MCF51AG96VQH [FREESCALE]

MCF51AG128 ColdFire Microcontroller; MCF51AG128的ColdFire微控制器
MCF51AG96VQH
型号: MCF51AG96VQH
厂家: Freescale    Freescale
描述:

MCF51AG128 ColdFire Microcontroller
MCF51AG128的ColdFire微控制器

微控制器 外围集成电路
文件: 总50页 (文件大小:1625K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Freescale Semiconductor  
Data Sheet: Technical Data  
Document Number: MCF51AG128  
Rev. 5, 6/2010  
MCF51AG128  
80 LQFP  
64 LQFP  
MCF51AG128 ColdFire  
Microcontroller  
Covers: MCF51AG128 and  
MCF51AG96  
14 mm × 14 mm  
10 mm × 10 mm  
48 LQFP  
7 mm x 7mm  
64 QFP  
14 mm × 14 mm  
®
The MCF51AG128 is a member of the ColdFire family of  
– Low-voltage detection with reset or interrupt  
– Separate low voltage warning with selectable trip points  
– Illegal opcode and illegal address detection with reset  
– Flash block protection for each array to prevent  
accidental write/erasure  
32-bit variable-length reduced instruction set (RISC)  
microcontroller. This document provides an overview of the  
MCF51AG128 series MCUs, focusing on its highly  
integrated and diverse feature set.  
– Hardware CRC module to support fast cyclic  
redundancy checks  
• Debug Support  
The MCF51AG128 derivative are low-cost, low-power, and  
high-performance 32-bit ColdFire V1 microcontroller units  
(MCUs) designed for industrial and appliance applications. It  
is an ideal upgrade for designs based on the MC9S08AC128  
series of 8-bit microcontrollers.  
– Single-wire back ground debug interface  
– Real-time debug support, with six hardware breakpoints  
(4 PC, 1 address pair and 1 data) that can be configured  
into a 1- or 2-level trigger  
– On-chip trace buffer provides programmable start/stop  
recording conditions  
The MCF51AG128 features the following functional units:  
®
• 32-bit Version 1 ColdFire central processor unit (CPU)  
– Up to 50.33 MHz ColdFire CPU from 2.7 V to 5.5 V  
– Provide 0.94 Dhrystone 2.1 DMIPS per MHz  
performance when running from internal RAM (0.76  
DMIPS per MHz when running from flash)  
– Implements Coldfire Instruction Set Revision C  
(ISA_C)  
– Support for real-time program (and optional partial data)  
trace using the debug visibility bus  
• DMA Controller  
– Four independently programmable DMA channels  
provide the means to directly transfer data between  
system memory and I/O peripherals  
– DMA enabled peripherals include IIC, SCI, SPI, FTM,  
HSCMP, ADC, RTC, and eGPIO, and the DMA request  
from these peripherals can be configured as DMA  
source or as an iEvent input  
• On-chip memory  
– Up to 128 KB flash memory read/program/erase over  
full operating voltage and temperature  
– Up to 16 KB random access memory (RAM)  
– Security circuitry to prevent unauthorized access to  
RAM and flash contents  
• CF1_INTC  
• Power-Saving Modes  
– Support of 44 peripheral I/O interrupt requests and seven  
software (one per level) interrupt requests  
– Fixed association between interrupt request source, level  
and priority, up to two requests can be remapped to the  
highest maskable level and priority  
– Unique vector number for each interrupt source  
– Support for service routine interrupt acknowledge  
(software IACK) read cycles for improved system  
performance  
– Three ultra-low power stop modes and reduced power  
wait mode  
– Peripheral clock enable register can disable clocks to  
unused modules, thereby reducing currents  
• System Protection  
– Advanced independent clocked watchdog (WDOG)  
with features like, robust refresh mechanism, windowed  
mode, high granulation timeout, fast test of timeout, and  
always forces a reset  
– Additional external watchdog monitor (EWM) to help  
reset external circuits  
– Ability to mask any individual or all interrupt sources  
Freescale reserves the right to change the detail specifications as may be required to permit  
improvements in the design of its products.  
© Freescale Semiconductor, Inc., 2010. All rights reserved.  
• System Clock Sources  
– Oscillator (XOSC) — Loop-control pierce oscillator; crystal or ceramic resonator range of 31.25 kHz to 38.4 kHz or 1  
MHz to 16 MHz  
– Internal Clock Source (ICS) — Frequency-locked-loop (FLL) controlled by internal or external reference; trimmable  
internal reference allows 0.2% resolution and 2% deviation (1% across 0 to 70 ºC)  
• Peripherals  
– ADC — 24 analog inputs with 12 bits resolution; output formatted in 12-, 10- or 8-bit right-justified format; single or  
continuous conversion (automatic return to idle after single conversion); interrupt or DMA request when conversion  
complete; operation in low-power modes for lower noise operation; asynchronous clock source for lower noise operation;  
selectable asynchronous hardware conversion triggers from RTC, PDB, or iEvent; dual samples based on hardware  
triggers during ping-pong mode; on-chip temperature sensor  
– PDB — 16-bit of resolution with prescaler; seven possible trigger events input; positive transition of trigger event signal  
initiates the counter; support continuous trigger or single shot, bypass mode; supports two triggered delay outputs or ORed  
together; pulsed output could be used for HSCMP windowing signal  
– iEvent — User programmable combinational boolean output using the four selected iEvent input channels for use as  
interrupt requests, DMA transfer requests, or hardware triggers  
– FTM — Two 6-channel flexible timer/PWM modules with DMA request option; deadtime insertion is available for each  
complementary channel pair; channels operate as pairs with equal outputs, pairs with complimentary outputs or  
independent channels (with independent outputs); 16-bit free-running counter; the load of the FTM registers which have  
write buffer can be synchronized; write protection for critical registers; backwards compatible with TPM  
– TPM — 16-bit free-running or modulo up/down count operation; two channels, each channel may be input capture, output  
compare, or edge-aligned PWM; one interrupt per channel plus terminal count interrupt  
16  
12  
– CRC — High speed hardware CRC generator circuit using 16-bit shift register; CRC16-CCITT compliancy with x + x  
5
+ x + 1 polynomial; error detection for all single, double, odd, and most multi-bit errors; programmable initial seed value  
– HSCMP — Two analog comparators with selectable interrupt on rising edge, falling edge, or either edges of comparator  
output; the positive and negative inputs of the comparator are both driven from 4-to-1 muxes; programmable voltage  
reference from two internal DACs; support DMA transfer  
– IIC — Compatible with IIC bus standard and SMBus version 2 features; up to 100 kbps with maximum bus loading;  
multi-master operation; software programmable for one of 64 different serial clock frequencies; programmable slave  
address and glitch input filter; interrupt driven byte-by-byte data transfer; arbitration lost interrupt with automatic mode  
switching from master to slave; calling address identification interrupt; bus busy detection; broadcast and 10-bit address  
extension; address matching causes wake-up when MCU is in Stop3 mode; DMA support  
– SCI — Two serial communications interface modules with optional 13-bit break; full-duplex, standard non-return-to-zero  
(NRZ) format; double-buffered transmitter and receiver with separate enables; 13-bit baud rate selection with /32  
fractional divide; interrupt-driven or polled operation; hardware parity generation and checking; programmable 8-bit or  
9-bit character length; receiver wakeup by idle-line or address-mark; address match feature in receiver to reduce  
address-mark wakeup ISR overhead; 1/16 bit-time noise detection; DMA transmission for both transmit and receive  
– SPI — Two serial peripheral interfaces with full-duplex or single-wire bidirectional option; double-buffered transmitter  
and receiver; master or slave mode operation; selectable MSB-first or LSB-first shifting; 8-bit or 16-bit data modes;  
programmable transmit bit rate; receive data buffer hardware match feature; DMA transmission for transmit and receive  
• Input/Output  
– Up to 69 GPIOs and one Input-only pin  
– Interrupt or DMA request with selectable polarity on all input pins  
– Programmable glitch filter, hysteresis and configurable pull up/down device on all input pins  
– Configurable slew rate and drive strength on all output pins  
– Independent pin value register to read logic level on digital pin  
– Up to 16 rapid general purpose I/O (RGPIO) pins connected to the processor’s local 32-bit platform bus with set, clear,  
and faster toggle functionality  
MCF51AG128 ColdFire Microcontroller, Rev. 5  
2
Freescale Semiconductor  
Table of Contents  
1
2
MCF51AG128 Family Configurations . . . . . . . . . . . . . . . . . . . .4  
Table 8. ESD and Latch-Up Protection Characteristics. . . . . . . 17  
Table 10. Supply Current Characteristics. . . . . . . . . . . . . . . . . . 21  
Table 11.HSCMP Electrical Specifications. . . . . . . . . . . . . . . . . 23  
Table 12.5V 12-bit ADC Operating Conditions. . . . . . . . . . . . . . 23  
Table 13.5 V 12-bit ADC Characteristics (VREFH = VDDA, VREFL  
1.1 Device Comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . .4  
1.2 Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5  
1.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7  
1.4 Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9  
Preliminary Electrical Characteristics . . . . . . . . . . . . . . . . . . .14  
2.1 Parameter Classification . . . . . . . . . . . . . . . . . . . . . . . .14  
2.2 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . .14  
2.3 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . .15  
2.4 Electrostatic Discharge (ESD) Protection Characteristics  
16  
2.5 DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
2.6 Supply Current Characteristics . . . . . . . . . . . . . . . . . . .21  
2.7 High Speed Comparator (HSCMP) Electricals . . . . . . .23  
2.8 Digital to Analog (DAC) Characteristics . . . . . . . . . . . .23  
2.9 ADC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
2.10 External Oscillator (XOSC) Characteristics . . . . . . . . .27  
2.11 ICS Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
2.12 AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . .30  
2.12.1 Control Timing . . . . . . . . . . . . . . . . . . . . . . . . . .30  
2.12.2 Timer (TPM/FTM) Module Timing . . . . . . . . . . .31  
2.12.3 SPI Characteristics . . . . . . . . . . . . . . . . . . . . . .32  
2.13 Flash Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
2.14 EMC Performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . .35  
2.14.1 Radiated Emissions. . . . . . . . . . . . . . . . . . . . . .35  
Ordering Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36  
Package Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36  
Mechanical Outline Drawings . . . . . . . . . . . . . . . . . . . . . . . . .37  
5.1 80-pin LQFP Package. . . . . . . . . . . . . . . . . . . . . . . . . .37  
5.2 64-pin LQFP Package. . . . . . . . . . . . . . . . . . . . . . . . . .40  
5.3 64-pin QFP Package. . . . . . . . . . . . . . . . . . . . . . . . . . .43  
5.4 48-pin LQFP Package. . . . . . . . . . . . . . . . . . . . . . . . . .46  
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48  
=
V
SSA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Table 14.Oscillator Electrical Specifications (Temperature Range =  
–40 to 105 °C Ambient) . . . . . . . . . . . . . . . . . . . . . . . . 27  
Table 15.ICS Frequency Specifications (Temperature Range = –40  
to 105 °C Ambient) . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Table 16.Control Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Table 17.TPM/FTM Input Timing . . . . . . . . . . . . . . . . . . . . . . . . 31  
Table 18.SPI Timing Characteristics . . . . . . . . . . . . . . . . . . . . . 32  
Table 19.Flash Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Table 20.Orderable Part Number Summary. . . . . . . . . . . . . . . . 36  
Table 21.Package Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Table 22.Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
List of Figures  
Figure 1.MCF51AG128 Series MCUs Block Diagram . . . . . . . . . 6  
Figure 2.80-Pin LQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Figure 3.64-Pin QFP and LQFP . . . . . . . . . . . . . . . . . . . . . . . . 10  
Figure 4.48-Pin LQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Figure 5.Typical IOH vs. VDD – VOH (Low Drive,PTxDSn = 0) . . 19  
Figure 6.Typical IOH vs. VDD – VOH (High Drive, PTxDSn = 1) . 19  
Figure 7.Typical IOL vs. VOL (Low Drive, PTxDSn = 0) . . . . . . . 20  
Figure 8.Typical IOL vs. VOL (High Drive, PTxDSn = 1) . . . . . . . 20  
Figure 9.Run Current at Different Conditions. . . . . . . . . . . . . . . 22  
Figure 10.ADC Input Impedance Equivalency Diagram. . . . . . . 25  
Figure 11.Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Figure 12.IRQ/KBIPx Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Figure 13.Timer External Clock . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Figure 14.Timer Input Capture Pulse. . . . . . . . . . . . . . . . . . . . . 31  
Figure 15.SPI Master Timing (CPHA = 0) . . . . . . . . . . . . . . . . . 33  
Figure 16.SPI Master Timing (CPHA = 1) . . . . . . . . . . . . . . . . . 33  
Figure 17.SPI Slave Timing (CPHA = 0) . . . . . . . . . . . . . . . . . . 34  
Figure 18.SPI Slave Timing (CPHA = 1) . . . . . . . . . . . . . . . . . . 34  
3
4
5
6
List of Tables  
Table 1. MCF51AG128 Series Device Comparison. . . . . . . . . . .4  
Table 2. MCF51AG128 Series Functional Units . . . . . . . . . . . . . .7  
Table 3. Pin Availability by Package Pin-Count. . . . . . . . . . . . . .12  
Table 4. Parameter Classifications . . . . . . . . . . . . . . . . . . . . . . .14  
Table 5. Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . .15  
Table 6. Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . .15  
Table 7. ESD and Latch-up Test Conditions. . . . . . . . . . . . . . . .16  
Table 9. DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
MCF51AG128 ColdFire Microcontroller, Rev. 5  
3
Freescale Semiconductor  
MCF51AG128 Family Configurations  
1
MCF51AG128 Family Configurations  
1.1  
Device Comparison  
The following table compares the various device derivatives available within the MCF51AG128 series MCUs.  
Table 1. MCF51AG128 Series Device Comparison  
MCF51AG128  
MCF51AG96  
Feature  
80-pin  
64-pin  
48-pin  
80-pin  
64-pin  
48-pin  
Flash memory size (KB)  
RAM size (KB)  
128  
96  
16  
ColdFire V1 core with BDM  
(background debug module)  
Yes  
HSCMP (analog comparator)  
2
2
1
2
2
1
ADC (analog-to-digital converter)  
channels (12-bit)  
24  
19  
12  
24  
19  
12  
CRC (cyclic redundancy check)  
DAC  
Yes  
2
2
1
2
2
1
DMA controller  
4-ch  
Yes  
Yes  
Yes  
Yes  
Yes  
iEvent (intelligent Event module)  
EWM (External Watchdog Monitor)  
WDOG (Watchdog timer)  
RTC  
DBG (debug module)  
IIC (inter-integrated circuit)  
IRQ (interrupt request input)  
INTC (interrupt controller)  
LVD (low-voltage detector)  
ICS (internal clock source)  
OSC (crystal oscillator)  
Port I/O1  
1
1
No  
1
1
No  
Yes  
Yes  
Yes  
Yes  
Yes  
69  
16  
53  
16  
39  
15  
69  
16  
53  
16  
39  
15  
RGPIO (rapid general-purpose I/O)  
SCI (serial communications interface)  
SPI1 (serial peripheral interface)  
SPI2 (serial peripheral interface)  
FTM1 (flexible timer module) channels  
FTM2 channels  
2
Yes  
Yes  
No  
No  
Yes  
No  
No  
62  
62  
MCF51AG128 ColdFire Microcontroller, Rev. 5  
4
Freescale Semiconductor  
MCF51AG128 Family Configurations  
Table 1. MCF51AG128 Series Device Comparison (continued)  
MCF51AG128  
64-pin  
MCF51AG96  
64-pin  
Feature  
80-pin  
48-pin  
80-pin  
48-pin  
TPM3 (timer pulse-width modulator)  
channels  
2
Debug Visibility Bus  
Yes  
No  
No  
Yes  
No  
No  
1
2
Up to 16 pins on Ports E and F are shared with the ColdFire Rapid GPIO module.  
Some pins of FTMx might not be bonded on small package, therefore these channels could be used as soft timer only.  
1.2  
Block Diagram  
Figure 1 shows the connections between the MCF51AG128 series pins and modules.  
MCF51AG128 ColdFire Microcontroller, Rev. 5  
Freescale Semiconductor  
5
MCF51AG128 Family Configurations  
PTA7/ADP23  
PTA6/MCLK  
PTA5/C2IN3  
PTA4/C2IN2  
PTA3/CMP2OUT  
PTA2/CIN1  
PTA1/EWM_out  
PTA0/EWM_in  
PTB7/ADP11  
PTB6/ADP12  
PTB5/ADP13  
PTB4/ADP14  
PTB3/ADP15  
VREFH  
VREFL  
VDDA  
VSSA  
VREFH  
VREFL  
VDDA  
VSSA  
Port D:  
CMP1OUT  
CIN1  
Port C,D,G:  
ADP10-  
ADP0  
C1IN2  
C1IN3  
HSCMP1  
Port J:  
DDATA3-  
DDATA0  
PST3-  
PST0  
Port G:  
PSTCLK  
Port B:  
ADP18-  
ADP11  
DBG  
ADC  
Port A:  
CMP2OUT  
CIN1  
Port H:  
VBUS  
ADP22-  
ADP19  
Port A:  
BKGD/MS  
HSCMP2  
C2IN2  
C2IN3  
BDM  
BKPT  
PTB2ADP16  
PTB1/ADP17/TPM3CH1  
PTB0/ADP18/TPM3CH0  
ADP23  
PTC6/FTM2FLT  
PTC5/RxD2  
PTC4/SS2  
PTC3/TxD2  
PTC2/ADP8  
PTC1/SDA  
FTM1CLK  
FTM2CLK  
TPMCLK  
Port F:  
FTM1CH5  
FTM1CH4  
FTM1CH3  
FTM1CH2  
Port E:  
Port E:  
RXD1  
TXD1  
ColdFire V1 core  
+ DMA + iEvent  
SCI1  
SCI2  
RESET  
*
FTM1  
Port C:  
RXD2  
TXD2  
FTM1CH1  
FTM1CH0  
PTC0/SCL  
SIM  
PTD7/ADP7  
PTD6/FTM1CLK/ADP0  
PTD5/ADP1  
PTD4/FTM2CLK/ADP2  
PTD3/ADP5  
PTD2/ADP6/CMP1OUT  
PTD1/ADP9/C1IN3  
PTD0/ADP10/C1IN2  
PTE7/RGPIO7/SPSCK1  
PTE6/RGPIO6/MOSI1  
PTE5/RGPIO5/MISO1  
PTE4/RGPIO4/SS1  
PTE3/RGPIO3/FTM1CH1  
PTE2/RGPIO2/FTM1CH0  
PTE1/RGPIO1/RxD1  
PTE0/RGPIO0/TxD1  
IRQ/  
TPMCLK  
Port J:  
FTM2CH5  
FTM2CH4  
FTM2CH3  
FTM2CH2  
Port F:  
FTM2CH1  
FTM2CH0  
Port E:  
SS1  
SPSCK1  
MOSI1  
MISO1  
WDOG LVD  
IRQ  
*
FTM2  
SPI1  
SPI2  
FLASH  
128 or 96 KB  
Port H:  
SS2  
SPSCK2  
MOSI2  
MISO2  
Port B:  
or Port G:  
RAM  
16 KB  
TPM3  
TPM3CH1  
TPM3CH0  
Port F:  
PTF7/RGPIO15  
RGPIO15  
RGPIO14  
RGPIO13  
RGPIO12  
RGPIO11  
RGPIO10  
RGPIO9  
PTF6/RGPIO14/FTM1FLT  
PTF5/RGPIO13/FTM2CH1  
PTF4/RGPIO12/FTM2CH0  
PTF3/RGPIO11/FTM1CH5  
PTF2/RGPIO10/FTM1CH4  
PTF1/RGPIO9/FTM1CH3  
PTF0/RGPIO8/FTM1CH2  
RGPIO8  
PTG6/XTAL  
PTG5/EXTAL  
PTG4/ADP3  
PTG3/ADP4  
PTG2/BKPT  
PTG1/PSTCLK1/TPM3CH1  
PTG0/PSTCLK0/TPM3CH0  
RGPIO  
Port E:  
RGPIO7  
RGPIO6  
RGPIO5  
RGPIO4  
RGPIO3  
RGPIO2  
RGPIO1  
RGPIO0  
Port G:  
EXTAL  
XTAL  
CRC  
RTC  
ICS  
OSC  
PTH6/MISO2  
PTH5/MOSI2  
PTH4/SPSCK2  
Port C:  
SDA  
SCL  
PTH3/ADP19/FTM2CH5  
PTH2/ADP20/FTM2CH4  
PTH1/ADP21/FTM2CH3  
PTH0/ADP22/FTM2CH2  
VDD  
VSS  
VSS  
IIC  
DAC1  
DAC2  
VREG  
EWM  
PTJ7/DDATA3/FTM2CH2  
PTJ6/DDATA2/FTM2CH3  
PTJ5/DDATA1/FTM2CH4  
PTJ4/DDATA0//FTM2CH5  
PTJ3/PST3  
PTJ2/PST2  
PTJ1/PST1  
EWM_in  
EWM_out  
PTJ0/PST0  
Figure 1. MCF51AG128 Series MCUs Block Diagram  
MCF51AG128 ColdFire Microcontroller, Rev. 5  
6
Freescale Semiconductor  
MCF51AG128 Family Configurations  
1.3  
Features  
Table 2 describes the functional units of the MCF51AG128 series.  
Table 2. MCF51AG128 Series Functional Units  
Functional Unit  
Function  
CF1Core (V1 ColdFire core)  
BDM (background debug module)  
DBG (debug)  
Executes programs and interrupt handlers  
Provides single pin debugging interface (part of the V1 ColdFire core)  
Provides debugging and emulation capabilities (part of the V1 ColdFire core)  
Allows for real-time program traces (part of the V1 ColdFire core)  
Controls resets and chip level interfaces between modules  
Provides storage for program code, constants, and variables  
Provides storage for program variables  
VBUS (debug visibility bus)  
SIM (system integration module)  
Flash (flash memory)  
RAM (random-access memory)  
RGPIO (rapid general-purpose input/output) Allows for I/O port access at CPU clock speeds  
VREG (voltage regulator)  
LVD (low-voltage detect)  
Controls power management across the device  
Monitors internal and external supply voltage levels, and generates a reset or  
interrupt when the voltages are too low  
CF1_INTC (interrupt controller)  
ADC (analog-to-digital converter)  
Controls and prioritizes all device interrupts  
Measures analog voltages at up to 12 bits of resolution  
Provide a variety of timing-based features  
FTM1, FTM2 (flexible timer/pulse-width  
modulators)  
TPM3 (timer/pulse-width modulator)  
CRC (cyclic redundancy check)  
Provides a variety of timing-based features  
Accelerates computation of CRC values for ranges of memory  
HSCMP1, HSCMP2 (analog comparators) Compare two analog inputs  
DAC1, DAC2 (digital-to-analog converter)  
IIC (inter-integrated circuit)  
Provide programmable voltage reference for HSCMPx  
Supports standard IIC communications protocol  
ICS (internal clock source)  
Provides clocking options for the device, including a frequency-locked loop  
(FLL) for multiplying slower reference clock sources  
OSC (crystal oscillator)  
Allows a crystal or ceramic resonator to be used as the system clock source  
or reference clock for the FLL  
SCI1, SCI2 (serial communications  
interfaces)  
Serial communications UARTs capable of supporting RS-232 and LIN  
protocols  
SPI1, SPI2 (8/16-bit serial peripheral  
interfaces)  
Provide 8/16-bit 4-pin synchronous serial interface  
DMA  
Provides the means to directly transfer data between system memory and I/O  
peripherals  
iEvent  
Highly programmable module for creating combinational boolean outputs for  
use as interrupt requests, DMA transfer requests, or hardware triggers  
EWM (External Watchdog Monitor)  
Additional watchdog system to help reset external circuits  
MCF51AG128 ColdFire Microcontroller, Rev. 5  
Freescale Semiconductor  
7
MCF51AG128 Family Configurations  
Table 2. MCF51AG128 Series Functional Units (continued)  
Functional Unit  
Function  
WDOG (Watchdog timer)  
RTC (Real Time Counter)  
keeps a watch on the system functioning and resets it in case of its failure  
Provides a constant time-base with optional interrupt  
MCF51AG128 ColdFire Microcontroller, Rev. 5  
8
Freescale Semiconductor  
MCF51AG128 Family Configurations  
1.4  
Pin Assignments  
This section describes the pin assignments for the available packages.  
Figure 2 shows the pinout of the 80-pin LQFP.  
PTG3/ADP4  
PTD3/ADP5  
PTD2/ADP6/CMP1OUT  
PTD7/ADP7  
PTC2/ADP8  
PTD1/ADP9/C1IN3  
PTD0/ADP10/C1IN2  
PTB7/ADP11  
PTB6/ADP12  
PTB5/ADP13  
PTB4/ADP14  
PTB3/ADP15  
PTB2/ADP16  
PTB1/ADP17/TPM3CH1  
PTB0/ADP18/TPM3CH0  
PTH3/ADP19/FTM2CH5  
PTH2/ADP20/FTM2CH4  
PTH1/ADP21/FTM2CH3  
PTH0/ADP22/FTM2CH2  
PTA7/ADP23  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
1
2
3
4
5
6
7
8
PTC0/SCL  
PTC1/SDA  
IRQ/TPMCLK  
PTF0/RGPIO8/FTM1CH2  
PTF1/RGPIO9/FTM1CH3  
PTF2/RGPIO10/FTM1CH4  
PTF3/RGPIO11/FTM1CH5  
PTF4/RGPIO12/FTM2CH0  
PTC6/FTM2FLT  
9
80-Pin  
LQFP  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
PTF7/RGPIO15  
PTF5/RGPIO13/FTM2CH1  
PTF6/RGPIO14/FTM1FLT  
PTJ0/PST0  
PTJ1/PST1  
PTJ2/PST2  
PTJ3/PST3  
PTE0/RGPIO0/TxD1  
PTE1/RGPIO1/RxD1  
PTE2/RGPIO2/FTM1CH0  
PTE3/RGPIO3/FTM1CH1  
Note: Pin names in bold  
are not available in lower  
pin count packages.  
Figure 2. 80-Pin LQFP  
MCF51AG128 ColdFire Microcontroller, Rev. 5  
Freescale Semiconductor  
9
MCF51AG128 Family Configurations  
Figure 3 shows the pinout of the 64-pin LQFP and QFP.  
PTC0/SCL  
PTC1/SDA  
IRQ/TPMCLK  
PTF0/RGPIO8/FTM1CH2  
PTF1/RGPIO9/FTM1CH3  
PTF2/RGPIO10/FTM1CH4  
PTF3/RGPIO11/FTM1CH5  
PTF4/RGPIO12/FTM2CH0  
PTC6/FTM2FLT  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
PTG3/ADP4  
PTD3/ADP5  
PTD2/ADP6/CMP1OUT  
PTD7/ADP7  
PTC2/ADP8  
PTD1/ADP9/C1IN3  
PTD0/ADP10/C1IN2  
PTB7/ADP11  
PTB6/ADP12  
PTB5/ADP13  
PTB4/ADP14  
PTB3/ADP15  
PTB2/ADP16  
PTB1/ADP17/TPM3CH1  
PTB0/ADP18/TPM3CH0  
PTA7/ADP23  
64-Pin QFP  
64-Pin LQFP  
PTF7/RGPIO15  
PTF5/RGPIO13/FTM2CH1  
PTF6/RGPIO14/FTM1FLT  
PTE0/RGPIO0/TxD1  
PTE1/RGPIO1/RxD1  
PTE2/RGPIO2/FTM1CH0  
PTE3/RGPIO3/FTM1CH1  
Figure 3. 64-Pin QFP and LQFP  
MCF51AG128 ColdFire Microcontroller, Rev. 5  
10  
Freescale Semiconductor  
MCF51AG128 Family Configurations  
Figure 4 shows the pinout of the 48-pin LQFP.  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
PTD2/ADP6/CMP1OUT  
1
2
IRQ/TPMCLK  
PTF0/RGPIO8/FTM1CH2  
PTF1/RGPIO9/FTM1CH3  
PTF2/RGPIO10/FTM1CH4  
PTF3/RGPIO11/FTM1CH5  
PTF4/RGPIO12/FTM2CH0  
PTC6/FTM2FLT  
PTD1/ADP9/CMP1IN3  
PTD0/ADP10/CMP1IN2  
PTB7/ADP11  
3
4
5
PTB6/ADP12  
48 LQFP  
6
7
8
9
PTB5/ADP13  
PTB4/ADP14  
PTF7/RGPIO15  
PTF5/RGPIO13/FTM2CH1  
PTF6/RGPIO14/FTM1FLT  
PTB3/ADP15  
PTB2/ADP16  
10  
11  
12  
PTB1/ADP17/TPM3CH1  
PTB0/ADP18/TPM3CH0  
PTA3  
PTE0/RGPIO0/TXD1  
PTE1/RGPIO1/RXD1  
Figure 4. 48-Pin LQFP  
MCF51AG128 ColdFire Microcontroller, Rev. 5  
Freescale Semiconductor  
11  
MCF51AG128 Family Configurations  
Table 3 shows the package pin assignments.  
Table 3. Pin Availability by Package Pin-Count  
Pin Number  
64  
Lowest <-- Priority --> Highest  
Port Pin Alt 1 Alt 2  
80  
48  
1
1
1
PTC0  
PTC1  
IRQ  
SCL  
SDA  
2
2
3
3
TPMCLK1  
RGPIO8  
RGPIO9  
RGPIO10  
RGPIO11  
RGPIO12  
FTM2FLT  
RGPIO15  
RGPIO13  
RGPIO14  
PST0  
4
4
2
PTF0  
PTF1  
PTF2  
PTF3  
PTF4  
PTC6  
PTF7  
PTF5  
FTM1CH2  
FTM1CH3  
FTM1CH4  
FTM1CH5  
FTM2CH0  
5
5
3
6
6
4
7
7
5
8
8
6
9
9
7
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
8
9
FTM2CH1  
FTM1FLT  
10 PTF6  
PTJ0  
PTJ1  
PTJ2  
PTJ3  
PST1  
PST2  
PST3  
11 PTE0  
12 PTE1  
13 PTE2  
RGPIO0  
RGPIO1  
RGPIO2  
RGPIO3  
RGPIO4  
RGPIO5  
RGPIO6  
RGPIO7  
DDATA0  
DDATA1  
DDATA2  
DDATA3  
PSTCLK0  
TxD1  
RxD1  
FTM1CH0  
FTM1CH1  
SS1  
PTE3  
14 PTE4  
15 PTE5  
16 PTE6  
17 PTE7  
MISO1  
MOSI1  
SPSCK1  
FTM2CH5  
FTM2CH4  
FTM2CH3  
FTM2CH2  
TPM3CH0  
PTJ4  
PTJ5  
18 PTJ6  
19 PTJ7  
20 PTG0  
21 VSS  
22 VDD  
PTG1  
PTG2  
PSTCLK1  
BKPT  
TPM3CH1  
23 PTA0  
24 PTA1  
EWM_in  
EWM_out  
CIN1  
PTA2  
25 PTA3  
CMP2OUT  
C2IN2  
PTA4  
PTA5  
PTA6  
C2IN3  
MCLK  
MCF51AG128 ColdFire Microcontroller, Rev. 5  
12  
Freescale Semiconductor  
MCF51AG128 Family Configurations  
Table 3. Pin Availability by Package Pin-Count (continued)  
Pin Number  
64  
Lowest <-- Priority --> Highest  
Port Pin Alt 1 Alt 2  
PTA7 ADP23  
80  
48  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
PTH0  
PTH1  
PTH2  
PTH3  
ADP22  
ADP21  
ADP20  
ADP19  
ADP18  
ADP17  
ADP16  
ADP15  
ADP14  
ADP13  
ADP12  
ADP11  
ADP10  
ADP9  
FTM2CH2  
FTM2CH3  
FTM2CH4  
FTM2CH5  
TPM3CH0  
26 PTB0  
27 PTB1  
28 PTB2  
29 PTB3  
30 PTB4  
31 PTB5  
32 PTB6  
33 PTB7  
34 PTD0  
35 PTD1  
TPM3CH1  
C1IN2  
C1IN3  
PTC2  
PTD7  
ADP8  
ADP7  
36 PTD2  
ADP6  
CMP1OUT  
PTD3  
PTG3  
PTG4  
PTD4  
PTD5  
ADP5  
ADP4  
ADP3  
FTM2CLK  
ADP1  
ADP2  
ADP0  
37 PTD6  
PTC4  
FTM1CLK  
SS2  
38 VSSA  
38 VREFL  
39 VREFH  
39 VDDA  
40 VDD  
41 VSS  
42 PTG5  
43 PTG6  
44 BKGD  
45 RESET  
EXTAL  
XTAL  
MS  
PTH4  
46 PTH5  
PTH6  
SPSCK2  
MOSI2  
MISO2  
TxD2  
47 PTC3  
48 PTC5  
RxD2  
MCF51AG128 ColdFire Microcontroller, Rev. 5  
Freescale Semiconductor  
13  
Preliminary Electrical Characteristics  
1
TPMCLK, FTM1CLK, and FTM2CLK options are configured via software; out of  
reset, FTM1CLK, FTM2CLK, and TPMCLK are available to FTM1, FTM2, and  
TPM3 respectively.  
2
Preliminary Electrical Characteristics  
This section contains electrical specification tables and reference timing diagrams for the MCF51AG128 series MCUs,  
including detailed information on power considerations, DC/AC electrical characteristics, and AC timing specifications.  
The electrical specifications are preliminary and are from previous designs or design simulations. These specifications may not  
be fully tested or guaranteed at this early stage of the product life cycle. These specifications will, however, be met for  
production silicon. Finalized specifications will be published after complete characterization and device qualifications have  
been completed.  
NOTE  
The parameters specified in this data sheet supersede any values found in the module  
specifications.  
2.1  
Parameter Classification  
The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better  
understanding the following classification is used and the parameters are tagged accordingly in the tables where appropriate:  
Table 4. Parameter Classifications  
Those parameters are guaranteed during production testing on each individual device.  
P
C
Those parameters are achieved by the design characterization by measuring a statistically relevant  
sample size across process variations.  
Those parameters are achieved by design characterization on a small sample size from typical devices  
under typical conditions unless otherwise noted. All values shown in the typical column are within this  
category.  
T
Those parameters are derived mainly from simulations.  
D
NOTE  
The classification is shown in the column labeled “C” in the parameter tables where  
appropriate.  
2.2  
Absolute Maximum Ratings  
Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the  
limits specified in Table 5 may affect device reliability or cause permanent damage to the device. For functional operating  
conditions, refer to the remaining tables in this section.  
This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised  
that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this  
high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (for  
instance, either V or V ).  
SS  
DD  
MCF51AG128 ColdFire Microcontroller, Rev. 5  
14  
Freescale Semiconductor  
Preliminary Electrical Characteristics  
Table 5. Absolute Maximum Ratings  
Rating Symbol  
Value  
Unit  
Supply voltage  
Input voltage  
V
–0.3 to 5.8  
V
V
DD  
V
–0.3 to VDD + 0.3  
In  
Instantaneous maximum current  
ID  
IDD  
±25  
mA  
Single pin limit (applies to all port pins)1, 2, 3  
Maximum current into V  
Storage temperature  
120  
mA  
DD  
T
–55 to 150  
°C  
stg  
1
Input must be current limited to the value specified. To determine the value of the required  
current-limiting resistor, calculate resistance values for positive (VDD) and negative (VSS) clamp  
voltages, then use the larger of the two resistance values.  
2
3
All functional non-supply pins are internally clamped to VSS and VDD  
.
Power supply must maintain regulation within operating VDD range during instantaneous and  
operating maximum current conditions. If positive injection current (VIn > VDD) is greater than  
IDD, the injection current may flow out of VDD and could result in external power supply going  
out of regulation. Ensure external VDD load will shunt current greater than maximum injection  
current. This will be the greatest risk when the MCU is not consuming power. Examples are: if  
no system clock is present, or if the clock rate is very low which would reduce overall power  
consumption.  
2.3  
Thermal Characteristics  
This section provides information about operating temperature range, power dissipation, and package thermal resistance. Power  
dissipation on I/O pins is usually small compared to the power dissipation in on-chip logic and it is user-determined rather than  
being controlled by the MCU design. To take P into account in power calculations, determine the difference between actual  
I/O  
pin voltage and V or V and multiply by the pin current for each I/O pin. Except in cases of unusually high pin current  
SS  
DD  
(heavy loads), the difference between pin voltage and V or V is very small.  
SS  
DD  
Table 6. Thermal Characteristics  
Rating  
Symbol  
Value  
Unit  
Operating temperature range (packaged)  
Maximum junction temperature  
Thermal resistance 1,2,3,4  
TA  
TJ  
–40 to 105  
150  
°C  
°C  
80-pin LQFP  
64-pin QFP  
64-pin LQFP  
48-pin LQFP  
1s  
2s2p  
56  
45  
1s  
2s2p  
54  
41  
θJA  
°C/W  
1s  
2s2p  
67  
49  
1s  
2s2p  
69  
51  
MCF51AG128 ColdFire Microcontroller, Rev. 5  
Freescale Semiconductor  
15  
Preliminary Electrical Characteristics  
1
Junction temperature is a function of die size, on-chip power dissipation, package thermal  
resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation  
of other components on the board, and board thermal resistance.  
2
3
4
Junction to Ambient Natural Convection  
1s — Single layer board, one signal layer  
2s2p — Four layer board, 2 signal and 2 power layers  
The average chip-junction temperature (T ) in °C can be obtained from:  
J
T = T + (P × θ )  
JA  
Eqn. 1  
J
A
D
where:  
T = Ambient temperature, °C  
A
θ
= Package thermal resistance, junction-to-ambient, °C/W  
JA  
P = P + P  
D
int  
I/O  
P
P
= I × V , Watts — chip internal power  
DD DD  
= Power dissipation on input and output pins — user determined  
int  
I/O  
For most applications, P << P and can be neglected. An approximate relationship between P and T (if P is neglected)  
I/O  
int  
D
J
I/O  
is:  
P = K ÷ (T + 273 °C)  
Eqn. 2  
D
J
Solving Equation 1 and Equation 2 for K gives:  
K = P × (T + 273°C) + θ × (P )  
2
Eqn. 3  
D
A
JA  
D
where K is a constant pertaining to the particular part. K can be determined from Equation 3 by measuring P (at equilibrium)  
D
for a known T . Using this value of K, the values of P and T can be obtained by solving Equation 1 and Equation 2 iteratively  
A
D
J
for any value of T .  
A
2.4  
Electrostatic Discharge (ESD) Protection Characteristics  
Although damage from static discharge is much less common on these devices than on early CMOS circuits, normal handling  
precautions should be used to avoid exposure to static discharge. Qualification tests are performed to ensure that these devices  
can withstand exposure to reasonable levels of static without suffering any permanent damage.  
All ESD testing is in conformity with CDF-AEC-Q00 Stress Test Qualification for Automotive Grade Integrated Circuits.  
(http://www.aecouncil.com/) This device was qualified to AEC-Q100 Rev E.  
A device is considered to have failed if, after exposure to ESD pulses, the device no longer meets the device specification  
requirements. Complete dc parametric and functional testing is performed per the applicable device specification at room  
temperature followed by hot temperature, unless specified otherwise in the device specification.  
Table 7. ESD and Latch-up Test Conditions  
Model  
Description  
Symbol  
Value  
Unit  
Human Body  
Series Resistance  
R1  
C
1500  
100  
3
Ω
pF  
Storage Capacitance  
Number of Pulse per pin  
MCF51AG128 ColdFire Microcontroller, Rev. 5  
16  
Freescale Semiconductor  
Preliminary Electrical Characteristics  
Table 7. ESD and Latch-up Test Conditions (continued)  
Model  
Latch-up  
Description  
Minimum input voltage limit  
Maximum input voltage limit  
Symbol  
Value  
Unit  
–2.5  
7.5  
V
V
Table 8. ESD and Latch-Up Protection Characteristics  
Num  
Rating  
Human Body Model (HBM)  
Symbol  
Min  
Max  
Unit  
1
2
3
VHBM  
VCDM  
ILAT  
2000  
500  
V
V
Charge Device Model (CDM)  
Latch-up Current at TA = 85°C  
100  
mA  
2.5  
DC Characteristics  
This section includes information about power supply requirements, I/O pin characteristics, and power supply current in various  
operating modes.  
Table 9. DC Characteristics  
Num C  
1 — Operating voltage  
Parameter  
Symbol  
Min  
Typical1  
Max  
Unit  
2.7  
5.5  
V
Output high voltage — Low Drive (PTxDSn = 0)  
5 V, ILoad = –5 mA  
VDD – 1.5  
VDD – 0.8  
VDD – 0.4  
VDD – 0.4  
3 V, ILoad = –1.5 mA  
5V, ILoad = –3 mA, PTC0 and PTC1  
3V, ILoad = –1.5 mA, PTC0 and PTC1  
VOH  
Output high voltage — High Drive (PTxDSn = 1)  
5 V, ILoad = –20 mA  
VDD – 1.5  
2
P
V
3 V, ILoad = –8 mA  
5V, ILoad = –12 mA, PTC0 and PTC1  
3V, ILoad = –8 mA, PTC0 and PTC1  
VDD – 0.8  
VDD – 0.4  
VDD – 0.4  
Output low voltage — Low Drive (PTxDSn = 0)  
5 V, ILoad = 5 mA  
1.5  
0.8  
0.4  
0.4  
3 V, ILoad = 1.5 mA  
5V, ILoad = 3 mA, PTC0 and PTC1  
3V, ILoad = 1.5 mA, PTC0 and PTC1  
VOL  
Output low voltage — High Drive (PTxDSn = 1)  
5 V, ILoad = 20 mA  
1.5  
0.8  
0.4  
0.4  
3
P
V
3 V, ILoad = 8 mA  
5V, ILoad = 12 mA, PTC0 and PTC1  
3V, ILoad = 8 mA, PTC0 and PTC1  
Output high current — Max total IOH for all ports  
4
5
C
C
5V IOHT  
3V  
100  
60  
mA  
mA  
Output low current — Max total IOL for all ports  
5 V IOLT  
3 V  
100  
60  
MCF51AG128 ColdFire Microcontroller, Rev. 5  
Freescale Semiconductor  
17  
Preliminary Electrical Characteristics  
Table 9. DC Characteristics (continued)  
Num C  
Parameter  
Symbol  
Min  
Typical1  
Max  
Unit  
6
7
8
9
P Input high voltage; all digital inputs  
VIH  
VIL  
0.65 × VDD  
V
P Input low voltage; all digital inputs  
D Input hysteresis; all digital inputs  
P Input leakage current; input only pins2  
0.35 × VDD  
Vhys  
|IIn|  
0.06 × VDD  
1
mV  
μA  
μA  
0.1  
0.1  
10 P High Impedance (off-state) leakage current2  
Internal pullup resistors3  
|IOZ  
|
1
20  
10  
45  
22  
65  
32  
11  
P
RPU  
kΩ  
Internal pullup resistorsPTC0 and PTC1  
12 P Internal pulldown resistors4  
13 C Input Capacitance; all non-supply pins  
14 P POR rearm voltage  
RPD  
CIn  
20  
45  
65  
8
kΩ  
pF  
V
VPOR  
tPOR  
0.9  
10  
1.4  
2.0  
15 D POR rearm time  
μs  
Low-voltage detection threshold —  
high range  
16  
17  
18  
19  
20  
21  
P
P
P
P
P
P
VLVD1  
VLVD0  
VLVW3  
VLVW2  
VLVW1  
VLVW0  
V
V
V
V
V
V
VDD falling  
VDD rising  
3.9  
4.0  
4.0  
4.1  
4.1  
4.2  
Low-voltage detection threshold —  
low range  
VDD falling  
VDD rising  
2.48  
2.54  
2.56  
2.62  
2.64  
2.70  
Low-voltage warning threshold —  
high range 1  
VDD falling  
VDD rising  
4.5  
4.6  
4.6  
4.7  
4.7  
4.8  
Low-voltage warning threshold —  
high range 0  
VDD falling  
VDD rising  
4.2  
4.3  
4.3  
4.4  
4.4  
4.5  
Low-voltage warning threshold  
low range 1  
VDD falling  
VDD rising  
2.84  
2.90  
2.92  
2.98  
3.00  
3.06  
Low-voltage warning threshold —  
low range 0  
VDD falling  
VDD rising  
2.66  
2.72  
2.74  
2.80  
2.82  
2.88  
Low-voltage inhibit reset/recover hysteresis  
22  
23  
T
5 V Vhys  
3 V  
100  
60  
mV  
V
RAM retention voltage  
D
VRAM  
0.6  
1.0  
DC injection current5 6 7 8 (single pin limit)  
VIN >VDD  
VIN <VSS  
0
0
2
–0.2  
mA  
24  
D
IIC  
DC injection current (Total MCU limit, includes  
sum of all stressed pins)  
mA  
V
IN >VDD  
0
0
25  
–5  
VIN <VSS  
MCF51AG128 ColdFire Microcontroller, Rev. 5  
18  
Freescale Semiconductor  
Preliminary Electrical Characteristics  
1
2
3
4
5
Typical values are based on characterization data at 25°C unless otherwise stated.  
Measured with VIn = VDD or VSS  
Measured with VIn = VSS  
Measured with VIn = VDD  
.
.
.
Power supply must maintain regulation within operating VDD range during instantaneous and operating  
maximum current conditions. If positive injection current (VIn > VDD) is greater than IDD, the injection current may  
flow out of VDD and could result in external power supply going out of regulation. Ensure external VDD load will  
shunt current greater than maximum injection current. This will be the greatest risk when the MCU is not  
consuming power. Examples are: if no system clock is present, or if clock rate is very low (which would reduce  
overall power consumption).  
6
7
All functional non-supply pins are internally clamped to VSS and VDD  
.
Input must be current limited to the value specified. To determine the value of the required current-limiting  
resistor, calculate resistance values for positive and negative clamp voltages, then use the larger of the two  
values.  
8
The RESET pin does not have a clamp diode to VDD. Do not drive this pin above VDD  
.
Typical VDD - VOH vs. IOH AT VDD=3V  
Typical V - VOH vs. IOH AT V = 5V  
DD  
DD  
0.8  
0.6  
0.4  
0.2  
0.0  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
Hot (105°C)  
Room (25°C)  
Cold (-40°C)  
Hot (105°C)  
Room (25°C)  
Cold (-40°C)  
0
-1  
-2  
-3  
-4  
-5  
0
-1  
-2  
IOH (mA)  
IOH (mA)  
Figure 5. Typical I vs. V – V (Low Drive,PTxDSn = 0)  
OH  
DD  
OH  
Typical VDD - VOH vs. IOH AT VDD = 5V  
Typical VDD - VOH vs. IOH AT VDD=3V  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
Hot (105°C)  
Room (25°C)  
Cold (-40°C)  
0.8  
0.6  
0.4  
0.2  
0.0  
Hot (105°C)  
Room (25°C)  
Cold (-40°C)  
0
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
IOH (mA)  
IOH (mA)  
Figure 6. Typical I vs. V – V (High Drive, PTxDSn = 1)  
OH  
DD  
OH  
MCF51AG128 ColdFire Microcontroller, Rev. 5  
Freescale Semiconductor  
19  
Preliminary Electrical Characteristics  
Typical VOL vs. IOL AT VDD = 3V  
Typical VOL vs. IOL AT VDD = 5V  
1.40  
1.20  
1.00  
0.80  
0.60  
0.40  
0.20  
0.00  
Hot (105°C)  
Room (25°C)  
Cold (-40°C)  
0.80  
0.60  
0.40  
0.20  
0.00  
Hot (105°C)  
Room (25°C)  
Cold (-40°C)  
0
1
2
0
1
2
3
4
5
IOL (mA)  
IOL (mA)  
Figure 7. Typical I vs. V (Low Drive, PTxDSn = 0)  
OL  
OL  
Typical VOL vs. IOL AT VDD = 3V  
Typical VOL vs. IOL AT VDD = 5V  
1.40  
Hot (105°C)  
Room (25°C)  
Cold (-40°C)  
0.80  
0.60  
0.40  
0.20  
0.00  
1.20  
1.00  
0.80  
0.60  
0.40  
0.20  
0.00  
Hot (105°C)  
Room (25°C)  
Cold (-40°C)  
0
1
2
3
4
5
6
7
8
IOL (mA)  
IOL (mA)  
Figure 8. Typical I vs. V (High Drive, PTxDSn = 1)  
OL  
OL  
MCF51AG128 ColdFire Microcontroller, Rev. 5  
20  
Freescale Semiconductor  
Preliminary Electrical Characteristics  
2.6  
Supply Current Characteristics  
Table 10. Supply Current Characteristics  
Num  
C
Parameter  
Symbol  
VDD (V)  
Typical1  
Max2  
Unit  
1
C
Run supply current3 measured at 4 MHz CPU  
clock (All Peripheral Clocks are ON)  
RIDD  
5
3
5
3
5
3
5
3
5
3
5
3
5
3
5
3
5
3
5
3
5
3
5
3
5.8  
5.7  
7
mA  
7
2
C
C
P
C
C
C
C
C
C
C
C
Run supply current3 measured at 16 MHz CPU  
clock (All Peripheral Clocks are ON)  
21  
25  
25  
50  
50  
70  
70  
6
mA  
mA  
20.9  
39.2  
39.1  
57.9  
57.8  
4.7  
3
Run supply current3 measured at 32 MHz CPU  
clock (All Peripheral Clocks are ON)  
4
Run supply current3 measured at 50MHz CPU  
clock (All Peripheral Clocks are ON)  
mA  
mA  
5
Run supply current3 measured at 4 MHz CPU  
clock (All Peripheral Clocks are OFF4)  
RIDD  
WIDD  
S2IDD  
4.6  
6
6
Run supply current3 measured at 16 MHz CPU  
clock (All Peripheral Clocks are OFF4)  
16.1  
15.9  
29  
20  
20  
35  
35  
50  
50  
5
mA  
mA  
7
Run supply current3 measured at 32 MHz CPU  
clock (All Peripheral Clocks are OFF4)  
28.9  
44.1  
44.0  
3.2  
8
Run supply current3 measured at 50 MHz CPU  
clock (All Peripheral Clocks are OFF4)  
mA  
mA  
mA  
mA  
mA  
9
Wait supply current3 measured at 4 MHz CPU  
clock  
3.2  
5
10  
11  
12  
13  
Wait supply current3 measured at 16 MHz  
CPU clock  
10.1  
10  
13  
13  
25  
25  
40  
40  
Wait supply current3 measured at 32 MHz  
CPU clock  
19  
18.8  
29.2  
29  
Wait supply current3 measured at 50 MHz  
CPU clock  
Stop2 mode supply current  
C
P
C
–40 °C  
25 °C  
105 °C  
5
1.17  
1.35  
28.6  
3
3
40  
μA  
μA  
1.0  
1.34  
26.8  
3
3
40  
C
P
C
–40 °C  
25 °C  
105 °C  
3
MCF51AG128 ColdFire Microcontroller, Rev. 5  
Freescale Semiconductor  
21  
Preliminary Electrical Characteristics  
Table 10. Supply Current Characteristics  
Num  
C
Parameter  
Symbol  
VDD (V)  
Typical1  
Max2  
Unit  
14  
Stop3 mode supply current  
S3IDD  
C
P
C
–40 °C  
25 °C  
105 °C  
5
1.2  
1.7  
43.3  
3
3
60  
μA  
μA  
1.04  
1.6  
45.5  
3
3
60  
C
P
C
–40 °C  
25 °C  
105 °C  
3
5
15  
Stop4 mode supply current  
–40 °C  
25 °C  
S4IDD  
C
P
C
106  
109  
155  
130  
130  
170  
μA  
μA  
105 °C  
95  
98  
142  
130  
130  
170  
C
P
C
–40 °C  
25 °C  
105 °C  
3
16  
17  
C
RTC adder to stop2 or stop35, 25 °C  
S23IDDRTC  
5
3
300  
300  
5
nA  
nA  
μA  
C
Adder to stop3 for oscillator enabled6  
(ERCLKEN = 1 and EREFSTEN = 1)  
S3IDDOSC  
5, 3  
1
2
3
4
5
6
Typicals are measured at 25 °C.  
Values given here are preliminary estimates prior to completing characterization.  
Code run from flash, FEI mode, and does not include any dc loads on port pins. Bus CLK= (CPU CLK/2)  
GPIO filters are working on LPO clock.  
Most customers are expected to use auto-wakeup from stop2 or stop3 instead of the higher current wait mode.  
Values given under the following conditions: low range operation (RANGE = 0), low power mode (HGO = 0).  
Figure 9. Run Current at Different Conditions  
MCF51AG128 ColdFire Microcontroller, Rev. 5  
22  
Freescale Semiconductor  
Preliminary Electrical Characteristics  
2.7  
High Speed Comparator (HSCMP) Electricals  
Table 11. HSCMP Electrical Specifications  
Num  
C
Rating  
Symbol  
Min  
Typical  
Max  
Unit  
1
2
T
Supply voltage  
VDD  
2.7  
5.5  
V
Supply current, high speed mode (EN = 1,  
PMODE = 1)  
IDDAHS  
200  
μA  
3
T
Supply current, low speed mode (EN = 1,  
PMODE = 0)  
IDDALS  
20  
μA  
4
5
6
7
D
D
D
Analog input voltage  
VAIN  
VAIO  
VH  
VSS – 0.3  
5
VDD  
40  
V
Analog input offset voltage  
Analog Comparator hysteresis  
3.0  
mV  
mV  
ns  
9.0  
70  
20.0  
120  
Propagation delay, high speed mode (EN = 1,  
PMODE = 1)  
tDHS  
8
9
D
D
Propagation delay, low speed mode (EN = 1,  
PMODE = 0)  
tDLS  
400  
400  
600  
ns  
ns  
Analog Comparator initialization delay  
tAINIT  
2.8  
Digital to Analog (DAC) Characteristics  
Num  
C
Rating  
Symbol  
Min  
Typical  
Max  
Unit  
1
2
3
D
D
D
Supply voltage  
VDDA  
IDDAC  
IDDACS  
2.7  
5.5  
20  
V
Supply current (enabled)  
Supply current (stand-by)  
μA  
nA  
150  
4
5
6
7
8
D
D
D
D
P
DAC reference input voltage  
DAC setup delay  
Vin1,Vin2  
tPRGST  
Vstep  
VSSA  
1000  
Vin/32  
VDDA  
V
nS  
V
DAC step size  
3Vin/128  
Vin/32  
1.18  
5Vin/128  
Vin  
DAC output voltage range  
Vdacout  
VBG  
V
Bandgap voltage reference  
1.20  
1.21  
V
factory trimmed at VDD = 5 V, Temp = 25 °C  
2.9  
ADC Characteristics  
Table 12. 5V 12-bit ADC Operating Conditions  
Characterist  
ic  
Typic  
Num  
C
Conditions  
Symb  
Min  
Max  
Unit  
Comment  
al1  
1
D
Supply  
voltage  
Absolute  
Delta to VDD  
VDDA  
2.7  
0
5.5  
V
ΔVDDA  
–100  
100  
mV  
2
(VDD–VDDA  
)
2
D
Ground  
voltage  
Delta to VSS  
ΔVSSA  
–100  
0
100  
mV  
2
(VSS–VSSA  
)
MCF51AG128 ColdFire Microcontroller, Rev. 5  
Freescale Semiconductor  
23  
Preliminary Electrical Characteristics  
Table 12. 5V 12-bit ADC Operating Conditions (continued)  
Characterist  
ic  
Typic  
al1  
Num  
C
Conditions  
Symb  
Min  
Max  
Unit  
Comment  
3
D
Ref Voltage  
High  
VREFH  
2.7  
VDDA  
VDDA  
V
4
D
Ref Voltage  
Low  
VREFL  
VSSAD  
VSSA  
VSSA  
V
5
6
D
C
Input Voltage  
VADIN  
CADIN  
VREFL  
VREFH  
5.5  
V
Input  
4.5  
pF  
Capacitance  
7
8
C
C
Input  
Resistance  
RADIN  
3
5
kΩ  
kΩ  
Analog  
Source  
Resistance  
12 bit mode  
ADCK > 4 MHz  
fADCK < 4 MHz  
RAS  
External to  
MCU  
f
2
5
C
10 bit mode  
fADCK > 4 MHz  
fADCK < 4 MHz  
5
10  
C
D
D
8 bit mode (all valid fADCK  
)
10  
8.0  
4.0  
9
ADC  
Conversion  
Clock Freq.  
High Speed (ADLPC = 0)  
Low Power (ADLPC = 1)  
fADCK  
0.4  
0.4  
MHz  
1
2
Typical values assume VDDA = 5.0 V, Temp = 25 °C, fADCK = 1.0 MHz unless otherwise stated. Typical values are for  
reference only and are not tested in production.  
DC potential difference.  
MCF51AG128 ColdFire Microcontroller, Rev. 5  
24  
Freescale Semiconductor  
Preliminary Electrical Characteristics  
SIMPLIFIED  
INPUT PIN EQUIVALENT  
CIRCUIT  
Z
ADIN  
SIMPLIFIED  
CHANNEL SELECT  
Pad  
Z
AS  
leakage  
due to  
input  
CIRCUIT  
ADC SAR  
ENGINE  
R
R
AS  
ADIN  
protection  
+
V
ADIN  
C
AS  
V
+
AS  
R
R
R
ADIN  
ADIN  
ADIN  
INPUT PIN  
INPUT PIN  
INPUT PIN  
C
ADIN  
Figure 10. ADC Input Impedance Equivalency Diagram  
Table 13. 5 V 12-bit ADC Characteristics (V  
= V  
, V  
= V  
)
SSA  
REFH  
DDA  
REFL  
Max  
Num  
C
Characteristic  
Conditions  
Symb  
Min  
Typical1  
Unit  
Comment  
1
T
Supply Current  
ADLPC = 1  
ADLSMP = 1  
ADCO = 1  
IDDAD  
181  
μA  
2
3
4
5
T
T
D
T
Supply Current  
ADLPC = 1  
ADLSMP = 0  
ADCO = 1  
IDDAD  
IDDAD  
IDDAD  
IDDAD  
334  
385  
1
μA  
μA  
mA  
μA  
Supply Current  
ADLPC = 0  
ADLSMP = 1  
ADCO = 1  
Supply Current  
ADLPC = 0  
ADLSMP = 0  
ADCO = 1  
0.717  
0.065  
Supply Current  
Stop, Reset,  
Module Off  
1
MCF51AG128 ColdFire Microcontroller, Rev. 5  
Freescale Semiconductor  
25  
Preliminary Electrical Characteristics  
Table 13. 5 V 12-bit ADC Characteristics (V  
= V  
, V  
= V ) (continued)  
SSA  
REFH  
DDA  
REFL  
Num  
C
Characteristic  
Conditions  
Symb  
Min  
Typical1  
Max  
Unit  
Comment  
6
P
ADC  
Asynchronous  
Clock Source  
High Speed  
(ADLPC = 0)  
fADACK  
2
3.3  
5
3.3  
MHz  
tADACK  
1/fADACK  
=
Low Power  
(ADLPC = 1)  
1.25  
2
20  
7
8
P
T
Conversion  
Time (Including  
sample time)  
Short Sample  
(ADLSMP = 0)  
tADC  
ADCK See Table 10 for  
cycles  
conversion time  
variances  
Long Sample  
(ADLSMP = 1)  
40  
Sample Time  
Short Sample  
(ADLSMP = 0)  
tADS  
3.5  
23.5  
ADCK  
cycles  
Long Sample  
(ADLSMP = 1)  
9
T
P
T
T
P
T
T
P
T
T
P
T
T
P
T
D
Total  
Unadjusted  
Error  
12 bit mode  
10 bit mode  
8 bit mode  
12 bit mode  
10 bit mode3  
8 bit mode5  
12 bit mode  
10 bit mode  
8 bit mode  
12 bit mode  
10 bit mode  
8 bit mode  
12 bit mode  
10 bit mode  
8 bit mode  
12 bit mode  
10 bit mode  
8 bit mode  
12 bit mode  
10 bit mode  
8 bit mode  
ETUE  
DNL  
INL  
EZS  
EFS  
EQ  
±3.0  
±1  
±2.5  
±1.0  
LSB2  
LSB2  
LSB2  
LSB2  
LSB2  
LSB2  
LSB2  
Includes  
quantization  
±0.5  
±1.75  
±0.5  
±0.3  
±1.5  
±0.5  
±0.3  
±1.5  
±0.5  
±0.5  
±1  
10  
11  
12  
13  
14  
15  
Differential  
Non-Linearity  
±1.0  
±0.5  
Integral  
Non-Linearity  
±1.0  
±0.5  
Zero-Scale  
Error  
VADIN = VSSAD  
VADIN = VDDAD  
±1.5  
±0.5  
Full-Scale Error  
±0.5  
±0.5  
–1 to 0  
±1  
±0.5  
Quantization  
Error  
±0.5  
±0.5  
D
Input Leakage  
Error  
EIL  
±1  
Pad leakage4 *  
RAS  
±0.2  
±0.1  
±2.5  
±1  
MCF51AG128 ColdFire Microcontroller, Rev. 5  
26  
Freescale Semiconductor  
Preliminary Electrical Characteristics  
Table 13. 5 V 12-bit ADC Characteristics (V  
= V  
, V  
= V ) (continued)  
SSA  
REFH  
DDA  
REFL  
Num  
C
Characteristic  
Conditions  
25 °C  
Symb  
Min  
Typical1  
Max  
Unit  
Comment  
16  
D
Temp Sensor  
Voltage  
VTEMP25  
1.396  
mV  
17  
D
Temp Sensor  
Slope  
–40 °C — 25 °C  
25 °C — 85 °C  
m
3.266  
3.638  
mV/°C  
1
Typical values assume VDDA = 5.0 V, Temp = 25 °C, fADCK = 1.0 MHz unless otherwise stated. Typical values are for reference  
only and are not tested in production.  
2
3
4
1 LSB = (VREFH - VREFL)/2N  
Monotonicity and No-Missing-Codes guaranteed in 10 bit and 8 bit modes  
Based on input pad leakage current. Refer to pad electricals.  
2.10 External Oscillator (XOSC) Characteristics  
Table 14. Oscillator Electrical Specifications (Temperature Range = –40 to 105 °C Ambient)  
Num  
C
Rating  
Symbol  
Min  
Typical1  
Max  
Unit  
Oscillator crystal or resonator (EREFS = 1, ERCLKEN = 1)  
Low range (RANGE = 0)  
flo  
fhi  
fhi-hgo  
fhi-lp  
32  
1
1
38.4  
16  
16  
8
kHz  
MHz  
MHz  
MHz  
1
C
High range (RANGE = 1) FEE or FBE mode 2  
High range (RANGE = 1, HGO = 1) FBELP mode  
High range (RANGE = 1, HGO = 0) FBELP mode  
1
C1  
C2  
See crystal or resonator  
manufacturer’s recommendation.  
2
3
Load capacitors  
Feedback resistor  
Low range (32 kHz to 100 kHz)  
High range (1 MHz to 16 MHz)  
RF  
10  
1
MΩ  
Series resistor  
Low range, low gain (RANGE = 0, HGO = 0)  
Low range, high gain (RANGE = 0, HGO = 1)  
High range, low gain (RANGE = 1, HGO = 0)  
High range, high gain (RANGE = 1, HGO = 1)  
0
100  
0
4
RS  
kΩ  
8 MHz  
4 MHz  
1 MHz  
0
0
0
0
10  
20  
Crystal start-up time 3  
t
Low range, low gain (RANGE = 0, HGO = 0)  
Low range, high gain (RANGE = 0, HGO = 1)  
High range, low gain (RANGE = 1, HGO = 0)4  
High range, high gain (RANGE = 1, HGO = 1)3  
1500  
2000  
3
CSTL-LP  
t
5
6
T
T
CSTL-HGO  
ms  
t
CSTH-LP  
t
7
CSTH-HGO  
Square wave input clock frequency (EREFS = 0, ERCLKEN =  
1)  
FEE mode 2  
FBE mode2  
FBELP mode  
fextal  
0.03125  
50.33  
50.33  
50.33  
MHz  
0
0
1
Data in Typical column was characterized at 5.0 V, 25 °C or is typical recommended value.  
MCF51AG128 ColdFire Microcontroller, Rev. 5  
Freescale Semiconductor  
27  
Preliminary Electrical Characteristics  
2
When MCG is configured for FEE or FBE mode, input clock source must be divisible using RDIV to within the range of  
31.25 kHz to 39.0625 kHz.  
3
This parameter is characterized and not tested on each device. Proper PC board layout procedures must be followed to  
achieve specifications.  
4
4 MHz crystal  
MCU  
EXTAL  
XTAL  
RS  
RF  
C1  
Crystal or Resonator  
C2  
2.11 ICS Specifications  
Table 15. ICS Frequency Specifications (Temperature Range = –40 to 105 °C Ambient)  
Num C  
Rating  
Symbol  
Min  
Typical1  
Max  
Unit  
1
C Internal reference frequency - factory trimmed at VDD  
fint_ft  
32.768  
kHz  
= 5 V and temperature = 25 °C  
2
3
4
C Average internal reference frequency – untrimmed  
fint_ut  
tirefst  
31.25  
60  
39.06  
100  
20  
kHz  
μs  
T Internal reference startup time  
C DCO output frequency  
Low range (DRS = 00)  
Mid range (DRS = 01)  
High range (DRS = 10)  
Low range (DRS = 00)  
Mid range (DRS = 01)  
High range (DRS = 10)  
fdco_ut  
16  
32  
48  
MHz  
range - untrimmed 2  
C
40  
C
60  
5
P DCO output frequency2  
fdco_DMX32  
16.82  
33.69  
50.48  
±0.1  
MHz  
Reference =32768Hz  
and DMX32 = 1  
P
P
6
7
8
9
D Resolution of trimmed DCO output frequency at fixed  
voltage and temperature (using FTRIM)  
Δfdco_res_t  
Δfdco_res_t  
Δfdco_t  
±0.2  
%fdco  
%fdco  
%fdco  
%fdco  
D Resolution of trimmed DCO output frequency at fixed  
voltage and temperature (not using FTRIM)  
±0.2  
±0.4  
±2  
D Total deviation of trimmed DCO output frequency over  
full voltage and temperature range  
0.5  
–1.0  
D Total deviation of trimmed DCO output frequency over  
Δfdco_t  
±0.5  
±1  
fixed voltage and temperature range of 0 –70 °C  
MCF51AG128 ColdFire Microcontroller, Rev. 5  
28  
Freescale Semiconductor  
Preliminary Electrical Characteristics  
Table 15. ICS Frequency Specifications (continued)(Temperature Range = –40 to 105 °C Ambient)  
Num C  
Rating  
Symbol  
Min  
Typical1  
Max  
Unit  
10 D FLL acquisition time 3  
tfll_acquire  
CJitter  
1
ms  
11 D Long term Jitter of DCO output clock (averaged over  
2ms interval) 4  
0.02  
0.2  
%fdco  
12 D Loss of external clock minimum freq. (RANGE = 0)  
• ext. clock freq: above (3/5)fint, never reset  
• ext. clock freq: between (2/5)fint and (3/5)fint, maybe  
reset (phase dependency)  
floc_low  
(3/5) x fint  
kHz  
kHz  
• ext. clock freq: below (2/5)fint, always reset  
13 D Loss of external clock minimum freq. (RANGE = 1)  
• ext. clock freq: above (16/5)fint, never reset  
• ext. clock freq: between (15/5)fint and (16/5)fint,  
maybe reset (phase dependency)  
floc_high  
(16/5) x fint  
• ext. clock freq: below (15/5)fint, always reset  
1
2
3
Data in Typical column was characterized at 3.0 V, 25 °C or is typical recommended value  
The resulting bus clock frequency should not exceed the maximum specified bus clock frequency of the device.  
This specification applies to any time the FLL reference source or reference divider is changed, trim value changed or  
changing from FLL disabled (BLPE, BLPI) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the  
reference, this specification assumes it is already running.  
4
Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum fBUS  
.
Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise  
injected into the FLL circuitry by VDD and VSS and variation in crystal oscillator frequency increase the CJitter percentage for  
a given interval.  
MCF51AG128 ColdFire Microcontroller, Rev. 5  
Freescale Semiconductor  
29  
Preliminary Electrical Characteristics  
2.12 AC Characteristics  
This section describes ac timing characteristics for each peripheral system.  
2.12.1 Control Timing  
Table 16. Control Timing  
Num  
C
Parameter  
Symbol  
Min  
Typ1  
Max  
Unit  
1
2
3
D
D
D
Bus frequency (tcyc = 1/fBus  
)
Internal low-power oscillator period  
External reset pulse width2  
fBus  
dc  
24  
MHz  
tLPO  
800  
1500  
μs  
textrst  
100  
ns  
(tcyc = 1/fSelf_reset  
)
4
5
6
7
D
D
D
D
Reset low drive  
trstdrv  
tMSSU  
tMSH  
66 x tcyc  
500  
ns  
ns  
ns  
Active background debug mode latch setup time  
Active background debug mode latch hold time  
IRQ pulse width  
100  
Asynchronous path2  
tILIH, IHIL  
t
100  
1.5 x tcyc  
ns  
Synchronous path3  
Port rise and fall time (load = 30 pF for SPI, rest 50 pF)4  
Slew rate control disabled (PTxSE = 0) High drive  
Slew rate control enabled (PTxSE = 1) High drive  
Slew rate control disabled (PTxSE = 0) Low drive  
Slew rate control enabled (PTxSE = 1) Low drive  
11  
35  
40  
75  
tRise, tFall  
8
ns  
1
2
Typical values are based on characterization data at VDD = 5.0 V, 25 °C unless otherwise stated.  
This is the shortest pulse that is guaranteed to be recognized as a RESET pin request. Shorter pulses are not guaranteed to  
override reset requests from internal sources.  
3
4
This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses may or  
may not be recognized. In stop mode, the synchronizer is bypassed so shorter pulses can be recognized in that case.  
Timing is shown with respect to 20% VDD and 80% VDD levels. Temperature range –40°C to 105°C.  
textrst  
RESET PIN  
Figure 11. Reset Timing  
MCF51AG128 ColdFire Microcontroller, Rev. 5  
30  
Freescale Semiconductor  
Preliminary Electrical Characteristics  
tIHIL  
IRQ/KBIPx  
IRQ/KBIPx  
tILIH  
Figure 12. IRQ/KBIPx Timing  
2.12.2 Timer (TPM/FTM) Module Timing  
Synchronizer circuits determine the shortest input pulses that can be recognized or the fastest clock that can be used as the  
optional external source to the timer counter. These synchronizers operate from the current bus rate clock.  
Table 17. TPM/FTM Input Timing  
NUM  
C
Function  
Symbol  
Min  
Max  
Unit  
1
2
3
4
5
D
External clock frequency  
External clock period  
fTPMext  
tTPMext  
tclkh  
DC  
4
fBus/4  
MHz  
tcyc  
tcyc  
tcyc  
tcyc  
External clock high time  
External clock low time  
Input capture pulse width  
1.5  
1.5  
1.5  
D
tclkl  
D
tICPW  
tTPMext  
tclkh  
TPMxCLK  
tclkl  
Figure 13. Timer External Clock  
tICPW  
TPMxCHn  
TPMxCHn  
tICPW  
Figure 14. Timer Input Capture Pulse  
MCF51AG128 ColdFire Microcontroller, Rev. 5  
Freescale Semiconductor  
31  
Preliminary Electrical Characteristics  
2.12.3 SPI Characteristics  
Table 18 and Figure 15 through Figure 18 describe the timing requirements for the SPI system.  
Table 18. SPI Timing Characteristics  
No.  
C
Function  
Operating frequency  
Symbol  
Min  
Max  
Unit  
D
Master  
Slave  
fop  
fBus/2048  
0
fBus/2  
fBus/4  
Hz  
SPSCK period  
Master  
Slave  
1
2
3
4
5
6
D
D
D
D
D
D
tSPSCK  
tLead  
tLag  
2
4
2048  
tcyc  
tcyc  
Enable lead time  
Master  
Slave  
1/2  
1
tSPSCK  
tcyc  
Enable lag time  
Master  
Slave  
1/2  
1
tSPSCK  
tcyc  
Clock (SPSCK) high or low time  
Master  
Slave  
tWSPSCK  
tcyc – 30  
tcyc – 30  
1024 tcyc  
ns  
ns  
Data setup time (inputs)  
Master  
Slave  
tSU  
30  
30  
ns  
ns  
Data hold time (inputs)  
Master  
Slave  
tHI  
10  
10  
ns  
ns  
Slave access time  
tcyc  
7
8
D
D
ta  
Slave MISO disable time  
tcyc  
tdis  
Data valid time ( maximum delay after  
SPCLK edge to Data output)  
Master  
Slave  
1
9
D
D
tV  
25  
70  
ns  
ns  
Data hold time ( minimum delay after  
SPCLK edge to Data output)  
Master  
Slave  
1
10  
tHO  
10  
10  
ns  
ns  
1
SPI Output Load = 30 pf  
MCF51AG128 ColdFire Microcontroller, Rev. 5  
32  
Freescale Semiconductor  
Preliminary Electrical Characteristics  
SS1  
(OUTPUT)  
1
2
3
SPSCK  
(CPOL = 0)  
4
(OUTPUT)  
4
SPSCK  
(CPOL = 1)  
(OUTPUT)  
5
6
MISO  
(INPUT)  
MSB IN2  
LSB IN  
BIT 6 . . . 1  
9
9
10  
MOSI  
(OUTPUT)  
MSB OUT2  
BIT 6 . . . 1  
LSB OUT  
NOTES:  
1. SS output mode (DDS7 = 1, SSOE = 1).  
2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.  
Figure 15. SPI Master Timing (CPHA = 0)  
SS(1)  
(OUTPUT)  
1
2
3
SPSCK  
(CPOL = 0)  
(OUTPUT)  
4
4
SPSCK  
(CPOL = 1)  
(OUTPUT)  
5
6
MISO  
(INPUT)  
MSB IN(2)  
BIT 6 . . . 1  
BIT 6 . . . 1  
LSB IN  
9
10  
MOSI  
(OUTPUT)  
MASTER MSB OUT(2)  
PORT DATA  
MASTER LSB OUT  
PORT DATA  
NOTES:  
1. SS output mode (DDS7 = 1, SSOE = 1).  
2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.  
Figure 16. SPI Master Timing (CPHA = 1)  
MCF51AG128 ColdFire Microcontroller, Rev. 5  
Freescale Semiconductor  
33  
Preliminary Electrical Characteristics  
SS  
(INPUT)  
3
1
SPSCK  
(CPOL = 0)  
(INPUT)  
2
4
4
SPSCK  
(CPOL = 1)  
(INPUT)  
8
7
10  
9
10  
MISO  
(OUTPUT)  
SEE  
NOTE  
BIT 6 . . . 1  
SLAVE LSB OUT  
MSB OUT  
SLAVE  
6
5
MOSI  
(INPUT)  
BIT 6 . . . 1  
MSB IN  
LSB IN  
NOTE:  
1. Not defined but normally MSB of character just received  
Figure 17. SPI Slave Timing (CPHA = 0)  
SS  
(INPUT)  
1
3
2
SPSCK  
(CPOL = 0)  
(INPUT)  
4
4
SPSCK  
(CPOL = 1)  
(INPUT)  
9
10  
8
MISO  
(OUTPUT)  
SEE  
BIT 6 . . . 1  
BIT 6 . . . 1  
SLAVE LSB OUT  
LSB IN  
SLAVE  
MSB OUT  
NOTE  
5
6
7
MOSI  
(INPUT)  
MSB IN  
NOTE:  
1. Not defined but normally LSB of character just received  
Figure 18. SPI Slave Timing (CPHA = 1)  
2.13 Flash Specifications  
This section provides details about program/erase times and program-erase endurance for the Flash memory.  
Program and erase operations do not require any special power sources other than the normal V supply. For more detailed  
DD  
information about program/erase operations, see MCF51AG128 Reference Manual.  
MCF51AG128 ColdFire Microcontroller, Rev. 5  
34  
Freescale Semiconductor  
Preliminary Electrical Characteristics  
Table 19. Flash Characteristics  
Num  
C
Characteristic  
Symbol  
Min  
Typical1  
Max  
Unit  
1
2
3
4
5
6
7
8
9
C
Supply voltage for program/erase  
Supply voltage for read operation  
Internal FCLK frequency2  
Vprog/erase  
VRead  
fFCLK  
tFcyc  
2.7  
2.7  
150  
5
5.5  
5.5  
V
V
200  
6.67  
kHz  
μs  
Internal FCLK period (1/FCLK)  
Byte program time (random location)2  
Byte program time (burst mode)2  
Page erase time3  
tprog  
9
4
tFcyc  
tFcyc  
tFcyc  
tFcyc  
cycles  
tBurst  
tPage  
4000  
20,000  
Mass erase time2  
tMass  
Program/erase endurance4  
TL to TH = –40 °C to 105 °C  
T = 25 °C  
10,000  
100,000  
10  
C
Data retention5  
tD_ret  
15  
100  
years  
1
2
3
Typical values are based on characterization data at VDD = 5.0 V, 25 °C unless otherwise stated.  
The frequency of this clock is controlled by a software setting.  
These values are hardware state machine controlled. User code does not need to count cycles. This information  
supplied for calculating approximate time to program and erase.  
4
5
Typical endurance for flash was evaluated for this product family on the HC9S12Dx64. For additional information  
on how Freescale Semiconductor defines typical endurance, please refer to Engineering Bulletin EB619/D, Typical  
Endurance for Nonvolatile Memory.  
Typical data retention values are based on intrinsic capability of the technology measured at high temperature and  
de-rated to 25 °C using the Arrhenius equation. For additional information on how Freescale Semiconductor defines  
typical data retention, please refer to Engineering Bulletin EB618/D, Typical Data Retention for Nonvolatile Memory.  
2.14 EMC Performance  
Electromagnetic compatibility (EMC) performance is highly dependant on the environment in which the MCU resides. Board  
design and layout, circuit topology choices, location and characteristics of external components as well as MCU software  
operation all play a significant role in EMC performance. The system designer should consult Freescale applications notes such  
as AN2321, AN1050, AN1263, AN2764, and AN1259 for advice and guidance specifically targeted at optimizing EMC  
performance.  
2.14.1 Radiated Emissions  
Microcontroller radiated RF emissions are measured from 150 kHz to 1 GHz using the TEM/GTEM Cell method in accordance  
with the IEC 61967-2 and SAE J1752/3 standards. The measurement is performed with the microcontroller installed on a  
custom EMC evaluation board while running specialized EMC test software. The radiated emissions from the microcontroller  
are measured in a TEM cell in two package orientations (North and East). For more detailed information concerning the  
evaluation results, conditions and setup, please refer to the EMC Evaluation Report for this device.  
MCF51AG128 ColdFire Microcontroller, Rev. 5  
Freescale Semiconductor  
35  
Ordering Information  
3
Ordering Information  
This section contains ordering information for MCF51AG128 devices.  
MCF  
AG 128  
XX  
V
51  
Status  
Package designator  
(MCF = Fully Qualified ColdFire)  
(PCF = Product Engineering)  
Temperature range  
(V = –40 °C to 105 °C, C = –40°C to 85 °C )  
Core  
Family  
Memory size designator  
Table 20. Orderable Part Number Summary  
Flash / SRAM  
Freescale Part Number  
Description  
(KB)  
Package  
Temperature  
MCF51AG128VLK  
MCF51AG128VLH  
MCF51AG128VQH  
MCF51AG128VLF  
MCF51AG96VLK  
MCF51AG96VLH  
MCF51AG96VQH  
MCF51AG96VLF  
MCF51AG128 ColdFire Microcontroller  
128 / 16  
128 / 16  
128 / 16  
128 / 16  
96 / 16  
96 / 16  
96 / 16  
96 / 16  
80 LQFP  
64 LQFP  
64 QFP  
–40°C to 105°C  
–40°C to 105°C  
–40°C to 105°C  
–40°C to 105°C  
–40°C to 105°C  
–40°C to 105°C  
–40°C to 105°C  
–40°C to 105°C  
MCF51AG128 ColdFire Microcontroller  
MCF51AG128 ColdFire Microcontroller  
MCF51AG128 ColdFire Microcontroller  
MCF51AG96 ColdFire Microcontroller  
MCF51AG96 ColdFire Microcontroller  
MCF51AG96 ColdFire Microcontroller  
MCF51AG96 ColdFire Microcontroller  
48 LQFP  
80 LQFP  
64 LQFP  
64 QFP  
48 LQFP  
4
Package Information  
Table 21. Package Descriptions  
Pin Count  
Package Type  
Abbreviation  
Designator  
Case No.  
Document No.  
80  
64  
64  
48  
Low Quad Flat Package  
Low Quad Flat Package  
Quad Flat Package  
LQFP  
LQFP  
QFP  
LK  
LH  
QH  
LF  
917A  
840F  
840B  
932  
98ASS23237W  
98ASS23234W  
98ASB42844B  
98ASH00962A  
Low Quad Flat Package  
LQFP  
MCF51AG128 ColdFire Microcontroller, Rev. 5  
36  
Freescale Semiconductor  
Mechanical Outline Drawings  
5
Mechanical Outline Drawings  
5.1  
80-pin LQFP Package  
MCF51AG128 ColdFire Microcontroller, Rev. 5  
Freescale Semiconductor  
37  
Mechanical Outline Drawings  
MCF51AG128 ColdFire Microcontroller, Rev. 5  
38  
Freescale Semiconductor  
Mechanical Outline Drawings  
MCF51AG128 ColdFire Microcontroller, Rev. 5  
Freescale Semiconductor  
39  
Mechanical Outline Drawings  
5.2  
64-pin LQFP Package  
MCF51AG128 ColdFire Microcontroller, Rev. 5  
40  
Freescale Semiconductor  
Mechanical Outline Drawings  
MCF51AG128 ColdFire Microcontroller, Rev. 5  
Freescale Semiconductor  
41  
Mechanical Outline Drawings  
MCF51AG128 ColdFire Microcontroller, Rev. 5  
42  
Freescale Semiconductor  
Mechanical Outline Drawings  
5.3  
64-pin QFP Package  
MCF51AG128 ColdFire Microcontroller, Rev. 5  
Freescale Semiconductor  
43  
Mechanical Outline Drawings  
MCF51AG128 ColdFire Microcontroller, Rev. 5  
44  
Freescale Semiconductor  
Mechanical Outline Drawings  
MCF51AG128 ColdFire Microcontroller, Rev. 5  
Freescale Semiconductor  
45  
Mechanical Outline Drawings  
5.4  
48-pin LQFP Package  
MCF51AG128 ColdFire Microcontroller, Rev. 5  
46  
Freescale Semiconductor  
Mechanical Outline Drawings  
MCF51AG128 ColdFire Microcontroller, Rev. 5  
Freescale Semiconductor  
47  
Revision History  
6
Revision History  
Table 22. Revision History  
Description  
Rev. No.  
Date  
11/2008  
1
2
3
4
Initial Draft Release.  
4/2009  
5/2009  
12/2009  
Internal Release.  
Alpha Customer Release.  
• Added 48-pin LQFP information;  
• Updated Section 2.5/17 and 2.6/21.  
• Provided the supply current in Section 2.7/23, and setup delay in Section 2.8/23.  
5
6/2010  
• Updated Table 10.  
• Added Figure 9.  
• Corrected pin names of PTG6 and PTG5 in 48-pin LQFP.  
• Standardized Generation 2008 Watchdog to Watchdog.  
• In Table 9, updated Output high/low voltage — Low Drive (PTxDSn = 0) 3 V, ILoad value.  
MCF51AG128 ColdFire Microcontroller, Rev. 5  
48  
Freescale Semiconductor  
THIS PAGE INTENTIONALLY BLANK  
MCF51AG128 ColdFire Microcontroller, Rev. 5  
Freescale Semiconductor  
49  
Information in this document is provided solely to enable system and software  
implementers to use Freescale Semiconductor products. There are no express or  
implied copyright licenses granted hereunder to design or fabricate any integrated  
circuits or integrated circuits based on the information in this document.  
How to Reach Us:  
Home Page:  
www.freescale.com  
Web Support:  
http://www.freescale.com/support  
Freescale Semiconductor reserves the right to make changes without further notice to  
any products herein. Freescale Semiconductor makes no warranty, representation or  
guarantee regarding the suitability of its products for any particular purpose, nor does  
Freescale Semiconductor assume any liability arising out of the application or use of any  
product or circuit, and specifically disclaims any and all liability, including without  
limitation consequential or incidental damages. “Typical” parameters that may be  
provided in Freescale Semiconductor data sheets and/or specifications can and do vary  
in different applications and actual performance may vary over time. All operating  
parameters, including “Typicals”, must be validated for each customer application by  
customer’s technical experts. Freescale Semiconductor does not convey any license  
under its patent rights nor the rights of others. Freescale Semiconductor products are  
not designed, intended, or authorized for use as components in systems intended for  
surgical implant into the body, or other applications intended to support or sustain life,  
or for any other application in which the failure of the Freescale Semiconductor product  
could create a situation where personal injury or death may occur. Should Buyer  
purchase or use Freescale Semiconductor products for any such unintended or  
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and  
its officers, employees, subsidiaries, affiliates, and distributors harmless against all  
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,  
directly or indirectly, any claim of personal injury or death associated with such  
unintended or unauthorized use, even if such claim alleges that Freescale  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor, Inc.  
Technical Information Center, EL516  
2100 East Elliot Road  
Tempe, Arizona 85284  
+1-800-521-6274 or +1-480-768-2130  
www.freescale.com/support  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
www.freescale.com/support  
Japan:  
Freescale Semiconductor Japan Ltd.  
Headquarters  
Semiconductor was negligent regarding the design or manufacture of the part.  
ARCO Tower 15F  
1-8-1, Shimo-Meguro, Meguro-ku,  
Tokyo 153-0064  
RoHS-compliant and/or Pb-free versions of Freescale products have the functionality  
and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free  
counterparts. For further information, see http://www.freescale.com or contact your  
Freescale sales representative.  
Japan  
0120 191014 or +81 3 5437 9125  
support.japan@freescale.com  
Asia/Pacific:  
Freescale Semiconductor China Ltd.  
Exchange Building 23F  
No. 118 Jianguo Road  
Chaoyang District  
For information on Freescale’s Environmental Products program, go to  
http://www.freescale.com/epp.  
Beijing 100022  
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.  
All other product or service names are the property of their respective owners.  
© Freescale Semiconductor, Inc. 2010. All rights reserved.  
China  
+86 10 5879 8000  
support.asia@freescale.com  
For Literature Requests Only:  
Freescale Semiconductor Literature Distribution Center  
1-800-441-2447 or 303-675-2140  
Fax: 303-675-2150  
LDCForFreescaleSemiconductor@hibbertgroup.com  
Document Number: MCF51AG128  
Rev. 5  
6/2010  

相关型号:

MCF51CN128

MCF51CN128 ColdFire Microcontroller
FREESCALE

MCF51CN128CGT

MCF51CN128 ColdFire Microcontroller
FREESCALE

MCF51CN128CLH

MCF51CN128 ColdFire Microcontroller
FREESCALE

MCF51CN128CLK

MCF51CN128 ColdFire Microcontroller
FREESCALE

MCF51CN128CLK

32-BIT, FLASH, 50.33 MHz, MICROCONTROLLER, PQFP80, 14 X 14 MM, 1.40 MM HEIGHT, 0.65 MM PITCH, LQFP-80
ROCHESTER

MCF51EM128CLK

ColdFire Microcontroller
FREESCALE

MCF51EM128CLL

ColdFire Microcontroller
FREESCALE

MCF51EM256

ColdFire Microcontroller
FREESCALE

MCF51EM256CLK

ColdFire Microcontroller
FREESCALE

MCF51EM256CLL

ColdFire Microcontroller
FREESCALE

MCF51EM256_1

MCF51EM256-based Poly Phase Energy Meter Reference Design 110V Technical Specifications
FREESCALE

MCF51EM256_2

MCF51EM256-based Poly Phase Energy Meter Reference Design 220V Technical Specifications
FREESCALE