FR9886C [FITIPOWER]

21V, 2A/2.5A, 340KHz Synchronous Step-Down DC/DC Converter;
FR9886C
型号: FR9886C
厂家: Fitipower    Fitipower
描述:

21V, 2A/2.5A, 340KHz Synchronous Step-Down DC/DC Converter

文件: 总14页 (文件大小:949K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
fitipower integrated technology lnc.  
FR9886C  
21V, 2A/2.5A, 340KHz Synchronous Step-Down  
DC/DC Converter  
Description  
Features  
The FR9886C is a synchronous step-down DC/DC  
converter that provides wide 4.5V to 21V input  
voltage range. There are two packages (SOP-8 &  
SOP-8(EP)) to support 2A/2.5A continuous output  
current.  
High Efficiency Synchronous Buck Converter with  
Low ISD (<1μA)  
● Low Rds(on) Integrated Power MOSFET  
Wide Input Voltage Range: 4.5V to 21V  
Adjustable Output Voltage from 0.925V to 17.85V  
● 2A Output Current (Package: SOP-8)  
● 2.5A Output Current (Package: SOP-8(EP))  
Fixed 340KHz Switching Frequency  
Current Mode Operation  
Adjustable Soft-Start  
Cycle-by-Cycle Current Limit  
Input Under Voltage Lockout  
The  
FR9886C  
fault  
protection  
includes  
cycle-by-cycle current limit, input UVLO, output over  
voltage protection and thermal shutdown. Besides,  
adjustable soft-start function prevents inrush current  
at turn-on. This device uses current mode control  
scheme which provides fast transient response.  
In shutdown mode, the supply current is less than  
1μA.  
Over-Temperature Protection with Auto Recovery  
SOP-8 and SOP-8 Exposed Pad Packages  
The FR9886C is available in SOP-8 and SOP-8  
exposed pad packages. It is RoHS compliant and  
100% lead (Pb) free.  
Applications  
Set-Top-Box  
DVD,LCD Display  
OLPC, Netbook  
Distributed Power System  
Datacom, XDSL  
Pin Assignments  
Ordering Information  
FR9886C□□□  
SO Package (SOP-8)  
TR: Tape / Reel  
8
7
6
5
SS  
BST  
VIN  
LX  
1
2
3
4
C: Green  
SHDN  
COMP  
Package Type  
SO: SOP-8  
SP: SOP-8 (Exposed Pad)  
FB  
GND  
SP Package (SOP-8 Exposed Pad)  
1
2
3
4
SS  
BST  
VIN  
LX  
8
7
SHDN  
COMP  
FB  
6
5
GND  
Figure 1. Pin Assignment of FR9886C  
FR9886C-0.4-JUL-2012  
1
fitipower integrated technology lnc.  
FR9886C  
Typical Application Circuit  
C4  
0.1μF  
R3  
100kΩ  
7
1
L1  
4.7μH  
SHDN  
BST  
LX  
2
6
3
5
VIN  
VOUT  
1.2V  
VIN  
4.5V to 21V  
C1  
FR9886C  
C6  
(optional)  
C2  
R1  
3kΩ  
10μF/25V  
22μF/6.3V  
CERAMIC x 2  
CERAMIC x 2  
FB  
COMP  
C5  
10nF  
SS  
8
GND  
4
C7  
(optional)  
R2  
10kΩ  
R4  
5.6KΩ  
C3  
0.1μF  
Figure 2. CIN /COUT use Ceramic Capacitors Application Circuit  
C4  
0.1μF  
R3  
100kΩ  
7
1
L1  
4.7μH  
SHDN  
BST  
2
6
3
5
VOUT  
1.2V  
VIN  
LX  
VIN  
4.5V to 21V  
FR9886C  
C6  
(optional)  
C2  
C8  
0.1μF/25V  
CERAMIC x 1  
R1  
3kΩ  
C1  
100μF/25V  
EC x 1  
100μF/6.3V  
EC x 1  
COMP  
FB  
SS  
C5  
10nF  
GND  
4
C7  
R2  
10kΩ  
8
R4  
5.6KΩ  
(optional)  
C3  
0.1μF  
Figure 3. CIN /COUT use Electrolytic Capacitors Application Circuit  
FR9886C-0.4-JUL-2012  
2
fitipower integrated technology lnc.  
FR9886C  
Functional Pin Description  
Pin Name  
Pin No.  
I/O  
Pin Function  
Voltage Feedback Input Pin. Connect FB and VOUT with a resistive voltage divider. This IC  
senses feedback voltage via FB and regulates it at 0.925V.  
FB  
5
2
7
4
3
8
1
6
I
VIN  
I
Power Supply Input Pin. Drive this pin by 4.5V to 21V voltage to power on the chip.  
Enable Input Pin. This pin provides a digital control to turn the converter on or off. Connect VIN  
with a 100KΩ resistor for self-startup.  
I
 ꢀꢁꢂ  
GND  
I
Ground Pin. Connect this pin to exposed pad.  
Power Switching Output. It is the output pin of internal high side NMOS which is the switch to  
supply power.  
LX  
SS  
O
O
O
O
Soft-Start Pin. This pin controls the soft-start period. Connect a capacitor from SS to GND to  
set the soft start period.  
High Side Gate Drive Boost Pin. A capacitor rating between 10nF to 0.1μF must be connected  
from this pin to LX. It can boost the gate drive to fully turn on the internal high side NMOS.  
BST  
COMP  
Compensation Pin. This pin is used to compensate the regulation control loop. Connect a  
series RC network from COMP pin to GND.  
Block Diagram  
VIN  
ISEN  
Internal  
Regulator  
OTP  
OVP  
VCC  
UVLO  
&
POR  
VCC  
SHDN  
1M  
Oscillator  
BST  
High-Side  
MOSFET  
6µA  
FB  
S
R
Driver  
Logic  
PWM  
Control  
Current  
Comp  
LX  
OTP  
OVP  
SS  
UVLO  
Low-Side  
MOSFET  
0.925V  
Current  
Limit  
COMP  
GND  
Figure 4. Block Diagram of FR9886C  
FR9886C-0.4-JUL-2012  
3
fitipower integrated technology lnc.  
FR9886C  
Absolute Maximum Ratings (Note1)  
Supply Voltage VIN ------------------------------------------------------------------------------------------- -0.3V to +23V  
Enable Voltage ꢁꢂꢃꢄ -------------------------------------------------------------------------------------  
-0.3V to +23V  
LX Voltage VLX ------------------------------------------------------------------------------------------------ -1V to VIN+0.3V  
BST Voltage VBST -------------------------------------------------------------------------------------------- VLX-0.3V to VLX+6V  
All Other Pins Voltage -------------------------------------------------------------------------------------- -0.3V to +6V  
Maximum Junction Temperature (TJ) ------------------------------------------------------------------- +150°C  
Storage Temperature (TS) --------------------------------------------------------------------------------- -65°C to +150°C  
Lead Temperature (Soldering, 10sec.) ----------------------------------------------------------------- +260°C  
Power Dissipation @TA=25°C, (PD) (Note2)  
SOP-8 ----------------------------------------------------------------------------------------------- 1.39W  
SOP-8 (Exposed Pad) -------------------------------------------------------------------------- 2.08W  
● Package Thermal Resistance, (θJA)  
SOP-8 ----------------------------------------------------------------------------------------------- 90°C/W  
SOP-8 (Exposed Pad) -------------------------------------------------------------------------- 60°C/W  
● Package Thermal Resistance, (θJC)  
SOP-8 ----------------------------------------------------------------------------------------------- 39°C/W  
SOP-8 (Exposed Pad) -------------------------------------------------------------------------- 15°C/W  
Note 1Stresses beyond this listed under “Absolute Maximum Ratings" may cause permanent damage to the device.  
Note 2PCB heat sink copper area = 10mm2.  
Recommended Operating Conditions  
Supply Voltage VIN ------------------------------------------------------------------------------------------- +4.5V to +21V  
Enable Voltage ꢁꢂꢃꢄ -------------------------------------------------------------------------------------  
0V to VIN  
Operation Temperature Range --------------------------------------------------------------------------- -40°C to +85°C  
FR9886C-0.4-JUL-2012  
4
fitipower integrated technology lnc.  
FR9886C  
Electrical Characteristics  
(VIN=12V, TA=25°C, unless otherwise specified.)  
Parameter  
VIN Input Supply Voltage  
VIN Quiescent Current  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
V
VIN  
IDDQ  
ISD  
4.5  
21  
ꢁꢂꢃꢄ=1.8V, VFB=1.0V  
ꢁꢂꢃꢄ=0V  
2
mA  
μA  
V
VIN Shutdown Supply Current  
Feedback Voltage  
1
VFB  
VOVP  
4.5VVIN21V  
0.9  
0.925  
1.5  
0.95  
Feedback OVP Threshold Voltage  
V
SOP-8  
130  
120  
110  
High-Side MOSFET RDS(ON) (Note3)  
RDS(ON)  
mΩ  
SOP-8 (EP)  
Low-Side MOSFET RDS(ON) (Note3)  
High-Side MOSFET Leakage Current  
RDS(ON)  
ILX(leak)  
mΩ  
μA  
ꢁꢂꢃꢄ=0V, VLX=0V  
10  
SOP-8  
SOP-8 (EP)  
2.8  
3.1  
4
High-Side MOSFET Current Limit  
(Note3)  
Minimum  
Duty  
ILIMIT(HS)  
A
4.5  
1.5  
Low-Side MOSFET Current Limit  
(Note3)  
ILIMIT(LS)  
From Drain to Source  
A
Current sense to COMP  
Transconductance (Note3)  
Error Amplifier Transconductance  
(Note3)  
3.5  
A/V  
Δ ICOMP = ±10μA  
1600  
400  
340  
110  
90  
μA/V  
V/V  
KHz  
KHz  
%
Error Amplifier Voltage Gain (Note3)  
Oscillation frequency  
FOSC  
290  
420  
Short Circuit Oscillation Frequency  
Maximum Duty Cycle  
FOSC(short) VFB=0V  
DMAX  
TMIN  
VFB=0.8V  
Minimum On Time (Note3)  
Input UVLO Threshold  
100  
4.3  
400  
6
ns  
VUVLO(Vth) VIN Rising  
VUVLO(HYS)  
ISS  
TSS  
V
Under Voltage Lockout Threshold  
Hysteresis  
mV  
μA  
Soft-Start Current  
Soft-Start Period  
VSS=0V  
CSS=0.1μF  
15  
ms  
ꢁꢂꢃꢄ(L)  
0.4  
V
ꢁꢂꢃꢄ Input Low Voltage  
ꢁꢂꢃꢄ(ꢂ)  
ꢁꢂꢃꢄ  
TSD  
2
V
ꢁꢂꢃꢄ Input High Voltage  
ꢁꢂꢃꢄ Input Current  
ꢁꢂꢃꢄ=2V  
2
μA  
°C  
Thermal Shutdown Threshold (Note3)  
Note 3Not production tested.  
170  
FR9886C-0.4-JUL-2012  
5
fitipower integrated technology lnc.  
FR9886C  
Typical Performance Curves  
VIN=12V, VOUT=3.3V, C1=10μF x 2, C2=22μF x 2, L1=10μH, TA=+25°C, unless otherwise noted.  
100  
100  
95  
90  
95  
90  
85  
80  
85  
80  
75  
70  
65  
60  
55  
50  
75  
70  
65  
60  
55  
50  
VOUT = 1.2V  
VOUT = 1.2V  
VIN= 5V  
VIN= 12V  
VIN= 5V  
VIN= 12V  
0.1  
0.4  
0.7  
1
1.3  
1.6  
1.9  
2.2  
0.1  
0.4  
0.7  
1
1.3  
1.6  
1.9  
2.2  
2.5  
Load Current (A)  
Load Current (A)  
Figure 5. Efficiency vs. Loading (SOP-8)  
Figure 6. Efficiency vs. Loading (SOP-8 Exposed Pad)  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
100  
95  
90  
85  
80  
75  
70  
65  
VIN= 5V  
VIN= 12V  
VIN= 23V  
VOUT = 3.3V  
VIN= 5V  
VIN= 12V  
VIN= 23V  
60  
55  
50  
VOUT = 3.3V  
0.1  
0.4  
0.7  
1
1.3  
1.6  
1.9  
2.2  
2.5  
0.1  
0.4  
0.7  
1
1.3  
1.6  
1.9  
2.2  
Load Current (A)  
Load Current (A)  
Figure 7. Efficiency vs. Loading (SOP-8)  
Figure 8. Efficiency vs. Loading (SOP-8 Exposed Pad)  
100  
100  
95  
90  
85  
80  
75  
70  
65  
60  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
VOUT = 5V  
VIN= 12V  
VIN= 23V  
VOUT = 5V  
VIN= 12V  
VIN= 23V  
55  
50  
0.1  
0.4  
0.7  
1
1.3  
1.6  
1.9  
2.2  
0.1  
0.4  
0.7  
1
1.3  
1.6  
1.9  
2.2  
2.5  
Load Current (A)  
Load Current (A)  
Figure 9. Efficiency vs. Loading (SOP-8)  
Figure 10. Efficiency vs. Loading (SOP-8 Exposed Pad)  
FR9886C-0.4-JUL-2012  
6
fitipower integrated technology lnc.  
FR9886C  
Typical Performance Curves (Continued)  
VIN=12V, VOUT=3.3V, C1=10μF x 2, C2=22μF x 2, L1=10μH, TA=+25°C, unless otherwise noted.  
0.950  
0.945  
380  
370  
0.940  
0.935  
0.930  
0.925  
0.920  
0.915  
0.910  
0.905  
0.900  
360  
350  
340  
330  
320  
310  
300  
290  
280  
-40  
-20  
0
20  
40  
60  
80  
100  
-40  
-20  
0
20  
40  
60  
80  
100  
Temperature ( Degrees C )  
Temperature ( Degrees C )  
Figure 11. Feedback Voltage vs. Temperature  
IOUT=0A  
Figure 12. Frequency vs. Temperature  
IOUT=2.5A  
VIN 200mV/div. (AC)  
VIN 10mV/div. (AC)  
VOUT 20mV/div. (AC)  
VOUT 20mV/div. (AC)  
IL  
1A/div.  
5V/div.  
IL  
1A/div.  
5V/div.  
VLX  
VLX  
4μs/div.  
Figure 13. DC Ripple Waveform  
4μs/div.  
Figure 14. DC Ripple Waveform  
IOUT=2.5A  
5V/div.  
IOUT=0A  
5V/div.  
 ꢀꢁꢂ  
 ꢀꢁꢂ  
VOUT 0.5V/div.  
VOUT 1V/div.  
IL  
1A/div.  
IL  
1A/div.  
5V/div.  
VLX  
VLX  
5V/div.  
4ms/div.  
Figure 15. Startup Through ꢁꢂꢃꢄ Waveform  
FR9886C-0.4-JUL-2012  
4ms/div.  
Figure 16. Startup Through ꢁꢂꢃꢄ Waveform  
7
fitipower integrated technology lnc.  
FR9886C  
Typical Performance Curves (Continued)  
VIN=12V, VOUT=3.3V, C1=10μF x 2, C2=22μF x 2, L1=10μH, TA=+25°C, unless otherwise noted.  
IOUT=0A  
IOUT=2.5A  
5V/div.  
 ꢀꢁꢂ  
5V/div.  
 ꢀꢁꢂ  
VOUT 1V/div.  
VOUT 0.5V/div.  
IL  
1A/div.  
5V/div.  
IL  
1A/div.  
5V/div.  
VLX  
VLX  
200μs/div.  
4ms/div.  
Figure 17. Shutdown Through ꢁꢂꢃꢄ Waveform  
IOUT=100mA to 2.5A Step  
Figure 18. Shutdown Through ꢁꢂꢃꢄ Waveform  
VOUT 500mV/div.  
VOUT ,, 1V/div.  
IL  
1A/div.  
IL  
2A/div.  
40μs/div.  
400μs/div.  
Figure 19. Load Transient Waveform  
Figure 20. Short Circuit Test  
FR9886C-0.4-JUL-2012  
8
fitipower integrated technology lnc.  
FR9886C  
Function Description  
The FR9886C is a high efficiency and constant  
frequency current mode step-down synchronous  
Input Under Voltage Lockout  
When the FR9886C is power on, the internal  
circuits will be held inactive until VIN voltage  
exceeds the input UVLO threshold voltage. And  
the regulator will be disabled when VIN is below the  
input UVLO threshold voltage. The hysteretic of  
the UVLO comparator is 250mV (typ).  
DC/DC converter.  
(130mΩ, typ) and low-side (110mΩ, typ) power  
switches. There are two packages (SOP-8 &  
It has integrated high-side  
SOP-8(EP)) to support 2A/2.5A continuous output  
current. It regulates input voltage from 4.5V to 21V  
and down to an output voltage as low as 0.925V.  
Short Circuit Protection  
Control Loop  
The FR9886C provides short circuit protection  
function to prevent the device damage from short  
condition. When the short condition occurs and  
the feedback voltage drops lower than 0.4V, the  
oscillator frequency will be reduced to 110KHz to  
prevent the inductor current increasing beyond the  
current limit. In the meantime, the current limit will  
also be reduced to lower the short current. Once  
the short condition is removed, the frequency and  
current limit will return to normal.  
During normal operation, the output voltage is  
sensed at FB pin by a resistive voltage divider and  
amplified through the error amplifier. The voltage of  
error amplifier output pin -- COMP is compared to  
the switch current to control the RS latch. At each  
cycle, the high side NMOS will be turned on when  
the oscillator sets the RS latch and turned off when  
current comparator resets the RS latch. When the  
load current increases, the FB pin voltage will drop  
below 0.925V, and it will cause the COMP voltage  
increasing until average inductor current arrives at  
new load current.  
Over Current Protection  
The FR9886C over current protection function is  
implemented by using cycle-by-cycle current limit  
architecture. The inductor current is monitored by  
measuring the high-side MOSFET series sense  
resistor voltage. When the load current increases,  
the inductor current will also increase. When the  
peak inductor current reaches the current limit  
threshold, the output voltage will start to drop.  
When the over current condition is removed, the  
output voltage will return to the regulated value.  
Enable  
The FR9886C ꢁꢂꢃꢄ pin provides digital control to  
turn on/turn off the regulator. When the voltage of  
ꢁꢂꢃꢄ exceeds the threshold voltage, the regulator  
will start the soft start function. If the ꢁꢂꢃꢄ pin  
voltage is below the shutdown threshold voltage, the  
regulator will turn into shutdown mode and shutdown  
current will be smaller than 1μA. For auto start-up  
operation, connect ꢁꢂꢃꢄ to ꢀꢅꢄ through a 100KΩ  
resistor.  
Over Temperature Protection  
The FR9886C incorporates an over temperature  
protection circuit to protect itself from overheating.  
When the junction temperature exceeds the thermal  
shutdown threshold temperature, the regulator will  
be shutdown. And the hysteretic of the over  
temperature protection is 60°C (typ).  
Soft Start  
The FR9886C employs adjustable soft start function  
to reduce input inrush current during start up. When  
the device turns on, a 6μA current will begin to  
charge the capacitor which is connected from SS pin  
to GND. The equation for the soft start time is  
shown as below:  
Compensation  
The stability of the feedback circuit is controlled by  
COMP pin.  
application circuit is optimized for particular  
requirements. If different conversions are  
The compensation value of the  
 
Cꢁꢁ nF ꢆꢀFꢇ  
 
Tꢁꢁ ms =  
 
ꢁꢁ μA  
required, some of the components may need to be  
changed to ensure stability.  
The VFB voltage is 0.925V and the ISS current is 6μA.  
ꢅf a 0.1μF capacitor is connected from ꢁꢁ pin to  
GND, the soft start time will be 15ms.  
Output Over Voltage Protection  
When the FB pin voltage exceeds 1.5V, the output  
over voltage protection function will be triggered and  
turn off the high-side/low-side MOSFET.  
FR9886C-0.4-JUL-2012  
9
fitipower integrated technology lnc.  
FR9886C  
Application Information  
Output Voltage Setting  
A low ESR capacitor is required to keep the noise  
minimum.  
Ceramic capacitors are better, but  
The output voltage VOUT is set by using a resistive  
divider from the output to FB. The FB pin regulated  
voltage is 0.925V. Thus the output voltage is:  
tantalum or low ESR electrolytic capacitors may  
also suffice. When using tantalum or electrolytic  
capacitors, a 0.1μF ceramic capacitor should be  
placed as close to the IC as possible.  
R1  
OꢈT=0.ꢉ25ꢀꢆ 1ꢊ  
R2  
Output Capacitor Selection  
Table 2 lists recommended values of R1 and R2 for  
most used output voltage.  
The output capacitor is used to keep the DC output  
voltage and supply the load transient current.  
When operating in constant current mode, the  
output ripple is determined by four components:  
Table 2 Recommended Resistance Values  
VOUT  
5V  
R1  
R2  
44.2kΩ  
26.1kΩ  
16.ꢉkΩ  
ꢉ.53kΩ  
3kΩ  
10kΩ  
10kΩ  
10kΩ  
10kΩ  
10kΩ  
    
    
RꢅPPLꢌ t =ꢀRꢅPPLꢌ(C) t ꢊꢀRꢅPPLꢌ(ꢌꢁR)(t)  
3.3V  
2.5V  
1.8V  
1.2V  
ꢊꢀRꢅPPLꢌ(ꢌꢁL)(t)ꢊꢀꢄOꢅꢁꢌ(t)  
The following figures show the form of the ripple  
contributions.  
VRIPPLE(ESR)(t)  
Place resistors R1 and R2 close to FB pin to prevent  
stray pickup.  
Input Capacitor Selection  
(t)  
The use of the input capacitor is filtering the input  
voltage ripple and the MOSFETS switching spike  
voltage. Because the input current to the step-down  
converter is discontinuous, the input capacitor is  
required to supply the current to the converter to  
keep the DC input voltage. The capacitor voltage  
rating should be 1.25 to 1.5 times greater than the  
maximum input voltage. The input capacitor ripple  
current RMS value is calculated as:  
+
VRIPPLE(ESL) (t)  
(t)  
(t)  
+
VRIPPLE(C) (t)  
 
ꢅꢄ(RMꢁ)=ꢅOꢈTꢃꢆ 1ꢋꢃ  
OꢈT  
ꢃ=  
ꢅꢄ  
+
VNOISE (t)  
Where D is the duty cycle of the power MOSFET.  
This function reaches the maximum value at D=0.5  
and the equivalent RMS current is equal to IOUT/2.  
The following diagram is the graphical representation  
of above equation.  
=
VRIPPLE(t)  
2.5A  
2A  
1.5A  
1A  
(t)  
FR9886C-0.4-JUL-2012  
10  
fitipower integrated technology lnc.  
FR9886C  
Application Information (Continued)  
OꢈT  
That will lower ripple current and result in lower  
RꢅPPLꢌ(ꢌꢁR, pꢋp)  
=
1ꢋ OꢈT ꢆꢌꢁR  
output ripple voltage.  
The ΔꢅL is inductor  
FOꢁCꢆL  
ꢅꢄ  
peak-to-peak ripple current:  
ꢌꢁL  
RꢅPPLꢌ(ꢌꢁL, pꢋp)  
=
ꢆꢀꢅꢄ  
OꢈT  
ꢎꢅ=  
1ꢋ OꢈT  
LꢊꢌꢁL  
OꢈT  
ꢍꢆFOꢁC2ꢆLꢆCOꢈT  
FOꢁCꢆL  
ꢅꢄ  
1ꢋ OꢈT  
ꢅꢄ  
RꢅPPLꢌ(C, pꢋp)  
=
The following diagram is an example to graphical  
represent ΔꢅL equation.  
Where FOSC is the switching frequency, L is the  
inductance value, VIN is the input voltage, ESR is the  
equivalent series resistance value of the output  
capacitor, ESL is the equivalent series inductance  
value of the output capacitor and the COUT is the  
output capacitor.  
L=4.7μꢀ  
L=6.8μꢀ  
L=10μꢀ  
Low ESR capacitors are preferred to use. Ceramic,  
tantalum or low ESR electrolytic capacitors can be  
used depending on the output ripple requirements.  
When using the ceramic capacitors, the ESL  
component is usually negligible.  
It is important to use the proper method to eliminate  
high frequency noise when measuring the output  
ripple. The figure shows how to locate the probe  
across the capacitor when measuring output ripple.  
Removing the scope probe plastic jacket in order to  
expose the ground at the tip of the probe. It gives a  
very short connection from the probe ground to the  
capacitor and eliminates noise.  
VOUT=3.3V, FOSC=340KHz  
A good compromise value between size and  
efficiency is to set the peak-to-peak inductor ripple  
current ΔꢅL equal to 30% of the maximum load  
current. But setting the peak-to-peak inductor  
ripple current ΔꢅL between 20%~50% of the  
maximum load current is also acceptable. Then  
the inductance can be calculated with the following  
equation:  
Probe Ground  
ꢎꢅ=0.3ꢆꢅOꢈT(MAꢏ)  
 
ꢅꢄꢋꢀOꢈT ꢆꢀOꢈT  
L=  
ꢅꢄꢆFOꢁCꢆꢎꢅL  
To guarantee sufficient output current, peak  
inductor current must be lower than the FR9886C  
high-side MOSFET current limit.  
inductor current is as below:  
The peak  
VOUT  
GND  
ꢎꢅL  
Ceramic Capacitor  
Inductor Selection  
PꢌAK=ꢅOꢈT(MAꢏ)  
2
The output inductor is used for storing energy and  
filtering output ripple current. But the trade-off  
condition often happens between maximum energy  
storage and the physical size of the inductor. The  
first consideration for selecting the output inductor is  
to make sure that the inductance is large enough to  
keep the converter in the continuous current mode.  
FR9886C-0.4-JUL-2012  
11  
fitipower integrated technology lnc.  
FR9886C  
Application Information (Continued)  
Compensation Components Selection  
4. The exposed pad of the package should be  
soldered to an equivalent area of metal on the  
PCB. This area should connect to the GND  
plane and have multiple via connections to the  
back of the PCB as well as connections to  
intermediate PCB layers. The GND plane area  
connecting to the exposed pad should be  
maximized to improve thermal performance.  
COMP  
C5  
FR9886C  
C7  
(optional)  
R4  
5. Multi-layer PCB design is recommended.  
Select the appropriate compensation value by  
following procedure:  
1. Calculate the R4 value with the following equation:  
R1  
R3  
2 ꢆCOꢈTꢆ0.1ꢆFOꢁCꢆꢀOꢈT  
R4<  
R2  
ꢌAꢆꢐCꢁꢆꢀRꢌF  
8
1
7
6
5
where GEA is the error amplifier voltage gain, and  
GCS is the current sense gain.  
GND  
2. Calculate the C5 value with the following equation:  
C2  
C1  
4
2
3
4
C5ꢑ  
VIN  
2 ꢆR4ꢆ0.1ꢆFOꢁC  
VOUT  
LX  
L1  
C4  
External Diode Selection  
Figure 21. FR9886C Recommended Layout Diagram  
For 5V input applications, it is recommended to add  
an external boost diode. This helps improving the  
efficiency. The boost diode can be a low cost one,  
such as 1N4148.  
R1  
R3  
D1  
R2  
1N4148  
8
1
7
6
5
VIN  
BST  
VIN  
5V  
Exposed  
GND  
FR9886C  
C4  
Pad  
LX  
C2  
C1  
4
2
3
VIN  
VOUT  
LX  
L1  
C4  
PCB Layout Recommendation  
The device’s performance and stability are  
dramatically affected by PCB layout. It is  
Figure 22. FR9886C Recommended Layout Diagram  
recommended to follow these general guidelines  
shown as below:  
1. Place the input capacitors and output capacitors  
as close to the device as possible. The traces  
which connect to these capacitors should be as  
short and wide as possible to minimize parasitic  
inductance and resistance.  
2. Place feedback resistors close to the FB pin.  
3. Keep the sensitive signal (FB) away from the  
switching signal (LX).  
FR9886C-0.4-JUL-2012  
12  
fitipower integrated technology lnc.  
FR9886C  
Outline Information  
SOP-8 Package (Unit: mm)  
DIMENSION IN MILLIMETER  
SYMBOLS  
UNIT  
MIN  
1.35  
0.10  
1.25  
0.31  
4.80  
3.80  
1.20  
5.80  
0.40  
MAX  
1.75  
0.25  
1.50  
0.51  
5.00  
4.00  
1.34  
6.20  
1.27  
A
A1  
A2  
B
D
E
e
H
L
NoteFollowed from JEDEC MO-012-E  
Carrier Dimensions  
FR9886C-0.4-JUL-2012  
13  
fitipower integrated technology lnc.  
FR9886C  
Outline Information (Continued)  
SOP-8 (Exposed Pad) Package (Unit: mm)  
DIMENSION IN MILLIMETER  
SYMBOLS  
UNIT  
MIN  
1.25  
0.00  
1.25  
0.31  
4.80  
3.04  
3.80  
2.15  
1.20  
5.80  
0.40  
MAX  
1.70  
0.15  
1.55  
0.51  
5.00  
3.50  
4.00  
2.41  
1.34  
6.20  
1.27  
A
A1  
A2  
B
D
D1  
E
E1  
e
H
L
NoteFollowed From JEDEC MO-012-E.  
Carrier Dimensions  
Life Support Policy  
Fitipower’s products are not authorized for use as critical components in life support devices or other medical systems.  
FR9886C-0.4-JUL-2012  
14  

相关型号:

FR9886CSOCTR

21V, 2A/2.5A, 340KHz Synchronous Step-Down DC/DC Converter
FITIPOWER

FR9886CSPCTR

21V, 2A/2.5A, 340KHz Synchronous Step-Down DC/DC Converter
FITIPOWER

FR9886D

23V, 2A/2.5A, 340KHz Synchronous Step-Down DC/DC Converter
FITIPOWER

FR9886DSOCTR

23V, 2A/2.5A, 340KHz Synchronous Step-Down DC/DC Converter
FITIPOWER

FR9886DSPCTR

23V, 2A/2.5A, 340KHz Synchronous Step-Down DC/DC Converter
FITIPOWER

FR9888C

23V, 3.5A, 340KHz Synchronous Step-Down DC/DC Converter
FITIPOWER

FR9888CSECTR

23V, 3.5A, 340KHz Synchronous Step-Down DC/DC Converter
FITIPOWER

FR9888CSPCTR

23V, 3.5A, 340KHz Synchronous Step-Down DC/DC Converter
FITIPOWER

FRA

Circular Commercial Aircraft Military Aircraft
ITT

FRA-010-120

Radial Leaded PTC FRA Series
DBLECTRO

FRA-017-120

Radial Leaded PTC FRA Series
DBLECTRO

FRA-020-120

Radial Leaded PTC FRA Series
DBLECTRO