111 1111  
xxxx xxxx  
xxxx xxxx  
1111 1111  
0001 1xxx  
11xx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
101- ----  
0000 0000  
---- --00  
1111 1111  
0000 0000  
1111 1111  
0--- -000  
---- -000  
xxxx xxxx  
uuuu uuuu  
-011 1111  
---- 1111  
1111 1111  
uuuu uuuu  
uuuu uuuu  
1111 1111  
000# #uuu  
11uu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
101- ----  
0000 0000  
---- --00  
1111 1111  
0000 0000  
1111 1111  
0--- -000  
---- -000  
uuuu uuuu  
IOSTA  
N/A  
IOSTB  
N/A  
INDF  
00h  
TMR0  
01h  
PCL  
02h  
STATUS  
03h  
FSR  
04h  
PORTA  
05h  
PORTB  
06h  
General Purpose Register  
PCON  
07h  
08h  
WUCON  
PCHBUF  
PDCON  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10 ~ 3Fh  
ODCON  
PHCON  
INTEN  
INTFLAG  
General Purpose Registers  
Legend: u = unchanged, x = unknown, - = unimplemented,  
# = refer to the following table for possible values.  
̅̅̅̅ ̅̅̅̅  
Table 2.3: RST / TO / PD Status after Reset or Wake-up  
̅̅̅̅  
̅̅̅̅  
RST  
0
TO  
PD  
RESET was caused by  
Power-on Reset  
1
1
u
1
0
0
1
1
1
u
0
1
0
0
0
Brown-out reset  
0
RSTB Reset during normal operation  
RSTB Reset during SLEEP  
0
0
WDT Reset during normal operation  
WDT Wake-up during SLEEP  
Wake-up on pin change during SLEEP  
0
1
Legend: u = unchanged  
̅̅̅̅ ̅̅̅̅  
Table 2.4: Events AffectingTO / PDStatus Bits  
̅̅̅̅  
̅̅̅̅  
PD  
Event  
TO  
Power-on  
1
0
1
1
1
u
0
1
WDT Time-Out  
SLEEP instruction  
CLRWDT instruction  
Legend: u = unchanged  
Web site: http://www.feeling-techcom.tw  
Rev1.02.011 Aug 21, 2014  
P.23/FM8PE53B  
EELING  
FM8PE53B  
ECHNOLOGY  
2.7 Hexadecimal Convert to Decimal (HCD)  
Decimal format is another number format for FM8PE53B. When the content of the data memory has been  
assigned as decimal format, it is necessary to convert the results to decimal format after the execution of ALU  
instructions. When the decimal converting operation is processing, all of the operand data (including the contents  
of the data memory (RAM), accumulator (ACC), immediate data, and look-up table) should be in the decimal  
format, or the results of conversion will be incorrect.  
Instruction DAA can convert the ACC data from hexadecimal to decimal format after any addition operation and  
restored to ACC.  
The conversion operation is illustrated in example 2.2.  
Example 2.2: DAA CONVERSION  
Address Code  
NA  
n
#include  
<8PE53B.ASH>  
n+1  
n+2  
n+3  
n+4  
MOVIA  
MOVAR  
MOVIA  
ADDAR  
0x90  
;Set immediate data = decimal format number “90” (ACC 90h)  
;Load immediate data “90” to data memory address 30H  
;Set immediate data = decimal format number “10” (ACC 10h)  
;Contents of the data memory address 30H and ACC are binary-added  
;the result loads to the ACC (ACC A0h, C 0)  
0x30  
0x10  
0x30,A  
n+5  
n+6  
DAA  
;Convert the content of ACC to decimal format, and restored to ACC  
;The result in the ACC is “00” and the carry bit C is “1”. This represents the  
;decimal number “100”  
Instruction DAS can convert the ACC data from hexadecimal to decimal format after any subtraction operation  
and restored to ACC.  
The conversion operation is illustrated in example 2.3.  
Example 2.3: DAS CONVERSION  
Address Code  
NA  
n
#include  
<8PE53B.ASH>  
n+1  
n+2  
n+3  
n+4  
MOVIA  
MOVAR  
MOVIA  
SUBAR  
0x10  
;Set immediate data = decimal format number “10” (ACC 10h)  
;Load immediate data “90” to data memory address 30H  
;Set immediate data = decimal format number “20” (ACC 20h)  
;Contents of the data memory address 30H and ACC are binary-subtracted  
;the result loads to the ACC (ACC F0h, C 0)  
0x30  
0x20  
0x30,A  
n+5  
n+6  
DAS  
;Convert the content of ACC to decimal format, and restored to ACC  
;The result in the ACC is “90” and the carry bit C is “0”. This represents the  
;decimal number “ -10”  
Web site: http://www.feeling-techcom.tw  
Rev1.02.011 Aug 21, 2014  
P.24/FM8PE53B  
EELING  
FM8PE53B  
ECHNOLOGY  
2.8 Oscillator Configurations  
FM8PE53B can be operated in six different oscillator modes. Users can program FOSC configuration bit to select  
the appropriate modes:  
ERC: External Resistor/Capacitor Oscillator  
HF: High Frequency Crystal/Resonator Oscillator  
XT: Crystal/Resonator Oscillator  
LF: Low Frequency Crystal Oscillator  
IRC: Internal Resistor/Capacitor Oscillator  
ERIC: External Resistor/Internal Capacitor Oscillator  
In LF, XT, or HF modes, a crystal or ceramic resonator in connected to the OSCI and OSCO pins to establish  
oscillation. When in LF, XT, or HF modes, the devices can have an external clock source drive the OSCI pin.  
The ERC device option offers additional cost savings for timing insensitive applications. The RC oscillator  
frequency is a function of the resistor (Rext) and capacitor (Cext), the operating temperature, and the process  
parameter.  
The IRC/ERIC device option offers largest cost savings for timing insensitive applications. These devices offer 4  
different internal RC oscillator frequency, 8 MHz, 4 MHz, 1 MHz, and 455 KHz, which is selected by configuration  
bit (Fosc). Or user can change the oscillator frequency with external resistor. The ERIC oscillator frequency is a  
function of the resistor (Rext), the operating temperature, and the process parameter.  
Figure 2.6: HF, XT or LF Oscillator Modes (Crystal Operation or Ceramic Resonator)  
FM8PE53B  
C1  
OSCI  
SLEEP  
X`TAL  
RS  
R1  
RF  
OSCO  
C2  
Internal  
Circuit  
Figure 2.7: HF, XT or LF Oscillator Modes (External Clock Input Operation)  
FM8PE53B  
OSCI  
Clock from  
External System  
OSCO  
Web site: http://www.feeling-techcom.tw  
Rev1.02.011 Aug 21, 2014  
P.25/FM8PE53B  
EELING  
FM8PE53B  
ECHNOLOGY  
Figure 2.8: ERC Oscillator Mode (External RC Oscillator)  
FM8PE53B  
Rext  
OSCI  
Internal  
Circuit  
Cext  
/2, /4, /8  
OSCO  
Figure 2.9: ERIC Oscillator Mode (External R, Internal C Oscillator)  
FM8PE53B  
Rext  
OSCI  
Internal  
Circuit  
Cext  
(300pF~0.1uF)  
C
/2, /4, /8  
OSCO  
The typical oscillator frequency vs. external resistor is as following table  
Frequency  
455KHz  
1MHz  
Rext @ 3V  
850.6K  
536.6K  
179.1K  
95.3K  
4MHz  
8MHz  
16MHz  
44.5K  
Note: Values are provided for design reference only.  
Figure 2.10: IRC Oscillator Mode (Internal R, Internal C Oscillator)  
FM8PE53B  
OSCI  
C
Internal  
Circuit  
/2, /4, /8  
OSCO  
Web site: http://www.feeling-techcom.tw  
Rev1.02.011 Aug 21, 2014  
P.26/FM8PE53B  
EELING  
FM8PE53B  
ECHNOLOGY  
2.9 Configuration Words  
Table 2.5: Configuration Words  
Name  
Description  
Oscillator Selection Bit  
ERC mode (external R & C) (default)  
IOB4/OSCO pin controlled by OSCOUT configuration bit  
HF mode  
XT mode  
LF mode  
4 MHz IRC mode (internal R & C)  
IOB4/OSCO pin controlled by OSCOUT configuration bit  
8 MHz IRC mode (internal R & C)  
IOB4/OSCO pin controlled by OSCOUT configuration bit  
1 MHz IRC mode (internal R & C)  
IOB4/OSCO pin controlled by OSCOUT configuration bit  
455 KHz IRC mode (internal R & C)  
IOB4/OSCO pin controlled by OSCOUT configuration bit  
ERIC mode (external R & internal C)  
IOB4/OSCO pin controlled by OSCOUT configuration bit  
Note: See Table 2.6 for detail description.  
Low Voltage Detector Selection Bit  
Enable, LVDT voltage = 3.0V (default)  
Enable, LVDT voltage = 2.3V  
Fosc  
Enable, LVDT voltage = 2.6V  
LVDT  
Enable, LVDT voltage = 2.8V  
Enable, LVDT voltage = 2.1V  
Enable, LVDT voltage = 2.1V, Controlled by SLEEP  
Enable, LVDT voltage = 1.9V  
Disable  
PWRT & WDT Time Period Selection Bit (The value must be a multiple of prescaler rate)  
PWRT = WDT prescaler rate = 18ms (default)  
PWRT = WDT prescaler rate = 4.5ms  
PWRT = WDT prescaler rate = 288ms  
PWRT = WDT prescaler rate = 72ms  
PWRT = 650us, WDT prescaler rate = 18ms  
PWRT = 650us, WDT prescaler rate = 4.5ms  
PWRT = 650us, WDT prescaler rate = 288ms  
PWRT = 650us, WDT prescaler rate = 72ms  
IOB4/OSCO Pin Selection Bit for IRC/ERIC/ERC Mode  
OSCO pin is selected (default)  
SUT  
OSCOUT  
RSTBIN  
WDTEN  
IOB4 pin is selected  
IOB3/RSTB Pin Selection Bit  
IOB3 pin is selected (default)  
RSTB pin is selected  
Watchdog Timer Enable Bit  
WDT enabled (default)  
WDT disabled  
Code Protection Bit  
PROTECT OTP code protection off (default)  
OTP code protection on  
Instruction Period Selection Bit  
Four oscillator periods (default)  
Two oscillator periods  
OSCD  
Eight oscillator periods  
Web site: http://www.feeling-techcom.tw  
Rev1.02.011 Aug 21, 2014  
P.27/FM8PE53B  
EELING  
FM8PE53B  
ECHNOLOGY  
Name  
Description  
Power Mode Selection Bit  
Non-power saving (default)  
Power saving  
PMOD  
Read Port Control Bit for Output Pins  
From registers (default)  
From pins  
RDPORT  
I/O Pin Input Buffer Control Bit  
SCHMITT With Schmitt-trigger (default)  
Without Schmitt-trigger  
IOB3 Pin Open-Drain Output Enable Bit  
IOB3OD  
Enable open-drain function (IOB3 pin is Bi-direction) (default)  
Disable open-drain function (IOB3 pin is Only input)  
Table 2.6: Selection of IOB5/OSCI and IOB4/OSCO Pins  
Mode of oscillation  
IRC  
IOB5/OSCI  
Force to IOB5  
Force to OSCI  
Force to OSCI  
IOB4/OSCO  
IOB4/OSCO selected by OSCOUT bit  
ERC, ERIC  
HF, XT, LF  
IOB4/OSCO selected by OSCOUT bit  
Force to OSCO  
Web site: http://www.feeling-techcom.tw  
Rev1.02.011 Aug 21, 2014  
P.28/FM8PE53B  
EELING  
FM8PE53B  
ECHNOLOGY  
3.0 INSTRUCTION SET  
Mnemonic,  
Operands  
Status  
Affected  
Description  
Operation  
Cycles  
BCR  
R, bit Clear bit in R  
R, bit Set bit in R  
0 R<b>  
1
1
1/2(1)  
1/2(1)  
1
-
-
-
-
-
BSR  
1 R<b>  
BTRSC  
BTRSS  
NOP  
R, bit Test bit in R, Skip if Clear  
R, bit Test bit in R, Skip if Set  
No Operation  
Skip if R<b> = 0  
Skip if R<b> = 1  
No operation  
00h WDT,  
00h WDT prescaler  
00h WDT,  
̅̅̅̅ ̅̅̅̅  
CLRWDT  
Clear Watchdog Timer  
1
TO, PD  
̅̅̅̅ ̅̅̅̅  
SLEEP  
OPTION  
DAA  
Go into power-down mode  
Load OPTION register  
1
1
1
TO, PD  
00h WDT prescaler  
ACC OPTION  
-
Adjust ACC’s data format from HEX to  
DEC after any addition operation  
ACC(hex) ACC (dec)  
C
Adjust ACC’s data format from HEX to  
DEC after any subtraction operation  
DAS  
ACC(hex) ACC (dec)  
Top of Stack PC  
1
2
2
-
-
-
RETURN  
RETFIE  
Return from subroutine  
Top of Stack PC,  
1 GIE  
Return from interrupt, set GIE bit  
PC + 1 Top of Stack  
002h PC  
INT  
S/W interrupt  
2
-
IOST  
R
Load IOST register  
Clear ACC  
ACC IOST register  
00h ACC  
00h R  
1
1
1
1
1
1
-
CLRA  
CLRR  
MOVAR  
MOVR  
DECR  
Z
Z
-
R
R
Clear R  
Move ACC to R  
ACC R  
R, d Move R  
R dest  
Z
Z
R, d Decrement R  
R - 1 dest  
R - 1 dest,  
Skip if result = 0  
DECRSZ  
INCR  
R, d Decrement R, Skip if 0  
R, d Increment R  
1/2(1)  
1
-
Z
-
R + 1 dest  
R + 1 dest,  
Skip if result = 0  
INCRSZ  
R, d Increment R, Skip if 0  
1/2(1)  
ADDAR  
SUBAR  
ADCAR  
SBCAR  
ANDAR  
IORAR  
XORAR  
COMR  
R, d Add ACC and R  
R + ACC dest  
R - ACC dest  
1
1
1
1
1
1
1
1
C, DC, Z  
R, d Subtract ACC from R  
R, d Add ACC and R with Carry  
R, d Subtract ACC from R with Carry  
R, d AND ACC with R  
C, DC, Z  
R + ACC + C dest  
C, DC, Z  
̅̅̅̅̅̅̅  
R + ACC + C dest  
C, DC, Z  
ACC and R dest  
ACC or R dest  
R xor ACC dest  
Z
Z
Z
Z
R, d Inclusive OR ACC with R  
R, d Exclusive OR ACC with R  
R, d Complement R  
Rdest  
R<7> C,  
RLR  
R, d Rotate left R through Carry  
R<6:0> dest<7:1>,  
C dest<0>  
1
C
C dest<7>,  
RRR  
R, d Rotate right R through Carry  
R, d Swap R  
R<7:1> dest<6:0>,  
R<0> C  
1
1
C
-
R<3:0> dest<7:4>,  
R<7:4> dest<3:0>  
SWAPR  
Web site: http://www.feeling-techcom.tw  
Rev1.02.011 Aug 21, 2014  
P.29/FM8PE53B  
EELING  
FM8PE53B  
ECHNOLOGY  
Mnemonic,  
Operands  
Status  
Description  
Operation  
Cycles  
Affected  
MOVIA  
I
I
I
I
I
I
Move Immediate to ACC  
I ACC  
1
1
1
1
1
1
-
ADDIA  
SUBIA  
ANDIA  
IORIA  
Add ACC and Immediate  
Subtract ACC from Immediate  
AND Immediate with ACC  
OR Immediate with ACC  
I + ACC ACC  
I - ACC ACC  
ACC and I ACC  
ACC or I ACC  
ACC xor I ACC  
C, DC, Z  
C, DC, Z  
Z
Z
Z
XORIA  
Exclusive OR Immediate to ACC  
I ACC,  
RETIA  
I
Return, place Immediate in ACC  
2
-
Top of Stack PC  
PC + 1 Top of Stack,  
I PC  
CALL  
I
I
Call subroutine  
2
2
-
-
GOTO  
Unconditional branch  
I PC  
Note: 1. 2 cycles for skip, else 1 cycle.  
2. bit :Bit address within an 8-bit register R  
R :Register address (00h to 3Fh)  
I :Immediate data  
ACC :Accumulator  
d :Destination select;  
=0 (store result in ACC)  
=1 (store result in file register R)  
dest :Destination  
PC :Program Counter  
PCH :High Byte register of Program Counter  
WDT :Watchdog Timer Counter  
GIE :Global interrupt enable bit  
̅̅̅̅  
TO :Time-out bit  
̅̅̅̅  
PD :Power-down bit  
C :Carry bit  
DC :Digital carry bit  
Z :Zero bit  
Web site: http://www.feeling-techcom.tw  
Rev1.02.011 Aug 21, 2014  
P.30/FM8PE53B  
EELING  
ECHNOLOGY  
FM8PE53B  
ADCAR  
Add ACC and R with Carry  
Syntax:  
ADCAR R, d  
Operands:  
0
d
R
[0,1]  
0x3F  
Operation:  
R + ACC + C dest  
Status Affected:  
Description:  
C, DC, Z  
Add the contents of the ACC register and register ‘R’ with Carry. If ‘d’ is 0 the result is  
stored in the ACC register. If ‘d’ is ‘1’ the result is stored back in register ‘R’.  
1
Cycles:  
ADDAR  
Syntax:  
Add ACC and R  
ADDAR R, d  
Operands:  
0
d
R
[0,1]  
0x3F  
Operation:  
ACC + R dest  
Status Affected:  
Description:  
C, DC, Z  
Add the contents of the ACC register and register ‘R’. If ‘d’ is 0 the result is stored in the  
ACC register. If ‘d’ is ‘1’ the result is stored back in register ‘R’.  
1
Cycles:  
ADDIA  
Add ACC and Immediate  
Syntax:  
ADDIA I  
Operands:  
Operation:  
Status Affected:  
Description:  
0
I
0xFF  
ACC + I ACC  
C, DC, Z  
Add the contents of the ACC register with the 8-bit immediate ‘I’. The result is placed in the  
ACC register.  
1
Cycles:  
ANDAR  
Syntax:  
AND ACC and R  
ANDAR R, d  
Operands:  
0
d
R
[0,1]  
0x3F  
Operation:  
ACC and R dest  
Status Affected:  
Description:  
Z
The contents of the ACC register are AND’ed with register ‘R’. If ‘d’ is 0 the result is stored  
in the ACC register. If ‘d’ is ‘1’ the result is stored back in register ‘R’.  
1
Cycles:  
ANDIA  
AND Immediate with ACC  
Syntax:  
ANDIA I  
Operands:  
Operation:  
Status Affected:  
Description:  
0
I
0xFF  
ACC AND I ACC  
Z
The contents of the ACC register are AND’ed with the 8-bit immediate ‘I’. The result is  
placed in the ACC register.  
1
Cycles:  
Web site: http://www.feeling-techcom.tw  
Rev1.02.011 Aug 21, 2014  
P.31/FM8PE53B  
EELING  
ECHNOLOGY  
FM8PE53B  
BCR  
Clear Bit in R  
Syntax:  
BCR R, b  
Operands:  
0
0
R
b
0x3F  
7
Operation:  
Status Affected:  
Description:  
Cycles:  
0 R<b>  
None  
Clear bit ‘b’ in register ‘R’.  
1
BSR  
Set Bit in R  
Syntax:  
Operands:  
BSR R, b  
0
0
R
b
0x3F  
7
Operation:  
Status Affected:  
Description:  
Cycles:  
1 R<b>  
None  
Set bit ‘b’ in register ‘R’.  
1
BTRSC  
Test Bit in R, Skip if Clear  
Syntax:  
BTRSC R, b  
Operands:  
0
0
R
b
0x3F  
7
Operation:  
Skip if R<b> = 0  
Status Affected:  
Description:  
None  
If bit ‘b’ in register ‘R’ is 0 then the next instruction is skipped.  
If bit ‘b’ is 0 then next instruction fetched during the current instruction execution is  
discarded, and a NOP is executed instead making this a 2-cycle instruction.  
1/2  
Cycles:  
BTRSS  
Test Bit in R, Skip if Set  
Syntax:  
BTRSS R, b  
Operands:  
0
0
R
b
0x3F  
7
Operation:  
Skip if R<b> = 1  
Status Affected:  
Description:  
None  
If bit ‘b’ in register ‘R’ is ‘1’ then the next instruction is skipped.  
If bit ‘b’ is ‘1’, then the next instruction fetched during the current instruction execution, is  
discarded and a NOP is executed instead, making this a 2-cycle instruction.  
1/2  
Cycles:  
CALL  
Subroutine Call  
Syntax:  
CALL I  
Operands:  
Operation:  
0
I
0x3FF  
PC +1 Top of Stack;  
I PC  
Status Affected:  
Description:  
None  
Subroutine call. First, return address (PC+1) is pushed onto the stack. The 10-bit  
immediate address is loaded into PC bits <9:0>. CALL is a 2-cycle instruction.  
2
Cycles:  
Web site: http://www.feeling-techcom.tw  
Rev1.02.011 Aug 21, 2014  
P.32/FM8PE53B  
EELING  
ECHNOLOGY  
FM8PE53B  
CLRA  
Clear ACC  
Syntax:  
CLRA  
Operands:  
Operation:  
None  
00h ACC;  
1 Z  
Status Affected:  
Description:  
Cycles:  
Z
The ACC register is cleared. Zero bit (Z) is set.  
1
CLRR  
Clear R  
Syntax:  
CLRR R  
Operands:  
Operation:  
0
R
0x3F  
00h R;  
1 Z  
Status Affected:  
Description:  
Cycles:  
Z
The contents of register ‘R’ are cleared and the Z bit is set.  
1
CLRWDT  
Syntax:  
Clear Watchdog Timer  
CLRWDT  
Operands:  
Operation:  
None  
00h WDT;  
00h WDT prescaler (if assigned);  
̅̅̅̅  
1 TO;  
̅̅̅̅  
1 PD  
̅̅̅̅ ̅̅̅̅  
Status Affected:  
Description:  
TO, PD  
The CLRWDT instruction resets the WDT. It also resets the prescaler, if the prescaler is  
̅̅̅̅  
̅̅̅̅  
assigned to the WDT and not Timer0. Status bits TO and PD are set.  
1
Cycles:  
COMR  
Complement R  
Syntax:  
COMR R, d  
Operands:  
0
d
R
[0,1]  
0x3F  
Operation:  
R dest  
Status Affected:  
Description:  
Z
The contents of register ‘R’ are complemented. If ‘d’ is 0 the result is stored in the ACC  
register. If ‘d’ is 1 the result is stored back in register ‘R’.  
1
Cycles:  
DAA  
Adjust ACC’s data format from HEX to DEC  
Syntax:  
DAA  
Operands:  
Operation:  
Status Affected:  
Description:  
None  
ACC(hex) ACC(dec)  
C
Convert the ACC data from hexadecimal to decimal format after any addition operation and  
restored to ACC.  
1
Cycles:  
Web site: http://www.feeling-techcom.tw  
Rev1.02.011 Aug 21, 2014  
P.33/FM8PE53B  
EELING  
ECHNOLOGY  
FM8PE53B  
DAS  
Adjust ACC’s data format from HEX to DEC  
Syntax:  
DAS  
Operands:  
Operation:  
Status Affected:  
Description:  
None  
ACC(hex) ACC(dec)  
None  
Convert the ACC data from hexadecimal to decimal format after any subtraction operation  
and restored to ACC.  
1
Cycles:  
DECR  
Decrement R  
Syntax:  
Operands:  
DECR R, d  
0
d
R
[0,1]  
0x3F  
Operation:  
R - 1 dest  
Status Affected:  
Description:  
Z
Decrement of register ‘R’. If ‘d’ is 0 the result is stored in the ACC register. If ‘d’ is 1 the  
result is stored back in register ‘R’.  
1
Cycles:  
DECRSZ  
Syntax:  
Decrement R, Skip if 0  
DECRSZ R, d  
Operands:  
0
d
R
[0,1]  
0x3F  
Operation:  
R - 1 dest; skip if result =0  
Status Affected:  
Description:  
None  
The contents of register ‘R’ are decrement. If ‘d’ is 0 the result is placed in the ACC  
register. If ‘d’ is 1 the result is stored back in register ’R’.  
If the result is 0, the next instruction, which is already fetched, is discarded and a NOP is  
executed instead and making it a 2-cycle instruction.  
1/2  
Cycles:  
GOTO  
Unconditional Branch  
Syntax:  
GOTO I  
Operands:  
Operation:  
Status Affected:  
Description:  
0
I
0x3FF  
I PC  
None  
GOTO is an unconditional branch. The 10-bit immediate value is loaded into PC bits <9:0>.  
GOTO is a 2-cycle instruction.  
2
Cycles:  
INCR  
Increment R  
Syntax:  
Operands:  
INCR R, d  
0
d
R
[0,1]  
0x3F  
Operation:  
R + 1 dest  
Status Affected:  
Description:  
Z
The contents of register ‘R’ are increment. If ‘d’ is 0 the result is placed in the ACC register.  
If ‘d’ is 1 the result is stored back in register ‘R’.  
1
Cycles:  
Web site: http://www.feeling-techcom.tw  
Rev1.02.011 Aug 21, 2014  
P.34/FM8PE53B  
EELING  
ECHNOLOGY  
FM8PE53B  
INCRSZ  
Increment R, Skip if 0  
Syntax:  
INCRSZ R, d  
Operands:  
0
d
R
[0,1]  
0x3F  
Operation:  
R + 1 dest, skip if result = 0  
Status Affected:  
Description:  
None  
The contents of register ‘R’ are increment. If ‘d’ is 0 the result is placed in the ACC register.  
If ‘d’ is the result is stored back in register ‘R’.  
If the result is 0, then the next instruction, which is already fetched, is discarded and a NOP  
is executed instead and making it a 2-cycle instruction.  
1/2  
Cycles:  
INT  
S/W Interrupt  
Syntax:  
Operands:  
Operation:  
INT  
None  
PC + 1 Top of Stack,  
002h PC  
Status Affected:  
Description:  
None  
Interrupt subroutine call. First, return address (PC+1) is pushed onto the stack. The  
address 002h is loaded into PC bits <9:0>.  
2
Cycles:  
IORAR  
OR ACC with R  
Syntax:  
IORAR R, d  
Operands:  
0
d
R
[0,1]  
0x3F  
Operation:  
ACC or R dest  
Status Affected:  
Description:  
Z
Inclusive OR the ACC register with register ‘R’. If ‘d’ is 0 the result is placed in the ACC  
register. If ‘d’ is 1 the result is placed back in register ‘R’.  
1
Cycles:  
IORIA  
OR Immediate with ACC  
Syntax:  
IORIA I  
Operands:  
Operation:  
Status Affected:  
Description:  
0
I
0xFF  
ACC or I ACC  
Z
The contents of the ACC register are OR’ed with the 8-bit immediate ‘I’. The result is  
placed in the ACC register.  
1
Cycles:  
IOST  
Load IOST Register  
Syntax:  
IOST R  
Operands:  
Operation:  
Status Affected:  
Description:  
Cycles:  
R = 0x05 or 0x06  
ACC IOST register R  
None  
IOST register ‘R’ (R= 0x05 or 0x06) is loaded with the contents of the ACC register.  
1
Web site: http://www.feeling-techcom.tw  
Rev1.02.011 Aug 21, 2014  
P.35/FM8PE53B  
EELING  
ECHNOLOGY  
FM8PE53B  
MOVAR  
Move ACC to R  
Syntax:  
MOVAR R  
Operands:  
Operation:  
Status Affected:  
Description:  
Cycles:  
0
R
0x3F  
ACC R  
None  
Move data from the ACC register to register ‘R’.  
1
MOVIA  
Move Immediate to ACC  
Syntax:  
MOVIA I  
Operands:  
Operation:  
Status Affected:  
Description:  
Cycles:  
0
I
0xFF  
I ACC  
None  
The 8-bit immediate ‘I’ is loaded into the ACC register. The don’t cares will assemble as 0s.  
1
MOVR  
Move R  
Syntax:  
MOVR R, d  
Operands:  
0
d
R
[0,1]  
0x3F  
Operation:  
R dest  
Status Affected:  
Description:  
Z
The contents of register ‘R’ is moved to destination ‘d’. If ‘d’ is 0, destination is the ACC  
register. If ‘d’ is 1, the destination is file register ‘R’. ‘d’ is 1 is useful to test a file register  
since status flag Z is affected.  
1
Cycles:  
NOP  
No Operation  
NOP  
Syntax:  
Operands:  
Operation:  
Status Affected:  
Description:  
Cycles:  
None  
No operation  
None  
No operation.  
1
OPTION  
Load OPTION Register  
Syntax:  
OPTION  
Operands:  
Operation:  
Status Affected:  
Description:  
Cycles:  
None  
ACC OPTION  
None  
The content of the ACC register is loaded into the OPTION register.  
1
RETFIE  
Return from Interrupt, Set ‘GIE’ Bit  
Syntax:  
RETFIE  
Operands:  
Operation:  
None  
Top of Stack PC  
1 GIE  
Status Affected:  
Description:  
None  
The program counter is loaded from the top of the stack (the return address). The ‘GIE’ bit  
is set to 1. This is a 2-cycle instruction.  
2
Cycles:  
Web site: http://www.feeling-techcom.tw  
Rev1.02.011 Aug 21, 2014  
P.36/FM8PE53B  
EELING  
ECHNOLOGY  
FM8PE53B  
RETIA  
Return with Immediate in ACC  
Syntax:  
RETIA I  
Operands:  
Operation:  
0
I
0xFF  
I ACC;  
Top of Stack PC  
None  
Status Affected:  
Description:  
The ACC register is loaded with the 8-bit immediate ‘I’. The program counter is loaded from  
the top of the stack (the return address). This is a 2-cycle instruction.  
2
Cycles:  
RETURN  
Return from Subroutine  
Syntax:  
RETURN  
Operands:  
Operation:  
Status Affected:  
Description:  
None  
Top of Stack PC  
None  
The program counter is loaded from the top of the stack (the return address). This is a two-  
cycle instruction.  
2
Cycles:  
RLR  
Rotate Left R through Carry  
Syntax:  
Operands:  
RLR R, d  
0
d
R
[0,1]  
0x3F  
Operation:  
R<7> C;  
R<6:0> dest<7:1>;  
C dest<0>  
Status Affected:  
Description:  
C
The contents of register ‘R’ are rotated left one bit to the left through the Carry Flag. If ‘d’ is  
0 the result is placed in the ACC register. If ‘d’ is 1 the result is stored back in register ‘R’.  
1
Cycles:  
RRR  
Rotate Right R through Carry  
Syntax:  
Operands:  
RRR R, d  
0
d
R
[0,1]  
0x3F  
Operation:  
C dest<7>;  
R<7:1> dest<6:0>;  
R<0> C  
Status Affected:  
Description:  
C
The contents of register ‘R’ are rotated one bit to the right through the Carry Flag. If ‘d’ is 0  
the result is placed in the ACC register. If ‘d’ is 1 the result is placed back in register ‘R’.  
1
Cycles:  
Web site: http://www.feeling-techcom.tw  
Rev1.02.011 Aug 21, 2014  
P.37/FM8PE53B  
EELING  
ECHNOLOGY  
FM8PE53B  
SLEEP  
Enter SLEEP Mode  
Syntax:  
SLEEP  
Operands:  
Operation:  
None  
00h WDT;  
00h WDT prescaler;  
̅̅̅̅  
1 TO;  
̅̅̅̅  
0 PD  
̅̅̅̅ ̅̅̅̅  
Status Affected:  
Description:  
TO,PD  
̅̅̅̅  
̅̅̅̅  
Time-out status bit (TO) is set. The power-down status bit (PD) is cleared. The WDT and its  
prescaler cleared.  
The processor is put into SLEEP mode.  
1
Cycles:  
SBCAR  
Syntax:  
Subtract ACC from R with Carry  
SBCAR R, d  
Operands:  
0
d
R
[0,1]  
̅̅̅̅̅̅̅  
0x3F  
Operation:  
R + ACC + C dest  
Status Affected:  
Description:  
C, DC, Z  
Add the 2’s complement data of the ACC register from register ‘R’ with Carry. If ‘d’ is 0 the  
result is stored in the ACC register. If ‘d’ is 1 the result is stored back in register ‘R’.  
1
Cycles:  
SUBAR  
Syntax:  
Subtract ACC from R  
SUBAR R, d  
Operands:  
0
d
R
[0,1]  
0x3F  
Operation:  
R - ACC dest  
Status Affected:  
Description:  
C, DC, Z  
Subtract (2’s complement method) the ACC register from register ‘R’. If ‘d’ is 0 the result is  
stored in the ACC register. If ‘d’ is 1 the result is stored back in register ‘R’.  
1
Cycles:  
SUBIA  
Subtract ACC from Immediate  
Syntax:  
SUBIA I  
Operands:  
Operation:  
Status Affected:  
Description:  
0
I
0xFF  
I - ACC ACC  
C, DC, Z  
Subtract (2’s complement method) the ACC register from the 8-bit immediate ‘I’. The result  
is placed in the ACC register.  
1
Cycles:  
SWAPR  
Syntax:  
Swap nibbles in R  
SWAPR R, d  
Operands:  
0
d
R
[0,1]  
0x3F  
Operation:  
R<3:0> dest<7:4>;  
R<7:4> dest<3:0>  
Status Affected:  
Description:  
None  
The upper and lower nibbles of register ‘R’ are exchanged. If ‘d’ is 0 the result is placed in  
ACC register. If ‘d’ is 1 the result in placed in register ‘R’.  
1
Cycles:  
Web site: http://www.feeling-techcom.tw  
Rev1.02.011 Aug 21, 2014  
P.38/FM8PE53B  
EELING  
ECHNOLOGY  
FM8PE53B  
XORAR  
Exclusive OR ACC with R  
Syntax:  
XORAR R, d  
Operands:  
  0x3F  
d0R[0,1]  
Operation:  
ACC xor R dest  
Status Affected:  
Description:  
Z
Exclusive OR the contents of the ACC register with register ’R’. If ‘d’ is 0 the result is stored  
in the ACC register. If ‘d’ is 1 the result is stored back in register ‘R’.  
1
Cycles:  
XORIA  
Exclusive OR Immediate with ACC  
Syntax:  
XORIA I  
Operands:  
Operation:  
Status Affected:  
Description:  
0
I
0xFF  
ACC xor I ACC  
Z
The contents of the ACC register are XOR’ed with the 8-bit immediate ‘I’. The result is  
placed in the ACC register.  
1
Cycles:  
Web site: http://www.feeling-techcom.tw  
Rev1.02.011 Aug 21, 2014  
P.39/FM8PE53B  
EELING  
FM8PE53B  
ECHNOLOGY  
4.0 ABSOLUTE MAXIMUM RATINGS  
Ambient Operating Temperature  
Store Temperature  
0to +70℃  
-65to +150℃  
0V to +4.0V  
DC Supply Voltage (Vdd)  
Input Voltage with respect to Ground (Vss)  
-0.3V to (Vdd + 0.3)V  
5.0 OPERATING CONDITIONS  
DC Supply Voltage  
+1.8V to +3.5V  
Operating Temperature  
0to +70℃  
Web site: http://www.feeling-techcom.tw  
Rev1.02.011 Aug 21, 2014  
P.40/FM8PE53B  
EELING  
FM8PE53B  
ECHNOLOGY  
6.0 ELECTRICAL CHARACTERISTICS  
6.1 ELECTRICAL CHARACTERISTICS of FM8PE53B  
Ta=25℃  
Under Operating Conditions, at four clock instruction cycles and WDT & LVDT are disabled  
Sym  
FHF  
FXT  
FLF  
Description  
Conditions  
Min.  
4
Typ.  
Max.  
20  
Unit  
MHz  
MHz  
KHz  
MHz  
X’tal oscillation range HF mode, Vdd=3V  
X’tal oscillation range XT mode, Vdd=3V  
X’tal oscillation range LF mode, Vdd=3V  
0.455  
32  
20  
455  
16  
FERC RC oscillation range ERC mode, Vdd=3V  
ERIC mode, external R, Vdd=3V  
DC  
DC  
16  
FIRC/ERIC RC oscillation range  
MHz  
IRC mode, internal R, Vdd=3V  
With Schmitt-trigger  
0.455  
8
I/O ports, Vdd=3V  
1.7  
1.7  
VDD  
VDD  
RSTB, T0CKI pins, Vdd=3V  
Without Schmitt-trigger  
I/O ports, Vdd=3V  
VIH  
Input high voltage  
V
1.5  
1.5  
VDD  
VDD  
RSTB, T0CKI pins, Vdd=3V  
With Schmitt-trigger  
I/O ports, Vdd=3V  
VSS  
VSS  
0.8  
0.8  
RSTB, T0CKI pins, Vdd=3V  
Without Schmitt-trigger  
I/O ports, Vdd=3V  
VIL  
Input low voltage  
V
VSS  
VSS  
2.6  
0.9  
0.9  
RSTB, T0CKI pins, Vdd=3V  
IOH=-2.5mA, Vdd=3.3V  
IOL=8.7mA, Vdd=3.3V  
Input pin at Vss, Vdd=3.3V  
Input pin at Vdd, Vdd=3.3V  
VOH  
VOL  
IPH  
Output high voltage  
Output low voltage  
Pull-high current  
Pull-down current  
V
0.6  
-30  
25  
V
-10  
7
-21  
12  
uA  
uA  
uA  
IPD  
IWDT  
WDT current (18mS) Vdd=3.3V  
Vdd=3V  
1.2  
20.2  
17.5  
2
TWDT WDT period (18mS)  
mS  
Vdd=4V  
Vdd=3.3V LVDT = 2.8V  
Vdd=3V LVDT = 2.6V ~ 1.8V  
ILVDT  
ISB  
LVDT current  
uA  
uA  
1.5  
0.1  
Power down current Sleep mode, Vdd=3V  
0.3  
HF mode, Vdd=3V, 4 clock instruction, OSCI / OSCO =20pF / 20pF  
20MHz  
16MHz  
1.73  
1.45  
IDD  
Operating current  
mA  
mA  
HF mode, Vdd=3V, 2 clock instruction, OSCI / OSCO =20pF / 20pF  
20MHz  
16MHz  
2.2  
1.88  
XT mode, Vdd=3V, 4 clock instruction, OSCI / OSCO =20pF / 20pF  
20MHz  
16MHz  
8MHz  
1.06  
0.91  
0.64  
0.51  
0.42  
IDD  
Operating current  
4MHz  
455KHz  
Web site: http://www.feeling-techcom.tw  
Rev1.02.011 Aug 21, 2014  
P.41/FM8PE53B  
EELING  
FM8PE53B  
ECHNOLOGY  
Sym  
Description  
Conditions  
Min.  
Typ.  
Max.  
Unit  
XT mode, Vdd=3V, 2 clock instruction, OSCI / OSCO =20pF / 20pF  
20MHz  
16MHz  
8MHz  
1.5  
1.34  
0.81  
0.59  
0.44  
IDD  
Operating current  
mA  
4MHz  
455KHz  
LF mode, Vdd=3V, 4 clock instruction, OSCI / OSCO =20pF / 20pF  
455KHz  
32KHz  
300  
284  
IDD  
IDD  
IDD  
Operating current  
Operating current  
Operating current  
uA  
mA  
mA  
LF mode, Vdd=3V, 2 clock instruction, OSCI / OSCO =20pF / 20pF  
455KHz  
311.5  
287.5  
32KHz  
ERC mode, Vdd=3V, 4 clock instruction  
R=1Kohm  
F=16.1MHz  
F=11.3MHz  
3.15  
1.54  
C=3P  
R=3.3Kohm  
ERC mode, Vdd=3V, 2 clock instruction  
R=1Kohm  
F=16.2MHz  
F=11.7MHz  
3.78  
2.12  
C=3P  
R=3.3Kohm  
ERIC mode, external R, Vdd=3V, 4 clock instruction  
R=95.3Kohm  
R=179.1Kohm  
0.81  
0.56  
F=8MHz  
F=4MHz  
ERIC mode, external R, Vdd=3V, 2 clock instruction  
R=95.3Kohm  
R=179.1Kohm  
1.17  
0.74  
F=8MHz  
F=4MHz  
IRC mode, internal R, Vdd=3V, 4 clock instruction  
F=8MHz  
0.82  
0.59  
0.41  
0.38  
F=4MHz  
F=1MHz  
F=455KHz  
IDD  
Operating current  
mA  
IRC mode, internal R, Vdd=3V, 2 clock instruction  
F=8MHz  
F=4MHz  
F=1MHz  
F=455KHz  
1.24  
0.77  
0.45  
0.39  
Web site: http://www.feeling-techcom.tw  
Rev1.02.011 Aug 21, 2014  
P.42/FM8PE53B  
EELING  
FM8PE53B  
ECHNOLOGY  
6.2 ELECTRICAL CHARACTERISTICS Charts of FM8PE53B  
6.2.1  
6.2.2  
6.2.3  
Internal 4 MHz RC vs. Supply Voltage (Ta=25)  
3.00%  
2.00%  
1.00%  
0.00%  
4M LV  
1.8 1.9  
2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4  
-1.00%  
-2.00%  
-3.00%  
Voltage  
Note: Curves are for design reference only.  
Internal 8 MHz RC vs. Supply Voltage (Ta=25)  
2.50%  
1.50%  
0.50%  
8M LV  
-0.50%  
-1.50%  
-2.50%  
-3.50%  
1.8 1.9  
2
2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9  
3
3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9  
4
Voltage  
Note: Curves are for design reference only.  
Internal 1 MHz RC vs. Supply Voltage (Ta=25)  
3.00%  
2.00%  
1.00%  
0.00%  
1M LV  
1.8 1.9  
2
2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9  
3
3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9  
4
-1.00%  
-2.00%  
-3.00%  
Voltage  
Note: Curves are for design reference only.  
Web site: http://www.feeling-techcom.tw  
Rev1.02.011 Aug 21, 2014  
P.43/FM8PE53B  
EELING  
FM8PE53B  
ECHNOLOGY  
6.2.4  
Internal 455 KHz RC vs. Supply Voltage (Ta=25)  
3.00%  
2.00%  
1.00%  
0.00%  
455K LV  
1.8 1.9  
2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4  
-1.00%  
-2.00%  
-3.00%  
Voltage  
Note: Curves are for design reference only.  
Internal 4 MHz RC vs. Temperature  
6.2.5  
3.00%  
2.00%  
1.00%  
0.00%  
-40 -30 -20 -10  
0
10 20 25 30 40 50 60 70 80 90 100 110 120 125  
Avg-3V  
-1.00%  
-2.00%  
-3.00%  
Temperature  
Note: Curves are for design reference only.  
Internal 8 MHz RC vs. Temperature  
6.2.6  
3.00%  
2.00%  
1.00%  
0.00%  
-40 -30 -20 -10  
0
10 20 25 30 40 50 60 70 80 90 100 110 120 125  
Avg-3V  
-1.00%  
-2.00%  
-3.00%  
Temperature  
Note: Curves are for design reference only.  
Web site: http://www.feeling-techcom.tw  
Rev1.02.011 Aug 21, 2014  
P.44/FM8PE53B  
EELING  
FM8PE53B  
ECHNOLOGY  
6.2.7  
6.2.8  
6.2.9  
Internal 1 MHz RC vs. Temperature  
3.00%  
2.00%  
1.00%  
0.00%  
Avg-3V  
-40 -30 -20 -10  
0
10 20 25 30 40 50 60 70 80 90 100 110 120 125  
-1.00%  
-2.00%  
-3.00%  
Temperature  
Note: Curves are for design reference only.  
Internal 455 KHz RC vs. Temperature  
3.00%  
2.00%  
1.00%  
0.00%  
Avg-3V  
10 20 25 30 40 50 60 70 80 90 100 110 120 125  
-40 -30 -20 -10  
0
-1.00%  
-2.00%  
-3.00%  
Temperature  
Note: Curves are for design reference only.  
WDT 18mS Reset time vs. Temperature  
35.00  
30.00  
25.00  
20.00  
15.00  
10.00  
5.00  
Avg-3V  
0.00  
-40 -30 -20 -10  
0
10 20 25 30 40 50 60 70 80 90 100 110 120 125  
Temperature  
Note: Curves are for design reference only.  
Web site: http://www.feeling-techcom.tw  
Rev1.02.011 Aug 21, 2014  
P.45/FM8PE53B  
EELING  
FM8PE53B  
ECHNOLOGY  
6.2.10 WDT 4.5mS Reset time vs. Temperature  
9.00  
8.00  
7.00  
6.00  
5.00  
4.00  
3.00  
2.00  
1.00  
0.00  
Avg-3V  
-40 -30 -20 -10  
0
10 20 25 30 40 50 60 70 80 90 100 110 120 125  
Temperature  
Note: Curves are for design reference only.  
6.2.11 WDT 72mS Reset time vs. Temperature  
140.00  
120.00  
100.00  
80.00  
60.00  
40.00  
20.00  
0.00  
Avg-3V  
-40 -30 -20 -10  
0
10 20 25 30 40 50 60 70 80 90 100 110 120 125  
Temperature  
Note: Curves are for design reference only.  
6.2.12 WDT 288mS Reset time vs. Temperature  
600.00  
500.00  
400.00  
300.00  
200.00  
100.00  
0.00  
Avg-3V  
-40 -30 -20 -10  
0
10 20 25 30 40 50 60 70 80 90 100 110 120 125  
Temperature  
Note: Curves are for design reference only.  
Web site: http://www.feeling-techcom.tw  
Rev1.02.011 Aug 21, 2014  
P.46/FM8PE53B  
EELING  
FM8PE53B  
ECHNOLOGY  
6.2.13 WDT 18mS Reset time vs. Supply Voltage (Ta=25)  
40.00  
35.00  
30.00  
25.00  
20.00  
15.00  
10.00  
5.00  
Avg-18mS  
0.00  
1.8 1.9  
2
2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9  
Voltage  
3
3
3
3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4  
Note: Curves are for design reference only.  
6.2.14 WDT 4.5mS Reset time vs. Supply Voltage (Ta=25)  
10.00  
8.00  
6.00  
4.00  
2.00  
0.00  
Avg-4.5mS  
1.8 1.9  
2
2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9  
Voltage  
3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9  
4
Note: Curves are for design reference only.  
6.2.15 WDT 72mS Reset time vs. Supply Voltage (Ta=25)  
160.00  
140.00  
120.00  
100.00  
80.00  
60.00  
40.00  
20.00  
0.00  
Avg-72mS  
1.8 1.9  
2
2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9  
Voltage  
3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9  
4
Note: Curves are for design reference only.  
Web site: http://www.feeling-techcom.tw  
Rev1.02.011 Aug 21, 2014  
P.47/FM8PE53B  
EELING  
FM8PE53B  
ECHNOLOGY  
6.2.16 WDT 288mS Reset time vs. Supply Voltage (Ta=25)  
700.00  
600.00  
500.00  
400.00  
300.00  
200.00  
100.00  
0.00  
Avg-288mS  
1.8 1.9  
2
2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9  
Voltage  
3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4  
Note: Curves are for design reference only.  
6.2.17 LVDT 2.0V vs. Temperature  
3.00  
2.50  
2.00  
1.50  
1.00  
0.50  
0.00  
Avg-2.0V  
-40 -30 -20 -10  
0
10 20 25 30 40 50 60 70 80 90 100 110 120 125  
Temperature  
Note: Curves are for design reference only.  
6.2.18 LVDT 2.8V vs. Temperature  
4.00  
3.50  
3.00  
2.50  
2.00  
1.50  
1.00  
0.50  
0.00  
Avg-2.8V  
-40 -30 -20 -10  
0
10 20 25 30 40 50 60 70 80 90 100 110 120 125  
Temperature  
Note: Curves are for design reference only.  
Web site: http://www.feeling-techcom.tw  
Rev1.02.011 Aug 21, 2014  
P.48/FM8PE53B  
EELING  
FM8PE53B  
ECHNOLOGY  
6.2.19 LVDT 1.8V vs. Temperature  
2.50  
2.00  
1.50  
1.00  
0.50  
0.00  
Avg-1.8V  
-40 -30 -20 -10  
0
10 20 25 30 40 50 60 70 80 90 100 110 120 125  
Temperature  
Note: Curves are for design reference only.  
6.2.20 LVDT 2.2V vs. Temperature  
3.00  
2.50  
2.00  
1.50  
1.00  
0.50  
0.00  
Avg-2.2V  
-40 -30 -20 -10  
0
10 20 25 30 40 50 60 70 80 90 100 110 120 125  
Temperature  
Note: Curves are for design reference only.  
6.2.21 LVDT 2.4V vs. Temperature  
3.50  
3.00  
2.50  
2.00  
1.50  
1.00  
0.50  
0.00  
Avg-2.4V  
-40 -30 -20 -10  
0
10 20 25 30 40 50 60 70 80 90 100 110 120 125  
Temperature  
Note: Curves are for design reference only.  
Web site: http://www.feeling-techcom.tw  
Rev1.02.011 Aug 21, 2014  
P.49/FM8PE53B  
EELING  
FM8PE53B  
ECHNOLOGY  
6.2.22 LVDT 2.6V vs. Temperature  
3.50  
3.00  
2.50  
2.00  
1.50  
1.00  
0.50  
0.00  
Avg-2.6V  
-40 -30 -20 -10  
0
10 20 25 30 40 50 60 70 80 90 100 110 120 125  
Temperature  
Note: Curves are for design reference only.  
Web site: http://www.feeling-techcom.tw  
Rev1.02.011 Aug 21, 2014  
P.50/FM8PE53B  
EELING  
FM8PE53B  
ECHNOLOGY  
7.0 PACKAGE DIMENSION  
7.1 14-PIN PDIP 300mil  
D
14  
8
7
1
0.100typ.  
0.018typ.  
0.060typ.  
Dimension In Inches  
Symbols  
Min  
-
Nom  
-
Max  
0.210  
-
A
A1  
A2  
D
0.015  
0.125  
0.735  
-
0.130  
0.750  
0.300 BSC.  
0.250  
0.130  
0.355  
7o  
0.135  
0.775  
E
E1  
L
0.245  
0.115  
0.335  
0o  
0.255  
0.150  
0.375  
15o  
eB  
θo  
Web site: http://www.feeling-techcom.tw  
Rev1.02.011 Aug 21, 2014  
P.51/FM8PE53B  
EELING  
FM8PE53B  
ECHNOLOGY  
7.2 14-PIN SOP 150mil  
14  
8
o
5
4
x
5
1
0
.
0
1
7
A
C
D
e
0.004max  
B
GAUGE PLANE  
SEATING PLANE  
o
£
L
DETAIL : A  
Dimension In Inches  
Symbols  
Min  
Nom  
0.064  
-
Max  
0.068  
0.010  
0.020  
0.0098  
0.344  
0.157  
-
A
A1  
B
0.058  
0.004  
0.013  
0.016  
0.008  
0.341  
0.154  
0.050  
0.236  
0.025  
-
C
D
E
0.0075  
0.336  
0.150  
-
e
H
L
θo  
0.228  
0.015  
0o  
0.244  
0.050  
8o  
Web site: http://www.feeling-techcom.tw  
Rev1.02.011 Aug 21, 2014  
P.52/FM8PE53B  
EELING  
FM8PE53B  
ECHNOLOGY  
8.0 PACKAGE IR Re-flow Soldering Curve  
250 5  
10 1 sec  
150 10  
90 30 sec  
2 ~ 5 / sec  
2 ~ 5 / sec  
Time  
9.0 ORDERING INFORMATION  
OTP Type MCU  
FM8PE53BP  
FM8PE53BD  
Package Type  
Pin Count  
Package Size  
300 mil  
PDIP  
SOP  
14  
14  
150 mil  
Web site: http://www.feeling-techcom.tw  
Rev1.02.011 Aug 21, 2014  
P.53/FM8PE53B  

相关型号:

FM8PE53BD

OTP-Based 8-Bit Microcontroller
FEELING

FM8PE53BP

OTP-Based 8-Bit Microcontroller
FEELING

FM8PE53M

OTP-Based 8-Bit Microcontroller
FEELING

FM8PE53MD

OTP-Based 8-Bit Microcontroller
FEELING

FM8PE53MP

OTP-Based 8-Bit Microcontroller
FEELING

FM8PE54

EPROM/ROM-Based 8-Bit Microcontroller Series
FEELING

FM8PE54AER

EPROM/ROM-Based 8-Bit Microcontroller Series
FEELING

FM8PE54AR

EPROM/ROM-Based 8-Bit Microcontroller Series
FEELING

FM8PE54D

EPROM/ROM-Based 8-Bit Microcontroller Series
FEELING

FM8PE54E

EPROM/ROM-Based 8-Bit Microcontroller Series
FEELING

FM8PE54ED

EPROM/ROM-Based 8-Bit Microcontroller Series
FEELING

FM8PE54EP

EPROM/ROM-Based 8-Bit Microcontroller Series
FEELING