IRFSL4310 [FREESCALE]

HEXFET Power MOSFET; HEXFET ?功率MOSFET
IRFSL4310
型号: IRFSL4310
厂家: Freescale    Freescale
描述:

HEXFET Power MOSFET
HEXFET ?功率MOSFET

文件: 总9页 (文件大小:740K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
IRF/B/S/SL4310  
Applications  
HEXFET® Power MOSFET  
l High Efficiency Synchronous Rectification in SMPS  
l Uninterruptible Power Supply  
l High Speed Power Switching  
D
VDSS  
100V  
5.6m  
RDS(on) typ.  
l Hard Switched and High Frequency Circuits  
G
7.0m  
140A  
max.  
Benefits  
l Worldwide Best RDS(on) in TO-220  
l Improved Gate, Avalanche and Dynamic dV/dt  
Ruggedness  
ID  
S
l Fully Characterized Capacitance and Avalanche  
SOA  
l Enhanced body diode dV/dt and dI/dt Capability  
G D S  
G D S  
G D S  
D2Pak  
IRFS4310  
TO-262  
IRFSL4310  
TO-220AB  
IRFB4310  
Absolute Maximum Ratings  
Symbol  
ID @ TC = 25°C  
Parameter  
Continuous Drain Current, VGS @ 10V  
Max.  
140  
97  
Units  
A
Continuous Drain Current, VGS @ 10V  
ID @ TC = 100°C  
IDM  
550  
330  
Pulsed Drain Current  
PD @TC = 25°C  
Maximum Power Dissipation  
Linear Derating Factor  
W
2.2  
W/°C  
V
± 20  
VGS  
Gate-to-Source Voltage  
14  
Peak Diode Recovery  
dV/dt  
TJ  
V/ns  
°C  
-55 to + 175  
Operating Junction and  
TSTG  
Storage Temperature Range  
Soldering Temperature, for 10 seconds  
(1.6mm from case)  
300  
10lb in (1.1N m)  
Mounting torque, 6-32 or M3 screw  
Avalanche Characteristics  
Single Pulse Avalanche Energy  
EAS (Thermally limited)  
980  
mJ  
A
Avalanche Current  
IAR  
See Fig. 14, 15, 22a, 22b,  
Repetitive Avalanche Energy  
EAR  
mJ  
Thermal Resistance  
Symbol  
Parameter  
Typ.  
–––  
Max.  
0.45  
–––  
62  
Units  
Rθ  
Rθ  
Rθ  
Rθ  
Junction-to-Case  
JC  
CS  
JA  
JA  
Case-to-Sink, Flat Greased Surface , TO-220  
0.50  
–––  
°C/W  
Junction-to-Ambient, TO-220  
Junction-to-Ambient (PCB Mount) , D2Pak  
–––  
40  
1 / 11  
www.freescale.net.cn  
IRF/B/S/SL4310  
Static @ TJ = 25°C (unless otherwise specified)  
Symbol  
V(BR)DSS  
Parameter  
Drain-to-Source Breakdown Voltage  
Breakdown Voltage Temp. Coefficient  
Static Drain-to-Source On-Resistance  
Gate Threshold Voltage  
Min. Typ. Max. Units  
100 ––– –––  
––– 0.064 ––– V/°C Reference to 25°C, ID = 1mA  
Conditions  
V
VGS = 0V, ID = 250µA  
V
/ T  
J
(BR)DSS  
RDS(on)  
VGS(th)  
IDSS  
–––  
2.0  
5.6  
7.0  
4.0  
20  
VGS = 10V, ID = 75A  
m
–––  
V
VDS = VGS, ID = 250µA  
Drain-to-Source Leakage Current  
––– –––  
µA VDS = 100V, VGS = 0V  
––– ––– 250  
––– ––– 200  
––– ––– -200  
V
DS = 100V, VGS = 0V, TJ = 125°C  
GS = 20V  
IGSS  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
Gate Input Resistance  
nA  
V
VGS = -20V  
RG  
–––  
1.4  
–––  
f = 1MHz, open drain  
Dynamic @ TJ = 25°C (unless otherwise specified)  
Symbol  
gfs  
Parameter  
Forward Transconductance  
Total Gate Charge  
Min. Typ. Max. Units  
Conditions  
VDS = 50V, ID = 75A  
nC ID = 75A  
DS = 80V  
160 ––– –––  
S
Qg  
––– 170 250  
Qgs  
Gate-to-Source Charge  
Gate-to-Drain ("Miller") Charge  
Turn-On Delay Time  
Rise Time  
–––  
–––  
–––  
46  
62  
26  
–––  
–––  
–––  
V
Qgd  
VGS = 10V  
ns VDD = 65V  
ID = 75A  
td(on)  
tr  
––– 110 –––  
td(off)  
Turn-Off Delay Time  
Fall Time  
–––  
–––  
68  
78  
–––  
–––  
R = 2.6  
G
tf  
VGS = 10V  
pF VGS = 0V  
VDS = 50V  
Ciss  
Input Capacitance  
––– 7670 –––  
––– 540 –––  
––– 280 –––  
––– 650 –––  
––– 720.1 –––  
Coss  
Output Capacitance  
Reverse Transfer Capacitance  
Crss  
ƒ = 1.0MHz  
Coss eff. (ER)  
Coss eff. (TR)  
VGS = 0V, VDS = 0V to 80V , See Fig.11  
Effective Output Capacitance (Energy Related)  
Effective Output Capacitance (Time Related)  
VGS = 0V, VDS = 0V to 80V , See Fig. 5  
Diode Characteristics  
Symbol  
Parameter  
Min. Typ. Max. Units  
Conditions  
IS  
Continuous Source Current  
––– –––  
A
MOSFET symbol  
140  
D
(Body Diode)  
Pulsed Source Current  
showing the  
integral reverse  
G
ISM  
––– ––– 550  
S
(Body Diode)  
p-n junction diode.  
VSD  
trr  
Diode Forward Voltage  
––– –––  
1.3  
68  
V
TJ = 25°C, IS = 75A, VGS = 0V  
TJ = 25°C  
TJ = 125°C  
TJ = 25°C  
TJ = 125°C  
TJ = 25°C  
VR = 85V,  
IF = 75A  
Reverse Recovery Time  
Reverse Recovery Charge  
–––  
–––  
–––  
45  
55  
82  
ns  
83  
di/dt = 100A/µs  
Qrr  
120  
nC  
––– 120 180  
––– 3.3 –––  
IRRM  
ton  
Reverse Recovery Current  
Forward Turn-On Time  
A
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)  
Notes:  
 Calculated continuous current based on maximum allowable junction  
† Coss eff. (TR) is a fixed capacitance that gives the same charging time  
temperature. Package limitation current is 75A  
‚ Repetitive rating; pulse width limited by max. junction  
temperature.  
as Coss while VDS is rising from 0 to 80% VDSS  
‡ Coss eff. (ER) is a fixed capacitance that gives the same energy as  
Coss while VDS is rising from 0 to 80% VDSS  
.
.
ƒ Limited by TJmax, starting TJ = 25°C, L = 0.35mH  
RG = 25, IAS = 75A, VGS =10V. Part not recommended for use  
above this value.  
ˆ When mounted on 1" square PCB (FR-4 or G-10 Material). For recom  
mended footprint and soldering techniques refer to application note #AN-994.  
‰ Rθ is measured at TJ approximately 90°C  
„ ISD 75A, di/dt 550A/µs, VDD V(BR)DSS, TJ 175°C.  
Pulse width 400µs; duty cycle 2%.  
2 / 11  
www.freescale.net.cn  
IRF/B/S/SL4310  
1000  
100  
10  
1000  
100  
10  
VGS  
15V  
10V  
VGS  
15V  
10V  
8.0V  
6.0V  
5.5V  
5.0V  
4.8V  
4.5V  
TOP  
TOP  
8.0V  
6.0V  
5.5V  
5.0V  
4.8V  
4.5V  
BOTTOM  
BOTTOM  
4.5V  
60µs PULSE WIDTH  
Tj = 175°C  
60µs PULSE WIDTH  
Tj = 25°C  
4.5V  
1
1
0.1  
1
10  
100  
0.1  
10  
100  
V
, Drain-to-Source Voltage (V)  
V
, Drain-to-Source Voltage (V)  
DS  
DS  
Fig 1. Typical Output Characteristics  
Fig 2. Typical Output Characteristics  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
1000  
100  
10  
I
= 75A  
D
V
= 10V  
GS  
T
= 175°C  
J
T
= 25°C  
= 50V  
J
V
DS  
60µs PULSE WIDTH  
1
3.0  
4.0  
5.0  
6.0  
7.0  
8.0  
-60 -40 -20  
0
20 40 60 80 100 120 140 160 180  
V
, Gate-to-Source Voltage (V)  
GS  
T
, Junction Temperature (°C)  
J
Fig 4. Normalized On-Resistance vs. Temperature  
Fig 3. Typical Transfer Characteristics  
12000  
10000  
8000  
6000  
4000  
2000  
0
20  
V
= 0V,  
f = 1 MHZ  
GS  
I = 75A  
D
C
= C + C , C SHORTED  
iss  
gs  
gd ds  
V
= 80V  
DS  
C
= C  
rss  
gd  
16  
12  
8
VDS= 50V  
VDS= 20V  
C
= C + C  
ds  
oss  
gd  
Ciss  
4
Coss  
Crss  
0
0
40  
80  
120 160 200 240 280  
1
10  
100  
Q
Total Gate Charge (nC)  
G
V
, Drain-to-Source Voltage (V)  
DS  
Fig 5. Typical Capacitance vs. Drain-to-Source Voltage  
Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage  
3 / 11  
www.freescale.net.cn  
IRF/B/S/SL4310  
1000.0  
100.0  
10.0  
1.0  
10000  
1000  
100  
10  
OPERATION IN THIS AREA  
LIMITED BY R  
(on)  
DS  
T
= 175°C  
J
100µsec  
T
= 25°C  
J
1
1msec  
Tc = 25°C  
Tj = 175°C  
Single Pulse  
10msec  
DC  
V
= 0V  
GS  
0.1  
0.1  
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0  
, Source-to-Drain Voltage (V)  
1
10  
100  
1000  
V
V
DS  
, Drain-toSource Voltage (V)  
SD  
Fig 8. Maximum Safe Operating Area  
Fig 7. Typical Source-Drain Diode  
Forward Voltage  
140  
120  
100  
80  
120  
115  
110  
105  
100  
LIMITED BY PACKAGE  
60  
40  
20  
0
25  
50  
75  
100  
125  
150  
175  
-60 -40 -20  
0
20 40 60 80 100 120 140 160 180  
T
, Case Temperature (°C)  
C
T
, Junction Temperature (°C)  
J
Fig 9. Maximum Drain Current vs.  
Fig 10. Drain-to-Source Breakdown Voltage  
Case Temperature  
2400  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
I
D
TOP  
12A  
17A  
75A  
2000  
1600  
1200  
800  
400  
0
BOTTOM  
0
20  
V
40  
60  
80  
100  
120  
25  
50  
75  
100  
125  
150  
175  
Drain-to-Source Voltage (V)  
Starting T , Junction Temperature (°C)  
DS,  
J
Fig 11. Typical COSS Stored Energy  
Fig 12. Maximum Avalanche Energy Vs. DrainCurrent  
4 / 11  
www.freescale.net.cn  
IRF/B/S/SL4310  
1
0.1  
D = 0.50  
0.20  
0.10  
0.05  
R1  
R2  
R1  
R2  
Ri (°C/W) τi (sec)  
0.1962 0.00117  
τ
0.01  
J τJ  
τ
0.02  
0.01  
τ
Cτ  
1 τ1  
Ci= τi/Ri  
τ
2τ2  
0.2542 0.016569  
0.001  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
SINGLE PULSE  
( THERMAL RESPONSE )  
0.0001  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
t
, Rectangular Pulse Duration (sec)  
1
Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case  
100  
10  
1
Allowed avalanche Current vs avalanche  
pulsewidth, tav, assuming Tj = 150°C  
and Tstart =25°C (Single Pulse)  
Duty Cycle = Single Pulse  
0.01  
0.05  
0.10  
Allowed avalanche Current vs avalanche  
pulsewidth, tav, assuming ∆Τ j = 25°C and  
Tstart = 150°C.  
0.1  
1.0E-06  
1.0E-05  
1.0E-04  
1.0E-03  
1.0E-02  
1.0E-01  
tav (sec)  
Fig 14. Typical Avalanche Current vs.Pulsewidth  
1000  
800  
600  
400  
200  
0
Notes on Repetitive Avalanche Curves , Figures 14, 15:  
(For further info, see AN-1005 at www.irf.com)  
1. Avalanche failures assumption:  
Purely a thermal phenomenon and failure occurs at a temperature far in  
excess of Tjmax. This is validated for every part type.  
2. Safe operation in Avalanche is allowed as long as neither Tjmax nor  
Iav (max) is exceeded.  
3. Equation below based on circuit and waveforms shown in Figures 16a, 16b.  
4. PD (ave) = Average power dissipation per single avalanche pulse.  
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase  
during avalanche).  
6. Iav = Allowable avalanche current.  
7. T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as  
25°C in Figure 14, 15).  
tav = Average time in avalanche.  
D = Duty cycle in avalanche = tav ·f  
TOP  
BOTTOM 1% Duty Cycle  
= 75A  
Single Pulse  
I
D
ZthJC(D, tav) = Transient thermal resistance, see Figures 13)  
25  
50  
75  
100  
125  
150  
175  
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC  
Starting T , Junction Temperature (°C)  
J
Iav = 2DT/ [1.3·BV·Zth]  
EAS (AR) = PD (ave)·tav  
Fig 15. Maximum Avalanche Energy vs. Temperature  
5 / 11  
www.freescale.net.cn  
IRF/B/S/SL4310  
20  
5.0  
4.0  
3.0  
2.0  
1.0  
I
I
I
= 1.0A  
D
D
D
= 1.0mA  
= 250µA  
16  
12  
8
I
= 30A  
F
V
T
= 85V  
R
4
0
= 125°C  
= 25°C  
J
T
J
-75 -50 -25  
0
25 50 75 100 125 150 175  
100 200 300 400 500 600 700 800 900 1000  
T , Temperature ( °C )  
di / dt - (A / µs)  
f
J
Fig. 17 - Typical Recovery Current vs. dif/dt  
Fig 16. Threshold Voltage Vs. Temperature  
500  
20  
400  
300  
200  
100  
0
16  
12  
8
I
= 30A  
= 85V  
I
= 45A  
= 85V  
F
F
V
T
V
T
R
R
4
0
= 125°C  
= 25°C  
= 125°C  
= 25°C  
J
J
T
T
J
J
100 200 300 400 500 600 700 800 900 1000  
100 200 300 400 500 600 700 800 900 1000  
di / dt - (A / µs)  
f
di / dt - (A / µs)  
f
Fig. 18 - Typical Recovery Current vs. dif/dt  
Fig. 19 - Typical Stored Charge vs. dif/dt  
500  
400  
300  
200  
100  
0
I
= 45A  
= 85V  
F
V
T
R
= 125°C  
= 25°C  
J
T
J
100 200 300 400 500 600 700 800 900 1000  
di / dt - (A / µs)  
f
Fig. 20 - Typical Stored Charge vs. dif/dt  
6 / 11  
www.freescale.net.cn  
IRF/B/S/SL4310  
Driver Gate Drive  
P.W.  
P.W.  
Period  
D.U.T  
Period  
D =  
+
*
=10V  
V
GS  
ƒ
Circuit Layout Considerations  
Low Stray Inductance  
Ground Plane  
Low Leakage Inductance  
Current Transformer  
-
D.U.T. I Waveform  
SD  
+
‚
-
Reverse  
Recovery  
Current  
Body Diode Forward  
„
Current  
-
+
di/dt  
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  

V
DD  
VDD  
Re-Applied  
Voltage  
dv/dt controlled by RG  
RG  
+
-
Body Diode  
Forward Drop  
Driver same type as D.U.T.  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
Inductor Current  
I
SD  
Ripple  
5%  
* VGS = 5V for Logic Level Devices  
Fig 21. Peak Diode Recovery dv/dt Test Circuit for N-Channel  
HEXFET® Power MOSFETs  
V
(BR)DSS  
15V  
t
p
DRIVER  
+
L
V
DS  
D.U.T  
AS  
R
G
V
DD  
-
I
A
V
2
GS  
0.01  
t
p
I
AS  
Fig 22b. Unclamped Inductive Waveforms  
Fig 22a. Unclamped Inductive Test Circuit  
LD  
VDS  
VDS  
90%  
+
-
VDD  
10%  
VGS  
D.U.T  
VGS  
Pulse Width < 1µs  
Duty Factor < 0.1%  
td(on)  
td(off)  
tr  
tf  
Fig 23a. Switching Time Test Circuit  
Fig 23b. Switching Time Waveforms  
Id  
Vds  
Vgs  
L
VCC  
DUT  
Vgs(th)  
0
1K  
Qgs1  
Qgs2  
Qgd  
Qgodr  
Fig 24a. Gate Charge Test Circuit  
Fig 24b. Gate Charge Waveform  
7 / 11  
www.freescale.net.cn  
IRF/B/S/SL4310  
TO-262 Package Outline  
Dimensions are shown in millimeters (inches)  
TO-262 Part Marking Information  
EXAMPLE: THIS IS AN IRL3103L  
LOT CODE 1789  
PART NUMBER  
ASSEMBLED ON WW 19, 1997  
IN THE ASSEMBLYLINE "C"  
ASSEMBLY  
LOT CODE  
OR  
PART NUMBER  
DATE CODE  
P = DE S IGNAT E S L E AD-F R E E  
PRODUCT (OPTIONAL)  
YEAR 7 = 1997  
ASSEMBLY  
LOT CODE  
WEEK 19  
A = ASSEMBLYSITE CODE  
9 / 11  
www.freescale.net.cn  
IRF/B/S/SL4310  
D2Pak (TO-263AB) Tape & Reel Information  
TRR  
1.60 (.063)  
1.50 (.059)  
1.60 (.063)  
1.50 (.059)  
4.10 (.161)  
3.90 (.153)  
0.368 (.0145)  
0.342 (.0135)  
FEED DIRECTION  
1.85 (.073)  
11.60 (.457)  
11.40 (.449)  
1.65 (.065)  
24.30 (.957)  
23.90 (.941)  
15.42 (.609)  
15.22 (.601)  
TRL  
1.75 (.069)  
1.25 (.049)  
10.90 (.429)  
10.70 (.421)  
4.72 (.136)  
4.52 (.178)  
16.10 (.634)  
15.90 (.626)  
FEED DIRECTION  
13.50 (.532)  
12.80 (.504)  
27.40 (1.079)  
23.90 (.941)  
4
330.00  
(14.173)  
MAX.  
60.00 (2.362)  
MIN.  
30.40 (1.197)  
MAX.  
NOTES :  
1. COMFORMS TO EIA-418.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION MEASURED @ HUB.  
26.40 (1.039)  
24.40 (.961)  
4
3
4. INCLUDES FLANGE DISTORTION @ OUTER EDGE.  
11 / 11  
www.freescale.net.cn  

相关型号:

IRFSL4310PBF

HEXFET㈢Power MOSFET
INFINEON

IRFSL4310TRRZPBF

暂无描述
INFINEON

IRFSL4310ZPBF

HEXFET Power MOSFET
INFINEON

IRFSL4310ZTRRPBF

暂无描述
INFINEON

IRFSL4321PBF

HEXFET Power MOSFET
INFINEON

IRFSL4410

HEXFET Power MOSFET
INFINEON

IRFSL4410PBF

HEXFET Power MOSFET
INFINEON

IRFSL4410Z

暂无描述
INFINEON

IRFSL4410ZPBF

HEXFET Power MOSFET
INFINEON

IRFSL4410ZTRRPBF

Power Field-Effect Transistor, 75A I(D), 100V, 0.009ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-262AA, LEAD FREE, PLASTIC, TO-262, 3 PIN
INFINEON

IRFSL4510PBF

HEXFETPower MOSFET
INFINEON

IRFSL4610

IRFB4610 IRFS4610 IRFSL4610
INFINEON