FS5908 [FORTUNE]

Digital Temperature Sensor and Thermal Watchdog with I2C® Interface and SMBusTM Format;
FS5908
型号: FS5908
厂家: Fortune Semiconductor    Fortune Semiconductor
描述:

Digital Temperature Sensor and Thermal Watchdog with I2C® Interface and SMBusTM Format

文件: 总22页 (文件大小:417K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
REV. 1.2 FS5908-DS-12_EN  
NOV 2006  
Datasheet  
FS5908  
Digital Temperature Sensor and Thermal Watchdog with nterface and SMM  
Format  
FS5908  
Fortune Semiconductor Corporation  
富晶電子股份有限公司  
28F., No.27, Sec. 2, Zhongzheng E. Rd.,  
Danshui Town, Taipei County 251, Taiwan  
Tel.886-2-28094742  
Fax886-2-28094874  
www.ic-fortune.com  
This manual contains new product information. Fortune Semiconductor Corporation reserves the rights to  
modify the product specification without further notice. No liability is assumed by Fortune Semiconductor  
Corporation as a result of the use of this product. No rights under any patent accompany the sale of the  
product.  
Rev. 1.2  
2/22  
FS5908  
1. General Description  
FS5908 is a precise environmental temperature sensor chip to digitize and format the technology of  
environmental temperature. It is also one of SOC (System On Chip) chips of FSC Company that combined with  
sensor. The chip includes:  
Digital Silicon Temperature Sensor (Resolution: 0.125)  
Calibration Algorithm  
PROM Coefficients  
I²C Interface and SMBus Format  
Open Drain ALARM (“Interrupt” and “Comparator” mode)  
The internal control register status, calibration coefficient, I²C address lines and so on can be generated  
through PROM to meet the application requirement at production. When the chip is power on, all internal status  
will be at programmed default status so that FS5908 is flexible for variety applications.  
A variable input voltage between 2.5V~5.5V of FS5908 will not influence the output of the temperature sensor.  
2. Applications  
Personal Computers.  
Measuring Instruments.  
Industry Control.  
Household Appliance.  
Automobile Temperature Deection.  
Sports and Health Equipment.  
System Temperature Management and Environmental Temperature Measurement.  
All related products that need to measure temperatdigital format.  
3. Features  
Chip can measure temperature by itself withouother external conent.  
8 pin SOP package.  
I²C digital interface (SMBus Format).  
Temperature value can be read at any timvia I²C interface.  
Provide open drain over/r temperature warning pin (ARM) in Comparator Mode or Interrupt Mode.  
Power on default is in Cor Mode.  
Readable upper and lowund register (TUpLim anTLwLimvia I²C interface.  
Upper and lower bound reister can be one time programmed according to the application at production.  
TUpLim and TLowLim will be the programmed defat 80and 75when power on.  
Different temperature accuracy requirement for ety applications can be met by calibration under different  
temperature.  
When micro-controller is not connec908 can be an independent temperature sensor (Watch Dog) or  
thermostat.  
Reducing the current consumption to minmum in Stand-by Mode.  
The I²C interface of the chip can connect up o 128 FS5908 chips.  
Low voltage detection.  
The I²C address line of FS5908 is composed by an external address select line (A0) and the address select line  
(A6-A1), which can be proed by PROM. When A0 is 0, A6 ~ A1 is forced to setup to 100100; when A0 is  
1, A6 ~ A1 Å PROM9<7:
Rev. 1.2  
3/22  
FS5908  
4. Ordering Information  
FS5908  
FS5908-P:  
Lead Free  
5. Pin Configurations  
1
2
3
4
A0  
SDA  
ALARM  
VDD  
8
7
6
5
SCL  
CS  
VSS  
NC  
6. Pin Description  
Pin  
Name  
Funtion  
The adess lines of the chip controlleI2C interface are A6, A5, A4A3, A2, 1 and A0. A0 is  
controlled y external pins. A6 ~ A1 cae setp by programming thPROM in the chip. When A0 is 0,  
A6 ~ A1 is 100100. When A0 is ~ A1 PROM9<7:2>  
1
A0  
2
3
4
5
6
7
8
SCL  
CS  
Signal Clock Line of I2C Serial sion  
Chip Select (the chip is when et to high)  
Chip Negative Powr Source Input Pin (0V)  
VSS  
NC  
When imal operation, it connects to d.  
Chip PositiPower Source Input Pin (2.5V~5.5V)  
VDD  
ALARM Overheat (Overcool) Warning OutpOpen-drain Output  
SDA Double Directions Data TissioLine of I2C Serial Transmission  
Rev. 1.2  
4/22  
FS5908  
7. Functional Block Diagram  
PROM1<7:0>  
~
PROM7<7:0>  
PR OM  
C ont rol R eg.  
I2  
R EG6< 7:2> < - - PR OM 9< 7:2>  
C add. (A6~A1)  
=
addlock= 1  
I2  
A6  
C
~
add. (A6~A1)  
A1 <-- 100100  
addlock= 0  
A0  
I2C Interf ace Ckts.  
St at es R eg.  
R EG1<7: 0>  
SC L  
(
SMBus Format )  
SD A  
T e  
R EG0< 10:0> = Tdata @ set_adco0  
R EG0< 11:0> = Te @ set_adco= 1  
D i g i tal Si l i co n  
Temp er atu r e Sen s
CS  
VD D  
TeA<110>  
TdA<1>  
GAIN<11:>  
=
=
OP17:0>+OTP2<7:4> <-- PR7:0>  
OTP2<2:0>+OTP3<7:0> <-- PR<2:0>  
OTP4<7:0>+OTP5<7:4> - PRO4<7>  
+
+
PROM2<7:4>  
PROM3<7:0>  
+ PROM5<7:4>  
VSS  
Tdata Calcultion  
=
Td ata  
AL AR M  
AL AR M  
TLowLim <10: 0>  
OTP8<7: 5>+OTP6<0> <-- PR OM8<7: 5>  
=
+
PR OM6<7: 0>  
TU pLim <10: 0>  
OTP8<4: 2><7: 0> <-- PR OM8<4: 2>  
Td ata  
=
+ PR OM7<7: 0>  
TL o wL i m  
TU p L i
Rev. 1.2  
5/22  
FS5908  
8. Typical Application Circuit  
VDDup  
VDDup  
VDD (2.5V~5.5V)  
10K Ω 10K Ω  
10K Ω  
A 0  
SDA  
ALARM  
VDD  
1
2
3
4
8
7
6
CPU  
(μ-processor)  
SCL  
CS  
VSS  
NC  
Inter r upt Input Pin  
Or  
Gener al Input Pin  
VSS  
Application:  
Micrpocessor controls Circuit  
When control FS5908 by microprocessor, the SDterminal of the microprocessor must be open drain  
double-way I/O pin.  
VDD (2.2V~5.5V)  
VD
VDDup  
VCC (12V)  
10
10KΩ  
10KΩ  
10KΩ  
12V 300mA  
Fan Motor  
CPU  
(μ-processor)  
A 0  
SDA  
ALARM  
VDD  
1
2
4
8
7
6
5
SCL  
CS  
VSS  
NC  
VSS  
Cntrol Fan Motor via Microprocessor  
Application:  
Digital Temperature Snsor: Able to combine with any CPU and Microprocessor.  
Rev. 1.2  
6/22  
FS5908  
VDD(2.5V~5.5V)  
Heater  
10KΩ  
Heater  
Power  
VDD  
f loat ing  
A 0  
SDA  
1
2
3
4
8
7
6
5
SCL  
CS  
ALARM  
VDD  
2N3904  
VSS  
C  
VSS  
Setup the heater theat in 75°C (TLowLim = 75), close if the temperature han  
Application:  
80(TUpLim = 80).  
Thermal Watchdog: Such as heater, refrigerator and various environment monitor.  
9. Absolute Mximum Ratings  
Supply Voltage ----------------------------------------------------------------------------------------------------0.3V to 5.5V  
Voltage at any Pin  
-----------------------------------------------------------------------------------0.3V to (VDD+0.3)V  
Input Current at any Pin (Note 2)  
Package Input Current (Note 2)  
------------------------------------------------------------------------------- 5mA  
-----------------------------------------------------------------------------20mA  
ALARM Output Sink Current --------------------------------------------------------------------------------- 10mA  
ALARM Output Voltage ------------------------------------------------------------------------------------------ 5.5V  
Storage Temperature --------------------------------------------------------------------------------------65to 150℃  
Soldering Information, Leamperature  
Vapor Phase (60 secon----------------------------------------------------------------------------------------215℃  
Infrared (15 seconds) --------------------------------------------------------------------------------------------220℃  
ESD Susceptibility (Note 3)  
Human Body Mode-------------------------------------------------------------------------------------------------------- 2000V  
Machine Mode ------------------------------------------------------------------------------------------------------------200V  
10. Operating Ratings  
Specified Temperature Range (Note 4)  
---------------------------------------------------------------------55to 125℃  
Supply Voltage Range (VDD) --------------------------------------------------------------------------------------2.5V to 5.5V  
Note 1:  
AC electrical specificationapply when operating the device beyond its rated operating conditions.  
Note 2: Whethe input ge (Vi) at any pin exceeds the power supply (Vi<GND or Vi>+Vs) the current at  
Absolute MaxiRatings indicate limits beyond which damage to the device may occur. DC and  
that pin should e limted to 5mA. The 20mA maximum package input current rating limits the number of pins  
that can safely excd the power supplies with an input current of 5mA to four.  
Note 3:  
Human bdy model, 100pF discharged through a 1.5KΩ resistor. Machine model, 200pF  
discharged directly into each pin.  
Note 4:  
FS5908θIA (thermal resistance, junction-to-ambient) is 0.125/mW.  
Rev. 1.2  
7/22  
FS5908  
11. Electrical Characteristics  
(Unless otherwise noted, these specifications apply for VDD = 3.0V (Note 5). Boldface limits apply  
for TA = TJ = TMIN to TMAX; all other limits TA = TJ = +25°C, unless otherwise noted.)  
Parameter  
Test Conditions  
Min (Note6) Typ (Note10)  
Max (Note6)  
Unit  
Supply Voltage  
2.5  
3.0  
300  
330  
3
5.5  
V
I2C Inactive  
450  
500  
4
μA  
μA  
μA  
ms  
I2C Active  
Quiescent Current  
Shutdown Mode  
TA = 0to +50℃  
TA = -25to +100℃  
TA = -5to +125℃  
±1.0  
±2.0  
±3.0  
Temperature Accuracy  
Temperature Resolution  
105  
Temperature Conversion Time  
(Note 7)  
ALARM Output Saturation  
Voltage  
OUT=10mA (Note 8)  
(Note9)  
0.5  
8
V
ALARM Delay  
1
Conversions  
12. Logic Electrical Characteristic
12.1 Digital DC Characteristics  
(Unless otherwise noted, these spcificatapply for VDD = 3.V (Note 5). Boldface limits apply for TA = TJ =  
MIN to TMAX; all other limits = TJ = +25°C, unless otherwise noted.)  
T
Min  
Typ  
Max  
Symbol  
Parameter  
Test Conditins  
Unit  
(Note6)  
(Note10) (Note6)  
VIN(1)  
VIN(0)  
IIN(1)  
IIN(0)  
CIN  
Logical 1 Input Voltge  
Logical 0 Input Voltage  
Logical 1 Input Current  
Logical 0 Input Current  
All Digital Inputs  
VDD×0.7  
-0.3  
VDD+0.5  
V
VDD×0.3  
V
V  
0V  
0.005  
1.0  
μA  
μA  
pF  
μA  
V
-0.005  
-1.0  
20  
IOH  
High Level Output Currnt  
Low Level Output Voltage  
Output Fall Tim
VOH=5V  
100  
0.4  
VOL  
TOF  
IOL=3mA  
CL=400pF, I0=3mA  
250  
ns  
Rev. 1.2  
8/22  
FS5908  
12.2 I2C Digital Switching Characteristics  
(Unless otherwise noted, these specifications apply for VDD = 3.0V (Note 5). Boldface limits apply for TA = TJ =  
MIN to TMAX; all other limits TA = TJ = +25°C, unless otherwise noted.)  
T
The switching characteristics of the FS5908 fully meet or exceed the published specifications of the I2C Bus.  
The following parameters are the timing relationships between SCL and SDA signals related to the FS5908.  
They are not the I2C bus specifications.  
Min  
Typ  
Max  
Symbol  
Parameter  
Test Conditions  
Unit  
(Note6)  
(Note10)  
(Note6)  
t1  
t2  
t3  
SCL (Clock) Period  
10  
100  
μs  
ns  
ns  
Data In Set-up Time to SCL High  
Data Out Stable after SCL Low  
120  
40  
SDA Low Set-Up Time to SCL Low  
(Start Condition)  
t4  
t5  
120  
s  
SDA High Hold Time after SCL High  
(Stop Condition)  
t1  
SCL  
SDA  
Data in  
t4  
t5  
t2  
SDA  
Data out  
Note 5:  
FS5908 will properly over the +Vs suoltage range from 2.5V to 5.5V. The devices are  
tested and specified for ccuracy at their normal supvoltge, Accuracy will typically degrade 0.15/V  
of variation in VDD.  
Note 6:  
Note 7:  
Limits are guaranteed to Fortune AOQAverae Outgoing Quality Level)  
This specification is provided only tcathow often temperature data is updated. The FS5908  
can be read at any time without regard to nversn state (and will yield last conversion result). If a conversion  
is in process it will be stopped and resafter the end of the read.  
Note 8:  
For best accuracy, minimutput loading. Higher sink currents can affect sensor accuracy with  
internal heating. This can cause an erroof 0.25at full rated sink current and saturation voltage based on  
junction-to-ambient thermal resistance.  
Note 9:  
ALARM Delay is user programmable up to 8 over limit conversions before O.S. is set to minimize  
false tripping in noisy environmens.  
Note 10:  
Typical are at T5and represent most likely parametric norm.  
Rev. 1.2  
9/22  
FS5908  
12.3 Typical Performance Characteristics  
Normal Mode current at I2C Active with Temperature(Average)  
350  
300  
250  
200  
150  
100  
50  
0
-30  
-15  
0
15  
30  
45  
60  
75  
90  
105  
0  
Temperature(  
)
Normal Modcurrent t I2C Inactive with mperature(Average)  
350  
300  
250  
200  
150  
100  
50  
0
-30  
-15  
0
15  
0  
45  
75  
90  
105  
120  
Temperature(  
)
Average TempeError  
4.0  
3.0  
2.0  
1.0  
0.0  
-1.0  
-2.0  
-3.0  
-4.0  
-30  
-15  
0
15  
30  
45  
60  
75  
90  
105  
120  
Temperature(  
)
Rev. 1.2  
10/22  
FS5908  
13. Function Description  
13.1 Temperature Measurement  
FS5908 measures the environmental temperature around the chip, and updates the temperature value in  
digital format via the register. Users can read these updated temperature values at any time through I2C  
interface.  
13.2 Overheat/Overcool Warning  
FS5908 can set up one set of the warning temperatures TUpLim and TLowLim (See below diagram). When the  
measured temperature reaches the warning temperature, the ALARM signal will notify microprocessor or  
enable directly the cooler fan, heater and so on. The related warning temperature of ALARM is decided by  
upper bound register (TUpLim) and lower bound register (TLowLim) that can be changed at any time as  
request.  
ALARM Output Change  
According to Temperature  
TUpLim  
Temprature  
Changig Curve  
TLowLim  
ALARM (Comparision Mode.  
int/cmp is 0; arm_inv is 0)  
[Apply to Overheat Warning  
Mode]  
ALARM (Comparision Mode,  
int/cmp is 0; arm_inv is 1)  
[Apply to Overcool Warning  
Mode]  
ALARM (Interrupt Mode,  
int/cmp is 1; arm_inv is 0)  
[Apply to Overheat or  
Overcool Warning Mode]  
ALARM (Interrupt Mode,  
int/cmp is 1; arm_inv is 1)  
[Improper Mode]  
T
:In interrupt mode, after AM pigenerates an interrupt signal, ALARM will be reset only when any one  
register of FS5908 is read ystem enters the stand-by mode.  
Rev. 1.2  
11/22  
FS5908  
13.2.1 ALARM Pin and arm_inv Setup  
arm_inv bit in the control register decides the ALARM pin output mode (please refer to the diagram on previous  
page), the relationship between arm_inv and ALARM is as follow:  
arm_inv is 0: In comparison operation mode, if the temperature is lower than the lower bound setup, ALARM  
is logic standard 1; if the temperature is higher than the upper bound setup, ALARM is logic  
standard 0.  
In interrupt operation mode, ALARM in general situation is logic standard 1; if sending out the  
interrupt signal, ALARM is logic standard 0.  
arm_inv is 1: In comparison operation mode, if the temperature is lower than the lower bound setup, ALARM  
is logic standard 0; if the temperature is higher than the upper bound setup, ALARM is logic  
standard 1.  
In interrupt operation mode, ALARM in general situation is logic standard 0; if send out the  
interrupt signal, ALARM is logic standard 1.  
In comparison mode, ALARM output can be used to enable cool fan or emergency system, uce  
system clock. FS5908 in comparisomode w ilnot reset ALARM sthen entering stand-b
In interrupt mode, the arm_inv should be set to 0 no matter that it is applied to overcool warning or overheat  
warning.  
Once detected the temperature exceeded the upper bond value, ALARM will send t the interrupt signal  
immediately. In the ean time, to read any FS5908 register va I2C interface will clear ALARM interrupt signal.  
ALARM will send out the nterrupt signal again until cted the temperature being lower han the lower bound  
value. It is the same to clar the interrupt signal vieadig the register. FS5908 in interrupt mode will reset  
ALARM output when entering stand-by mode
13.2.2 ALARM Output  
ALARM output pin outputs pen-drain (see below diagrawhicwithout inner circuit promotion design. It  
will not generate logic hdard unless offering the aonacurrent promotion from external (promotive  
resistor generally). The sof promotive resistor dendon the system.  
Vp  
Req  
ALARM  
Alarm Generator  
Ron  
based on  
m and TLowLim  
Iabove diagram, when current I flows, MOS power consumption is:  
Pav =I2RonI=VP / (Req+Ron)]  
Rev. 1.2  
12/22  
FS5908  
And the temperature accuracy of the chip that influenced by the power is shown as below table:  
Pav  
1mW  
Influenced Temp. (Δ)  
0.125  
0.625  
1.125  
1.750  
5mW  
10mW  
20mW  
13.3 Standby Mode (shutdown=Reg1<0>)  
To setup Shutdown bit of control register will enter the Stand-by Mode. In stand-by mode, the standard current  
consumption of FS5908 will be lower than 100uA. In interrupt mode, if ALARM enters stand-by mode in action  
status, then the action status of ALARM will be clear, but if it enters stand-by mode when in comparison mode,  
ALARM will keep the status of before entering. In stand-by mode, all circuits are close except I2C circuit.  
13.4 Power Off (CS)  
When set CS to 0, then the chip is cose, and the current consumptiower than 5μA.  
When set CS to 1 (voltage is VDD), then the chip is enabled, and all status will be default operations. Please  
see below diagram for the dscription f default status.  
Take the chip as Watchdog (independent temperature senor).  
SCL: connect to grond  
SDA: floating  
CS: connect to VDD  
A0: connect to ground or VDD  
Please see the diagram on page 3: Application I  
13.5 set_arm_cnt (Reg 1<4:3)  
Inside the chip, every remeasuring temperature wupdated per 1/4 second. When the measuring  
temperature reaches thng temperature, the ner wing ounter will increase counting, and only when  
the value of the warning unter is equal to the setp times in set_arm_cnt, ALARM pin will send out the  
warning signal. During the rocess, any record of measuring temperature that not reach the warning  
temperature will make the system clear the warcounter to be 0 so that the proper setup for set_arm_cnt  
can avoid noise or interfere making ALARM to aerror.  
set_arm_cnt<1:0>  
sary compare output times to make ALARM output change  
00  
01  
10  
11  
1 (Default)  
2
4
8
13.6 Low Batery Detection (setlowbat=Reg1<7>)  
etlowbat  
0
=1  
1
=1  
Rog0<14>=lowbat  
@VDDΡ2.4V  
@VDDΡ2.2V  
Rev. 1.2  
13/22  
FS5908  
14. Internal Register Structure and Data Format  
Point er f 2h  
s el_opt <3: 0>@0000 or 1111  
PR OM1<7: 0>  
OTP1<7: 0>  
Point er f 3h  
OTP2<7: 0>  
Point er f 4h  
OTP3<7: 0>  
Point er f 5h  
OTP4<7: 0>  
Point er f 6h  
OTP5<7: 0>  
Pointer f f h  
(R/ W )  
(R/ W )  
(R/ W )  
(R/ W )  
(R/ W )  
s el_opt <3: 0>@0001 or 1111  
PR OM2<7: 0>  
s el_opt <3: 0>@0010 or 1111  
PR OM3<7: 0>  
s el_opt <3: 0>@0011 or 1111  
PR OM4<7: 0>  
s el_opt <3: 0>@0100 or 1111  
PR OM5<7: 0>  
s t <3: 0>@0101 or
PR OM6<7: 0>  
I D c ode = 0010, 0110 (R 
s l_opt <3: 0>@0110 or 1111  
PR OM7<7: 0>  
Point er 00h  
Tem pR egis ter (R eg0; R )  
s el_opt <3: 0>@0111 or 1111  
PR OM8<7: 0>  
Poit er 01h  
ControlRegister(Reg1;R/W)  
Def ault:00h  
s el_opt 3: 0>@1000 or 1111  
PR OM9<7: 0>  
Point er 02h  
De( Iitial States)  
:
Upper Bound Reg iste;R/W)  
1. mp. upper and lower bound  
ar e loaded in the r eg . when  
power r eset or CS r eset.  
2. he default value means the  
r esour ce and status of the  
cor r esponding r eg . value when  
power r eset or CS r eset.  
Default:  
PROM8<47<7:0>  
Point er 03h  
Lower Bog ister (TLowLim ;R/W)  
Default:  
OM8<7:5>,PROM6<7:>  
Point er 0h  
3.  
4.  
PROM 8<0> is close bit.  
PROM 9<1> is addlock bit.  
Tes t R egis t er (R eg4; R /
Point er 05h  
I2 C Add. Reg. (Reg6;R)  
Add. Code  
A6~A1<---PROM9<7:2>  
Address Code  
A6~A1<---100100  
Tes t R egis ter ()  
addl oc k  
= 0  
addl oc k  
= 1  
Point er R egis t er  
D ef au: 00h  
SC L  
SD A  
I2 C I nt erf ac e  
Rev. 1.2  
14/22  
FS5908  
14.1 Temperature Register (Pointer=00h, Read Only)  
Pointer Name Type 15  
14  
13  
12  
11 10  
9
8
7
6
5
4
3
2
1
0
lowbat alarm high low Tdata<10:0>  
Set_adc0=0  
Set_adc0=1  
h’00  
Reg0  
R
adc_trans  
0
0
1
Te<11:0>  
When set_adco = 0:  
Reg0<15> (adc_trans): When the temperature output value is updated, the bit becomes 1; when the register is  
read, the bit is cleared to 0.  
Reg0<14> (lowbat):  
Low battery warning. When the bit is 1, it means the operating voltage of the chip is  
lower than the setting voltage. For the setting method, please refer to “2.2 Control Register Reg1<7>  
(setlowbat)”.  
Reg0<13> (alarm):  
The bit is always comparison mode output. When the temperature value is hgher than  
(or equal to) the upper bound value, the bit becomes 1, and until the temperature value is lowequal  
to) the lower bound value, the bit beomes 0.  
Reg0<12> (high): When the temperatue value is higher than (or eql to) the upper bound value, the bit is 1,  
on the contrary, the bit is 0.  
Reg0<11> (low): Whethe temperatue value is lower thn (or equal to) the lower bouvaluethe bit is 1, on  
the contrary, the bit i0.  
Reg0<10:0>:  
Temperature data. The follong tale is the meaning that every bit stands for:  
10  
9
8
7
6
5
4
3
2
1
0
+/-  
64  
32  
16  
8
2
1
0.
0.25  
0.125  
Digit Oe  
Dit  
Ex: Temperature  
Hexadecmal  
+125℃  
+25℃  
+0.5℃  
0℃  
011-1110-1000  
000-1100-1000  
000-0000-0100  
111-1111-1111  
111-11
111-001000  
100-0001-100
0C8  
04  
7FF  
-0.5℃  
-25℃  
-125℃  
7FC  
738  
418  
Note: When the temperature is equal or lower than 0, the temperature is expressed by 2’s complement.  
When set-adco = 1:  
Output is the drect output digital silicon temperature sensor Te<11:0>.  
Rev. 1.2  
15/22  
FS5908  
14.2 Control Register (Pointer=01h, Readable and Writable)  
Pointer  
h'01  
Name  
Reg1  
Type  
R/W  
7
6
5
4
3
2
1
0
setlowbat rst_alarm set_adco set_arm_cnt<1:0>  
Low battery warning setup. 0 is 2.4V; 1 is 2.2V.  
arm_inv int/cmp  
shutdown  
Reg1<7>=setlowbat:  
Reg1<6> (rst_alarm): When set to 1, alarm, high, low and so on bits and the warning signal of ALARM pin  
can be directly cleared; when set to 0, the above signals would be recalculated, and they can be used after  
reset the upper and lower bound.  
Reg1<5> (set_adco): When set to 0, the bit is Tdata<10:0> output; when set to 1, it is Te<11:0> output. Please  
see 2.1.  
Reg1<4:3> (set_arm_cnt<1:0>):  
If the temperature exceeds TUpLim or lower than TLowLim, ALARM output standard will be changed. The two bits  
decide the necessary continuing trigger times to changes ALARM output tandar. (Please see 1
Reg1<2> (arm_inv):  
Reg1<1> (int/cmp):  
Setup ALARM pioutput mode. Pleas1.2.1.  
0 is comparison mode; 1 is interrupt mode. Please see 1.2.1.  
Reg1<0> (shutdown): Stand-by mode0 is normal operaion; 1 s stand-by mode. Pleee 1.3.  
14.3 Upper Bound Register (TUpLim, Poer=0h) and Lower Bound Register (TLowLim,  
Pointer=03h) (Readable and Writa
15  
14  
13  
12  
11  
10  
9
8
6
5
3
2
1
0
TUpLim
(NC)  
+/
10  
632168℃  
℃  
2℃  
1℃  
0.5℃  
0.25℃  
0.125℃  
15  
14  
13  
12  
9
8
7
4
3
2
1
0
TLowLim<10:0>  
+/- 64328℃  
(NC)  
4℃  
2℃  
1℃  
0.5℃  
0.25℃  
0.125℃  
The default values can be programmed in PROPROM6, PROM7, and PROM8) before out of factory. When  
power on or produce CS, they will be pefault related registers from PROM. The meanings of bits are the  
same as the temperature register (Fplease see “2.1 Temperature Data Format”). When bit<10>=0, it  
means the positive (+), and when bit<1=1, it means the negative (-).  
For the upper bound register (TpLim) and lower bound register (TLowLim), please see the diagram on Page11.  
T
T
LowLim <10:0> {PROM8 <7:5PROM6<7:0>}  
UpLim <10:0> {PROM8 <4:2>, PROM7<7:0>}  
OTP6 <7:0> PROM6 <
OTP7 <7:0> PROM7 <
OTP8 <7:0> PROM8 <7:0>  
Rev. 1.2  
16/22  
FS5908  
14.4 Default Status  
When power on or CS is produced, FS5908 will enter default operation mode. For its status, please refer to the  
diagram on Page11.  
Initial States:  
1.  
2.  
3.  
Pointer default: 00h  
Control register default: 00h  
The corresponding location of OTPX<7:0> and PROM1~PROM9:  
OTP1<7:0> PROM1<7:0>  
OTP2<7:0> PROM2<7:0>  
OTP3<7:0> PROM3<7:0>  
OTP4<7:0> PROM4<7:0>  
OTP5<7:0> PROM5<7:0>  
4.  
5.  
6.  
7.  
TLowLim<10:0> {PROM8<7:5>, PROM6<7:0>}  
TUpLim<10:0> {PROM8<4:2>, PROM7<7:0>}  
OTP9<7:0> PROM9<7:0>  
The upper and lower bound seup will load in the upper and lower bound register when poCS  
reset.  
8.  
9.  
Default value means the values resource and status of the cosponding register during poset or  
CS reset.  
PROM8<0> is close it. When it is programmed as High (logic 1), no any prograing action can be  
done to PROM again.  
10. PROM9<1> is addlock bit. When it is programmed as High (logic1), I2C address i{PROM9<7:2>, A0},  
or I2addess is {100100,A0}  
FS5908 can be connected o independent thermoreulator without via I2C interface control so that all of the  
registers of FS5908 will enter the default stat
14.5 Test Register (Pointer=04h, =05h, Readable and Writable)  
Reg4<7:0> and Reg5<7:0> are thtest register for mass productin, please ignore them in general use, lest  
influence IC normal oper
14.6 I2C Address Register (Pointer=06h, ROnly)  
Pointer  
h'06  
Name  
Reg6  
Type  
R
7
6
5
4
3
2
1
0
I2C addr<6:1>  
addlock  
(rv)  
Reg6<7:2>:I2C Address Lines A6 ~ A1
Reg6<1>: A6 ~ A1 can be setup via programming PROM in the chip. When A0 is 0, it is 100100; when A0 is 1,  
A6 ~ A1 PROM9<7:2>.  
Reg6<7:2>:register storedress A6 ~ A1 which programmed by PROM9<7:2>, but when A0 is 0, I2C  
address A6 ~ A1 is default and will not be stored in Reg6<7:2>. This should be noticed in use.  
Rev. 1.2  
17/22  
FS5908  
15. Digital Interface  
FS5908 takes I2C as digital data transmission interface. It has SCL and SDA two signal lines: SCL is a clock  
signal that is the input pin in FS5908, and SDA is two-way serial data I/O pin. For the I/O format, please refer to  
SMBus specification.  
15.1 Address  
Base on I2C interface rules, FS5908 has 7 bits address plus 1 bit read and write control signal (R/W). When  
R/W is 0 means writing; 1 means reading. The complete address bytes are as follow:  
7
6
5
4
3
2
1
0
A6  
A5  
A4  
A3  
A2  
A1  
A0  
R/W  
A6 ~ A1 can be setup via programming PROM in the chip.  
When A0 is 0, it is 100100.  
External Pin  
Read and Write Control  
When A0 is 1, A6 ~ A1 PROM9<7:2>  
15.2 Pointer  
Pointer is to select the register to read and write. Its corresponding relationship with register is
Pointer  
Name  
Length  
Status  
h’00  
h’01  
h’02  
h’03  
h’04  
h’05  
h’06  
h’f2  
h’f3  
h’f4  
h’f5  
h’f6  
h’f7  
h’f8  
h’f9  
h’fa  
h’ff  
REG0  
16 bits (2 byte
8 bi1 byte)  
1bits (2 bytes)  
16 bits (2 bytes)  
bits (1 byte)  
8 bs (1 byte)  
8 bits (1 byte)  
8 bits (1 byte)  
8 bits (1 byte)  
8 bits (1 byte)  
8 bits (1 yte)  
8 bit1 byte
8 1 be)  
8 bi(1 byte)  
8 bits (1 byte)  
8 bits (1 byte)  
8 bits (1 byte)  
R
REG1  
R/W  
R/W  
R/W  
R/W  
R
TUpLim  
TLowLi
REG4  
REG5  
REG6  
R
PROM1  
PROM2  
PROM3  
PROM4  
OM5  
OM6  
ROM7  
POM8  
PROM9  
IDcode  
R/W  
R/W  
R/W  
R/W  
R/W  
R
R
R
R
R
15.3 Register Writing Process  
The process to write FS5908 register via 2C includes:  
(1) Write address  
(2) Write pointer  
(3) Write dat
The first byte of writing date highest byte of the record, and the first bit of every byte is the highest bit of  
the byte.  
Rev. 1.2  
18/22  
FS5908  
15.3.1 The control register with writing data length 1 byte  
1
9
1
9
1
9
SCL  
SDA  
A4 A3  
A1 A0  
W
D7 D6 D5 D4 D3 D2 D1 D0  
D7 D6 D5 D4 D3 D2 D1 D0  
A6 A5  
A2  
Ack  
by  
FS5908  
Ack  
by  
FS5908  
Ack  
by  
FS5908  
Address  
Byte  
Pointer  
Byte  
Start by  
Master  
Stop by  
Master  
Data Byte  
15.3.2 The register with writing data length 2 byte  
1
9
1
9
1
9
1
9
SCL  
SDA  
D14  
A6 A5  
A4 A3 A2 A1 A0  
W
D7 D6 D5 D4 D3 D2 D1 D0  
D15  
D13 D12 D11 D10 D9 D8  
D7 D6 D5 D4 D3 D2 D1 D0  
Ack  
by  
FS59
Ack  
by  
FS5908  
Ack  
by  
FS5908  
Ack  
by  
FS5908  
Address  
Byte  
Poter  
Byte  
Start by  
Master  
Stop by  
aster  
Data Byte  
Data Byte  
The process to read FS5908 regiser via I2C ncludes complete ng process (3.4) and ing  
process (3.5).  
15.4 Register Complete Reading Process  
15.4.1 Complete Reading Proces and Repeat Reading Process. Complreading process  
includes the following steps  
(1) Write address  
(2) Then write pointer  
(3) Write address again  
(4) Read data  
The first byte of reata is the highest be of the record, and the first bit of  
every byte is the highit of the byte.  
15.4.2 The controlled rewith complete reading data th 1 byte  
1
9
1
9
SCL  
SDA  
A3 A2 A1 A0  
A6 A5 A4  
W
D7 D6 4 3 D2 D1 D0  
Ack  
by  
FS5908  
Ac
F
Address  
Byte  
Pointer  
Byte  
Start  
by  
Master  
1
9
1
9
SCL  
A6 A5 A4 A3 A2
R
D7 D6 D5 D4 D3 D2 D1 D0  
SDA  
No  
Ack  
by  
Ack  
by  
FS5908  
Address  
yte  
Stop  
by  
Master  
Repeat  
Start by  
Master  
Data Byte  
Master  
Rev. 1.2  
19/22  
FS5908  
15.4.3 The register with complete reading data length 2 byte  
1
9
1
9
SCL  
SDA  
A6 A5 A4 A3 A2 A1 A0  
W
D7 D6 D5 D4 D3 D2 D1 D0  
Ack  
by  
FS5908  
Ack  
by  
FS5908  
Address  
Byte  
Pointer  
Byte  
Start  
by  
Master  
1
9
1
9
SCL  
A6 A5 A4 A3 A2 A1 A0  
R
D15 D14 D13 D12 D11 D10 D9 D8  
D7 D6 D5 D4 D3 D2 D1 D0  
SDA  
No  
Ack  
by  
Ack  
by  
FS5908  
Ack  
by  
Master  
Address  
Byte  
Stop  
by  
Repeat  
Start by  
Master  
Data Byte  
Data Byte  
Master  
15.5 Register Repeat Reading Process  
15.5.1 Repeat reading process ncludes the following steps  
(1)  
(2)  
Write address  
Read data  
When read by repeat ding process, the read rer ithe previous registethat apointed by complete  
reading, that is, the registethat the pointer is setup.  
15.5.2 The controlled register with repeat reata length 1 byte  
1
9
9
9
SCL  
SDA  
D12  
R
D15 D14 D13  
D11 D10 D
DD6 D5 D4 D3 D2 D1 D0  
A6 A5 A4 A3 A2  
No  
Ack  
by  
Ac
b
Ack  
by  
Address  
Byte  
Mster  
FS5908  
Start by  
Master  
Stop by  
Master  
Data Bye  
Data Byte  
Master  
When read or write in I2C interface, if SDA sigs forced by FS5908 to logic low standard, it has to only  
re-execute reading or writing process to ase. his stuation won’t happen in normal timing. It happens only  
when the data length read by the user ller than the actual length of the register.)  
After writing to the register of the chip, it hould take reading confirmation to make sure the written commands  
not error.  
Rev. 1.2  
20/22  
FS5908  
16. Package Outline  
16.1 SOP8  
Dimensios in  
eters  
Dimensions in Inches  
1.  
Note  
Symbol  
2.  
Package body size excludflash  
and gate burrs;  
n  
Typ  
Max  
1.55  
0.25  
Min  
Typ  
Max  
A
1.45 1.50  
0.057 0.059 0.061  
3.  
4.  
Dimension L is mee in gate plane;  
A2  
B
0.10  
0.004  
0.010  
Tolerance 0.1unless otherwis
specified;  
1.45  
0.057  
0.33  
0.19  
4.80  
3.80  
0.51  
0.25  
5.00  
4.00  
0.013  
0.007  
0.189  
0.150  
0.020  
0.010  
0.197  
0.157  
5.  
6.  
Controlling dimension is millime
converted inch dimensions are t  
necessarily exact;  
C
D
E
Followed from JEDEC MS-
E
1.27  
0.050  
H
L
5.80  
0.40  
6.20  
1.27  
0.10  
80  
0.228  
0.016  
0.244  
0.050  
0.004  
80  
Y
θ
00  
00  
Rev. 1.2  
21/22  
FS5908  
17. Revision History  
Ver.  
Date  
Page  
Description  
0.1  
2002/4/24  
All  
Initial Release (Preliminary, Chinese Version)  
Change to English Version  
0.2  
1.0  
2002/10/29  
2004/3/25  
All  
All  
Change to official 1.0 release  
1
Delete SOP8 ordering information  
4
ESD Susceptibility: Human Body Model 2000V/Machine Model: 200V  
Temperature Conversion Time: Typ 105 ms  
Add SOP8 Package Outline  
5
25  
All  
1
1.1  
1.2  
2005/10/27  
2006/11/23  
Change datasheet format  
Add Lead Free ordering information  
1
Revise Pin5 name from VDDPROM to NC  
Revise Pin5 Name and Function Description to NC/No Connect  
2
18~24  
Delete Chap4/5 Program and Read PROM/Temperature Calibration nd  
Production  
All  
3
Change datasheet format (CIS logo)  
Feature: Delete MSOP package description  
Delete o connect under Pin gurations  
Add Pn5 Function DescriptionWhen in the normal operation, it connects to  
ground.  
3
4
Rev. 1.2  
22/22  

相关型号:

FS5908-P

Digital Temperature Sensor and Thermal Watchdog with I2C® Interface and SMBusTM Format
FORTUNE

FS5AS-06

HIGH-SPEED SWITCHING USE
MITSUBISHI

FS5AS-06

Nch POWER MOSFET HIGH-SPEED SWITCHING USE
POWEREX

FS5AS-06

High-Speed Switching Use Nch Power MOS FET
RENESAS

FS5AS-06-T1

Power Field-Effect Transistor, 5A I(D), 60V, 0.16ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET
MITSUBISHI

FS5AS-06-T13

High-Speed Switching Use Nch Power MOS FET
RENESAS

FS5AS-06-T2

Power Field-Effect Transistor, 5A I(D), 60V, 0.16ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET
MITSUBISHI

FS5AS-10A

High-Speed Switching Use Nch Power MOS FET
RENESAS

FS5AS-10A-T13

High-Speed Switching Use Nch Power MOS FET
RENESAS

FS5AS-2

Nch POWER MOSFET HIGH-SPEED SWITCHING USE
POWEREX

FS5AS-2

High-Speed Switching Use Nch Power MOS FET
RENESAS

FS5AS-2-T1

Power Field-Effect Transistor, 5A I(D), 100V, 0.47ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, MP3, 4 PIN
MITSUBISHI