DSPB56364AF100 [FREESCALE]

DSPB56364AF100;
DSPB56364AF100
型号: DSPB56364AF100
厂家: Freescale    Freescale
描述:

DSPB56364AF100

文件: 总55页 (文件大小:1214K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
深圳市南天星电子科技有限公司  
专业代理飞思卡尔  
(Freescale)  
飞思卡尔主要产品  
飞思卡尔产品主要应用  
8 位微控制器  
汽车电子  
16 位微控制器  
数字信号处理器与控制器  
i.MX 应用处理器  
基于 ARM®技术的 Kinetis MCU  
32/64 位微控制器与处理器  
模拟与电源管理器件  
射频器件(LDMOS,收发器)  
传感器(压力,加速度,磁场,  
触摸,电池)  
数据连接  
消费电子  
工业控制  
医疗保健  
电机控制  
网络  
智能能源  
深圳市南天星电子科技有限公司  
电话:075583040796  
传真:075583040790  
邮箱:tiger@soustar.com.cn  
网址:www.soustar.com.cn  
地址:深圳市福田区福明路雷圳大厦 2306 室  
Freescale Semiconductor  
Data Sheet: Technical Data  
Document Number: DSP56720  
Rev.1, 12/2007  
DSP56720 / DSP56721  
DSP56720  
144-Pin LQFP  
20 mm x 20 mm  
0.5 mm pitch  
80-Pin LQFP  
SymphonyTM DSP56720 /  
DSP56721 Multi-Core Audio  
Processors  
DSP56721  
14 mm x 14 mm  
0.65 mm pitch  
144-Pin LQFP  
20 mm x 20 mm  
0.5 mm pitch  
The Symphony DSP56720/DSP56721 Multi-Core Audio  
Processors are part of the DSP5672x family of programmable  
CMOS DSPs, designed using multiple DSP56300 24-bit  
cores.  
Ordering Information  
Device Marking or  
The DSP56720/DSP56721 devices are intended for  
Device  
Operating Temperature LQFP Package  
Range  
automotive, consumer, and professional audio applications  
that require high performance for audio processing. In  
addition, the DSP56720 is ideally suited for applications that  
need the capability to expand memory off-chip or to interface  
to external parallel peripherals. Potential applications include  
A/V receivers, HD-DVD and Blu-Ray players, car  
DSP56720  
DSPA56720AG  
DSPB56720AG  
DSPA56721AG  
DSPB56721AG  
DSPA56721AF  
DSPB56721AF  
20 mm x 20 mm  
20 mm x 20 mm  
20 mm x 20 mm  
20 mm x 20 mm  
14 mm x 14 mm  
14 mm x 14 mm  
DSP56720  
audio/amplifiers, and professional recording equipment.  
The DSP56720/DSP56721 devices excel at audio processing  
for automotive and consumer audio applications requiring  
high MIPs. Higher MIPs and memory requirements are driven  
by the new high-definition audio standards (Dolby Digital+,  
Dolby TrueHD, DTS-HD, for example) and the desire to  
process multiple audio streams.  
Communication (ICC), an External Memory Controller  
(EMC) to support SDRAM, and a Sony/Philips Digital  
Interface (S/PDIF).  
The DSP56720/DSP56721 offer 200 million instructions per  
second (MIPs) per core using an internal 200 MHz clock.  
In addition, DSP56720/DSP56721 devices are optimal for the  
professional audio market requiring audio recording, signal  
processing, and digital audio synthesis.  
The DSP56720/DSP56721 are high density CMOS devices  
with 3.3 V inputs and outputs.  
The DSP56720/DSP56721 processors provide a wealth of  
on-chip audio processing functions, via a plug and play  
software architecture system that supports audio decoding  
algorithms, various equalization algorithms, compression,  
signal generator, tone control, fade/balance, level  
meter/spectrum analyzer, among others. The  
The DSP56720 device is slightly different than the DSP56721  
device—the DSP56720 includes an external memory  
interface while the DSP56721 device does not. The  
DSP56720 block diagram is shown in Figure 1; the  
DSP56721 block diagram is shown in Figure 2.  
DSP56720/DSP56721 devices also support various matrix  
decoders and sound field processing algorithms.  
With two DSP56300 cores, a single DSP56720 or DSP56721  
device can replace dual-DSP designs, saving costs while  
meeting high MIPs requirements. Legacy peripherals from  
the previous DSP5636x/7x families are included, as well as a  
variety of new modules. Included among the new modules are  
an Asynchronous Sample Rate Converter (ASRC), Inter-Core  
Freescale reserves the right to change the detail specifications as may be required to permit  
improvements in the design of its products.  
© Freescale Semiconductor, Inc., 2006, 2007. All rights reserved.  
Table of Contents  
1
2
Pin Assignments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4  
2.2.3 Programming the SHI I2C Serial Clock . . . . . . 26  
2.2.4 Enhanced Serial Audio Interface (ESAI) Timing27  
2.2.5 Timer Timing . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
2.2.6 GPIO Timing . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
2.2.7 JTAG Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
2.2.8 Watchdog Timer Timing . . . . . . . . . . . . . . . . . . 35  
2.2.9 Host Data Interface (HDI24) Timing. . . . . . . . . 35  
2.2.10 S/PDIF Timing . . . . . . . . . . . . . . . . . . . . . . . . . 42  
2.2.11 EMC Timing (DSP56720 only). . . . . . . . . . . . . 43  
Functional Description and Application Information . . . . . . . 48  
Hardware Design Considerations . . . . . . . . . . . . . . . . . . . . . 48  
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
6.1 80-Pin Package Outline Drawing. . . . . . . . . . . . . . . . . 48  
6.2 144-Pin Package Outline Drawing. . . . . . . . . . . . . . . . 51  
Product Documentation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
1.1 Pinout for DSP56720 144-Pin Plastic LQFP Package . .4  
1.2 Pinout for DSP56721 80-Pin Plastic LQFP Package . . .6  
1.3 Pinout for DSP56721 144-Pin Plastic LQFP Package . .7  
1.4 Pin Multiplexing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8  
2.1 Chip-Level Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . .8  
2.1.1 Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . .8  
2.1.2 Thermal Characteristics. . . . . . . . . . . . . . . . . . .10  
2.1.3 Power Requirements . . . . . . . . . . . . . . . . . . . . .10  
2.1.4 DC Electrical Characteristics. . . . . . . . . . . . . . .11  
2.1.5 AC Electrical Characteristics . . . . . . . . . . . . . . .12  
2.1.6 Internal Clocks . . . . . . . . . . . . . . . . . . . . . . . . .12  
2.1.7 External Clock Operation. . . . . . . . . . . . . . . . . .13  
2.1.8 Reset, Stop, Mode Select, and Interrupt Timing14  
2.2 Module-Level Specifications . . . . . . . . . . . . . . . . . . . . .17  
2.2.1 Serial Host Interface (SHI) SPI Protocol Timing 18  
2.2.2 Serial Host Interface (SHI) I2C Protocol Timing.24  
3
4
5
6
7
8
SymphonyTM DSP56720 / DSP56721 Multi-Core Audio Processors, Rev.1  
Freescale Semiconductor  
2
EXTAL/XTAL  
DSP  
Core-0  
DSP  
Core-1  
CGM  
ASRC  
On-Chip  
Memory  
On-Chip  
Memory  
Arbiter 9  
Arbiter 8  
Shared Bus 0  
P
X
Y
P
X
Y
Shared Bus 1  
Arbiters 0–7  
PCU  
PCU  
DMA  
OnCE  
OnCE  
DMA  
/ AGU  
/ ALU  
/ AGU  
/ ALU  
Shared Memory 8K  
Blocks 0–7 (64K total)  
MODA0, MODB0,  
MODC0, MODD0  
2 JTAGs  
JTAG  
MODA1, MODB1,  
MODC1, MODD1  
Figure 1. DSP56720 Block Diagram  
HDI24  
EXTAL/XTAL  
DSP  
Core-0  
DSP  
Core-1  
CGM  
ASRC  
On-Chip  
Memory  
On-Chip  
Memory  
Arbiter 8  
Shared Bus 0  
Shared Bus 1  
P
X
Y
P
X
Y
Arbiters 0–7  
PCU  
PCU  
DMA  
OnCE  
OnCE  
DMA  
/ AGU  
/ ALU  
/ AGU  
/ ALU  
Shared Memory 8K  
Blocks 0–7 (64K total)  
MODA0, MODB0,  
MODC0, MODD0  
2 JTAGs  
JTAG  
MODA1, MODB1,  
MODC1, MODD1  
Figure 2. DSP56721 Block Diagram  
SymphonyTM DSP56720 / DSP56721 Multi-Core Audio Processors, Rev.1  
Freescale Semiconductor  
3
1
Pin Assignments  
DSP56720 devices are available in one package type; DSP56721 devices are available in two package types. For the pin  
assignments of a specific device in a specific package, please see sections 1.21.1.  
Table 1. Pin Assignments by Package  
Device  
Package  
See  
DSP56720  
DSP56721  
144-pin plastic LQFP  
80-pin plastic LQFP  
144-pin plastic LQFP  
Figure 3 on page 5  
Figure 4 on page 6  
Figure 5 on page 7  
For more detailed information about signals, refer to the DSP56720/DSP56721 Reference Manual (DSP56720RM).  
1.1  
Pinout for DSP56720 144-Pin Plastic LQFP Package  
For the pinout of the DSP56720 144-pin plastic LQFP package, see Figure 3.  
SymphonyTM DSP56720 / DSP56721 Multi-Core Audio Processors, Rev.1  
Freescale Semiconductor  
4
CORE_VDD  
CORE_GND  
LALE  
1
2
108  
107  
106  
105  
104  
103  
102  
101  
100  
99  
IO_GND  
IO_VDD  
3
WDT  
LCS0  
4
PINIT/NMI  
TDO  
LCS1  
5
LCS2  
6
TDI  
LCS3  
7
TCK  
LCS4  
8
TMS  
LCS5  
9
SDO2_1/SDI3_1  
SDO3_1/SDI2_1  
SDO4_1/SDI1_1  
SDO5_1/SDI0_1  
CORE_GND  
CORE_VDD  
FSR  
LCS6  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
LCS7  
98  
IO_VDD  
IO_GND  
CORE_VDD  
CORE_GND  
LWE  
97  
96  
95  
DSP56720  
144-Pin  
94  
93  
SCKR  
LOE  
LGPL5  
LSDA10  
LCKE  
LCLK  
LBCTL  
92  
HCKR  
91  
SCKT  
90  
FST  
89  
HCKT  
88  
SDO2/SDI3  
SDO3/SDI2  
SDO4/SDI1  
SDO5/SDI0  
SPDIFOUT1  
SPDIFIN1  
IO_GND  
87  
LSDWE  
LSDCAS  
LGTA  
86  
85  
84  
LA0  
83  
LA1  
82  
LA2  
81  
IO_VDD  
IO_VDD  
IO_GND  
PLLP1_GND  
PLLP1_VDD  
PLLD1_GND  
PLLD1_VDD  
PLLA1_GND  
PLLA1_VDD  
80  
EXTAL  
79  
XTAL  
78  
PLLP_GND  
PLLD_GND  
PLLD_VDD  
PLLA_GND  
PLLA_VDD  
PLLP_VDD  
77  
76  
75  
74  
73  
Figure 3. DSP56720 144-Pin Package Pinout  
SymphonyTM DSP56720 / DSP56721 Multi-Core Audio Processors, Rev.1  
Freescale Semiconductor  
5
1.2  
Pinout for DSP56721 80-Pin Plastic LQFP Package  
For the pinout of the DSP56721 80-pin plastic LQFP package, see Figure 4.  
SDO2_3/SDI3_3  
SDO3_3/SDI2_3  
SDO4_3/SDI1_3  
SDO5_3/SDI0_3  
IO_VDD  
1
2
3
4
5
6
7
8
9
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
WDT  
PINIT/NMI  
TDO  
TDI  
TCK  
IO_GND  
TMS  
CORE_VDD  
CORE_GND  
CORE_VDD  
SDO4/SDI1  
SDO5/SDI0  
IO_GND  
IO_VDD  
EXTAL  
CORE_GND  
DSP56721  
80-Pin  
SPDIFIN1/SDO2_2/SDI3_2  
SPDIFOUT1/SDO3_2/SDI2_2 10  
SDO4_2/SDI1_2  
SDO5_2/SDI0_2  
FSR_3  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
SCKR_3  
SCKT_3  
GND  
XTAL  
PLLP_GND  
PLLD_GND  
PLLD_VDD  
PLLA_GND  
PLLA_VDD  
PLLP_VDD  
GND  
GND  
GND  
GND  
Figure 4. DSP56721 80-Pin Package  
SymphonyTM DSP56720 / DSP56721 Multi-Core Audio Processors, Rev.1  
6
Freescale Semiconductor  
1.3  
Pinout for DSP56721 144-Pin Plastic LQFP Package  
For the pinout of the DSP56721 144-pin plastic LQFP package, see Figure 5.  
TIO0/H15/HAD15  
PG18/HDI_SEL  
IO_GND  
1
2
108  
107  
106  
105  
104  
103  
102  
101  
100  
99  
IO_GND  
IO_VDD  
3
WDT  
TIO0_1/H18/HAD18  
CORE_VDD  
CORE_GND  
SDO2_3/SDI3_3  
SDO3_3/SDI2_3  
SDO4_3/SDI1_3  
SDO5_3/SDI0_3  
IO_VDD  
4
PIINT/NMI  
TDO  
5
6
TDI  
7
TCK  
8
TMS  
9
SCKR_1  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
FSR_1  
98  
SCKT_1  
IO_GND  
97  
FST_1  
CORE_VDD  
CORE_GND  
SDO2_2/SDI3_2  
SDO3_2/SDI2_2  
SDO4_2/SDI1_2  
SDO5_2/SDI0_2  
HCKR_3  
96  
SDO0_1  
95  
SDO1_1  
DSP56721  
144-Pin  
94  
IO_GND  
93  
IO_VDD  
92  
CORE_GND  
CORE_VDD  
SDO0  
91  
90  
FSR_3  
89  
SDO1  
SCKR_3  
88  
SDO4/SDI1  
SDO5/SDI0  
SPDIFOUT1/H12/HAD12  
SPDIFIN1/H8/HAD8  
HACK/HRRQ  
HOREQ/HTRQ  
IO_GND  
SCKT_3  
87  
IO_VDD  
86  
IO_GND  
85  
H6/HAD6  
84  
H7/HAD7  
83  
SPDIFIN2/H9/HAD9  
SPDIFIN3/H10/HAD10  
SPDIFIN4/H11/HAD11  
SPDIFOUT2/H13/HAD13  
SPLOCK/H14/HAD14  
GND  
82  
81  
IO_VDD  
80  
EXTAL  
79  
XTAL  
78  
PLLP_GND  
PLLD_GND  
PLLD_VDD  
PLLA_GND  
PLLA_VDD  
PLLP_VDD  
77  
GND  
76  
GND  
75  
GND  
74  
GND  
73  
Figure 5. DSP56721 144-Pin Package Pinout  
1.4  
Pin Multiplexing  
Many pins are multiplexed. For more about pin multiplexing, refer to the DSP56720/DSP56721 Reference Manual  
(DSP56720RM).  
SymphonyTM DSP56720 / DSP56721 Multi-Core Audio Processors, Rev.1  
Freescale Semiconductor  
7
2
Electrical Characteristics  
For electrical characteristics, see Table 2.  
Table 2. Electrical Characteristics  
For  
See  
Section 2.1, “Chip-Level Conditions”  
Section 2.2, “Module-Level Specifications”  
on page 8  
on page 17  
2.1  
Chip-Level Conditions  
For a summary of chip-level conditions in this section, see Table 3.  
Table 3. Chip-Level Conditions  
For  
See  
Section 2.1.1, “Maximum Ratings”  
on page 8  
on page 10  
on page 10  
on page 11  
on page 12  
on page 12  
on page 13  
on page 14  
Section 2.1.2, “Thermal Characteristics”  
Section 2.1.3, “Power Requirements”  
Section 2.1.4, “DC Electrical Characteristics”  
Section 2.1.5, “AC Electrical Characteristics”  
Section 2.1.6, “Internal Clocks”  
Section 2.1.7, “External Clock Operation”  
Section 2.1.8, “Reset, Stop, Mode Select, and Interrupt Timing”  
2.1.1  
Maximum Ratings  
For maximum ratings, see Table 4.  
CAUTION  
This device contains circuitry protecting against damage due to high static voltage or  
electrical fields. However, normal precautions should be taken to avoid exceeding  
maximum voltage ratings. Reliability of operation is enhanced if unused inputs are pulled  
to an appropriate logic voltage level (for example, either GND or V ). The suggested  
DD  
value for a pull-up or pull-down resistor is 4.7 kΩ.  
NOTE  
In the calculation of timing requirements, adding a maximum value of one specification to  
a minimum value of another specification does not yield a reasonable sum. A maximum  
specification is calculated using a worst case variation of process parameter values in one  
direction. The minimum specification is calculated using the worst case for the same  
parameters in the opposite direction. Therefore, a “maximum” value for a specification will  
never occur in the same device that has a “minimum” value for another specification;  
adding a maximum to a minimum represents a condition that can never exist.  
SymphonyTM DSP56720 / DSP56721 Multi-Core Audio Processors, Rev.1  
8
Freescale Semiconductor  
Table 4. Maximum Ratings  
Symbol  
Rating1  
Value1, 2  
Unit  
Supply Voltage  
VCORE_VDD,  
VPLLD_VDD  
-0.3 to + 1.26  
V
VPLLP_VDD,  
VIO_VDD,  
VPLLA_VDD  
-0.3 to + 4.0  
V
,
Maximum CORE_VDD power supply ramp time4  
Input Voltage per pin excluding VDD and GND  
Tr  
VIN  
I
10  
GND -0.3 to 5.5V  
12  
ms  
V
Current drain per pin excluding VDD and GND  
(Except for pads listed below)  
mA  
LSYNC_OUT  
Ilsync_out  
Ilclk  
16  
16  
mA  
mA  
mA  
mA  
°C  
°C  
V
LCLK  
LALE  
Iale  
16  
TDO  
IJTAG  
TJ  
TSTG  
24  
Operating temperature range3  
-40 to +125  
-65 to +150  
2000  
Storage temperature  
ESD protected voltage (Human Body Model)  
ESD protected voltage (Charged Device)  
V
• All pins  
• Corner pins  
500  
750  
Notes:  
1. GND = 0 V, TJ = -40°C to 125°C, CL = 50pF  
2. Absolute maximum ratings are stress ratings only, and functional operation at the maximum is not guaranteed. Stress beyond the  
maximum rating may affect device reliability or cause permanent damage to the device.  
3. Operating temperature qualified for consumer applications. TJ = TA + qJA x Power. Variables used were  
Core Current = 900mA, I/O Current = 200mA, Core Voltage = 1.1 V, I/O Voltage = 3.6 V, TA = 105°C.  
4. If the power supply ramp to full supply time is longer than 10 ms, the POR circuitry will not operate correctly, causing erroneous  
operation.  
SymphonyTM DSP56720 / DSP56721 Multi-Core Audio Processors, Rev.1  
Freescale Semiconductor  
9
2.1.2  
Thermal Characteristics  
For thermal characteristics, see Table 5.  
Table 5. Thermal Characteristics  
Board Type  
Characteristic  
Symbol  
LQFP Values  
Unit  
Natural Convection, Junction-to-ambient thermal resistance1,2  
Single layer board  
(1s)  
57 for 80 QFP  
49 for 144 QFP  
°C/W  
RθJA or θJA  
Four layer board  
(2s2p)  
44 for 80 QFP  
40 for 144 QFP  
°C/W  
°C/W  
Junction-to-case thermal resistance3  
RθJC or θJC 10 for 80 QFP  
9 for 144 QFP  
Notes:  
1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board)  
temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.  
2. Per SEMI G38-87 and JEDEC JESD51-2 with the single layer board horizontal.  
3. Thermal resistance between the die and the case top surface as measured by the cold plate method  
(MIL SPEC-883 Method 1012.1).  
2.1.3  
Power Requirements  
To prevent high current conditions due to possible improper sequencing of the power supplies, use an external Schottky diode  
as shown in Figure 6, connected between the DSP56720/DSP56721 IO_VDD and Core_VDD power pins.  
IO_VDD  
External  
Schottky  
Diode  
Core_VDD  
Figure 6. Prevent High Current Conditions by Using External Schottky Diode  
If an external Schottky diode is not used (to prevent a high current condition at power-up), then IO_VDD must be applied ahead  
of Core_VDD, as shown in Figure 7.  
Core_VDD  
IO_VDD  
Figure 7. Prevent High Current Conditions by Applying IO_VDD Before Core_VDD  
For correct operation of the internal power-on reset logic, the Core_VDD ramp rate (Tr) to full supply must be less than 10 ms,  
as shown in Figure 8.  
SymphonyTM DSP56720 / DSP56721 Multi-Core Audio Processors, Rev.1  
10  
Freescale Semiconductor  
Tr  
1.0V  
0 V  
Core_VDD  
Tr must be < 10 ms  
Figure 8. Ensure Correct Operation of Power-On Reset with Fast Ramp of Core_VDD  
2.1.4  
DC Electrical Characteristics  
For DC electrical characteristics, see Table 6.  
Table 6. DC Electrical Characteristics  
Characteristics  
Symbol  
Min  
Typ  
Max  
Unit  
Supply voltages  
VDD  
0.9  
1.0  
1.1  
V
• Core (Core_VDD)  
• PLL (PLLD_VDD, PLLD1_VDD)  
Supply voltages  
• I/O (IO_VDD)  
• PLL (PLLP_VDD, PLLP1_VDD)  
• PLL (PLLA_VDD, PLLA1_VDD)  
VDDIO  
3.14  
2.0  
3.3  
3.46  
V
V
Input high voltage  
VIH  
VIO_VDD+2V  
Note: To avoid a high current condition and possible system damage, all 3.3 volt supplies must rise before the 1.0 volt  
supplies rise.  
Input low voltage  
VIL  
IIN  
-0.3  
0.8  
84  
V
Input leakage current  
μA  
pF  
μA  
Clock pin Input Capacitance (EXTAL)  
CIN  
ITSI  
18  
High impedance (off-state) input current (@ 3.3 V or  
0 V)  
-10  
2.4  
10  
Output high voltage  
VOH  
V
IOH = -12 mA  
LSYNC_OUT, LALE, LCLK Pins IOH = -16 mA, TDO  
Pin IOH = -24 mA  
Output low voltage  
VOL  
0.4  
V
IOL = 12 mA  
LSYNC_OUT, LALE, LCLK Pins IOL = 16 mA, TDO  
Pins IOL = 24 mA  
SymphonyTM DSP56720 / DSP56721 Multi-Core Audio Processors, Rev.1  
Freescale Semiconductor  
11  
Table 6. DC Electrical Characteristics (Continued)  
Characteristics  
Symbol  
Min  
Typ  
Max  
Unit  
Internal supply current1 (core only) at internal clock of  
200 MHz  
• In Normal mode  
ICCI  
ICCW  
ICCS  
CIN  
190  
90  
50  
780  
680  
640  
10  
mA  
mA  
mA  
pF  
• In Wait mode  
• In Stop mode2  
Input capacitance  
Notes:  
1. The Current Consumption section provides a formula to compute the estimated current requirements in Normal mode. In order  
to obtain these results, all inputs must be terminated (i.e., not allowed to float). Measurements are based on synthetic intensive  
DSP benchmarks. The power consumption numbers in this specification are 90% of the measured results of this benchmark. This  
reflects typical DSP applications. Typical internal supply current is measured with VCORE_VDD = 1.0V, VDD_IO = 3.3V at TJ = 25°C.  
Maximum internal supply current is measured with VCORE_VDD = 1.10V, VIO_VDD) = 3.6V at TJ = 125°C.  
2. In order to obtain these results, all inputs, which are not disconnected at Stop mode, must be terminated (i.e., not allowed to float).  
2.1.5  
AC Electrical Characteristics  
The timing waveforms shown in the AC electrical characteristics section are tested with a V maximum of 0.8 V and a V  
IL  
IH  
minimum of 2.0 V for all pins. AC timing specifications, which are referenced to a device input signal, are measured in  
production with respect to the 50% point of the respective input signal’s transition. DSP56720/DSP56721 output levels are  
measured with the production test machine V and V reference levels set at 0.4 V and 2.4 V, respectively.  
OL  
OH  
2.1.6  
Internal Clocks  
Internal clock characteristics are listed in Table 7.  
Table 7. Internal Clocks  
No.  
Characteristics  
Symbol  
Min  
Typ  
Max  
Unit  
Condition  
1
2
3
4
Comparison Frequency  
Input Clock Frequency  
PLL VCO Frequency  
Fref  
Fin  
2
8
MHz Fref = Fin/NR  
Max = 200 MHz  
Fvco  
Fout  
200  
400  
MHz Fvco = (Fin * NF)/NR  
Output Clock Frequency[1]  
• with PLL enabled  
• with PLL disabled  
MHz  
25  
200  
200  
Fout= Fvco/NO  
Fout = Fin  
5
Duty Cycle  
40  
50  
60  
%
Fvco=  
200 MHz – 400 MHz  
Notes:  
Fin = External frequency, NF = Multiplication Factor, NR = Predivision Factor, NO = Output Divider  
SymphonyTM DSP56720 / DSP56721 Multi-Core Audio Processors, Rev.1  
Freescale Semiconductor  
12  
2.1.7  
External Clock Operation  
The DSP56720/DSP56721 system clock is derived from the on-chip oscillator or is externally supplied. To use the on-chip  
oscillator, connect a crystal and associated resistor/capacitor components to EXTAL and XTAL; see the example in Figure 9.  
Suggested component values:  
Fosc = 24.576 MHz  
EXTAL  
XTAL  
R = 1 M 10%  
C (EXTAL)= 18 pF  
C (XTAL) = 18 pF  
R
XTAL1  
Calculations are for a 5 – 30 MHz crystal with the following parameters:  
• Shunt capacitance (C0) of 10 pF – 12 pF  
• Series resistance 40 Ohm  
C
C
• Drive level of 10 μW  
Figure 9. Using the On-Chip Oscillator  
If the DSP56720/DSP56721 system clock is an externally supplied square wave voltage source, it is connected to EXTAL  
(Figure 10). When the external square wave source is connected to EXTAL, the XTAL pin is not used.  
VIH  
Midpoint  
EXTAL  
ETH  
ETL  
VIL  
1
2
3
ETC  
Note:  
The midpoint is 0.5 (VIH + VIL).  
Figure 10. External Clock Timing  
Table 8. Clock Operation  
No.  
Characteristics  
EXTAL input high 1  
Symbol  
Min  
Max  
Units  
1
(40% to 60% duty cycle)  
• Crystal oscillator  
• Square wave input  
Eth  
16.67  
2.5  
100  
inf  
ns  
SymphonyTM DSP56720 / DSP56721 Multi-Core Audio Processors, Rev.1  
Freescale Semiconductor  
13  
Table 8. Clock Operation (Continued)  
No.  
Characteristics  
EXTAL input low1  
Symbol  
Min  
Max  
Units  
2
(40% to 60% duty cycle)  
• Crystal oscillator  
• Square wave input  
Etl  
Etc  
Tc  
16.67  
2.5  
100  
inf  
ns  
ns  
ns  
3
4
EXTAL cycle time  
• With PLL disabled  
• With PLL enabled  
5
33.3  
inf  
500  
Instruction cycle time  
• With PLL disabled  
• With PLL enabled  
5.00  
5.00  
inf  
5120  
Notes:  
1. Measured at 50% of the input transition.  
2. The indicated duty cycle is for the specified maximum frequency for which a part is rated. The minimum clock  
high or low time required for correct operation, however, remains the same at lower operating frequencies;  
therefore, when a lower clock frequency is used, the signal symmetry may vary from the specified duty cycle  
as long as the minimum high time and low time requirements are met.  
3. A valid clock signal must be applied to the EXTAL pin within 3 ms of the DSP56720/DSP56721 being  
powered up.  
2.1.8  
Reset, Stop, Mode Select, and Interrupt Timing  
For reset, stop, mode select, and interrupt timing, see Table 9.  
Table 9. Reset, Stop, Mode Select, and Interrupt Timing Parameters  
No.  
Characteristics  
Expression  
Min  
Max  
Unit  
10  
11  
Delay from RESET assertion to all pins at reset value3  
11  
ns  
Required RESET duration4  
• Power on, external clock generator, PLL disabled  
• Power on, external clock generator, PLL enabled  
2 x TC  
2 x TC  
10  
10  
ns  
ns  
13  
Syn reset deassert delay time  
• Minimum  
2 × TC  
10  
200  
10.0  
10.0  
4
ns  
us  
ns  
ns  
ns  
ns  
ns  
• Maximum (PLL enabled)  
(2 x TC) + TLOCK  
14  
15  
16  
17  
18  
Mode select setup time  
Mode select hold time  
Minimum edge-triggered interrupt request assertion width  
Minimum edge-triggered interrupt request deassertion width  
Delay from interrupt trigger to interrupt code execution  
4
10 × TC + 4  
54  
SymphonyTM DSP56720 / DSP56721 Multi-Core Audio Processors, Rev.1  
Freescale Semiconductor  
14  
Table 9. Reset, Stop, Mode Select, and Interrupt Timing Parameters  
No.  
Characteristics  
Expression  
Min  
Max  
Unit  
19  
Duration of level sensitive IRQA assertion to ensure interrupt service  
(when exiting Stop)1, 2, 3  
• PLL is active during Stop and Stop delay is enabled (OMR Bit 6 = 0)  
(128K × TC)  
25 × TC  
655  
125  
μs  
• PLL is active during Stop and Stop delay is not enabled (OMR Bit 6 =  
1)  
ns  
• PLL is not active during Stop and Stop delay is enabled (OMR Bit 6 =  
0)  
(128K x TC) +  
TLOCK  
855  
200  
μs  
μs  
ns  
• PLL is not active during Stop and Stop delay is not enabled (OMR Bit (25 x TC) + TLOCK  
6 = 1)  
20  
21  
• Delay from IRQA, IRQB, IRQC, IRQD, NMI assertion to  
general-purpose transfer output valid caused by first interrupt  
instruction execution1  
10 x TC + 3.8  
53.8  
Interrupt Requests Rate1  
• ESAI, ESAI_1, ESAI_2, ESAI_3, SHI, SHI_1, Timer, Timer_1  
12 x TC  
8 x TC  
8 x TC  
12 x TC  
60.0  
40.0  
40.0  
60.0  
ns  
ns  
ns  
ns  
• DMA  
• IRQ, NMI (edge trigger)  
• IRQ (level trigger)  
22  
DMA Requests Rate  
• Data read from ESAI, ESAI_1, ESAI_2, ESAI_3, SHI, SHI_1  
6 x TC  
7 x TC  
2 x TC  
3 x TC  
30.0  
35.0  
10.0  
15.0  
ns  
ns  
ns  
ns  
• Data write to ESAI, ESAI_1, ESAI_2, ESAI_3, SHI, SHI_1  
• Timer, Timer_1  
• IRQ, NMI (edge trigger)  
Notes:  
1. When using fast interrupts and when IRQA, IRQB, IRQC, and IRQD are defined as level-sensitive, timings 19 through 21 apply to  
prevent multiple interrupt service. To avoid these timing restrictions, the Edge-triggered mode is recommended when using fast  
interrupts. Long interrupts are recommended when using Level-sensitive mode.  
2. For PLL disable, if using an external clock (PCTL Bit 13 = 1), no stabilization delay is required and recovery time will be defined by  
the OMR Bit 6 settings.  
For PLL enable, (if bit 12 of the PCTL register is 0), the PLL is shut down during Stop. Recovering from Stop requires the PLL to get  
locked. The PLL lock procedure duration, PLL Lock Cycles (PLC), may be in the range of 200 μs.  
3. Periodically sampled and not 100% tested.  
4. RESET duration is measured during the time in which RESET is asserted, VDD is valid, and the EXTAL input is active and valid. When  
V
DD is valid, but the other “required RESET duration” conditions (as specified above) have not been yet met, the device circuitry will  
be in an uninitialized state that can result in significant power consumption and heat-up. Designs should minimize this state to the  
shortest possible duration.  
SymphonyTM DSP56720 / DSP56721 Multi-Core Audio Processors, Rev.1  
Freescale Semiconductor  
15  
VIH  
RESET  
All Pins  
11  
13  
10  
Reset Value  
Figure 11. Reset Timing Diagram  
a) First Interrupt Instruction Execution  
19  
18  
IRQA, IRQB,  
IRQC, IRQD,  
NMI,  
NMI_1  
b) General Purpose I/O  
General  
Purpose  
I/O  
20  
IRQA, IRQB,  
IRQC, IRQD,  
NMI,  
NMI_1  
Figure 12. External Fast Interrupt Timing Diagram  
SymphonyTM DSP56720 / DSP56721 Multi-Core Audio Processors, Rev.1  
16  
Freescale Semiconductor  
IRQA, IRQB,  
IRQC, IRQD,  
NMI,  
NMI_1  
16  
17  
IRQA, IRQB,  
IRQC, IRQD,  
NMI,  
NMI_1  
Figure 13. External Interrupt Timing Diagram (Negative Edge-Triggered)  
VIH  
RESET  
14  
15  
VIH  
VIL  
VIH  
VIL  
MODA, MODB,  
MODC, MODD,  
PINIT  
IRQA, IRQB,  
IRQC,IRQD, NMI  
Figure 14. MODE Select Set-Up and Hold Timing Diagram  
2.2  
Module-Level Specifications  
For a summary of the module-level specifications in this section, see Table 10.  
Table 10. Module-Level Specifications  
For  
See  
Section 2.2.1, “Serial Host Interface (SHI) SPI Protocol Timing”  
Section 2.2.2, “Serial Host Interface (SHI) I2C Protocol Timing”  
Section 2.2.3, “Programming the SHI I2C Serial Clock”  
Section 2.2.4, “Enhanced Serial Audio Interface (ESAI) Timing”  
Section 2.2.5, “Timer Timing”  
on page 18  
on page 24  
on page 26  
on page 27  
on page 32  
on page 32  
on page 33  
on page 35  
on page 35  
on page 42  
on page 43  
Section 2.2.6, “GPIO Timing”  
Section 2.2.7, “JTAG Timing”  
Section 2.2.8, “Watchdog Timer Timing”  
Section 2.2.9, “Host Data Interface (HDI24) Timing”  
Section 2.2.10, “S/PDIF Timing”  
Section 2.2.11, “EMC Timing (DSP56720 only)”  
SymphonyTM DSP56720 / DSP56721 Multi-Core Audio Processors, Rev.1  
Freescale Semiconductor  
17  
2.2.1  
Serial Host Interface (SHI) SPI Protocol Timing  
See Table 11 for SHI SPI protocol timing parameters and Figure 15, Figure 16, Figure 17, and Figure 18 for timing diagrams.  
Table 11. Serial Host Interface SPI Protocol Timing Parameters  
No.  
Characteristics1,3,4  
Mode  
Filter Mode  
Expression  
Min  
Max  
Unit  
23 Minimum serial clock cycle = tSPICC(min)  
XX Tolerable Spike width on data or clock in  
24 Serial clock high period  
Master/Slave  
Bypassed  
Very Narrow  
Narrow  
10 x TC + 9  
59.0  
59.0  
183.0  
373.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
10 x TC + 9  
10 x TC + 133  
Wide  
10 x TC + 333  
Bypassed  
Very Narrow  
Narrow  
0
10  
50  
100  
Wide  
Master  
Bypassed  
33.0  
0.5 x (tSPICC -10)  
Very Narrow 0.5 x (tSPICC -10)  
33.0  
86.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Narrow  
Wide  
0.5 x (tSPICC -10)  
0.5 x (tSPICC -10) 121.5  
Slave  
Bypassed  
Very Narrow  
Narrow  
2.5 x TC + 12  
2.5 x TC + 12  
2.5 x TC + 102  
2.5 x TC + 189  
22.5  
22.5  
114.5  
201.5  
33.0  
Wide  
25 Serial clock low period  
Master  
Bypassed  
0.5 x (tSPICC -10)  
Very Narrow 0.5 x (tSPICC -10)  
33.0  
86.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Narrow  
Wide  
0.5 x (tSPICC -10)  
0.5 x (tSPICC -10) 121.5  
Slave  
Bypassed  
Very Narrow  
Narrow  
2.5 x TC + 12  
2.5 x TC + 12  
2.5 x TC + 102  
2.5 x TC + 189  
22.5  
22.5  
114.5  
201.5  
Wide  
26 Serial clock rise/fall time  
Master  
Slave  
5
ns  
ns  
SymphonyTM DSP56720 / DSP56721 Multi-Core Audio Processors, Rev.1  
Freescale Semiconductor  
18  
Table 11. Serial Host Interface SPI Protocol Timing Parameters (Continued)  
No.  
Characteristics1,3,4  
Mode  
Filter Mode  
Expression  
Min  
Max  
Unit  
27 SS assertion to first SCK edge  
CPHA = 0  
Slave  
Bypassed  
32.5  
ns  
3.5 x TC+15  
Very Narrow  
Narrow  
Wide  
3.5 x TC+5  
22.5  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
0
CPHA = 1  
Slave  
Slave  
Bypassed  
Very Narrow  
Narrow  
Wide  
10  
0
0
0
28 Last SCK edge to SS not asserted  
Bypassed  
Very Narrow  
Narrow  
Wide  
12  
22  
100  
200  
0
29 Data input valid to SCK edge (data input  
set-up time)  
Master  
/Slave  
Bypassed  
Very Narrow  
Narrow  
Wide  
0
0
0
30 SCK last sampling edge to data input not  
valid  
Master  
/Slave  
Bypassed  
Very Narrow  
Narrow  
Wide  
2 x TC + 10  
10  
40  
70  
100.0  
5
2 x TC + 30  
2 x TC + 60  
31 SS assertion to data out active  
Slave  
Slave  
32 SS deassertion to data high impedance2  
9
33 SCK edge to data out valid  
(data out delay time)  
Master  
/Slave  
Bypassed  
Very Narrow  
Narrow  
Wide  
46.2  
270  
376  
521  
34 SCK edge to data out not valid  
(data out hold time)  
Master  
/Slave  
Bypassed  
Very Narrow  
Narrow  
Wide  
11.67  
15  
55  
105  
35 SS assertion to data out valid  
(CPHA = 0)  
Slave  
14.0  
SymphonyTM DSP56720 / DSP56721 Multi-Core Audio Processors, Rev.1  
Freescale Semiconductor  
19  
Table 11. Serial Host Interface SPI Protocol Timing Parameters (Continued)  
No.  
Characteristics1,3,4  
Mode  
Filter Mode  
Expression  
Min  
Max  
Unit  
36 First SCK sampling edge to HREQ output  
deassertion  
Slave  
Bypassed  
Very Narrow  
Narrow  
45  
55  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
95  
Wide  
145  
50.0  
60.0  
100.0  
150.0  
45.0  
37 Last SCK sampling edge to HREQ output  
not deasserted (CPHA = 1)  
Slave  
Slave  
Bypassed  
Very Narrow  
Narrow  
Wide  
38 SS deassertion to HREQ output not  
deasserted (CPHA = 0)  
39 SS deassertion pulse width (CPHA = 0)  
40 HREQ in assertion to first SCK edge  
Slave  
TC + 6  
11.0  
ns  
ns  
Master  
0.5 x TSPICC + 3.0 x 96.0  
TC + 43  
41 HREQ in deassertion to last SCK sampling  
edge (HREQ in set-up time) (CPHA = 1)  
Master  
Master  
Master  
0
ns  
ns  
ns  
42 First SCK edge to HREQ in not asserted  
(HREQ in hold time)  
0
43 HREQ assertion width  
3.0 x TC  
15  
Notes:  
1. VCORE_VDD = 1.0 0.10 V; TJ = -40°C to 125°C; CL = 50 pF.  
2. Periodically sampled, not 100% tested.  
3. All times assume noise free inputs.  
4. All times assume internal clock frequency of 200 MHz.  
5. SHI_1 specs match those of SHI.  
SymphonyTM DSP56720 / DSP56721 Multi-Core Audio Processors, Rev.1  
Freescale Semiconductor  
20  
SS  
(Input)  
25  
23  
23  
24  
25  
26  
26  
26  
26  
SCK (CPOL = 0)  
(Output)  
24  
SCK (CPOL = 1)  
(Output)  
29  
30  
29  
30  
MISO  
(Input)  
LSB  
Valid  
MSB  
Valid  
34  
33  
MSB  
MOSI  
(Output)  
LSB  
40  
42  
HREQ  
(Input)  
43  
Figure 15. SPI Master Timing Diagram (CPHA = 0)  
SymphonyTM DSP56720 / DSP56721 Multi-Core Audio Processors, Rev.1  
Freescale Semiconductor  
21  
SS  
(Input)  
25  
24  
23  
23  
24  
25  
26  
26  
SCK (CPOL = 0)  
(Output)  
26  
26  
SCK (CPOL = 1)  
(Output)  
29  
29  
30  
30  
MISO  
(Input)  
MSB  
Valid  
LSB  
Valid  
33  
34  
MOSI  
(Output)  
MSB  
LSB  
40  
41  
42  
HREQ  
(Input)  
43  
Figure 16. SPI Master Timing Diagram (CPHA = 1)  
SymphonyTM DSP56720 / DSP56721 Multi-Core Audio Processors, Rev.1  
Freescale Semiconductor  
22  
SS  
(Input)  
25  
23  
23  
28  
24  
26  
26  
26  
39  
SCK (CPOL = 0)  
(Input)  
27  
24  
26  
25  
SCK (CPOL = 1)  
(Input)  
35  
33  
34  
34  
32  
LSB  
31  
MISO  
(Output)  
MSB  
29  
29  
30  
30  
MSB  
Valid  
LSB  
Valid  
MOSI  
(Input)  
36  
38  
HREQ  
(Output)  
Figure 17. SPI Slave Timing Diagram (CPHA = 0)  
SymphonyTM DSP56720 / DSP56721 Multi-Core Audio Processors, Rev.1  
Freescale Semiconductor  
23  
SS  
(Input)  
25  
23  
28  
24  
26  
26  
26  
SCK (CPOL = 0)  
(Input)  
27  
24  
26  
25  
SCK (CPOL = 1)  
(Input)  
33  
33  
34  
32  
31  
MISO  
(Output)  
MSB  
LSB  
29  
29  
30  
30  
MSB  
Valid  
LSB  
Valid  
MOSI  
(Input)  
37  
36  
HREQ  
(Output)  
Figure 18. SPI Slave Timing Diagram (CPHA = 1)  
2.2.2  
Serial Host Interface (SHI) I2C Protocol Timing  
2
See Table 12 for SHI I C protocol timing parameters and Figure 19 for the timing diagram.  
2
Table 12. SHI I C Protocol Timing Parameters  
Standard I2C  
Standard  
Symbol/  
Fast-Mode  
No.  
Characteristics1,2,3,4,5  
Unit  
Expression  
Min  
Max  
Min  
Max  
Tolerable Spike Width on SCL or SDA  
Filters Bypassed  
Very Narrow Filters enabled  
Narrow Filters enabled  
0
10  
50  
100  
0
10  
50  
100  
ns  
ns  
ns  
ns  
Wide Filters enabled.  
44 SCL clock frequency  
44 SCL clock cycle  
FSCL  
TSCL  
100  
400  
kHz  
μs  
10  
4.7  
4.7  
2.5  
1.3  
0.6  
45 Bus free time  
TBUF  
μs  
46 Start condition set-up time  
TSUSTA  
μs  
SymphonyTM DSP56720 / DSP56721 Multi-Core Audio Processors, Rev.1  
Freescale Semiconductor  
24  
2
Table 12. SHI I C Protocol Timing Parameters (Continued)  
Standard I2C  
Standard  
Min Max  
Fast-Mode  
Symbol/  
Expression  
No.  
Characteristics1,2,3,4,5  
Unit  
Min  
Max  
47 Start condition hold time  
48 SCL low period  
THD;STA  
TLOW  
4.0  
4.7  
4.0  
0.6  
1.3  
1.3  
μs  
μs  
μs  
ns  
ns  
ns  
μs  
49 SCL high period  
THIGH  
50 SCL and SDA rise time  
51 SCL and SDA fall time  
52 Data set-up time  
T
5.0  
5.0  
5.0  
5.0  
R
T
F
TSU;DAT  
THD;DAT  
FOSC  
250  
0.0  
100  
0.0  
53 Data hold time  
0.9  
54 DSP clock frequency  
• Filters bypassed  
10.6  
10.6  
11.8  
13.1  
28.5  
28.5  
39.7  
61.0  
MHz  
MHz  
MHz  
MHz  
• Very Narrow filters enabled  
• Narrow filters enabled  
• Wide filters enabled  
55 SCL low to data out valid  
56 Stop condition setup time  
TVD;DAT  
TSU;STO  
tSU;RQI  
3.4  
0.9  
μs  
μs  
ns  
4.0  
0.0  
0.6  
0.0  
57 HREQ in deassertion to last SCL edge  
(HREQ in set-up time)  
58 First SCL sampling edge to HREQ output  
deassertion2  
TNG;RQO  
• Filters bypassed  
4 × TC + 30  
4 × TC + 50  
4 × TC + 130  
4 × TC + 230  
50.0  
70.0  
250.0  
150.0  
50.0  
70.0  
150.0  
250.0  
ns  
ns  
ns  
ns  
• Very Narrow filters enabled  
• Narrow filters enabled  
• Wide filters enabled  
59 Last SCL edge to HREQ output not  
deasserted2  
TAS;RQO  
• Filters bypassed  
2 × TC + 30  
2 × TC + 40  
2 × TC + 80  
2 × TC + 130  
40  
50  
90  
40  
50  
90  
ns  
ns  
ns  
ns  
• Very Narrow filters enabled  
• Narrow filters enabled  
• Wide filters enabled  
140  
140  
60 HREQ in assertion to first SCL edge  
• Filters bypassed  
TAS;RQI  
4327  
4317  
4282  
4227  
927  
917  
877  
827  
ns  
ns  
ns  
ns  
• Very Narrow filters enabled  
• Narrow filters enabled  
• Wide filters enabled  
61 First SCL edge to HREQ is not asserted  
(HREQ in hold time.)  
tHO;RQI  
0.0  
0.0  
ns  
Notes:  
1. VCORE_VDD = 1.00 0.10 V; TJ = -40°C to 125°C; CL = 50 pF.  
2. Pull-up resistor: R  
3. Capacitive load: C  
P
(min) = 1.5K Ohms.  
(max) = 50 pF.  
b
4. All times assume noise free inputs.  
5. All times assume internal clock frequency of 200 MHz.  
6. SHI_1 specs match those of SHI.  
SymphonyTM DSP56720 / DSP56721 Multi-Core Audio Processors, Rev.1  
Freescale Semiconductor  
25  
2.2.3  
Programming the SHI I2C Serial Clock  
2
The programmed serial clock cycle, T  
control register).  
, is specified by the value of the HDM[7:0] and HRS bits of the HCKR (SHI clock  
I CCP  
2
The expression for T  
is  
I CCP  
T 2  
= [T × 2 × (HDM[7:0] + 1) × (7 × (1 – HRS) + 1)]  
Eqn. 1  
I CCP  
C
where  
— HRS is the pre scaler rate select bit. When HRS is cleared, the fixed  
divide-by-eight pre scaler is operational. When HRS is set, the pre scaler is bypassed.  
— HDM[7:0] are the divider modulus select bits. A divide ratio from 1 to 256 (HDM[7:0] = $00 to $FF) may be  
selected.  
2
In I C mode, the user may select a value for the programmed serial clock cycle from  
6 × T (if HDM[7:0] = $02 and HRS = 1)  
Eqn. 2  
C
to  
4096 × T (if HDM[7:0] = $FF and HRS = 0)  
Eqn. 3  
C
2
The programmed serial clock cycle (T  
shown in Equation 4.  
) should be chosen in order to achieve the desired SCL serial clock cycle (T ), as  
SCL  
I CCP  
T 2  
+ 3 × T + 45ns + T  
R
(Nominal, SCL Serial Clock Cycle (TSCL) generated as master)  
Eqn. 4  
I CCP  
C
44  
46  
49  
48  
SCL  
SDA  
50  
53  
51  
45  
52  
MSB  
LSB  
ACK  
Stop  
Stop  
Start  
47  
60  
58  
55  
56  
59  
61  
57  
HREQ  
2
Figure 19. I C Timing Diagram  
SymphonyTM DSP56720 / DSP56721 Multi-Core Audio Processors, Rev.1  
Freescale Semiconductor  
26  
2.2.4  
Enhanced Serial Audio Interface (ESAI) Timing  
See Table 13 For ESAI timing parameters and Figure 20, Figure 21, Figure 22, and Figure 23 for timing diagrams.  
Table 13. Enhanced Serial Audio Interface Timing Parameters  
No.  
Characteristics1, 3, 4  
Symbol Expression5  
Min  
Max Condition2 Unit  
62 Clock cycle5  
tSSICC  
4 × T  
4 × T  
20.0  
20.0  
i ck  
i ck  
ns  
c
c
63 Clock high period  
ns  
• For internal clock  
2 × T  
2 × T  
10  
10  
c
c
• For external clock  
64 Clock low period  
• For internal clock  
ns  
2 × T  
2 × T  
10  
10  
c
c
• For external clock  
65 SCKR rising edge to FSR out (bl) high  
17.0  
7.0  
x ck  
i ck a  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
66 SCKR rising edge to FSR out (bl) low  
67 SCKR rising edge to FSR out (wr) high6  
68 SCKR rising edge to FSR out (wr) low6  
69 SCKR rising edge to FSR out (wl) high  
70 SCKR rising edge to FSR out (wl) low  
17.0  
7.0  
x ck  
i ck a  
19.0  
9.0  
x ck  
i ck a  
19.0  
9.0  
x ck  
i ck a  
16.0  
6.0  
x ck  
i ck a  
17.0  
7.0  
x ck  
i ck a  
71 Data in setup time before SCKR (SCK in synchronous  
mode) falling edge  
12.0  
19.0  
x ck  
i ck  
72 Data in hold time after SCKR falling edge  
73 FSR input (bl, wr) high before SCKR falling edge 6  
74 FSR input (wl) high before SCKR falling edge  
75 FSR input hold time after SCKR falling edge  
76 Flags input setup before SCKR falling edge  
77 Flags input hold time after SCKR falling edge  
78 SCKT rising edge to FST out (bl) high  
3.5  
9.0  
x ck  
i ck  
2.0  
12.0  
x ck  
i ck a  
2.0  
12.0  
x ck  
i ck a  
2.5  
8.5  
x ck  
i ck a  
0.0  
19.0  
x ck  
i ck s  
6.0  
0.0  
x ck  
i ck s  
18.0  
8.0  
x ck  
i ck  
79 SCKT rising edge to FST out (bl) low  
20.0  
10.0  
x ck  
i ck  
SymphonyTM DSP56720 / DSP56721 Multi-Core Audio Processors, Rev.1  
Freescale Semiconductor  
27  
Table 13. Enhanced Serial Audio Interface Timing Parameters (Continued)  
No.  
Characteristics1, 3, 4  
Symbol Expression5  
Min  
Max Condition2 Unit  
80 SCKT rising edge to FST out (wr) high6  
81 SCKT rising edge to FST out (wr) low6  
82 SCKT rising edge to FST out (wl) high  
83 SCKT rising edge to FST out (wl) low  
20.0  
10.0  
x ck  
i ck  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
22.0  
12.0  
x ck  
i ck  
19.0  
9.0  
x ck  
i ck  
20.0  
10.0  
x ck  
i ck  
84 SCKT rising edge to data out enable from high  
impedance  
22.0  
17.0  
x ck  
i ck  
85 SCKT rising edge to transmitter #0 drive enable  
assertion  
17.0  
11.0  
x ck  
i ck  
86 SCKT rising edge to data out valid  
18.0  
13.0  
x ck  
i ck  
87 SCKT rising edge to data out high impedance7  
21.0  
16.0  
x ck  
i ck  
88 SCKT rising edge to transmitter #0 drive enable  
deassertion7  
14.0  
9.0  
x ck  
i ck  
89 FST input (bl, wr) setup time before SCKT falling edge6  
90 FST input (wl) setup time before SCKT falling edge  
91 FST input hold time after SCKT falling edge  
2.0  
18.0  
x ck  
i ck  
2.0  
18.0  
x ck  
i ck  
4.0  
5.0  
x ck  
i ck  
92 FST input (wl) to data out enable from high impedance  
93 FST input (wl) to transmitter #0 drive enable assertion  
94 Flag output valid after SCKT rising edge  
21.0  
14.0  
ns  
ns  
ns  
14.0  
9.0  
x ck  
i ck  
SymphonyTM DSP56720 / DSP56721 Multi-Core Audio Processors, Rev.1  
Freescale Semiconductor  
28  
Table 13. Enhanced Serial Audio Interface Timing Parameters (Continued)  
No.  
Characteristics1, 3, 4  
Symbol Expression5  
Min  
Max Condition2 Unit  
95 HCKR/HCKT clock cycle  
2 x TC  
10  
ns  
ns  
ns  
96 HCKT input rising edge to SCKT output  
97 HCKR input rising edge to SCKR output  
18.0  
18.0  
Notes:  
1. VCORE_VDD = 1.00 0.10 V; TJ = -40°C to 125°C; CL = 50 pF.  
2. i ck = internal clock  
x ck = external clock  
i ck a = internal clock, asynchronous mode  
(Asynchronous implies that SCKT and SCKR are two different clocks.)  
i ck s = internal clock, synchronous mode  
(Synchronous implies that SCKT and SCKR are the same clock.)  
3. bl = bit length  
wl = word length  
wr = word length relative  
4. SCKT(SCKT pin) = transmit clock  
SCKR(SCKR pin) = receive clock  
FST(FST pin) = transmit frame sync  
FSR(FSR pin) = receive frame sync  
HCKT(HCKT pin) = transmit high frequency clock  
HCKR(HCKR pin) = receive high frequency clock  
5. For the internal clock, the external clock cycle is defined by Tc and the ESAI control register.  
6. The word-relative frame sync signal waveform relative to the clock operates in the same manner as the bit-length frame sync signal  
waveform, but spreads from one serial clock before first bit clock (same as bit length frame sync signal), until the one before last bit  
clock of the first word in frame.  
7. Periodically sampled and not 100% tested.  
8. ESAI_1, ESAI_2, ESAI_3 specs match those of ESAI.  
SymphonyTM DSP56720 / DSP56721 Multi-Core Audio Processors, Rev.1  
Freescale Semiconductor  
29  
62  
63  
64  
SCKT  
(Input/Output)  
78  
79  
FST (Bit)  
Out  
82  
83  
FST (Word)  
Out  
86  
84  
86  
87  
First Bit  
Last Bit  
Data Out  
93  
Transmitter #0  
Drive Enable  
(Internal Signal)  
89  
85  
88  
91  
FST (Bit) In  
92  
91  
90  
FST (Word) In  
Flags Out  
94  
See Note  
Note: In network mode, output flag transitions can occur at the start of each time slot within the  
frame. In normal mode, the output flag state is asserted for the entire frame period.  
Figure 20. ESAI Transmitter Timing Diagram  
SymphonyTM DSP56720 / DSP56721 Multi-Core Audio Processors, Rev.1  
30  
Freescale Semiconductor  
62  
63  
64  
SCKR  
(Input/Output)  
65  
66  
FSR (Bit)  
Out  
69  
70  
FSR (Word)  
Out  
72  
71  
Data In  
Last Bit  
First Bit  
75  
73  
FSR (Bit)  
In  
74  
75  
77  
FSR (Word)  
In  
76  
Flags In  
Figure 21. ESAI Receiver Timing Diagram  
HCKT  
95  
SCKT  
(Output)  
96  
Figure 22. ESAI HCKT Timing Diagram  
SymphonyTM DSP56720 / DSP56721 Multi-Core Audio Processors, Rev.1  
Freescale Semiconductor  
31  
HCKR  
95  
SCKR  
(Output)  
97  
Figure 23. ESAI HCKR Timing  
2.2.5  
Timer Timing  
See Table 14 for timer timing parameters and Figure 24 for the timing diagram.  
Table 14. Timer Timing Parameters  
No.  
Characteristics  
Expression  
Unit  
Min  
Max  
98  
99  
TIO Low  
TIO High  
2 × TC + 2.0  
2 × TC + 2.0  
12.0  
12.0  
ns  
ns  
Notes:  
1. VCORE_VDD = 1.00 V 0.10 V; TJ = -40°C to 125°C, CL = 50 pF  
2. TIMER_1 specs match those of TIMER  
TIO  
98  
99  
Figure 24. TIO Timer Event Input Restrictions Diagram  
2.2.6  
GPIO Timing  
See Table 15 for general purpose input and output (GPIO) timing and Figure 25 for the timing diagram.  
Table 15. GPIO Timing Parameters  
No.  
Characteristics1  
Expression  
Min  
Max  
Unit  
100 Fsys edge to GPIO out valid (GPIO out delay time)2  
101 Fsys edge to GPIO out not valid (GPIO out hold time)2  
102 Fsys In valid to EXTAL edge (GPIO in set-up time)2  
103 Fsys edge to GPIO in not valid (GPIO in hold time)2  
104 Minimum GPIO pulse high width  
7
7
ns  
ns  
ns  
ns  
ns  
2
0
2 x TC  
10  
SymphonyTM DSP56720 / DSP56721 Multi-Core Audio Processors, Rev.1  
Freescale Semiconductor  
32  
Table 15. GPIO Timing (Continued)Parameters  
No.  
Characteristics1  
Expression  
Min  
Max  
Unit  
105 Minimum GPIO pulse low width  
106 GPIO out rise time  
2 x TC  
10  
ns  
ns  
ns  
13.0  
13.0  
107 GPIO out fall time  
Notes:  
1. VCORE_VDD = 1.0 V 0.10 V; TJ = -40°C to 125°C; CL = 50 pF  
Fsys  
100  
101  
GPIO  
(Output)  
102  
103  
GPIO  
Input)  
Valid  
GPIO  
(Output)  
105  
107  
104  
106  
Figure 25. GPIO Timing Diagram  
2.2.7  
JTAG Timing  
See Table 16 for joint test action group (JTAG) timing parameters, and Figure 26, Figure 27, and Figure 28 for timing diagrams.  
Table 16. JTAG Timing Parameters  
All Frequencies  
No.  
Characteristics  
Unit  
Min  
Max  
108 TCK frequency of operation (1/(TC × 3); maximum 10 MHz)  
109 TCK cycle time in Crystal mode  
100.0  
50.0  
10.0  
MHz  
ns  
110 TCK clock pulse width measured at 1.65 V  
111 TCK rise and fall times  
ns  
3.0  
ns  
112 Boundary scan input data setup time  
113 Boundary scan input data hold time  
114 TCK low to output data valid  
15.0  
24.0  
ns  
ns  
40.0  
40.0  
ns  
115 TCK low to output high impedance  
ns  
SymphonyTM DSP56720 / DSP56721 Multi-Core Audio Processors, Rev.1  
Freescale Semiconductor  
33  
Table 16. JTAG Timing Parameters (Continued)  
All Frequencies  
No.  
Characteristics  
Unit  
Min  
Max  
116 TMS, TDI data setup time  
117 TMS, TDI data hold time  
118 TCK low to TDO data valid  
119 TCK low to TDO high impedance  
5.0  
25.0  
ns  
ns  
ns  
ns  
44.0  
44.0  
Notes:  
1. VCORE_VDD = 1.0 V 0.10 V; TJ = -40°C to 125°C , CL = 50 pF  
2. All timings apply to OnCE module data transfers because it uses the JTAG port as an interface.  
109  
110  
110  
TCK  
(Input)  
VM  
VM  
VIH  
VIL  
111  
111  
Figure 26. Test Clock Input Timing Diagram  
VIH  
113  
TCK  
(Input)  
VIL  
112  
Data  
Inputs  
Input Data Valid  
114  
115  
114  
Data  
Outputs  
Output Data Valid  
Data  
Outputs  
Data  
Outputs  
Output Data Valid  
Figure 27. Debugger Port Timing Diagram  
SymphonyTM DSP56720 / DSP56721 Multi-Core Audio Processors, Rev.1  
34  
Freescale Semiconductor  
VIH  
117  
TCK  
(Input)  
VIL  
116  
Input Data Valid  
TDI  
TMS  
(Input)  
118  
TDO  
(Output)  
Output Data Valid  
119  
TDO  
(Output)  
118  
TDO  
(Output)  
Output Data Valid  
Figure 28. Test Access Port Timing Diagram  
2.2.8  
Watchdog Timer Timing  
For watchdog timer timing, see Table 17.  
Table 17. Watchdog Timer Timing Parameters  
No.  
Characteristics  
Expression  
Min  
Max  
Unit  
120 Delay from time-out to fall of WDT, WDT_1  
121 Delay from timer clear to rise of WDT, WDT_1  
2 × T  
10.0  
10.0  
ns  
ns  
c
2 × Tc  
2.2.9  
Host Data Interface (HDI24) Timing  
The HDI24 module is only on the DSP56721 device; the DSP56720 device does not have a HDI24 module. Also, only 16 bits  
of the HDI24 interface are pinned out on the DSP56721 device. See Table 18 for HDI24 timing and Figure 29, Figure 30,  
Figure 30, Figure 31, Figure 32, Figure 33, Figure 34, and Figure 35 for timing diagrams.  
Table 18. HDI24 Timing Parameters  
200 MHz  
2
No.  
Characteristics  
Expression  
Unit  
Min  
Max  
3
317 Read data strobe assertion width  
HACK read assertion width  
TC + 9.9  
14.9  
ns  
ns  
ns  
3
318 Read data strobe deassertion width  
HACK read deassertion width  
9.9  
3
4,5  
319 Read data strobe deassertion width after “Last Data Register” reads  
,
2 × TC + 6.6  
16.6  
6
or between two consecutive CVR, ICR, or ISR reads  
HACK deassertion width after “Last Data Register” reads  
4,5  
SymphonyTM DSP56720 / DSP56721 Multi-Core Audio Processors, Rev.1  
Freescale Semiconductor  
35  
Table 18. HDI24 Timing Parameters (Continued)  
200 MHz  
Min Max  
2
No.  
Characteristics  
Expression  
Unit  
7
320 Write data strobe assertion width  
HACK write assertion width  
13.2  
16.6  
ns  
ns  
7
321 Write data strobe deassertion width  
HACK write deassertion width  
2 × TC + 6.6  
4
• after ICR, CVR and “Last Data Register” writes  
• after IVR writes, or  
16.5  
• after TXH:TXM writes (with HBE=0), or  
• after TXL:TXM writes (with HBE=1)  
322 HAS assertion width  
323 HAS deassertion to data strobe assertion  
9.9  
0.0  
9.9  
ns  
ns  
ns  
8
7
324 Host data input setup time before write data strobe deassertion  
Host data input setup time before HACK write deassertion  
7
325 Host data input hold time after write data strobe deassertion  
3.3  
3.3  
ns  
ns  
ns  
ns  
ns  
Host data input hold time after HACK write deassertion  
3
326 Read data strobe assertion to output data active from high impedance  
HACK read assertion to output data active from high impedance  
3
327 Read data strobe assertion to output data valid  
24.2  
9.9  
HACK read assertion to output data valid  
3
328 Read data strobe deassertion to output data high impedance  
HACK read deassertion to output data high impedance  
3
329 Output data hold time after read data strobe deassertion  
3.3  
Output data hold time after HACK read deassertion  
3
330 HCS assertion to read data strobe deassertion  
TC + 9.9  
14.9  
9.9  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
7
331 HCS assertion to write data strobe deassertion  
332 HCS assertion to output data valid  
19.1  
8
333 HCS hold time after data strobe deassertion  
0.0  
4.7  
3.3  
0
334 Address (AD7–AD0) setup time before HAS deassertion (HMUX=1)  
335 Address (AD7–AD0) hold time after HAS deassertion (HMUX=1)  
336 A10–A8 (HMUX=1), A2–A0 (HMUX=0), HR/W setup time before data  
8
strobe assertion  
• Read  
• Write  
4.7  
3.3  
337 A10–A8 (HMUX=1), A2–A0 (HMUX=0), HR/W hold time after data strobe  
ns  
ns  
8
deassertion  
338 Delay from read data strobe deassertion to  
TC  
5.0  
3, 4, 9  
host request assertion for “Last Data Register” read  
SymphonyTM DSP56720 / DSP56721 Multi-Core Audio Processors, Rev.1  
Freescale Semiconductor  
36  
Table 18. HDI24 Timing Parameters (Continued)  
200 MHz  
Min Max  
2
No.  
Characteristics  
Expression  
Unit  
339 Delay from write data strobe deassertion to  
host request assertion for “Last Data Register” write  
2 × TC  
10.0  
ns  
ns  
4, 7, 9  
340 Delay from data strobe assertion to  
19.1  
host request deassertion for “Last Data Register” read or write (HROD =  
4, 8, 9  
0)  
341 Delay from data strobe assertion to  
300.0  
ns  
ns  
host request deassertion for “Last Data Register” read or write (HROD =  
4, 8, 9, 10  
1, open drain Host Request)  
342 Delay from DMA HACK deassertion to HOREQ assertion  
4
• For “Last Data Register” read  
2 × TC + 19.1  
29.1  
24.1  
0.0  
4
• For “Last Data Register” write  
1 × TC + 19.1  
• For other cases  
343 Delay from DMA HACK assertion to HOREQ deassertion  
20.2  
ns  
ns  
4
• HROD = 0  
344 Delay from DMA HACK assertion to HOREQ deassertion for “Last Data  
Register” read or write  
300.0  
4, 10  
• HROD = 1, open drain Host Request  
Notes:  
1. In the timing diagrams that follow, the controls pins are drawn as active low. The pin polarity is programmable.  
2. CC = 1.0 V 10%; TJ = –40°C to +125°C; CL = 50 pF.  
3. The read data strobe is HRD in the dual data strobe mode and HDS in the single data strobe mode.  
4. The “last data register” is the register at address $7, which is the last location to be read or written in data transfers.  
V
5. This timing is applicable only if a read from the “last data register” is followed by a read from the RXL, RXM, or RXH registers without  
first polling RXDF or HREQ bits, or waiting for the assertion of the HOREQ signal.  
6. This timing is applicable only if two consecutive reads from one of these registers are executed.  
7. The write data strobe is HWR in the dual data strobe mode and HDS in the single data strobe mode.  
8. The data strobe is host read (HRD) or host write (HWR) in the dual data strobe mode and host data strobe (HDS) in the single data  
strobe mode.  
9. The host request is HOREQ in the single host request mode and HRRQ and HTRQ in the double host request mode.  
10. In this calculation, the host request signal is pulled up by a 4.7 kW resistor in the open-drain mode.  
11. HDI24_1 specs match those of HDI24.  
SymphonyTM DSP56720 / DSP56721 Multi-Core Audio Processors, Rev.1  
Freescale Semiconductor  
37  
317  
318  
HACK  
328  
327  
326  
329  
HD23HD0  
HOREQ  
Figure 29. HDI24 Host Interrupt Vector Register (IVR) Read Timing Diagram  
HA0HA2  
336  
337  
333  
330  
HCS  
317  
HRD, HDS  
318  
319  
328  
332  
327  
329  
326  
341  
HD0HD23  
338  
340  
HOREQ,  
HRRQ,  
HTRQ  
Figure 30. HDI24 Read Timing Diagram, Non-Multiplexed Bus  
SymphonyTM DSP56720 / DSP56721 Multi-Core Audio Processors, Rev.1  
Freescale Semiconductor  
38  
HA0HA2  
337  
333  
336  
331  
HCS  
320  
HWR, HDS  
321  
325  
324  
HD0HD23  
340  
339  
341  
HOREQ,  
HRRQ,  
HTRQ  
Figure 31. HDI24 Write Timing Diagram, Non-Multiplexed Bus  
SymphonyTM DSP56720 / DSP56721 Multi-Core Audio Processors, Rev.1  
Freescale Semiconductor  
39  
HA8HA10  
336  
337  
322  
HAS  
323  
317  
HRD, HDS  
334  
318  
319  
335  
327  
328  
329  
HAD0HAD23  
Address  
Data  
326  
338  
340  
341  
HOREQ,  
HRRQ,  
HTRQ  
Figure 32. HDI24 Read Timing Diagram, Multiplexed Bus  
SymphonyTM DSP56720 / DSP56721 Multi-Core Audio Processors, Rev.1  
40  
Freescale Semiconductor  
HA8HA10  
336  
322  
HAS  
323  
320  
HWR, HDS  
334  
324  
321  
325  
335  
HAD0HAD23  
Address  
Data  
340  
339  
341  
HOREQ,  
HRRQ,  
HTRQ  
Figure 33. HDI24 Write Timing Diagram, Multiplexed Bus  
HOREQ  
(Output)  
342  
343  
344  
320  
321  
TXH/M/L  
Write  
HACK  
(Input)  
324  
325  
Data  
Valid  
H0–H23  
(Input)  
Figure 34. HDI24 Host DMA Write Timing Diagram  
SymphonyTM DSP56720 / DSP56721 Multi-Core Audio Processors, Rev.1  
Freescale Semiconductor  
41  
HOREQ  
(Output)  
343  
342  
342  
318  
317  
RXH  
Read  
HACK  
(Input)  
327  
326  
328  
329  
Data  
Valid  
H0-H23  
(Output)  
Figure 35. HDI24 Host DMA Read Timing Diagram  
2.2.10 S/PDIF Timing  
See Table 19 for Sony/Philips Digital Interconnect Format (S/PDIF) timing parameters and Figure 36 and Figure 37 for timing  
diagrams.  
Table 19. S/PDIF Timing Parameters  
All Frequency  
Characteristics  
Symbol  
Unit  
Min  
Max  
0.7  
ns  
SPDIFIN1, SPDIFIN2, SPDIFIN3, SPDIFIN4 Skew:  
asynchronous inputs, no specs apply  
SPDIFOUT1,SPDIFOUT2 output (Load = 50 pf)  
• Skew  
Transition Risng  
1.5  
24.2  
31.3  
ns  
ns  
Transition Falling  
SPDIFOUT1, SPDIFOUT2 output (Load = 30 pf)  
• Skew  
Transition Risng  
Transition Falling  
1.5  
13.6  
18.0  
SRCK period  
srckp  
srckph  
srckpl  
stclkp  
stclkph  
stclkpl  
40.0  
16.0  
16.0  
40.0  
16.0  
16.0  
ns  
ns  
ns  
ns  
ns  
ns  
SRCK high period  
SRCK low period  
STCLK period  
STCLK high period  
STCLK low period  
SymphonyTM DSP56720 / DSP56721 Multi-Core Audio Processors, Rev.1  
42  
Freescale Semiconductor  
srckp  
srckpl  
srckph  
VM  
VM  
SRCK  
(Output)  
Figure 36. S/PDIF SRCK Timing Diagram  
stclkp  
stclkpl  
stclkph  
VM  
VM  
STCLK  
(Input)  
Figure 37. S/PIDF STCLK Timing Diagram  
2.2.11 EMC Timing (DSP56720 only)  
The DSP56721 device does not have an EMC module. For EMC timing parameters in DSP56720 devices, see Table 20,  
Table 21, and Table 22; for timing diagrams, see Figure 38, Figure 39, and Figure 40.  
Table 20. EMC Timing Parameters (EMC PLL Enabled; LCRR[CLKDIV] = 2)  
Parameter  
Symbol  
Min  
Max  
Unit  
LCLK cycle time  
Tclk  
Tclk_skew  
Tin_s  
10  
160  
ns  
ps  
ns  
ns  
ns  
ns  
ns  
LCLK skew to LSYNC_OUT  
Input setup to LSYNC_IN (except LGTA/LUPWAIT)  
Input hold from LSYNC_IN (except LGTA/LUPWAIT)  
LGTA valid time  
2
Tin_h  
2
Tgta  
12  
12  
3
LUPWAIT valid time  
Tupwait  
Tale_h  
LALE negedge to LAD(address phase) invaild (address latch  
hold time)  
LALE valid time  
Tale  
3.8  
4
ns  
ns  
ns  
ns  
ns  
ns  
Output setup from LSYNC_IN (except LAD[23:0] and LALE)  
Output hold from LSYNC_IN (except LAD[23:0] and LALE)  
LAD[23:0] output setup from LSYNC_IN  
LAD[23:0] output hold from LSYNC_IN  
Tout_s  
Tout_h  
Tad_s  
Tad_h  
Tad_z  
2
3.5  
1.5  
LSYNC_IN to output high impedance for LAD[23:0]  
4.3  
SymphonyTM DSP56720 / DSP56721 Multi-Core Audio Processors, Rev.1  
Freescale Semiconductor  
43  
Tclk  
LCLK  
Tclk_skew  
LSYNC_OUT  
LSYNC_IN  
Tsync_in_skew  
Tin_s  
Tin_h  
LAD[23:0] (data)  
LGTA  
asynchronous input  
Tgta  
Tupwait  
asynchronous input  
LUPWAIT  
Tout_s  
Tout_h  
Output Signals  
LA[2:0]/LBCTL/LCS[7:0]  
LOE/LWE  
LCKE/LSDA10/LSDDQM  
LSDWE/LSDRAS/LSDCAS  
LGPL[5:0]  
Tad_z  
Tad_s  
Tad_h  
LAD[23:0]  
Tale_h  
Tale  
LALE  
Figure 38. EMC Signals (EMC PLL Enabled; LCRR[CLKDIV] = 2)  
SymphonyTM DSP56720 / DSP56721 Multi-Core Audio Processors, Rev.1  
Freescale Semiconductor  
44  
Table 21. EMC Timing Parameters (EMC PLL Bypassed; LRCC[CLKDIV] = 4)  
Parameter  
Symbol  
Tclk  
Min  
20  
8
Max  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
LCLK cycle time  
Input setup to LCLK (except LGTA/LUPWAIT)  
Input hold from LCLK (except LGTA/LUPWAIT)1  
LGTA valid time  
Tin_s  
Tin_h  
-1  
22  
22  
4
Tgta  
LUPWAIT valid time  
Tupwait  
Tale_h  
Tale  
LALE negedge to LAD (address phase) invalid (address latch hold time)  
LALE valid time  
14  
9
Output setup from LCLK (except LAD[23:0] and LALE)  
Output hold from LCLK (except LAD[23:0] and LALE)  
LAD[23:0] output setup from LCLK  
LAD[23:0] output hold from LCLK  
Tout_s  
Tout_h  
Tad_s  
Tad_h  
Tad_z  
8
8
7
LCLK to output high impedance for LAD[23:0]  
Notes:  
9
1. A negative hold time means that the signal could be invalid before the LCLK rising edge.  
SymphonyTM DSP56720 / DSP56721 Multi-Core Audio Processors, Rev.1  
Freescale Semiconductor  
45  
Tclk  
LCLK  
Tin_s  
Tin_h  
LAD[23:0] (data)  
LGTA  
asynchronous input  
Tgta  
Tupwait  
asynchronous input  
LUPWAIT  
Tout_s  
Tout_h  
Output Signals  
LA[2:0]/LBCTL/LCS[7:0]  
LOE/LWE  
LCKE/LSDA10/LSDDQM  
LSDWE/LSDRAS/LSDCAS  
LGPL[5:0]  
Tad_z  
Tad_s  
Tad_h  
LAD[23:0]  
LALE  
Tale_h  
Tale  
Figure 39. EMC Signals (EMC PLL Bypassed; LRCC[CLKDIV] = 4)  
Table 22. EMC Timing Parameters (EMC PLL Bypassed; LRCC[CLKDIV] = 8)  
Parameter  
Symbol  
Min  
Max  
Unit  
LCLK cycle time  
Tclk  
Tin_s  
Tin_h  
Tgta  
40  
8
ns  
ns  
ns  
ns  
ns  
ns  
Input setup to LCLK (except LGTA/LUPWAIT)  
Input hold from LCLK (except LGTA/LUPWAIT)1  
LGTA valid time  
-1  
42  
42  
5
LUPWAIT valid time  
Tupwait  
Tale_h  
LALE negedge to LAD (address phase) invalid (address  
latch hold time)  
LALE valid time  
Tale  
34  
19  
18  
ns  
ns  
ns  
Output setup from LCLK (except LAD[23:0] and LALE)  
Output hold from LCLK (except LAD[23:0] and LALE)  
Tout_s  
Tout_h  
SymphonyTM DSP56720 / DSP56721 Multi-Core Audio Processors, Rev.1  
46  
Freescale Semiconductor  
Table 22. EMC Timing Parameters (EMC PLL Bypassed; LRCC[CLKDIV] = 8) (Continued)  
Parameter  
Symbol  
Min  
Max  
Unit  
LAD[23:0] output setup from LCLK  
LAD[23:0] output hold from LCLK  
LCLK to output high impedance for LAD[23:0]  
Notes:  
Tad_s  
Tad_h  
Tad_z  
18  
17  
ns  
ns  
ns  
19  
1. A negative hold time means that the signal could be invalid before the LCLK rising edge.  
Tclk  
LCLK  
Tin_s  
Tin_h  
LAD[23:0] (data)  
asynchronous input  
Tgta  
LGTA  
Tupwait  
asynchronous input  
LUPWAIT  
Tout_s  
Tout_h  
Output Signals  
LA[2:0]/LBCTL/LCS[7:0]  
LOE/LWE  
LCKE/LSDA10/LSDDQM  
LSDWE/LSDRAS/LSDCAS  
LGPL[5:0]  
Tad_z  
Tad_s  
Tad_h  
LAD[23:0]  
Tale_h  
Tale  
LALE  
Figure 40. EMC Signals (EMC PLL Bypassed; LRCC[CLKDIV] = 8)  
SymphonyTM DSP56720 / DSP56721 Multi-Core Audio Processors, Rev.1  
Freescale Semiconductor  
47  
3
Functional Description and Application Information  
See the DSP56720 Reference Manual (DSP56720RM) for detailed functional and applications information.  
4
Hardware Design Considerations  
For design considerations, also see Section 2.1.3, “Power Requirements.”  
5
Ordering Information  
Table 23 provides ordering information for both the DSP56720 and DSP56721.  
Table 23. Ordering Information  
ROM  
Version  
Product  
Package  
Part Number  
DSP56720  
A
B
A
B
A
B
144-pin plastic LQFP  
144-pin plastic LQFP  
144-pin plastic LQFP  
144-pin plastic LQFP  
80-pin plastic LQFP  
80-pin plastic LQFP  
DSPA56720AG  
DSPB56720AG  
DSPA56721AG  
DSPB56721AG  
DSPA56721AF  
DSPB56721AF  
DSP56721  
6
Package Information  
For the outline drawings of available device packages, see Table 24 and sections 6.16.2.  
Table 24. Package Outline Drawings  
Device  
Package  
See  
DSP56720  
144-pin plastic LQFP  
Figure 43 on page 51 and  
Figure 44 on page 52  
DSP56721  
80-pin plastic LQFP  
144-pin plastic LQFP  
Figure 41 on page 49 and  
Figure 42 on page 50  
Figure 43 on page 51 and  
Figure 44 on page 52  
6.1  
80-Pin Package Outline Drawing  
For the 80-pin package outline drawings, see Figure 41 and Figure 42.  
SymphonyTM DSP56720 / DSP56721 Multi-Core Audio Processors, Rev.1  
Freescale Semiconductor  
48  
Figure 41. 80-Pin Package Outline Drawing (1 of 2)  
SymphonyTM DSP56720 / DSP56721 Multi-Core Audio Processors, Rev.1  
Freescale Semiconductor  
49  
Figure 42. 80-Pin Package Outline Drawing (2 of 2)  
SymphonyTM DSP56720 / DSP56721 Multi-Core Audio Processors, Rev.1  
50  
Freescale Semiconductor  
6.2  
144-Pin Package Outline Drawing  
For the 144-pin package drawings, see figures Figure 43 and Figure 44.  
Figure 43. 144-Pin Package Outline Drawing (1 of 2)  
SymphonyTM DSP56720 / DSP56721 Multi-Core Audio Processors, Rev.1  
Freescale Semiconductor  
51  
Figure 44. 144-Pin Package Outline Drawing (2 of 2)  
SymphonyTM DSP56720 / DSP56721 Multi-Core Audio Processors, Rev.1  
52  
Freescale Semiconductor  
7
Product Documentation  
This Data Sheet is labeled as a particular type: Product Preview, Advance Information, or Technical Data. Definitions of these  
types are available at: http://www.freescale.com. Documentation is available from a local Freescale Semiconductor, Inc.  
distributor, semiconductor sales office, Literature Distribution Center, or through the Freescale DSP home page on the Internet  
(the source for the latest information).  
The following documents are required for a complete description of the device and are necessary to design properly with the  
parts:  
DSP56300 Family Manual (document number DSP56300FM). Detailed description of the 56300-family architecture and the  
24-bit core processor and instruction set.  
DSP56720/DSP56721 Reference Manual (document number DSP56720RM). Detailed description of memory, peripherals, and  
interfaces.  
DSP56720 Product Brief (DSP56720PB). Brief description of the DSP56720 device.  
DSP56721 Product Brief (DSP56721PB). Brief description of the DSP56721 device.  
8
Revision History  
Table 25 summarizes revisions to this document.  
Table 25. Revision History  
Revision  
Date  
December 2007 • Initial public release.  
Description  
1
SymphonyTM DSP56720 / DSP56721 Multi-Core Audio Processors, Rev.1  
Freescale Semiconductor  
53  
Information in this document is provided solely to enable system and software  
implementers to use Freescale Semiconductor products. There are no express or  
implied copyright licenses granted hereunder to design or fabricate any integrated  
circuits or integrated circuits based on the information in this document.  
How to Reach Us:  
Home Page:  
www.freescale.com  
Web Support:  
http://www.freescale.com/support  
Freescale Semiconductor reserves the right to make changes without further notice to  
any products herein. Freescale Semiconductor makes no warranty, representation or  
guarantee regarding the suitability of its products for any particular purpose, nor does  
Freescale Semiconductor assume any liability arising out of the application or use of any  
product or circuit, and specifically disclaims any and all liability, including without  
limitation consequential or incidental damages. “Typical” parameters that may be  
provided in Freescale Semiconductor data sheets and/or specifications can and do vary  
in different applications and actual performance may vary over time. All operating  
parameters, including “Typicals”, must be validated for each customer application by  
customer’s technical experts. Freescale Semiconductor does not convey any license  
under its patent rights nor the rights of others. Freescale Semiconductor products are  
not designed, intended, or authorized for use as components in systems intended for  
surgical implant into the body, or other applications intended to support or sustain life,  
or for any other application in which the failure of the Freescale Semiconductor product  
could create a situation where personal injury or death may occur. Should Buyer  
purchase or use Freescale Semiconductor products for any such unintended or  
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and  
its officers, employees, subsidiaries, affiliates, and distributors harmless against all  
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,  
directly or indirectly, any claim of personal injury or death associated with such  
unintended or unauthorized use, even if such claim alleges that Freescale  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor, Inc.  
Technical Information Center, EL516  
2100 East Elliot Road  
Tempe, Arizona 85284  
+1-800-521-6274 or +1-480-768-2130  
www.freescale.com/support  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
www.freescale.com/support  
Japan:  
Freescale Semiconductor Japan Ltd.  
Headquarters  
Semiconductor was negligent regarding the design or manufacture of the part.  
ARCO Tower 15F  
1-8-1, Shimo-Meguro, Meguro-ku,  
Tokyo 153-0064  
RoHS-compliant and/or Pb-free versions of Freescale products have the functionality  
and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free  
counterparts. For further information, see http://www.freescale.com or contact your  
Freescale sales representative.  
Japan  
0120 191014 or +81 3 5437 9125  
support.japan@freescale.com  
Asia/Pacific:  
Freescale Semiconductor Hong Kong Ltd.  
Technical Information Center  
2 Dai King Street  
For information on Freescale’s Environmental Products program, go to  
http://www.freescale.com/epp.  
Tai Po Industrial Estate  
Tai Po, N.T., Hong Kong  
+800 2666 8080  
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.  
All other product or service names are the property of their respective owners.  
support.asia@freescale.com  
The Power Architecture and Power.org word marks and the Power and Power.org logos  
and related marks are trademarks and service marks licensed by Power.org  
For Literature Requests Only:  
Freescale Semiconductor Literature Distribution Center  
P.O. Box 5405  
© Freescale Semiconductor, Inc. 2006, 2007. All rights reserved.  
Denver, Colorado 80217  
1-800-441-2447 or 303-675-2140  
Fax: 303-675-2150  
LDCForFreescaleSemiconductor@hibbertgroup.com  
Document Number: DSP56720  
Rev.1  
12/2007  

相关型号:

DSPB56364AF100R2

Digital Signal Processor
NXP

DSPB56364FU100

Digital Signal Processor, 8-Ext Bit, 100MHz, CMOS, PQFP100, TQFP-100
MOTOROLA

DSPB56366AG120

24-Bit Audio Digital Signal Processor
FREESCALE

DSPB56366AG120

Digital Signal Processor, 24-Bit Size, 24-Ext Bit, 120MHz, CMOS, PQFP144, 20 X 20 MM, 0.50 MM PITCH, 1.40 MM HEIGHT, PLASTIC, LQFP-144
MOTOROLA

DSPB56366AG120

IC,DSP,24-BIT,CMOS,QFP,144PIN,PLASTIC
NXP

DSPB56367AG150

24-Bit Audio Digital Signal Processor
FREESCALE

DSPB56367AG150

24-BIT, 150MHz, OTHER DSP, PQFP144, 20 X 20 MM, 1.40 MM HEIGHT, 0.50 MM PITCH, PLASTIC, LQFP-144
MOTOROLA

DSPB56367AG150

LEAD FREE DSP56367
NXP

DSPB56367PV150

24-BIT, 150 MHz, OTHER DSP, PQFP144, 20 X 20 MM, 1.40 MM HEIGHT, 0.50 MM PITCH, PLASTIC, LQFP-144
ROCHESTER

DSPB56367PV150

Digital Signal Processor, 24-Bit Size, 24-Ext Bit, 150MHz, CMOS, PQFP144, 20 X 20 MM, 1.40 MM HEIGHT, 0.50 MM PITCH, PLASTIC, LQFP-144
MOTOROLA

DSPB56371AF150

150 MHZ VERSION DSPB371
NXP

DSPB56374AE

The DSP56374 is a high-density CMOS device with 3.3 V inputs and outputs.
FREESCALE