MPC8306EC [FREESCALE]

PowerQUICC II Pro Integrated Communications Processor Family Hardware Specifications; 的PowerQUICC II Pro的集成通信处理器系列硬件规格
MPC8306EC
型号: MPC8306EC
厂家: Freescale    Freescale
描述:

PowerQUICC II Pro Integrated Communications Processor Family Hardware Specifications
的PowerQUICC II Pro的集成通信处理器系列硬件规格

通信
文件: 总76页 (文件大小:463K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Document Number: MPC8306EC  
Rev. 0, 03/2011  
Freescale Semiconductor  
Technical Data  
MPC8306  
PowerQUICC II Pro Integrated  
Communications Processor  
Family Hardware Specifications  
Contents  
This document provides an overview of the MPC8306  
1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
PowerQUICC II Pro processor features. The MPC8306 is a  
cost-effective, highly integrated communications processor  
that addresses the requirements of several networking  
applications, including residential gateways,  
modem/routers, industrial control, and test and measurement  
applications. The MPC8306 extends current PowerQUICC  
offerings, adding higher CPU performance, additional  
functionality, and faster interfaces, while addressing the  
requirements related to time-to-market, price, power  
consumption, and board real estate. This document describes  
the electrical characteristics of MPC8306.  
2. Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . 7  
3. Power Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 10  
4. Clock Input Timing . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
5. RESET Initialization . . . . . . . . . . . . . . . . . . . . . . . . . 13  
6. DDR2 SDRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
7. Local Bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
8. Ethernet and MII Management . . . . . . . . . . . . . . . . . 22  
9. TDM/SI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
10. HDLC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
11. USB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
12. DUART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
13. eSDHC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
14. FlexCAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
15. I2C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
16. Timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
17. GPIO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
18. IPIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
19. SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
20. JTAG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
21. Package and Pin Listings . . . . . . . . . . . . . . . . . . . . . 50  
22. Clocking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
23. Thermal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
24. System Design Information . . . . . . . . . . . . . . . . . . . 70  
25. Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . 73  
26. Document Revision History . . . . . . . . . . . . . . . . . . . 75  
To locate published errata or updates for this document, refer  
to the MPC8306 product summary page on our website  
listed on the back cover of this document or contact your  
local Freescale sales office.  
© 2011 Freescale Semiconductor, Inc. All rights reserved.  
Overview  
1 Overview  
The MPC8306 incorporates the e300c3 (MPC603e-based) core built on Power Architecture® technology,  
which includes 16 Kbytes of each L1 instruction and data caches, dual integer units, and on-chip memory  
management units (MMUs). The MPC8306 also includes two DMA engines and a 16-bit DDR2 memory  
controller.  
A new communications complex based on QUICC Engine technology forms the heart of the networking  
capability of the MPC8306. The QUICC Engine block contains several peripheral controllers and a 32-bit  
RISC controller. Protocol support is provided by the main workhorses of the device — the unified  
communication controllers (UCCs). A block diagram of the MPC8306 is shown in Figure 1.  
2x DUART  
e300c3 Core with Power  
Management  
I2C  
Timers  
16-KB  
I-Cache  
16-KB  
D-Cache  
GPIO  
SPI  
RTC  
ULPI  
Enhanced Local  
Bus Controller  
Interrupt  
DDR2  
USB 2.0 HS  
Host/Device/OTG  
FPU  
Controller  
Controller  
eSDHC  
DMA  
Engine  
4 FlexCAN  
QUICC Engine™ Block  
16 KB Multi-User RAM  
48 KB Instruction RAM  
Accelerators  
Baud Rate  
Generators  
Serial DMA  
Single 32-bit RISC CP  
Time Slot Assigner  
Serial Interface  
1 RMII/MII  
2x TDM Ports  
2x HDLC  
2 RMII/MII  
2x IEEE 1588  
Figure 1. MPC8306 Block Diagram  
Each of the five UCCs can support a variety of communication protocols such as 10/100 Mbps  
EthernetIEEE-1588, and HDLC.  
MPC8306 PowerQUICC II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 0  
2
Freescale Semiconductor  
Overview  
In summary, the MPC8306 provides users with a highly integrated, fully programmable communications  
processor. This helps to ensure that a low-cost system solution can be quickly developed and offers  
flexibility to accommodate new standards and evolving system requirements.  
1.1  
Features  
The major features of the device are as follows:  
e300c3 Power Architecture processor core  
— Enhanced version of the MPC603e core  
— High-performance, superscalar processor core with a four-stage pipeline and low interrupt  
latency times  
— Floating-point, dual integer units, load/store, system register, and branch processing units  
— 16-Kbyte instruction cache and 16-Kbyte data cache with lockable capabilities  
— Dynamic power management  
— Enhanced hardware program debug features  
— Software-compatible with Freescale processor families implementing Power Architecture  
technology  
— Separate PLL that is clocked by the system bus clock  
— Performance monitor  
QUICC Engine block  
— 32-bit RISC controller for flexible support of the communications peripherals with the  
following features:  
– One clock per instruction  
– Separate PLL for operating frequency that is independent of system’s bus and e300 core  
frequency for power and performance optimization  
– 32-bit instruction object code  
– Executes code from internal IRAM  
– 32-bit arithmetic logic unit (ALU) data path  
– Modular architecture allowing for easy functional enhancements  
– Slave bus for CPU access of registers and multiuser RAM space  
– 48 Kbytes of instruction RAM  
– 16 Kbytes of multiuser data RAM  
– Serial DMA channel for receive and transmit on all serial channels  
— Five unified communication controllers (UCCs) supporting the following protocols and  
interfaces:  
– 10/100 Mbps Ethernet/IEEE® Std. 802.3® through MII and RMII interfaces.  
– IEEE Std. 1588™ support  
– HDLC/Transparent (bit rate up to QUICC Engine operating frequency / 8)  
– HDLC Bus (bit rate up to 10 Mbps)  
MPC8306 PowerQUICC II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 0  
Freescale Semiconductor  
3
Overview  
– Asynchronous HDLC (bit rate up to 2 Mbps)  
– Two TDM interfaces supporting up to 128 QUICC multichannel controller channels, each  
running at 64 kbps  
For more information on QUICC Engine sub-modules, see QUICC Engine Block Reference  
Manual with Protocol Interworking.  
DDR SDRAM memory controller  
— Programmable timing supporting DDR2 SDRAM  
— Integrated SDRAM clock generation  
— 16-bit data interface, up to 266-MHz data rate  
— 14 address lines  
— The following SDRAM configurations are supported:  
– Up to two physical banks (chip selects), 256-Mbyte per chip select for 16 bit data interface  
512-Mbyte addressable space for 32 bit data interface  
– 64-Mbit to 2-Gbit devices with x8/x16 data ports (no direct x4 support)  
– One 16-bit device or two 8-bit devices on a 16-bit bus,  
— Support for up to 16 simultaneous open pages for DDR2  
— One clock pair to support up to 4 DRAM devices  
— Supports auto refresh  
— On-the-fly power management using CKE  
Enhanced local bus controller (eLBC)  
— Multiplexed 26-bit address and 8-/16-bit data operating at up to 66 MHz  
— Eight chip selects supporting eight external slaves  
– Four chip selects dedicated  
– Four chip selects offered as multiplexed option  
— Supports boot from parallel NOR Flash and parallel NAND Flash  
— Supports programmable clock ratio dividers  
— Up to eight-beat burst transfers  
— 16- and 8-bit ports, seperate LWE for each 8 bit  
— Three protocol engines available on a per chip select basis:  
– General-purpose chip select machine (GPCM)  
– Three user programmable machines (UPMs)  
– NAND Flash control machine (FCM)  
Variable memory block sizes for FCM, GPCM, and UPM mode  
— Default boot ROM chip select with configurable bus width (8 or 16)  
— Provides two Write Enable signals to allow single byte write access to external 16-bit eLBC  
slave devices  
Integrated programmable interrupt controller (IPIC)  
— Functional and programming compatibility with the MPC8260 interrupt controller  
MPC8306 PowerQUICC II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 0  
4
Freescale Semiconductor  
Overview  
— Support for external and internal discrete interrupt sources  
— Programmable highest priority request  
— Six groups of interrupts with programmable priority  
— External and internal interrupts directed to host processor  
— Unique vector number for each interrupt source  
Enhanced secure digital host controller (eSDHC)  
— Compatible with the SD Host Controller Standard Specification Version 2.0 with test event  
register support  
— Compatible with the MMC System Specification Version 4.2  
— Compatible with the SD Memory Card Specification Version 2.0 and supports the high capacity  
SD memory card  
— Compatible with the SD Input/Output (SDIO) Card Specification, Version 2.0  
— Designed to work with SD Memory, miniSD Memory, SDIO, miniSDIO, SD Combo, MMC,  
MMCplus, and RS-MMC cards  
— Card bus clock frequency up to 33.25 MHz.  
— Supports 1-/4-bit SD and SDIO modes, 1-/4-bit modes  
– Up to 133 Mbps data transfer for SD/SDIO/MMC cards using 4 parallel data lines  
— Supports block sizes of 1 ~ 4096 bytes  
Universal serial bus (USB) dual-role controller  
— Designed to comply with Universal Serial Bus Revision 2.0 Specification  
— Supports operation as a stand-alone USB host controller  
— Supports operation as a stand-alone USB device  
— Supports high-speed (480-Mbps), full-speed (12-Mbps), and low-speed (1.5-Mbps) operations.  
Low speed is only supported in host mode.  
FlexCAN module  
— Full implementation of the CAN protocol specification version 2.0B  
— Up to 64 flexible message buffers of zero to eight bytes data length  
— Powerful Rx FIFO ID filtering, capable of matching incoming IDs  
— Selectable backwards compatibility with previous FlexCAN module version  
— Programmable loop-back mode supporting self-test operation  
— Global network time, synchronized by a specific message  
— Independent of the transmission medium (an external transceiver is required)  
— Short latency time due to an arbitration scheme for high-priority messages  
2
Dual I C interfaces  
— Two-wire interface  
— Multiple-master support  
2
— Master or slave I C mode support  
— On-chip digital filtering rejects spikes on the bus  
MPC8306 PowerQUICC II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 0  
Freescale Semiconductor  
5
Overview  
2
— I C1 can be used as the boot sequencer  
DMA Engine  
— Support for the DMA engine with the following features:  
– Sixteen DMA channels  
– All data movement via dual-address transfers: read from source, write to destination  
– Transfer control descriptor (TCD) organized to support two-deep, nested transfer operations  
– Channel activation via one of two methods (for both the methods, one activation per  
execution of the minor loop is required):  
– Explicit software initiation  
– Initiation via a channel-to-channel linking mechanism for continuous transfers  
(independent channel linking at end of minor loop and/or major loop)  
– Support for fixed-priority and round-robin channel arbitration  
– Channel completion reported via optional interrupt requests  
— Support for scatter/gather DMA processing  
DUART  
— Two 2-wire interfaces (RxD, TxD)  
– The same can be configured as one 4-wire interface (RxD, TxD, RTS, CTS)  
— Programming model compatible with the original 16450 UART and the PC16550D  
Serial peripheral interface (SPI)  
— Master or slave support  
Power management controller (PMC)  
— Supports core doze/nap/sleep/ power management  
— Exits low power state and returns to full-on mode when  
– The core internal time base unit invokes a request to exit low power state  
– The power management controller detects that the system is not idle and there are  
outstanding transactions on the internal bus or an external interrupt.  
Parallel I/O  
— General-purpose I/O (GPIO)  
– 56 parallel I/O pins multiplexed on various chip interfaces  
– Interrupt capability  
System timers  
— Periodic interrupt timer  
— Software watchdog timer  
— Eight general-purpose timers  
Real time clock (RTC) module  
— Maintains a one-second count, unique over a period of thousand of years  
— Two possible clock sources:  
– External RTC clock (RTC_PIT_CLK)  
MPC8306 PowerQUICC II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 0  
6
Freescale Semiconductor  
Electrical Characteristics  
– CSB bus clock  
IEEE Std. 1149.1™ compliant JTAG boundary scan  
2 Electrical Characteristics  
This section provides the AC and DC electrical specifications and thermal characteristics for the  
MPC8306. The MPC8306 is currently targeted to these specifications. Some of these specifications are  
independent of the I/O cell, but are included for a more complete reference. These are not purely I/O buffer  
design specifications.  
2.1  
Overall DC Electrical Characteristics  
This section covers the ratings, conditions, and other characteristics.  
2.1.1  
Absolute Maximum Ratings  
Table 1 provides the absolute maximum ratings.  
1
Table 1. Absolute Maximum Ratings  
Characteristic  
Symbol  
Max Value  
Unit  
Notes  
Core supply voltage  
PLL supply voltage  
VDD  
–0.3 to 1.26  
–0.3 to 1.26  
V
V
AVDD1  
AVDD2  
AVDD3  
DDR2 DRAM I/O voltage  
GVDD  
OVDD  
–0.3 to 1.98  
–0.3 to 3.6  
V
V
4
Local bus, DUART, system control and power management, I2C,  
SPI, MII, RMII, MII management, eSDHC, FlexCAN, USB and JTAG  
I/O voltage  
Input voltage  
DDR2 DRAM signals  
MVIN  
MVREF  
OVIN  
–0.3 to (GVDD + 0.3)  
–0.3 to (GVDD + 0.3)  
–0.3 to (OVDD + 0.3)  
V
V
V
2
2
3
DDR2 DRAM reference  
Local bus, DUART, SYS_CLK_IN,  
system control and power  
management, I2C, SPI, and JTAG  
signals  
Storage temperature range  
TSTG  
–55 to 150  
C  
Notes:  
1. Functional and tested operating conditions are given in Table 2. Absolute maximum ratings are stress ratings only, and  
functional operation at the maximums is not guaranteed. Stresses beyond those listed may affect device reliability or cause  
permanent damage to the device.  
2. Caution: MVIN must not exceed GVDD by more than 0.3 V. This limit may be exceeded for a maximum of 100 ms during  
power-on reset and power-down sequences.  
3. Caution: OVIN must not exceed OVDD by more than 0.3 V. This limit may be exceeded for a maximum of 100 ms during  
power-on reset and power-down sequences.  
4. OVDD here refers to NVDDA, NVDDB,NVDDC, NVDDF, NVDDG, and NVDDH from the ball map.  
MPC8306 PowerQUICC II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 0  
Freescale Semiconductor  
7
Electrical Characteristics  
2.1.2  
Power Supply Voltage Specification  
Table 2 provides the recommended operating conditions for the MPC8306. Note that these values are the  
recommended and tested operating conditions. Proper device operation outside of these conditions is not  
guaranteed.  
Table 2. Recommended Operating Conditions  
Recommended  
Characteristic  
Symbol  
Unit  
Notes  
Value  
Core supply voltage  
PLL supply voltage  
VDD  
1.0 V ± 50 mV  
1.0 V ± 50 mV  
V
V
1
1
AVDD1  
AVDD2  
AVDD3  
DDR2 DRAM I/O voltage  
GVDD  
OVDD  
1.8 V ± 100 mV  
3.3 V ± 300 mV  
V
V
1
Local bus, DUART, system control and power management, I2C,  
SPI, MII, RMII, MII management, eSDHC, FlexCAN, USB and  
JTAG I/O voltage  
1, 3  
Junction temperature  
TA/TJ  
0 to 105  
C  
2
Note:  
1. GVDD, OVDD, AVDD, and VDD must track each other and must vary in the same direction—either in the positive or negative  
direction.  
2. Minimum temperature is specified with TA(Ambient Temperature); maximum temperature is specified with TJ(Junction  
Temperature).  
3. OVDD here refers to NVDDA, NVDDB,NVDDC, NVDDF, NVDDG, and NVDDH from the ball map.  
Figure 2 shows the undershoot and overshoot voltages at the interfaces of the MPC8306  
G/OVDD + 20%  
G/OVDD + 5%  
G/OVDD  
VIH  
GND  
GND – 0.3 V  
VIL  
GND – 0.7 V  
Not to Exceed 10%  
1
of tinterface  
Note:  
1. tinterface refers to the clock period associated with the bus clock interface.  
Figure 2. Overshoot/Undershoot Voltage for GV /OV  
DD  
DD  
MPC8306 PowerQUICC II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 0  
8
Freescale Semiconductor  
Electrical Characteristics  
2.1.3  
Output Driver Characteristics  
Table 3 provides information on the characteristics of the output driver strengths.  
Table 3. Output Drive Capability  
Output Impedance  
Driver Type  
Supply Voltage (V)  
()  
Local bus interface utilities signals  
DDR2 signal  
42  
18  
42  
42  
OVDD = 3.3  
GVDD = 1.8  
OVDD = 3.3  
OVDD = 3.3  
DUART, system control, I2C, SPI, JTAG  
GPIO signals  
2.1.4  
Input Capacitance Specification  
Table 4 describes the input capacitance for the SYS_CLK_IN pin in the MPC8306.  
Table 4. Input Capacitance Specification  
Parameter/Condition  
Symbol  
Min  
Max  
Unit  
Notes  
Input capacitance for all pins except SYS_CLK_IN and  
QE_CLK_IN  
CI  
6
8
pF  
Input capacitance for SYS_CLK_IN and QE_CLK_IN  
CICLK_IN  
10  
pF  
1
Note:  
1. The external clock generator should be able to drive 10 pF.  
2.2  
Power Sequencing  
The device does not require the core supply voltage (V ) and IO supply voltages (GV and OV ) to  
DD  
DD  
DD  
be applied in any particular order. Note that during power ramp-up, before the power supplies are stable  
and if the I/O voltages are supplied before the core voltage, there might be a period of time that all input  
and output pins are actively driven and cause contention and excessive current. In order to avoid actively  
driving the I/O pins and to eliminate excessive current draw, apply the core voltage (V ) before the I/O  
DD  
voltage (GV and OV ) and assert PORESET before the power supplies fully ramp up. In the case  
DD  
DD  
where the core voltage is applied first, the core voltage supply must rise to 90% of its nominal value before  
the I/O supplies reach 0.7 V; see Figure 3. Once both the power supplies (I/O voltage and core voltage) are  
stable, wait for a minimum of 32 clock cycles before negating PORESET.  
NOTE  
There is no specific power down sequence requirement for the device. I/O voltage supplies (GV and  
DD  
OV ) do not have any ordering requirements with respect to one another.  
DD  
MPC8306 PowerQUICC II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 0  
Freescale Semiconductor  
9
Power Characteristics  
I/O Voltage (GVDD and OVDD  
)
V
Core Voltage (VDD  
)
0.7 V  
90%  
t
0
PORESET  
>= 32 tSYS_CLK_IN  
Figure 3. MPC8306Power-Up Sequencing Example  
3 Power Characteristics  
The typical power dissipation for this family of MPC8306 devices is shown in Table 5.  
Table 5. MPC8306 Power Dissipation  
Core  
Frequency (MHz)  
QUICC Engine  
Frequency (MHz)  
CSB  
Frequency (MHz)  
Typical  
Maximum  
Unit  
Notes  
133  
200  
266  
133  
200  
200  
133  
133  
133  
0.272  
0.291  
0.451  
0.618  
0.631  
0.925  
W
W
W
1, 2,3  
1, 2, 3  
1, 2, 3  
Notes:  
1. The values do not include I/O supply power (OVDD and GVDD), but it does include VDD and AVDD power . For I/O power  
values, see Table 6.  
2. Typical power is based on a nominal voltage of VDD = 1.0 V, ambient temperature, and the core running a Dhrystone  
benchmark application. The measurements were taken on the evaluation board using WC process silicon.  
3. Maximum power is based on a voltage of VDD = 1.05 V, WC process, a junction TJ = 105C, and an artificial smoke test.  
MPC8306 PowerQUICC II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 0  
10  
Freescale Semiconductor  
Power Characteristics  
Table 6 shows the estimated typical I/O power dissipation for the device.  
Table 6. Typical I/O Power Dissipation  
GVDD  
(1.8 V)  
OVDD  
(3.3 V)  
Interface  
Parameter  
Unit  
W
Comments  
DDR I/O  
65% utilization  
1.8 V  
Rs = 20   
Rt = 50   
1 pair of clocks  
266 MHz, 1 16 bits  
0.141  
Local bus I/O load = 25 pF  
1 pair of clocks  
66 MHz, 26 bits  
QUICC Engine block and other I/Os  
TDM serial, HDLC/TRAN  
serial, DUART, MII, RMII,  
Ethernet management,  
USB, SPI ,  
0.150  
W
1
Timer output  
FlexCAN  
eSDHC  
Note:  
1. Typical IO power is based on a nominal voltage of VDD = 3.3V, ambient temperature, and the core running a Dhrystone  
benchmark application. The measurements were taken on the evaluation board using WC process silicon.  
MPC8306 PowerQUICC II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 0  
Freescale Semiconductor  
11  
Clock Input Timing  
4 Clock Input Timing  
This section provides the clock input DC and AC electrical characteristics for the MPC8306.  
NOTE  
The rise/fall time on QUICC Engine input pins should not exceed 5 ns. This  
should be enforced especially on clock signals. Rise time refers to signal  
transitions from 10% to 90% of OV ; fall time refers to transitions from  
DD  
90% to 10% of OV  
.
DD  
4.1  
DC Electrical Characteristics  
Table 7 provides the clock input (SYS_CLK_IN) DC specifications for the MPC8306. These  
specifications are also applicable for QE_CLK_IN.  
Table 7. SYS_CLK_IN DC Electrical Characteristics  
Parameter  
Input high voltage  
Condition  
Symbol  
Min  
Max  
Unit  
VIH  
VIL  
IIN  
2.4  
–0.3  
OVDD + 0.3  
V
V
Input low voltage  
0.4  
±5  
±5  
SYS_CLK_IN input current  
SYS_CLK_IN input current  
0 V VIN OVDD  
A  
A  
0 V VIN 0.5 V or  
IIN  
OVDD – 0.5 V VIN OVDD  
SYS_CLK_IN input current  
0.5 V VIN OVDD – 0.5 V  
IIN  
±50  
A  
4.2  
AC Electrical Characteristics  
The primary clock source for the MPC8306 is SYS_CLK_IN. Table 8 provides the clock input  
(SYS_CLK_IN) AC timing specifications for the MPC8306. These specifications are also applicable for  
QE_CLK_IN.  
Table 8. SYS_CLK_IN AC Timing Specifications  
Parameter/Condition  
SYS_CLK_IN frequency  
Symbol  
Min  
Typical  
Max  
Unit  
Notes  
fSYS_CLK_IN  
tSYS_CLK_IN  
tKH, tKL  
24  
15  
66.67  
41.6  
2.8  
MHz  
ns  
1
2
SYS_CLK_IN cycle time  
SYS_CLK_IN rise and fall time  
1.1  
ns  
MPC8306 PowerQUICC II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 0  
12  
Freescale Semiconductor  
RESET Initialization  
Table 8. SYS_CLK_IN AC Timing Specifications  
SYS_CLK_IN duty cycle  
tKHK SYS_CLK_  
/t  
40  
60  
%
3
IN  
SYS_CLK_IN jitter  
±150  
ps  
4, 5  
Notes:  
1. Caution: The system, core and QUICC Engine block must not exceed their respective maximum or minimum operating  
frequencies.  
2. Rise and fall times for SYS_CLK_IN are measured at 0.33 and 2.97 V.  
3. Timing is guaranteed by design and characterization.  
4. This represents the total input jitter—short term and long term—and is guaranteed by design.  
5. The SYS_CLK_IN driver’s closed loop jitter bandwidth should be < 500 kHz at –20 dB. The bandwidth must be set low to  
allow cascade-connected PLL-based devices to track SYS_CLK_IN drivers with the specified jitter.  
6. Spread spectrum is allowed upto 1% down-spread @ 33kHz (max rate).  
5 RESET Initialization  
This section describes the AC electrical specifications for the reset initialization timing requirements of  
the MPC8306. Table 9 provides the reset initialization AC timing specifications for the reset  
component(s).  
Table 9. RESET Initialization Timing Specifications  
Parameter/Condition  
Min  
Max  
Unit  
Notes  
Required assertion time of HRESET to activate reset flow  
32  
32  
tSYS_CLK_IN  
tSYS_CLK_IN  
1
1
Required assertion time of PORESET with stable clock applied to  
SYS_CLK_IN  
HRESET assertion (output)  
512  
4
tSYS_CLK_IN  
tSYS_CLK_IN  
1
Input setup time for POR configuration signals  
1, 2  
(CFG_RESET_SOURCE[0:3]) with respect to negation of PORESET  
Input hold time for POR config signals with respect to negation of  
HRESET  
0
ns  
1, 2  
Notes:  
1. tSYS_CLK_IN is the clock period of the input clock applied to SYS_CLK_IN. For more details, see the MPC8306  
PowerQUICC II Pro Integrated Communications Processor Reference Manual.  
2. POR configuration signals consists of CFG_RESET_SOURCE[0:3].  
Table 10 provides the PLL lock times.  
Table 10. PLL Lock Times  
Parameter/Condition  
Min  
Max  
Unit  
Notes  
PLL lock times  
100  
s  
5.1  
Reset Signals DC Electrical Characteristics  
Table 11 provides the DC electrical characteristics for the MPC8306 reset signals mentioned in Table 9.  
MPC8306 PowerQUICC II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 0  
Freescale Semiconductor  
13  
DDR2 SDRAM  
Table 11. Reset Signals DC Electrical Characteristics  
Characteristic  
Symbol  
Condition  
Min  
Max  
Unit  
Notes  
Output high voltage  
Output low voltage  
Output low voltage  
Input high voltage  
Input low voltage  
Input current  
VOH  
VOL  
IOH = –6.0 mA  
IOL = 6.0 mA  
2.4  
0.5  
V
V
1
1
V
I
= 3.2 mA  
0.4  
V
1
OL  
OL  
VIH  
VIL  
IIN  
2.0  
–0.3  
OVDD + 0.3  
0.8  
V
1
V
0 V VIN OVDD  
±5  
A  
Note:  
1. This specification applies when operating from 3.3 V supply.  
6 DDR2 SDRAM  
This section describes the DC and AC electrical specifications for the DDR2 SDRAM interface of the  
MPC8306. Note that DDR2 SDRAM is GV (typ) = 1.8 V.  
DD  
6.1  
DDR2 SDRAM DC Electrical Characteristics  
Table 12 provides the recommended operating conditions for the DDR2 SDRAM component(s) of the  
MPC8306 when GV (typ) = 1.8 V.  
DD  
Table 12. DDR2 SDRAM DC Electrical Characteristics for GV (typ) = 1.8 V  
DD  
Parameter/Condition  
I/O supply voltage  
Symbol  
Min  
Max  
Unit  
Notes  
GVDD  
MVREF  
VTT  
1.7  
0.49 GVDD  
MVREF – 0.04  
MVREF+ 0.125  
–0.3  
1.9  
0.51 GVDD  
MVREF + 0.04  
GVDD + 0.3  
MVREF – 0.125  
9.9  
V
V
1
2
I/O reference voltage  
I/O termination voltage  
Input high voltage  
V
3
VIH  
V
4
Input low voltage  
VIL  
V
Output leakage current  
Output high current (VOUT = 1.35 V)  
Output low current (VOUT = 0.280 V)  
Notes:  
IOZ  
–9.9  
A  
mA  
mA  
IOH  
–13.4  
IOL  
13.4  
1. GVDD is expected to be within 50 mV of the DRAM GVDD at all times.  
2. MVREF is expected to be equal to 0.5 GVDD, and to track GVDD DC variations as measured at the receiver. Peak-to-peak  
noise on MVREF may not exceed ±2% of the DC value.  
3. VTT is not applied directly to the device. It is the supply to which far end signal termination is made and is expected to be  
equal to MVREF. This rail should track variations in the DC level of MVREF.  
4. Output leakage is measured with all outputs disabled, 0 V VOUT GVDD  
.
Table 13 provides the DDR2 capacitance when GV (typ) = 1.8 V.  
DD  
MPC8306 PowerQUICC II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 0  
14  
Freescale Semiconductor  
DDR2 SDRAM  
Notes  
Table 13. DDR2 SDRAM Capacitance for GV (typ) = 1.8 V  
DD  
Parameter/Condition  
Symbol  
Min  
Max  
Unit  
Input/output capacitance: DQ, DQS  
Delta input/output capacitance: DQ, DQS  
Note:  
CIO  
6
8
pF  
pF  
1
1
CDIO  
0.5  
1. This parameter is sampled. GVDD = 1.8 V ± 0.100 V, f = 1 MHz, TA = 25 °C, VOUT = GVDD 2,  
OUT (peak-to-peak) = 0.2 V.  
V
6.2  
DDR2 SDRAM AC Electrical Characteristics  
This section provides the AC electrical characteristics for the DDR2 SDRAM interface.  
6.2.1  
DDR2 SDRAM Input AC Timing Specifications  
Table 14 provides the input AC timing specifications for the DDR2 SDRAM (GV (typ) = 1.8 V).  
DD  
Table 14. DDR2 SDRAM Input AC Timing Specifications for 1.8-V Interface  
At recommended operating conditions with GVDD of 1.8 V± 100mV.  
Parameter  
AC input low voltage  
AC input high voltage  
Symbol  
Min  
Max  
Unit  
Notes  
VIL  
MVREF – 0.25  
V
V
VIH  
MVREF + 0.25  
Table 15 provides the input AC timing specifications for the DDR2 SDRAM interface.  
Table 15. DDR2 SDRAM Input AC Timing Specifications  
At recommended operating conditions with GVDD of 1.8V ± 100mV.  
Parameter  
Symbol  
Min  
Max  
Unit  
Notes  
Controller skew for MDQS—MDQ/MDM  
tCISKEW  
ps  
1, 2  
266 MHz  
–750  
750  
Notes:  
1. tCISKEW represents the total amount of skew consumed by the controller between MDQS[n] and any corresponding bit that  
is captured with MDQS[n]. This should be subtracted from the total timing budget.  
2. The amount of skew that can be tolerated from MDQS to a corresponding MDQ signal is called tDISKEW. This can be  
determined by the equation: tDISKEW = ±(T/4 – abs(tCISKEW)) where T is the clock period and abs(tCISKEW) is the absolute  
value of tCISKEW  
.
MPC8306 PowerQUICC II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 0  
Freescale Semiconductor  
15  
DDR2 SDRAM  
Figure 4 shows the input timing diagram for the DDR controller.  
MCK[n]  
MCK[n]  
tMCK  
MDQS[n]  
MDQ[x]  
D0  
D1  
tDISKEW  
tDISKEW  
Figure 4. DDR Input Timing Diagram  
6.2.2  
DDR2 SDRAM Output AC Timing Specifications  
Table 16 provides the output AC timing specifications for the DDR2 SDRAM interfaces.  
Table 16. DDR2 SDRAM Output AC Timing Specifications  
At recommended operating conditions with GVDD of 1.8V ± 100mV.  
Parameter  
Symbol1  
Min  
Max  
Unit  
Notes  
MCK cycle time, (MCK/MCK crossing)  
tMCK  
6
8
ns  
ns  
2
3
ADDR/CMD output setup with respect to MCK  
tDDKHAS  
266 MHz  
ADDR/CMD output hold with respect to MCK  
266 MHz  
2.5  
2.5  
2.5  
tDDKHAX  
tDDKHCS  
tDDKHCX  
tDDKHMH  
ns  
ns  
ns  
3
3
3
MCS output setup with respect to MCK  
MCS output hold with respect to MCK  
MCK to MDQS Skew  
266 MHz  
266 MHz  
2.5  
–0.6  
0.6  
ns  
ns  
4
5
MDQ/MDM output setup with respect to MDQS  
tDDKHDS,  
tDDKLDS  
266 MHz  
0.9  
MDQ/MDM output hold with respect to MDQS  
tDDKHDX,  
tDDKLDX  
ps  
5
266 MHz  
1100  
MPC8306 PowerQUICC II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 0  
16  
Freescale Semiconductor  
DDR2 SDRAM  
Notes  
Table 16. DDR2 SDRAM Output AC Timing Specifications (continued)  
At recommended operating conditions with GVDD of 1.8V ± 100mV.  
Parameter  
Symbol1  
tDDKHMP  
tDDKHME  
Min  
Max  
Unit  
MDQS preamble start  
MDQS epilogue end  
Notes:  
0.75 x tMCK  
0.4 x tMCK  
ns  
ns  
6
6
0.6 x tMCK  
1. The symbols used for timing specifications follow the pattern of t(first two letters of functional block)(signal)(state)(reference)(state) for  
inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. Output hold time can be read as DDR timing  
(DD) from the rising or falling edge of the reference clock (KH or KL) until the output went invalid (AX or DX). For example,  
tDDKHAS symbolizes DDR timing (DD) for the time tMCK memory clock reference (K) goes from the high (H) state until outputs  
(A) are setup (S) or output valid time. Also, tDDKLDX symbolizes DDR timing (DD) for the time tMCK memory clock reference  
(K) goes low (L) until data outputs (D) are invalid (X) or data output hold time.  
2. All MCK/MCK referenced measurements are made from the crossing of the two signals ±0.1 V.  
3. ADDR/CMD includes all DDR SDRAM output signals except MCK/MCK, MCS, and MDQ/MDM/MDQS. For the ADDR/CMD  
setup and hold specifications, it is assumed that the Clock Control register is set to adjust the memory clocks by 1/2 applied  
cycle.  
4. Note that tDDKHMH follows the symbol conventions described in note 1. For example, tDDKHMH describes the DDR timing (DD)  
from the rising edge of the MCK(n) clock (KH) until the MDQS signal is valid (MH). tDDKHMH can be modified through control  
of the DQSS override bits in the TIMING_CFG_2 register. This is typically set to the same delay as the clock adjust in the  
CLK_CNTL register. The timing parameters listed in the table assume that these 2 parameters have been set to the same  
adjustment value. See the MPC8306 PowerQUICC II Pro Integrated Communications Processor Reference Manual for a  
description and understanding of the timing modifications enabled by use of these bits.  
5. Determined by maximum possible skew between a data strobe (MDQS) and any corresponding bit of data (MDQ), or data  
mask (MDM). The data strobe should be centered inside of the data eye at the pins of the microprocessor.  
6. tDDKHMP follows the symbol conventions described in note 1.  
Figure 5 shows the DDR SDRAM output timing for the MCK to MDQS skew measurement (t  
).  
DDKHMH  
MCK  
MCK  
tMCK  
tDDKHMH(max) = 0.6 ns  
MDQS  
tDDKHMH(min) = –0.6 ns  
MDQS  
Figure 5. Timing Diagram for t  
DDKHMH  
MPC8306 PowerQUICC II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 0  
Freescale Semiconductor  
17  
DDR2 SDRAM  
Figure 6 shows the DDR2 SDRAM output timing diagram.  
MCK[n]  
MCK[n]  
tMCK  
tDDKHAS ,tDDKHCS  
tDDKHAX ,tDDKHCX  
ADDR/CMD  
MDQS[n]  
Write A0  
tDDKHMP  
NOOP  
tDDKHMH  
tDDKHME  
tDDKHDS  
tDDKLDS  
MDQ[x]/  
MECC[x]  
D0  
D1  
tDDKLDX  
tDDKHDX  
Figure 6. DDR2 SDRAM Output Timing Diagram  
MPC8306 PowerQUICC II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 0  
18  
Freescale Semiconductor  
Local Bus  
7 Local Bus  
This section describes the DC and AC electrical specifications for the local bus interface of the MPC8306.  
7.1  
Local Bus DC Electrical Characteristics  
Table 17 provides the DC electrical characteristics for the local bus interface.  
Table 17. Local Bus DC Electrical Characteristics  
Parameter  
High-level input voltage  
Symbol  
Min  
Max  
Unit  
VIH  
VIL  
2
–0.3  
OVDD + 0.3  
V
V
Low-level input voltage  
0.8  
High-level output voltage, IOH = –100 A  
Low-level output voltage, IOL = 100 A  
Input current  
VOH  
VOL  
IIN  
OVDD – 0.2  
V
0.2  
±5  
V
A  
7.2  
Local Bus AC Electrical Specifications  
Table 18 describes the general timing parameters of the local bus interface of the MPC8306.  
Table 18. Local Bus General Timing Parameters  
Parameter  
Symbol1  
Min  
Max  
Unit  
Notes  
Local bus cycle time  
tLBK  
15  
7
3
ns  
ns  
ns  
ns  
ns  
2
3, 4  
3, 4  
3
Input setup to local bus clock (LCLKn)  
Input hold from local bus clock (LCLKn)  
Local bus clock (LCLKn) to output valid  
Local bus clock (LCLKn) to output high impedance for LAD/LDP  
Notes:  
tLBIVKH  
tLBIXKH  
tLBKHOV  
tLBKHOZ  
1.0  
4
5
1. The symbols used for timing specifications follow the pattern of t(first two letters of functional block)(signal)(state)(reference)(state) for  
inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tLBIXKH1 symbolizes local bus  
timing (LB) for the input (I) to go invalid (X) with respect to the time the tLBK clock reference (K) goes high (H), in this case  
for clock one(1).  
2. All timings are in reference to falling edge of LCLK0 (for all outputs and for LGTA and LUPWAIT inputs) or rising edge of  
LCLK0 (for all other inputs).  
3. All signals are measured from OVDD/2 of the rising/falling edge of LCLK0 to 0.4 OVDD of the signal in question for 3.3-V  
signaling levels.  
4. Input timings are measured at the pin.  
5. For purposes of active/float timing measurements, the Hi-Z or off state is defined to be when the total current delivered  
through the component pin is less than or equal to the leakage current specification.  
MPC8306 PowerQUICC II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 0  
Freescale Semiconductor  
19  
Local Bus  
Figure 7 provides the AC test load for the local bus.  
OVDD/2  
Output  
Z0 = 50   
RL = 50   
Figure 7. Local Bus AC Test Load  
Figure 8 through Figure 10 show the local bus signals. These figures has been given indicate timing  
parameters only and do not reflect actual functional operation of interface.  
LCLK[n]  
tLBIXKH  
tLBIVKH  
Input Signals:  
LAD[0:15]  
tLBIXKH  
tLBIVKH  
Input Signal:  
LGTA  
tLBIXKH  
tLBKHOV  
Output Signals:  
LBCTL/LBCKE/LOE  
tLBKHOZ  
tLBKHOV  
Output Signals:  
LAD[0:15]  
tLBOTOT  
LALE  
Figure 8. Local Bus Signals  
MPC8306 PowerQUICC II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 0  
20  
Freescale Semiconductor  
Local Bus  
LCLK  
T1  
T3  
tLBKHOZ  
tLBKHOV  
GPCM Mode Output Signals:  
LCS[0:3]/LWE  
tLBIXKH  
tLBIVKH  
UPM Mode Input Signal:  
LUPWAIT  
tLBIXKH  
tLBIVKH  
Input Signals:  
LAD[0:15]/LDP[0:3]  
tLBKHOZ  
tLBKHOV  
UPM Mode Output Signals:  
LCS[0:3]/LBS[0:1]/LGPL[0:5]  
Figure 9. Local Bus Signals, GPCM/UPM Signals for LCCR[CLKDIV] = 2  
MPC8306 PowerQUICC II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 0  
Freescale Semiconductor  
21  
Ethernet and MII Management  
LCLK  
T1  
T2  
T3  
T4  
tLBKHOZ  
tLBKHOV  
GPCM Mode Output Signals:  
LCS[0:3]/LWE  
tLBIXKH  
tLBIVKH  
UPM Mode Input Signal:  
LUPWAIT  
tLBIXKH  
tLBIVKH  
Input Signals:  
LAD[0:15]  
tLBKHOZ  
tLBKHOV  
UPM Mode Output Signals:  
LCS[0:3]/LBS[0:1]/LGPL[0:5]  
Figure 10. Local Bus Signals, GPCM/UPM Signals for LCCR[CLKDIV] = 4  
8 Ethernet and MII Management  
This section provides the AC and DC electrical characteristics for Ethernet interfaces.  
8.1  
Ethernet Controller (10/100 Mbps)—MII/RMII Electrical  
Characteristics  
The electrical characteristics specified here apply to all MII (media independent interface) and RMII  
(reduced media independent interface), except MDIO (management data input/output) and MDC  
(management data clock). The MII and RMII are defined for 3.3 V. The electrical characteristics for MDIO  
and MDC are specified in Section 8.3, “Ethernet Management Interface Electrical Characteristics.”  
8.1.1  
DC Electrical Characteristics  
All MII and RMII drivers and receivers comply with the DC parametric attributes specified in Table 19.  
MPC8306 PowerQUICC II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 0  
22  
Freescale Semiconductor  
Ethernet and MII Management  
Table 19. MII and RMII DC Electrical Characteristics  
Parameter  
Symbol  
Conditions  
Min  
Max  
Unit  
Supply voltage 3.3 V  
Output high voltage  
Output low voltage  
Input high voltage  
Input low voltage  
Input current  
OVDD  
VOH  
VOL  
VIH  
3
3.6  
OVDD + 0.3  
0.50  
V
V
IOH = –4.0 mA OVDD = Min  
2.40  
GND  
2.0  
IOL = 4.0 mA  
OVDD = Min  
V
OVDD + 0.3  
0.90  
V
VIL  
–0.3  
V
IIN  
0 V VIN OVDD  
±5  
A  
8.2  
MII and RMII AC Timing Specifications  
The AC timing specifications for MII and RMII are presented in this section.  
8.2.1  
MII AC Timing Specifications  
This section describes the MII transmit and receive AC timing specifications.  
8.2.1.1  
MII Transmit AC Timing Specifications  
Table 20 provides the MII transmit AC timing specifications.  
Table 20. MII Transmit AC Timing Specifications  
At recommended operating conditions with OVDD of 3.3 V ± 300mV.  
Parameter/Condition  
Symbol1  
Min  
Typical  
Max  
Unit  
TX_CLK clock period 10 Mbps  
TX_CLK clock period 100 Mbps  
TX_CLK duty cycle  
tMTX  
tMTX  
tMTXH/tMTX  
tMTKHDX  
tMTXR  
400  
40  
5
ns  
ns  
%
35  
1
65  
15  
4.0  
4.0  
TX_CLK to MII data TXD[3:0], TX_ER, TX_EN delay  
TX_CLK data clock rise VIL(min) to VIH(max)  
TX_CLK data clock fall VIH(max) to VIL(min)  
Note:  
ns  
ns  
ns  
1.0  
1.0  
tMTXF  
1. The symbols used for timing specifications follow the pattern of t(first two letters of functional block)(signal)(state)(reference)(state) for  
inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tMTKHDX symbolizes MII transmit  
timing (MT) for the time tMTX clock reference (K) going high (H) until data outputs (D) are invalid (X). Note that, in general,  
the clock reference symbol representation is based on two to three letters representing the clock of a particular functional.  
For example, the subscript of tMTX represents the MII(M) transmit (TX) clock. For rise and fall times, the latter convention is  
used with the appropriate letter: R (rise) or F (fall).  
MPC8306 PowerQUICC II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 0  
Freescale Semiconductor  
23  
Ethernet and MII Management  
Figure 14 provides the AC test load.  
OVDD/2  
Output  
Z0 = 50   
RL = 50   
Figure 11. AC Test Load  
Figure 12 shows the MII transmit AC timing diagram.  
tMTXR  
tMTX  
TX_CLK  
tMTXF  
tMTXH  
TXD[3:0]  
TX_EN  
TX_ER  
tMTKHDX  
Figure 12. MII Transmit AC Timing Diagram  
8.2.1.2  
MII Receive AC Timing Specifications  
Table 21 provides the MII receive AC timing specifications.  
Table 21. MII Receive AC Timing Specifications  
At recommended operating conditions with OVDD of 3.3 V ± 300mV.  
Parameter/Condition  
Symbol1  
Min  
Typical  
Max  
Unit  
RX_CLK clock period 10 Mbps  
RX_CLK clock period 100 Mbps  
RX_CLK duty cycle  
tMRX  
tMRX  
tMRXH/tMRX  
400  
40  
ns  
ns  
%
35  
65  
RXD[3:0], RX_DV, RX_ER setup time to RX_CLK  
RXD[3:0], RX_DV, RX_ER hold time to RX_CLK  
RX_CLK clock rise VIL(min) to VIH(max)  
RX_CLK clock fall time VIH(max) to VIL(min)  
Note:  
tMRDVKH  
tMRDXKH  
tMRXR  
10.0  
10.0  
1.0  
1.0  
ns  
ns  
ns  
ns  
4.0  
4.0  
tMRXF  
1. The symbols used for timing specifications follow the pattern of t(first two letters of functional block)(signal)(state)(reference)(state) for  
inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tMRDVKH symbolizes MII receive  
timing (MR) with respect to the time data input signals (D) reach the valid state (V) relative to the tMRX clock reference (K)  
going to the high (H) state or setup time. Also, tMRDXKL symbolizes MII receive timing (GR) with respect to the time data input  
signals (D) went invalid (X) relative to the tMRX clock reference (K) going to the low (L) state or hold time. Note that, in general,  
the clock reference symbol representation is based on three letters representing the clock of a particular functional. For  
example, the subscript of tMRX represents the MII (M) receive (RX) clock. For rise and fall times, the latter convention is used  
with the appropriate letter: R (rise) or F (fall).  
MPC8306 PowerQUICC II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 0  
24  
Freescale Semiconductor  
Ethernet and MII Management  
Figure 13 shows the MII receive AC timing diagram.  
tMRXR  
tMRX  
RX_CLK  
tMRXF  
Valid Data  
tMRXH  
RXD[3:0]  
RX_DV  
RX_ER  
tMRDVKH  
tMRDXKH  
Figure 13. MII Receive AC Timing Diagram  
8.2.2  
RMII AC Timing Specifications  
This section describes the RMII transmit and receive AC timing specifications.  
8.2.2.1  
RMII Transmit AC Timing Specifications  
Table 20 provides the RMII transmit AC timing specifications.  
Table 22. RMII Transmit AC Timing Specifications  
At recommended operating conditions with OVDD of 3.3 V ± 300mV.  
Parameter/Condition  
Symbol1  
Min  
Typical  
Max  
Unit  
REF_CLK clock  
tRMX  
35  
2
20  
65  
ns  
%
REF_CLK duty cycle  
tRMXH RMX  
tRMTKHDX  
tRMXR  
/t  
REF_CLK to RMII data TXD[1:0], TX_EN delay  
REF_CLK data clock rise VIL(min) to VIH(max)  
REF_CLK data clock fall VIH(max) to VIL(min)  
Note:  
13  
ns  
ns  
ns  
1.0  
1.0  
4.0  
4.0  
tRMXF  
1. The symbols used for timing specifications follow the pattern of t(first three letters of functional block)(signal)(state)(reference)(state) for  
inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tRMTKHDX symbolizes RMII  
transmit timing (RMT) for the time tRMX clock reference (K) going high (H) until data outputs (D) are invalid (X). Note that, in  
general, the clock reference symbol representation is based on two to three letters representing the clock of a particular  
functional. For example, the subscript of tRMX represents the RMII(RM) reference (X) clock. For rise and fall times, the latter  
convention is used with the appropriate letter: R (rise) or F (fall).  
Figure 14 provides the AC test load.  
OVDD/2  
Output  
Z0 = 50   
RL = 50   
Figure 14. AC Test Load  
MPC8306 PowerQUICC II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 0  
Freescale Semiconductor  
25  
Ethernet and MII Management  
Figure 15 shows the RMII transmit AC timing diagram.  
tRMXR  
tRMX  
REF_CLK  
tRMXF  
tRMXH  
TXD[1:0]  
TX_EN  
tRMTKHDX  
Figure 15. RMII Transmit AC Timing Diagram  
8.2.2.2  
RMII Receive AC Timing Specifications  
Table 21 provides the RMII receive AC timing specifications.  
Table 23. RMII Receive AC Timing Specifications  
At recommended operating conditions with OVDD of 3.3 V ± 300mV.  
Parameter/Condition  
Symbol1  
Min  
Typical  
Max  
Unit  
REF_CLK clock period  
tRMX  
35  
20  
65  
ns  
%
REF_CLK duty cycle  
t
RMXH/tRMX  
tRMRDVKH  
tRMRDXKH  
tRMXR  
RXD[1:0], CRS_DV, RX_ER setup time to REF_CLK  
RXD[1:0], CRS_DV, RX_ER hold time to REF_CLK  
REF_CLK clock rise VIL(min) to VIH(max)  
REF_CLK clock fall time VIH(max) to VIL(min)  
Note:  
4.0  
2.0  
1.0  
1.0  
ns  
ns  
ns  
ns  
4.0  
4.0  
tRMXF  
1. The symbols used for timing specifications follow the pattern of t(first three letters of functional block)(signal)(state)(reference)(state) for  
inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tRMRDVKH symbolizes RMII  
receive timing (RMR) with respect to the time data input signals (D) reach the valid state (V) relative to the tRMX clock  
reference (K) going to the high (H) state or setup time. Also, tRMRDXKL symbolizes RMII receive timing (RMR) with respect  
to the time data input signals (D) went invalid (X) relative to the tRMX clock reference (K) going to the low (L) state or hold  
time. Note that, in general, the clock reference symbol representation is based on three letters representing the clock of a  
particular functional. For example, the subscript of tRMX represents the RMII (RM) reference (X) clock. For rise and fall times,  
the latter convention is used with the appropriate letter: R (rise) or F (fall).  
MPC8306 PowerQUICC II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 0  
26  
Freescale Semiconductor  
Ethernet and MII Management  
Figure 16 shows the RMII receive AC timing diagram.  
tRMXR  
tRMX  
REF_CLK  
tRMXF  
Valid Data  
tRMXH  
RXD[1:0]  
CRS_DV  
RX_ER  
tRMRDVKH  
tRMRDXKH  
Figure 16. RMII Receive AC Timing Diagram  
8.3  
Ethernet Management Interface Electrical Characteristics  
The electrical characteristics specified here apply to MII management interface signals MDIO  
(management data input/output) and MDC (management data clock). The electrical characteristics for  
MII, and RMII are specified in Section 8.1, “Ethernet Controller (10/100 Mbps)—MII/RMII Electrical  
Characteristics.”  
8.3.1  
MII Management DC Electrical Characteristics  
MDC and MDIO are defined to operate at a supply voltage of 3.3 V. The DC electrical characteristics for  
MDIO and MDC are provided in Table 24.  
Table 24. MII Management DC Electrical Characteristics When Powered at 3.3 V  
Parameter  
Symbol  
Conditions  
Min  
Max  
Unit  
Supply voltage (3.3 V)  
Output high voltage  
Output low voltage  
Input high voltage  
Input low voltage  
Input current  
OVDD  
VOH  
VOL  
VIH  
3
3.6  
OVDD + 0.3  
0.50  
V
V
IOH = –1.0 mA OVDD = Min  
2.40  
GND  
2.00  
IOL = 1.0 mA  
OVDD = Min  
V
V
VIL  
0.80  
V
IIN  
0 V VIN OVDD  
±5  
A  
8.3.2  
MII Management AC Electrical Specifications  
Table 25 provides the MII management AC timing specifications.  
Table 25. MII Management AC Timing Specifications  
At recommended operating conditions with OVDD is 3.3 V ± 300mV.  
Parameter/Condition  
MDC frequency  
Symbol1  
Min  
Typical  
Max  
Unit  
Notes  
fMDC  
tMDC  
32  
2.5  
400  
MHz  
ns  
MDC period  
MDC clock pulse width high  
tMDCH  
ns  
MPC8306 PowerQUICC II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 0  
Freescale Semiconductor  
27  
Ethernet and MII Management  
Table 25. MII Management AC Timing Specifications (continued)  
At recommended operating conditions with OVDD is 3.3 V ± 300mV.  
Parameter/Condition  
MDC to MDIO delay  
Symbol1  
Min  
Typical  
Max  
Unit  
Notes  
tMDKHDX  
tMDDVKH  
10  
70  
ns  
ns  
MDIO to MDC setup time  
8.5  
MDIO to MDC hold time  
MDC rise time  
MDC fall time  
Note:  
tMDDXKH  
tMDCR  
0
10  
10  
ns  
ns  
ns  
tMDHF  
1. The symbols used for timing specifications follow the pattern of t(first two letters of functional block)(signal)(state)(reference)(state) for  
inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tMDKHDX symbolizes  
management data timing (MD) for the time tMDC from clock reference (K) high (H) until data outputs (D) are invalid (X) or data  
hold time. Also, tMDDVKH symbolizes management data timing (MD) with respect to the time data input signals (D) reach the  
valid state (V) relative to the tMDC clock reference (K) going to the high (H) state or setup time. For rise and fall times, the  
latter convention is used with the appropriate letter: R (rise) or F (fall).  
Figure 17 shows the MII management AC timing diagram.  
tMDC  
tMDCR  
MDC  
tMDCH  
tMDCF  
MDIO  
(Input)  
tMDDVKH  
tMDDXKH  
MDIO  
(Output)  
tMDKHDX  
Figure 17. MII Management Interface Timing Diagram  
8.4  
IEEE 1588  
8.4.1  
IEEE 1588 DC Specifications  
The IEEE 1588 DC timing specifications are given in Table 27.  
8.4.2  
IEEE 1588 AC Specifications  
The IEEE 1588 AC timing specifications are given in Table 27.  
MPC8306 PowerQUICC II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 0  
28  
Freescale Semiconductor  
Ethernet and MII Management  
Table 26. IEEE 1588 DC Electrical Characteristics  
Characteristic  
Output high voltage  
Symbol  
Condition  
Min  
Max  
unit  
VOH  
VOL  
IOH = -8.0 mA  
IOL = 8.0 mA  
IOL = 3.2mA  
2.4  
V
V
Output low voltage  
Output low voltage  
0.5  
VOL  
0.4  
V
Input high voltage  
Input low voltage  
Input current  
VIH  
VIL  
IIN  
2.0  
- 0.3  
OVDD + 0.3  
V
V
0.8  
± 5  
0V VIN OVDD  
μA  
Table 27. IEEE 1588 AC Timing Specifications  
At recommended operating conditions with OVDD of 3.3 V ± 300mV.  
Parameter/Condition  
Symbol  
Min  
Typ  
Max  
Unit  
Notes  
QE_1588_CLK clock period  
QE_1588_CLK duty cycle  
tT1588CLK  
2.5  
40  
50  
TRX_CLK 9  
ns  
%
1, 3  
tT1588CLKH T1588CLK  
tT1588CLKINJ  
tT1588CLKINR  
/t  
60  
250  
2.0  
QE_1588_CLK peak-to-peak jitter  
ps  
ns  
Rise time QE_1588_CLK  
(20%–80%)  
1.0  
Fall time QE_1588_CLK  
(80%–20%)  
tT1588CLKINF  
1.0  
2.0  
ns  
QE_1588_CLK_OUT clock period  
QE_1588_CLK_OUT duty cycle  
tT1588CLKOUT  
tT1588CLKOTH  
2 tT1588CLK  
ns  
%
30  
50  
70  
/tT1588CLKOUT  
QE_1588_PULSE_OUT  
QE_1588_TRIG_IN pulse width  
Notes:  
tT1588OV  
0.5  
3.0  
ns  
ns  
2
tT1588TRIGH  
2 tT1588CLK_MAX  
1.TRX_CLK is the max clock period of QUICC engine receiving clock selected by TMR_CTRL[CKSEL]. See the MPC8306  
PowerQUICC II Pro Integrated Processor Family Reference Manual, for a description of TMR_CTRL registers.  
2. It need to be at least two times of clock period of clock selected by TMR_CTRL[CKSEL]. See the MPC8306 PowerQUICC II  
Pro Integrated Processor Family Reference Manual, for a description of TMR_CTRL registers.  
3. The maximum value of tT1588CLK is not only defined by the value of TRX_CLK, but also defined by the recovered clock. For  
example, for 10/100 Mbps modes, the maximum value of tT1588CLK is 3600 and 280ns, respectively.  
MPC8306 PowerQUICC II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 0  
Freescale Semiconductor  
29  
TDM/SI  
Figure 18 provides the data and command output timing diagram.  
tT1588CLKOUT  
tT1588CLKOUTH  
TSEC_1588_CLK_OUT  
tT1588OV  
TSEC_1588_PULSE_OUT  
TSEC_1588_TRIG_OUT  
Note: The output delay is count starting rising edge if tT1588CLKOUT is non-inverting. Otherwise, it is  
count starting falling edge.  
Figure 18. IEEE 1588 Output AC Timing  
Figure 19 provides the data and command input timing diagram.  
tT1588CLK  
tT1588CLKH  
TSEC_1588_CLK  
TSEC_1588_TRIG_IN  
tT1588TRIGH  
Figure 19. IEEE 1588 Input AC Timing  
9 TDM/SI  
This section describes the DC and AC electrical specifications for the time-division-multiplexed and serial  
interface of the MPC8306.  
9.1  
TDM/SI DC Electrical Characteristics  
Table 28 provides the DC electrical characteristics for the MPC8306 TDM/SI.  
Table 28. TDM/SI DC Electrical Characteristics  
Characteristic  
Output high voltage  
Symbol  
Condition  
Min  
Max  
Unit  
VOH  
VOL  
VIH  
VIL  
IOH = –2.0 mA  
2.4  
0.5  
V
V
Output low voltage  
Input high voltage  
Input low voltage  
Input current  
IOL = 3.2 mA  
2.0  
–0.3  
OVDD + 0.3  
0.8  
V
V
IIN  
0 V VIN OVDD  
±5  
A  
MPC8306 PowerQUICC II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 0  
30  
Freescale Semiconductor  
TDM/SI  
9.2  
TDM/SI AC Timing Specifications  
Table 29 provides the TDM/SI input and output AC timing specifications.  
1
Table 29. TDM/SI AC Timing Specifications  
Characteristic  
Symbol2  
Min  
Max  
Unit  
TDM/SI outputs—External clock delay  
tSEKHOV  
2
14  
ns  
TDM/SI outputs—External clock High Impedance  
TDM/SI inputs—External clock input setup time  
TDM/SI inputs—External clock input hold time  
Notes:  
tSEKHOX  
tSEIVKH  
tSEIXKH  
2
5
2
10  
ns  
ns  
ns  
1. Output specifications are measured from the 50% level of the rising edge of QE_CLK_IN to the 50% level of the signal.  
Timings are measured at the pin.  
2. The symbols used for timing specifications follow the pattern of t(first two letters of functional block)(signal)(state)(reference)(state) for  
inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tSEKHOX symbolizes the TDM/SI  
outputs external timing (SE) for the time tTDM/SI memory clock reference (K) goes from the high state (H) until outputs (O)  
are invalid (X).  
Figure 20 provides the AC test load for the TDM/SI.  
OVDD/2  
Output  
Z0 = 50   
RL = 50   
Figure 20. TDM/SI AC Test Load  
MPC8306 PowerQUICC II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 0  
Freescale Semiconductor  
31  
HDLC  
Figure 21 represents the AC timing from Table 29. Note that although the specifications generally  
reference the rising edge of the clock, these AC timing diagrams also apply when the falling edge is the  
active edge.  
TDM/SICLK (Input)  
tSEIXKH  
tSEIVKH  
Input Signals:  
TDM/SI  
(See Note)  
tSEKHOV  
Output Signals:  
TDM/SI  
(See Note)  
tSEKHOX  
Note: The clock edge is selectable on TDM/SI.  
Figure 21. TDM/SI AC Timing (External Clock) Diagram  
10 HDLC  
This section describes the DC and AC electrical specifications for the high level data link control (HDLC),  
of the MPC8306.  
10.1 HDLC DC Electrical Characteristics  
Table 30 provides the DC electrical characteristics for the MPC8306 HDLC protocol.  
Table 30. HDLC DC Electrical Characteristics  
Characteristic  
Output high voltage  
Symbol  
Condition  
Min  
Max  
Unit  
VOH  
VOL  
VIH  
VIL  
IOH = –2.0 mA  
2.4  
0.5  
V
V
Output low voltage  
Input high voltage  
Input low voltage  
Input current  
IOL = 3.2 mA  
2.0  
–0.3  
OVDD + 0.3  
0.8  
V
V
IIN  
0 V  VIN OVDD  
±5  
A  
10.2 HDLC AC Timing Specifications  
Table 31 provides the input and output AC timing specifications for HDLC protocol.  
1
Table 31. HDLC AC Timing Specifications  
Characteristic  
Outputs—Internal clock delay  
Symbol2  
Min  
Max  
Unit  
tHIKHOV  
0
9
ns  
Outputs—External clock delay  
tHEKHOV  
tHIKHOX  
1
0
12  
ns  
ns  
Outputs—Internal clock high impedance  
5.5  
MPC8306 PowerQUICC II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 0  
32  
Freescale Semiconductor  
HDLC  
1
Table 31. HDLC AC Timing Specifications (continued)  
Characteristic  
Symbol2  
Min  
Max  
Unit  
Outputs—External clock high impedance  
Inputs—Internal clock input setup time  
tHEKHOX  
tHIIVKH  
1
9
8
ns  
ns  
Inputs—External clock input setup time  
Inputs—Internal clock input hold time  
Inputs—External clock input hold time  
Notes:  
tHEIVKH  
tHIIXKH  
tHEIXKH  
4
0
1
ns  
ns  
ns  
1. Output specifications are measured from the 50% level of the rising edge of QE_CLK_IN to the 50% level of the signal.  
Timings are measured at the pin.  
2. The symbols used for timing specifications follow the pattern of t(first two letters of functional block)(signal)(state)(reference)(state) for  
inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tHIKHOX symbolizes the outputs  
internal timing (HI) for the time tserial memory clock reference (K) goes from the high state (H) until outputs (O) are invalid (X).  
Figure 22 provides the AC test load.  
OVDD/2  
Output  
Z0 = 50   
RL = 50   
Figure 22. AC Test Load  
Figure 23 and Figure 24 represent the AC timing from Table 31. Note that although the specifications  
generally reference the rising edge of the clock, these AC timing diagrams also apply when the falling edge  
is the active edge.  
Figure 23 shows the timing with external clock.  
Serial CLK (Input)  
tHEIXKH  
tHEIVKH  
Input Signals:  
(See Note)  
tHEKHOV  
Output Signals:  
(See Note)  
tHEKHOX  
Note: The clock edge is selectable.  
Figure 23. AC Timing (External Clock) Diagram  
MPC8306 PowerQUICC II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 0  
Freescale Semiconductor  
33  
USB  
Figure 24 shows the timing with internal clock.  
Serial CLK (Output)  
tHIIXKH  
tHIIVKH  
Input Signals:  
(See Note)  
tHIKHOV  
Output Signals:  
(See Note)  
tHIKHOX  
Note: The clock edge is selectable.  
Figure 24. AC Timing (Internal Clock) Diagram  
11 USB  
11.1 USB Controller  
This section provides the AC and DC electrical specifications for the USB (ULPI) interface.  
11.1.1 USB DC Electrical Characteristics  
Table 32 provides the DC electrical characteristics for the USB interface.  
Table 32. USB DC Electrical Characteristics  
Parameter  
High-level input voltage  
Symbol  
Min  
Max  
Unit  
VIH  
VIL  
2.0  
–0.3  
OVDD + 0.3  
V
V
Low-level input voltage  
0.8  
±5  
Input current  
IIN  
A  
V
High-level output voltage, IOH = –100 A  
Low-level output voltage, IOL = 100 A  
VOH  
VOL  
OVDD – 0.2  
0.2  
V
11.1.2 USB AC Electrical Specifications  
Table 33 describes the general timing parameters of the USB interface.  
Table 33. USB General Timing Parameters  
Parameter  
Symbol1  
Min  
Max  
Unit  
Notes  
USB clock cycle time  
tUSCK  
tUSIVKH  
tUSIXKH  
tUSKHOV  
15  
4
7
ns  
ns  
ns  
ns  
Input setup to USB clock—all inputs  
input hold to USB clock—all inputs  
1
USB clock to output valid—all outputs (except  
USBDR_STP_USBDR_STP)  
MPC8306 PowerQUICC II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 0  
34  
Freescale Semiconductor  
USB  
Table 33. USB General Timing Parameters (continued)  
Parameter  
Symbol1  
Min  
Max  
Unit  
Notes  
USB clock to output valid—USBDR_STP  
Output hold from USB clock—all outputs  
Note:  
tUSKHOV  
tUSKHOX  
2
7.5  
ns  
ns  
1. The symbols used for timing specifications follow the pattern of t(first two letters of functional block)(signal)(state)(reference)(state) for  
inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tUSIXKH symbolizes USB timing  
(USB) for the input (I) to go invalid (X) with respect to the time the USB clock reference (K) goes high (H). Also, tUSKHOX  
symbolizes us timing (USB) for the USB clock reference (K) to go high (H), with respect to the output (O) going invalid (X) or  
output hold time.  
Figure 25 and Figure 26 provide the AC test load and signals for the USB, respectively.  
Output  
OVDD/2  
Z0 = 50   
RL = 50   
Figure 25. USB AC Test Load  
USBDR_CLK  
tUSIXKH  
tUSIVKH  
Input Signals  
tUSKHOV  
tUSKHOX  
Output Signals  
Figure 26. USB Signals  
MPC8306 PowerQUICC II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 0  
Freescale Semiconductor  
35  
DUART  
12 DUART  
This section describes the DC and AC electrical specifications for the DUART interface of the MPC8306.  
12.1 DUART DC Electrical Characteristics  
Table 34 provides the DC electrical characteristics for the DUART interface of the MPC8306.  
Table 34. DUART DC Electrical Characteristics  
Parameter  
Symbol  
Min  
Max  
Unit  
High-level input voltage  
VIH  
VIL  
2
–0.3  
OVDD + 0.3  
V
V
Low-level input voltage OVDD  
0.8  
High-level output voltage, IOH = –100 A  
VOH  
VOL  
IIN  
OVDD – 0.2  
V
Low-level output voltage, IOL = 100 A  
0.2  
±5  
V
1
Input current (0 V VIN OVDD  
)
A  
Note:  
1. Note that the symbol VIN, in this case, represents the OVIN symbol referenced in Table 1 and Table 2.  
12.2 DUART AC Electrical Specifications  
Table 35 provides the AC timing parameters for the DUART interface of the MPC8306.  
Table 35. DUART AC Timing Specifications  
Parameter  
Value  
Unit  
Notes  
Minimum baud rate  
Maximum baud rate  
Oversample rate  
Notes:  
256  
>1,000,000  
16  
baud  
baud  
1
2
1. Actual attainable baud rate is limited by the latency of interrupt processing.  
2. The middle of a start bit is detected as the 8th sampled 0 after the 1-to-0 transition of the start bit. Subsequent bit values are  
sampled each 16th sample.  
MPC8306 PowerQUICC II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 0  
36  
Freescale Semiconductor  
eSDHC  
13 eSDHC  
This section describes the DC and AC electrical specifications for the eSDHC interface of the device.  
13.1 eSDHC DC Electrical Characteristics  
Table 36 provides the DC electrical characteristics for the eSDHC interface.  
Table 36. eSDHC Interface DC Electrical Characteristics  
At recommended operating conditions with OVDD = 3.3 V  
Characteristic  
Input high voltage  
Symbol  
Condition  
Min  
Max  
Unit  
Notes  
VIH  
VIL  
0.625 OVDD  
0.25 OVDD  
V
V
V
1
1
Input low voltage  
Output high voltage  
VOH  
IOH = –100 A at  
0.75 OVDD  
OVDD min  
Output low voltage  
VOL  
IOL = 100 A at  
0.125 OVDD  
V
OVDD min  
Output high voltage  
Output low voltage  
Input/output leakage current  
Note:  
VOH  
VOL  
IOH = –100 mA  
IOL = 2 mA  
OVDD – 0.2  
0.3  
10  
V
V
2
2
IIN/IOZ  
–10  
A  
1. Note that the min VILand max VIH values are based on the respective min and max OVIN values found in Table 2..  
2. Open drain mode for MMC cards only.  
13.2 eSDHC AC Timing Specifications  
Table 37 provides the eSDHC AC timing specifications as defined in Figure 27 and Figure 28.  
Table 37. eSDHC AC Timing Specifications  
At recommended operating conditions with OVDD = 3.3 V  
Parameter  
SD_CLK clock frequency:  
SD/SDIO Full-speed/High-speed mode  
MMC Full-speed/High-speed mode  
Symbol1  
Min  
Max  
Unit  
Notes  
fSHSCK  
0
25/33.25  
20/52  
MHz  
2, 4  
SD_CLK clock low time—Full-speed/High-speed mode  
SD_CLK clock high time—Full-speed/High-speed mode  
SD_CLK clock rise and fall times  
tSHSCKL  
tSHSCKH  
tSHSCKR/  
10/7  
10/7  
3
ns  
ns  
ns  
4
4
4
tSHSCKF  
Input setup times: SD_CMD, SD_DATx, SD_CD to  
SD_CLK  
tSHSIVKH  
5
ns  
4
MPC8306 PowerQUICC II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 0  
Freescale Semiconductor  
37  
eSDHC  
Table 37. eSDHC AC Timing Specifications (continued)  
At recommended operating conditions with OVDD = 3.3 V  
Parameter  
Symbol1  
Min  
Max  
Unit  
Notes  
Input hold times: SD_CMD, SD_DATx, SD_CD to  
SD_CLK  
tSHSIXKH  
2.5  
ns  
3, 4  
Output delay time: SD_CLK to SD_CMD, SD_DATx valid  
tSHSKHOV  
–3  
3
ns  
4
Notes:  
1. The symbols used for timing specifications herein follow the pattern of t(first three letters of functional block)(signal)(state)  
(reference)(state) for inputs and t(first three letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tFHSKHOV  
symbolizes eSDHC high-speed mode device timing (SHS) clock reference (K) going to the high (H) state, with respect to the  
output (O) reaching the invalid state (X) or output hold time. Note that in general, the clock reference symbol is based on five  
letters representing the clock of a particular functional. For rise and fall times, the latter convention is used with the  
appropriate letter: R (rise) or F (fall).  
2. In full-speed mode, the clock freqency value can be 0–25 MHz for an SD/SDIO card and 0–20 MHz for an MMC card. In  
high-speed mode, the clock freqency value can be 0–33.25 MHz for an SD/SDIO card and 0–52 MHz for an MMC card.  
3. To satisfy hold timing, the delay difference between clock input and cmd/data input must not exceed 2 ns.  
4. CCARD 10 pF, (1 card), and CL = CBUS + CHOST + CCARD 40 pF  
Figure 27 provides the eSDHC clock input timing diagram.  
eSDHC  
External Clock  
VM  
VM  
VM  
operational mode  
tSHSCKL  
tSHSCKH  
tSHSCK  
tSHSCKF  
tSHSCKR  
VM = Midpoint Voltage (OVDD/2)  
Figure 27. eSDHC Clock Input Timing Diagram  
Figure 28 provides the data and command input/output timing diagram.  
VM  
VM  
VM  
VM  
SD_CK  
External Clock  
tSHSIXKH  
tSHSIVKH  
SD_DAT/CMD  
Inputs  
SD_DAT/CMD  
Outputs  
tSHSKHOV  
VM = Midpoint Voltage (OVDD/2)  
Figure 28. eSDHC Data and Command Input/Output Timing Diagram Referenced to Clock  
MPC8306 PowerQUICC II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 0  
38  
Freescale Semiconductor  
FlexCAN  
14 FlexCAN  
This section describes the DC and AC electrical specifications for the FlexCAN interface.  
14.1 FlexCAN DC Electrical Characteristics  
Table 38 provides the DC electrical characteristics for the FlexCAN interface.  
Table 38. FlexCAN DC Electrical Characteristics (3.3V)  
For recommended operating conditions, see Table 2  
Parameter  
Symbol  
Min  
Max  
Unit  
Notes  
Input high voltage  
Input low voltage  
VIH  
VIL  
2
0.8  
±5  
V
V
1
1
2.4  
Input current (OVIN = 0 V or OVIN = OVDD  
)
IIN  
A  
V
2
Output high voltage (OVDD = min, IOH = –2 mA)  
Output low voltage (OVDD = min, IOL = 2 mA)  
Note:  
VOH  
VOL  
0.4  
V
1. Note that the min VILand max VIH values are based on the respective min and max OVIN values found in Table 2.  
2. Note that the symbol OVIN represents the input voltage of the supply. It is referenced in Table 2.  
14.2 FlexCAN AC Timing Specifications  
Table 39 provides the AC timing specifications for the FlexCAN interface.  
Table 39. FlexCAN AC Timing Specifications  
For recommended operating conditions, see Table 2  
Parameter  
Baud rate  
Min  
Max  
Unit  
Notes  
10  
1000  
Kbps  
MPC8306 PowerQUICC II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 0  
Freescale Semiconductor  
39  
I2C  
15 I2C  
2
This section describes the DC and AC electrical characteristics for the I C interface of the MPC8306.  
2
15.1 I C DC Electrical Characteristics  
2
Table 40 provides the DC electrical characteristics for the I C interface of the MPC8306.  
2
Table 40. I C DC Electrical Characteristics  
At recommended operating conditions with OVDD of 3.3 V ± 300mV.  
Parameter  
Symbol  
Min  
Max  
Unit  
Notes  
Input high voltage level  
Input low voltage level  
VIH  
VIL  
0.7 OVDD  
OVDD + 0.3  
0.3 OVDD  
0.4  
V
V
1
–0.3  
0
Low level output voltage  
VOL  
V
Output fall time from VIH(min) to VIL(max) with a bus  
capacitance from 10 to 400 pF  
t
20 + 0.1 CB  
250  
ns  
2
I2KLKV  
Pulse width of spikes which must be suppressed by the  
input filter  
tI2KHKL  
0
50  
ns  
3
Capacitance for each I/O pin  
CI  
10  
±5  
pF  
4
Input current (0 V VIN OVDD  
)
IIN  
A  
Notes:  
1. Output voltage (open drain or open collector) condition = 3 mA sink current.  
2. CB = capacitance of one bus line in pF.  
3. Refer to the MPC8306 PowerQUICC II Pro Integrated Communications Processor Reference Manual for information on  
the digital filter used.  
4. I/O pins obstructs the SDA and SCL lines if OVDD is switched off.  
2
15.2 I C AC Electrical Specifications  
2
Table 41 provides the AC timing parameters for the I C interface of the MPC8306.  
2
Table 41. I C AC Electrical Specifications  
All values refer to VIH (min) and VIL (max) levels (see Table 40).  
Parameter  
Symbol1  
Min  
Max  
Unit  
SCL clock frequency  
fI2C  
tI2CL  
0
400  
kHz  
s  
Low period of the SCL clock  
High period of the SCL clock  
1.3  
0.6  
0.6  
0.6  
tI2CH  
s  
Setup time for a repeated START condition  
tI2SVKH  
tI2SXKL  
s  
Hold time (repeated) START condition (after this period, the first clock  
pulse is generated)  
s  
Data setup time  
tI2DVKH  
tI2DXKL  
tI2CR  
100  
300  
ns  
s  
ns  
Data hold time: I2C bus devices  
0.93  
4
Rise time of both SDA and SCL signals  
20 + 0.1 CB  
300  
MPC8306 PowerQUICC II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 0  
40  
Freescale Semiconductor  
I2C  
2
Table 41. I C AC Electrical Specifications (continued)  
All values refer to VIH (min) and VIL (max) levels (see Table 40).  
Parameter  
Symbol1  
Min  
Max  
Unit  
4
Fall time of both SDA and SCL signals  
Setup time for STOP condition  
20 + 0.1 CB  
300  
ns  
s  
s  
V
t
I2CF  
t
0.6  
1.3  
I2PVKH  
Bus free time between a STOP and START condition  
tI2KHDX  
VNL  
Noise margin at the LOW level for each connected device (including  
hysteresis)  
0.1 OVDD  
Noise margin at the HIGH level for each connected device (including  
hysteresis)  
VNH  
0.2 OVDD  
V
Notes:  
1. The symbols used for timing specifications follow the pattern of t(first two letters of functional block)(signal)(state)(reference)(state) for  
inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tI2DVKH symbolizes I2C timing (I2)  
with respect to the time data input signals (D) reach the valid state (V) relative to the tI2C clock reference (K) going to the high  
(H) state or setup time. Also, tI2SXKL symbolizes I2C timing (I2) for the time that the data with respect to the start condition  
(S) went invalid (X) relative to the tI2C clock reference (K) going to the low (L) state or hold time. Also, tI2PVKH symbolizes I2C  
timing (I2) for the time that the data with respect to the stop condition (P) reaching the valid state (V) relative to the tI2C clock  
reference (K) going to the high (H) state or setup time. For rise and fall times, the latter convention is used with the appropriate  
letter: R (rise) or F (fall).  
2. MPC8306 provides a hold time of at least 300 ns for the SDA signal (referred to the VIH(min) of the SCL signal) to bridge  
the undefined region of the falling edge of SCL.  
3. The maximum tI2DVKL has only to be met if the device does not stretch the LOW period (tI2CL) of the SCL signal.  
4. CB = capacitance of one bus line in pF.  
2
Figure 29 provides the AC test load for the I C.  
OVDD/2  
Output  
Z0 = 50   
RL = 50   
2
Figure 29. I C AC Test Load  
2
Figure 30 shows the AC timing diagram for the I C bus.  
SDA  
tI2CF  
tI2CL  
tI2DVKH  
tI2KHKL  
tI2CF  
tI2SXKL  
tI2CR  
SCL  
tI2SXKL  
tI2CH  
tI2SVKH  
tI2PVKH  
tI2DXKL  
S
Sr  
Figure 30. I C Bus AC Timing Diagram  
P
S
2
MPC8306 PowerQUICC II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 0  
Freescale Semiconductor  
41  
Timers  
16 Timers  
This section describes the DC and AC electrical specifications for the timers of the MPC8306.  
16.1 Timer DC Electrical Characteristics  
Table 42 provides the DC electrical characteristics for the MPC8306 timer pins, including TIN, TOUT,  
TGATE, and RTC_PIT_CLK.  
Table 42. Timer DC Electrical Characteristics  
Characteristic  
Output high voltage  
Symbol  
Condition  
Min  
Max  
Unit  
VOH  
VOL  
IOH = –6.0 mA  
IOL = 6.0 mA  
2.4  
0.5  
V
V
Output low voltage  
Output low voltage  
Input high voltage  
Input low voltage  
Input current  
V
I
= 3.2 mA  
OL  
0.4  
V
OL  
VIH  
VIL  
IIN  
2.0  
–0.3  
OVDD + 0.3  
0.8  
V
V
0 V VIN OVDD  
±5  
A  
16.2 Timer AC Timing Specifications  
Table 43 provides the timer input and output AC timing specifications.  
1
Table 43. Timer Input AC Timing Specifications  
Characteristic  
Timers inputs—minimum pulse width  
Notes:  
Symbol2  
tTIWID  
Min  
Unit  
20  
ns  
1. Input specifications are measured from the 50% level of the signal to the 50% level of the rising edge of SYS_CLK_IN.  
Timings are measured at the pin.  
2. Timer inputs and outputs are asynchronous to any visible clock. Timer outputs should be synchronized before use by any  
external synchronous logic. Timer inputs are required to be valid for at least tTIWID ns to ensure proper operation.  
Figure 31 provides the AC test load for the timers.  
OVDD/2  
Output  
Z0 = 50   
RL = 50   
Figure 31. Timers AC Test Load  
MPC8306 PowerQUICC II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 0  
42  
Freescale Semiconductor  
GPIO  
17 GPIO  
This section describes the DC and AC electrical specifications for the GPIO of the MPC8306.  
17.1 GPIO DC Electrical Characteristics  
Table 11 provides the DC electrical characteristics for the MPC8306 GPIO.  
Table 44. GPIO DC Electrical Characteristics  
Characteristic  
Output high voltage  
Symbol  
Condition  
Min  
Max  
Unit  
Notes  
VOH  
VOL  
IOH = –6.0 mA  
IOL = 6.0 mA  
2.4  
0.5  
V
V
1
1
Output low voltage  
Output low voltage  
Input high voltage  
Input low voltage  
Input current  
V
I
= 3.2 mA  
OL  
0.4  
V
1
OL  
VIH  
VIL  
IIN  
2.0  
–0.3  
OVDD + 0.3  
0.8  
V
1
V
0 V VIN OVDD  
±5  
A  
Note:  
1. This specification applies when operating from 3.3-V supply.  
17.2 GPIO AC Timing Specifications  
Table 45 provides the GPIO input and output AC timing specifications.  
1
Table 45. GPIO Input AC Timing Specifications  
Characteristic  
GPIO inputs—minimum pulse width  
Notes:  
Symbol2  
Min  
20  
Unit  
tPIWID  
ns  
1. Input specifications are measured from the 50% level of the signal to the 50% level of the rising edge of SYS_CLK_IN.  
Timings are measured at the pin.  
2. GPIO inputs and outputs are asynchronous to any visible clock. GPIO outputs should be synchronized before use by any  
external synchronous logic. GPIO inputs are required to be valid for at least tPIWID ns to ensure proper operation.  
Figure 32 provides the AC test load for the GPIO.  
OVDD/2  
Output  
Z0 = 50   
RL = 50   
Figure 32. GPIO AC Test Load  
MPC8306 PowerQUICC II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 0  
Freescale Semiconductor  
43  
IPIC  
18 IPIC  
This section describes the DC and AC electrical specifications for the external interrupt pins of the  
MPC8306.  
18.1 IPIC DC Electrical Characteristics  
Table 46 provides the DC electrical characteristics for the external interrupt pins of the MPC8306.  
1,2  
Table 46. IPIC DC Electrical Characteristics  
Characteristic  
Input high voltage  
Symbol  
Condition  
Min  
Max  
Unit  
VIH  
VIL  
2.0  
–0.3  
OVDD + 0.3  
V
V
Input low voltage  
Input current  
0.8  
±5  
IIN  
A  
V
Output High Voltage  
Output low voltage  
Output low voltage  
Notes:  
VOH  
VOL  
IOL = -8.0 mA  
IOL = 6.0 mA  
2.4  
0.5  
0.4  
V
V
I
= 3.2 mA  
OL  
V
OL  
1. This table applies for pins IRQ, MCP_OUT, and QE ports Interrupts.  
2. MCP_OUT is open drain pins, thus VOH is not relevant for those pins.  
18.2 IPIC AC Timing Specifications  
Table 47 provides the IPIC input and output AC timing specifications.  
1
Table 47. IPIC Input AC Timing Specifications  
Characteristic  
Symbol2  
Min  
Unit  
IPIC inputs—minimum pulse width  
tPIWID  
20  
ns  
Notes:  
1. Input specifications are measured from the 50% level of the signal to the 50% level of the rising edge of SYS_CLK_IN.  
Timings are measured at the pin.  
2. IPIC inputs and outputs are asynchronous to any visible clock. IPIC outputs should be synchronized before use by any  
external synchronous logic. IPIC inputs are required to be valid for at least tPIWID ns to ensure proper operation when working  
in edge triggered mode.  
19 SPI  
This section describes the DC and AC electrical specifications for the SPI of the MPC8306.  
19.1 SPI DC Electrical Characteristics  
Table 48 provides the DC electrical characteristics for the MPC8306 SPI.  
MPC8306 PowerQUICC II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 0  
44  
Freescale Semiconductor  
SPI  
Table 48. SPI DC Electrical Characteristics  
Characteristic  
Output high voltage  
Symbol  
Condition  
Min  
Max  
Unit  
VOH  
VOL  
IOH = –6.0 mA  
IOL = 6.0 mA  
2.4  
0.5  
V
V
Output low voltage  
Output low voltage  
Input high voltage  
Input low voltage  
Input current  
V
I
= 3.2 mA  
OL  
0.4  
V
OL  
VIH  
VIL  
IIN  
2.0  
–0.3  
OVDD + 0.3  
0.8  
V
V
0 V VIN OVDD  
±5  
A  
19.2 SPI AC Timing Specifications  
Table 49 and provide the SPI input and output AC timing specifications.  
1
Table 49. SPI AC Timing Specifications  
Characteristic  
Symbol2  
Min  
Max  
Unit  
SPI outputs—Master mode (internal clock) delay  
SPI outputs—Slave mode (external clock) delay  
SPI inputs—Master mode (internal clock) input setup time  
SPI inputs—Master mode (internal clock) input hold time  
SPI inputs—Slave mode (external clock) input setup time  
SPI inputs—Slave mode (external clock) input hold time  
Notes:  
tNIKHOV  
tNEKHOV  
tNIIVKH  
0.5  
2
6
ns  
ns  
ns  
ns  
ns  
ns  
8
6
tNIIXKH  
0
tNEIVKH  
tNEIXKH  
4
2
1. Output specifications are measured from the 50% level of the rising edge of SPICLK to the 50% level of the signal. Timings  
are measured at the pin.  
2. The symbols used for timing specifications follow the pattern of t(first two letters of functional block)(signal)(state)(reference)(state) for  
inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tNIKHOV symbolizes the NMSI  
outputs internal timing (NI) for the time tSPI memory clock reference (K) goes from the high state (H) until outputs (O) are  
valid (V).  
3. All units of output delay must be enabled for 8306 output port spimosi (SPI Master Mode)  
4. delay units must not be enabled for Slave Mode.  
Figure 33 provides the AC test load for the SPI.  
OVDD/2  
Output  
Z0 = 50   
RL = 50   
Figure 33. SPI AC Test Load  
Figure 34 and Figure 35 represent the AC timing from Table 49. Note that although the specifications  
generally reference the rising edge of the clock, these AC timing diagrams also apply when the falling edge  
is the active edge.  
MPC8306 PowerQUICC II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 0  
Freescale Semiconductor  
45  
JTAG  
Figure 34 shows the SPI timing in slave mode (external clock).  
SPICLK (Input)  
tNEIXKH  
tNEIVKH  
Input Signals:  
SPIMOSI  
(See Note)  
tNEKHOV  
Output Signals:  
SPIMISO  
(See Note)  
Note: The clock edge is selectable on SPI.  
Figure 34. SPI AC Timing in Slave Mode (External Clock) Diagram  
Figure 35 shows the SPI timing in master mode (internal clock).  
SPICLK (Output)  
tNIIXKH  
tNIIVKH  
Input Signals:  
SPIMISO  
(See Note)  
tNIKHOV  
Output Signals:  
SPIMOSI  
(See Note)  
Note: The clock edge is selectable on SPI.  
Figure 35. SPI AC Timing in Master Mode (Internal Clock) Diagram  
20 JTAG  
This section describes the DC and AC electrical specifications for the IEEE Std. 1149.1™ (JTAG)  
interface of the MPC8306.  
20.1 JTAG DC Electrical Characteristics  
Table 50 provides the DC electrical characteristics for the IEEE Std. 1149.1 (JTAG) interface of the  
MPC8306.  
Table 50. JTAG Interface DC Electrical Characteristics  
Characteristic  
Output high voltage  
Symbol  
Condition  
Min  
Max  
Unit  
VOH  
VOL  
IOH = –6.0 mA  
IOL = 6.0 mA  
2.4  
V
V
V
Output low voltage  
Output low voltage  
0.5  
0.4  
V
I
= 3.2 mA  
OL  
OL  
MPC8306 PowerQUICC II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 0  
46  
Freescale Semiconductor  
JTAG  
Table 50. JTAG Interface DC Electrical Characteristics (continued)  
Characteristic  
Input high voltage  
Symbol  
Condition  
Min  
Max  
Unit  
VIH  
VIL  
IIN  
2.0  
–0.3  
OVDD + 0.3  
V
V
Input low voltage  
Input current  
0.8  
±5  
0 V VIN OVDD  
A  
20.2 JTAG AC Electrical Characteristics  
This section describes the AC electrical specifications for the IEEE Std. 1149.1 (JTAG) interface of the  
MPC8306. Table 51 provides the JTAG AC timing specifications as defined in Figure 37 through  
Figure 40.  
1
Table 51. JTAG AC Timing Specifications (Independent of SYS_CLK_IN)  
At recommended operating conditions (see Table 2).  
Parameter  
Symbol2  
Min  
Max  
Unit  
Notes  
JTAG external clock frequency of operation  
JTAG external clock cycle time  
JTAG external clock pulse width measured at 1.4 V  
JTAG external clock rise and fall times  
TRST assert time  
fJTG  
t JTG  
0
33.3  
MHz  
ns  
3
30  
11  
0
tJTKHKL  
tJTGR, tJTGF  
tTRST  
ns  
2
ns  
25  
ns  
Input setup times:  
ns  
Boundary-scan data  
tJTDVKH  
tJTIVKH  
4
4
4
4
5
TMS, TDI  
Input hold times:  
Valid times:  
ns  
ns  
Boundary-scan data  
TMS, TDI  
tJTDXKH  
tJTIXKH  
10  
10  
Boundary-scan data  
TDO  
tJTKLDV  
tJTKLOV  
2
2
15  
15  
MPC8306 PowerQUICC II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 0  
Freescale Semiconductor  
47  
JTAG  
1
Table 51. JTAG AC Timing Specifications (Independent of SYS_CLK_IN) (continued)  
At recommended operating conditions (see Table 2).  
Parameter  
Symbol2  
Min  
Max  
Unit  
Notes  
Output hold times:  
ns  
Boundary-scan data  
TDO  
tJTKLDX  
tJTKLOX  
2
2
5
JTAG external clock to output high impedance:  
ns  
Boundary-scan data  
TDO  
tJTKLDZ  
tJTKLOZ  
2
2
19  
9
5, 6  
6
Notes:  
1. All outputs are measured from the midpoint voltage of the falling/rising edge of tTCLK to the midpoint of the signal in question.  
The output timings are measured at the pins. All output timings assume a purely resistive 50-load (see Figure 36).  
Time-of-flight delays must be added for trace lengths, vias, and connectors in the system.  
2. The symbols used for timing specifications follow the pattern of t(first two letters of functional block)(signal)(state)(reference)(state) for  
inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tJTDVKH symbolizes JTAG device  
timing (JT) with respect to the time data input signals (D) reaching the valid state (V) relative to the tJTG clock reference (K)  
going to the high (H) state or setup time. Also, tJTDXKH symbolizes JTAG timing (JT) with respect to the time data input signals  
(D) went invalid (X) relative to the tJTG clock reference (K) going to the high (H) state. Note that, in general, the clock reference  
symbol representation is based on three letters representing the clock of a particular functional. For rise and fall times, the  
latter convention is used with the appropriate letter: R (rise) or F (fall).  
3. TRST is an asynchronous level sensitive signal. The setup time is for test purposes only.  
4. Non-JTAG signal input timing with respect to tTCLK  
.
5. Non-JTAG signal output timing with respect to tTCLK  
6. Guaranteed by design and characterization.  
.
Figure 36 provides the AC test load for TDO and the boundary-scan outputs of the MPC8306.  
OVDD/2  
Output  
Z0 = 50   
RL = 50   
Figure 36. AC Test Load for the JTAG Interface  
Figure 37 provides the JTAG clock input timing diagram.  
JTAG  
External Clock  
VM  
tJTKHKL  
VM  
VM  
tJTGR  
tJTGF  
tJTG  
VM = Midpoint Voltage (OV /2)  
DD  
Figure 37. JTAG Clock Input Timing Diagram  
Figure 38 provides the TRST timing diagram.  
TRST  
VM  
VM  
tTRST  
VM = Midpoint Voltage (OV /2)  
DD  
Figure 38. TRST Timing Diagram  
MPC8306 PowerQUICC II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 0  
48  
Freescale Semiconductor  
JTAG  
Figure 39 provides the boundary-scan timing diagram.  
JTAG  
VM  
VM  
External Clock  
tJTDVKH  
tJTDXKH  
Input  
Data Valid  
Boundary  
Data Inputs  
tJTKLDV  
tJTKLDX  
Boundary  
Data Outputs  
Output Data Valid  
tJTKLDZ  
Output Data Valid  
Boundary  
Data Outputs  
VM = Midpoint Voltage (OV /2)  
DD  
Figure 39. Boundary-Scan Timing Diagram  
Figure 40 provides the test access port timing diagram.  
JTAG  
VM  
VM  
External Clock  
tJTIVKH  
tJTIXKH  
Input  
TDI, TMS  
TDO  
Data Valid  
tJTKLOV  
tJTKLOX  
Output Data Valid  
tJTKLOZ  
Output Data Valid  
TDO  
VM = Midpoint Voltage (OV /2)  
DD  
Figure 40. Test Access Port Timing Diagram  
MPC8306 PowerQUICC II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 0  
Freescale Semiconductor  
49  
Package and Pin Listings  
21 Package and Pin Listings  
This section details package parameters, pin assignments, and dimensions. The MPC8306 is available in  
a thermally enhanced MAPBGA (mold array process-ball grid array); see Section 21.1, “Package  
Parameters for the MPC8306,” and Section 21.2, “Mechanical Dimensions of the MPC8306 MAPBGA,”  
for information on the MAPBGA.  
21.1 Package Parameters for the MPC8306  
The package parameters are as provided in the following list.  
Package outline  
Package Type  
Interconnects  
19 mm 19 mm  
MAPBGA  
369  
Pitch  
0.80 mm  
Module height (typical)  
Solder Balls  
1.48 mm; Min = 1.31mm and Max 1.61mm  
96 Sn / 3.5 Ag / 0.5 Cu (VM package)  
0.40 mm  
Ball diameter (typical)  
21.2 Mechanical Dimensions of the MPC8306 MAPBGA  
Figure below shows the mechanical dimensions and bottom surface nomenclature of the  
MPC8306, 369-MAPBGA package.  
MPC8306 PowerQUICC II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 0  
50  
Freescale Semiconductor  
Package and Pin Listings  
Figure 41. Mechanical Dimensions and Bottom Surface Nomenclature of the MPC8306 MAPBGA  
Notes:  
1. All dimensions are in millimeters.  
2. Dimensions and tolerances per ASME Y14.5M-1994.  
3. Maximum solder ball diameter measured parallel to datum A.  
4. Datum A, the seating plane, is determined by the spherical crowns of the solder balls.  
MPC8306 PowerQUICC II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 0  
Freescale Semiconductor  
51  
Package and Pin Listings  
21.3 Pinout Listings  
Following table shows the pin list of the MPC8306.  
Table 52. MPC8306Pinout Listing  
Signal  
Package Pin Number  
Pin Type  
Power Supply  
Notes  
DDR Memory Controller Interface  
MEMC_MDQ[0]  
MEMC_MDQ[1]  
MEMC_MDQ[2]  
MEMC_MDQ[3]  
MEMC_MDQ[4]  
MEMC_MDQ[5]  
MEMC_MDQ[6]  
MEMC_MDQ[7]  
MEMC_MDQ[8]  
MEMC_MDQ[9]  
MEMC_MDQ[10]  
MEMC_MDQ[11]  
MEMC_MDQ[12]  
MEMC_MDQ[13]  
MEMC_MDQ[14]  
MEMC_MDQ[15]  
MEMC_MDM[0]  
MEMC_MDM[1]  
MEMC_MDQS[0]  
MEMC_MDQS[1]  
MEMC_MBA[0]  
MEMC_MBA[1]  
MEMC_MBA[2]  
MEMC_MA[0]  
W5  
V4  
Y4  
AB1  
AA1  
Y2  
Y1  
W2  
G2  
G1  
F1  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
O
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
E2  
E1  
E4  
F4  
D1  
AB2  
G4  
V5  
F5  
O
IO  
IO  
O
L2  
L1  
O
R4  
M1  
M4  
N1  
N2  
P1  
N4  
P2  
R1  
O
O
MEMC_MA[1]  
O
MEMC_MA[2]  
O
MEMC_MA[3]  
O
MEMC_MA[4]  
O
MEMC_MA[5]  
O
MEMC_MA[6]  
O
MEMC_MA[7]  
O
MPC8306 PowerQUICC II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 0  
52  
Freescale Semiconductor  
Package and Pin Listings  
Table 52. MPC8306Pinout Listing (continued)  
Signal  
Package Pin Number  
Pin Type  
Power Supply  
Notes  
MEMC_MA[8]  
T1  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
MEMC_MA[9]  
P4  
MEMC_MA[10]  
MEMC_MA[11]  
MEMC_MA[12]  
MEMC_MA[13]  
MEMC_MWE_B  
MEMC_MRAS_B  
MEMC_MCAS_B  
MEMC_MCS_B[0]  
MEMC_MCS_B[1]  
MEMC_MCKE[0]  
MEMC_MCK[0]  
MEMC_MCK_B[0]  
MEMC_MODT[0]  
MEMC_MODT[1]  
MEMC_MVREF  
L4  
T2  
U1  
U2  
K1  
K2  
J1  
J4  
H1  
U4  
V1  
W1  
H2  
H4  
L8  
Local Bus Controller Interface  
LAD[0]  
LAD[1]  
LAD[2]  
LAD[3]  
LAD[4]  
LAD[5]  
LAD[6]  
LAD[7]  
LAD[8]  
LAD[9]  
LAD[10]  
LAD[11]  
LAD[12]  
LAD[13]  
LAD[14]  
LAD[15]  
LA[16]  
B7  
D9  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
A6  
B8  
A7  
A8  
A9  
D10  
B10  
A10  
B11  
D12  
D11  
A11  
A12  
B13  
A13  
MPC8306 PowerQUICC II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 0  
Freescale Semiconductor  
53  
Package and Pin Listings  
Table 52. MPC8306Pinout Listing (continued)  
Signal  
Package Pin Number  
Pin Type  
Power Supply  
Notes  
LA[17]  
B14  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
IO  
O
O
O
O
O
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
3
LA[18]  
A14  
LA[19]  
A15  
LA[20]  
A16  
LA[21]  
B16  
LA[22]  
A17  
LA[23]  
B17  
LA[24]  
A18  
LA[25]  
B19  
LCS_B[0]  
LCS_B[1]  
LCS_B[2]  
LCS_B[3]  
LCLK[0]  
LGPL[0]  
LGPL[1]  
LGPL[2]  
LGPL[3]  
LGPL[4]  
LGPL[5]  
LWE_B[0]  
LWE_B[1]  
LBCTL  
A19  
B20  
3
A20  
3
A21  
3
D13  
B22  
D16  
D19  
D17  
E18  
E19  
D15  
D14  
A22  
LALE  
B23  
JTAG  
TCK  
A3  
I
I
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
3
TDI  
B5  
TDO  
D7  
O
I
3
TMS  
A4  
TRST_B  
D8  
I
3
Test Interface  
TEST_MODE  
A5  
I
OVDD  
System Control Signals  
HRESET_B  
U20  
V20  
IO  
I
OVDD  
OVDD  
1
PORESET_B  
MPC8306 PowerQUICC II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 0  
54  
Freescale Semiconductor  
Package and Pin Listings  
Table 52. MPC8306Pinout Listing (continued)  
Signal  
Package Pin Number  
Pin Type  
Power Supply  
Notes  
Clock Interface  
QE_CLK_IN  
P23  
I
I
I
OVDD  
OVDD  
OVDD  
SYS_CLK_IN  
RTC_PIT_CLOCK  
R23  
V23  
Miscellaneous Signals  
QUIESCE_B  
THERM0  
A2  
D6  
O
I
OVDD  
OVDD  
GPIO  
E5  
GPIO[0]/RXCAN1/SD_CLK/MSRCID0 (DDR  
ID)  
IO  
IO  
OVDD  
OVDD  
GPIO[1]/TXCAN1/SD_CMD/MSRCID1 (DDR  
ID)  
E6  
GPIO[2]/RXCAN2/SD_CD/MSRCID2 (DDR ID)  
GPIO[3]/TXCAN2/SD_WP/MSRCID3 (DDR ID)  
D4  
C2  
C1  
IO  
IO  
IO  
OVDD  
OVDD  
OVDD  
GPIO[4]/RXCAN3/SD_DAT0/MSRCID4 (DDR  
ID)  
GPIO[5]/TXCAN3/SD_DAT1/MDVAL (DDR ID)  
GPIO[6]/RXCAN4/SD_DAT2/QE_EXT_REQ_3  
GPIO[7]/TXCAN4/SD_DAT3/QE_EXT_REQ_1  
B1  
B3  
IO  
IO  
IO  
OVDD  
OVDD  
OVDD  
B2  
USB  
AC4  
Y9  
USBDR_PWRFAULT/IIC_SDA2/CE_PIO_1  
USBDR_CLK/UART2_SIN[2]/UART2_CTS_B[1]  
USBDR_DIR/IIC_SCL2  
IO  
I
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
2
AC3  
AC2  
AB3  
IO  
IO  
IO  
2
USBDR_NXT/UART2_SIN[1]/QE_EXT_REQ_4  
USBDR_PCTL[0]/UART2_SOUT[1]/LB_POR_CF  
G_BOOT_ECC  
USBDR_PCTL[1]/UART2_SOUT[2]/UART2_RTS  
_B1/LB_POR_BOOT_ERR  
Y8  
O
OVDD  
USBDR_STP/QE_EXT_REQ_2  
W6  
IO  
IO  
OVDD  
OVDD  
USBDR_TXDRXD[0]/UART1_SOUT[1]/GPIO[32]  
/QE_TRB_O  
AB7  
USBDR_TXDRXD[1]/UART1_SIN[1]/GPIO[33]/Q  
E_TRB_I  
AB8  
AC6  
AC5  
AB5  
IO  
IO  
IO  
IO  
OVDD  
OVDD  
OVDD  
OVDD  
USBDR_TXDRXD[2]/UART1_SOUT[2]/UART1_  
RTS_B1/QE_BRG[1]  
USBDR_TXDRXD[3]/UART1_SIN[2]/UART1_CT  
S_B1/QE_BRG[2]  
USBDR_TXDRXD[4]/GPIO[34]/QE_BRG[3]  
MPC8306 PowerQUICC II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 0  
Freescale Semiconductor  
55  
Package and Pin Listings  
Table 52. MPC8306Pinout Listing (continued)  
Signal  
Package Pin Number  
Pin Type  
Power Supply  
Notes  
USBDR_TXDRXD[5]/GPIO[35]/QE_BRG[4]  
USBDR_TXDRXD[6]/GPIO[36]/QE_BRG[9]  
USBDR_TXDRXD[7]/GPIO[37]/QE_BRG[11]  
Y7  
IO  
IO  
IO  
OVDD  
OVDD  
OVDD  
Y6  
Y5  
DUART  
UART1_SOUT[1]/LSRCID4/LCS_B[4]  
UART1_SIN[1]/LDVAL/LCS_B[5]  
C23  
O
IO  
O
OVDD  
OVDD  
OVDD  
OVDD  
F19  
UART1_SOUT[2]/UART1_RTS_B1/LCS_B[6]  
UART1_SIN[2]/UART1_CTS_B[1]/LCS_B[7]  
D23  
D22  
IO  
Interrupts  
IRQ_B0_MCP_IN_B/CE_PI_0  
IRQ_B1/MCP_OUT_B  
E20  
IO  
IO  
IO  
I
OVDD  
OVDD  
OVDD  
OVDD  
E23  
IRQ_B2/CKSTOP_OUT_B  
IRQ_B3/CKSTOP_IN_B  
E22  
F20  
I2C Interface  
IIC_SDA1  
G20  
IO  
IO  
IO  
IO  
OVDD  
OVDD  
OVDD  
OVDD  
2
2
2
2
IIC_SCL1  
J20  
IIC_SDA2/CKSTOP_OUT_B  
LCLK1/IIC_SCL2/CKSTOP_IN_B  
F23  
H20  
SPI  
SPIMOSI/LSRCID[2]  
SPIMISO/LSRCID[3]  
SPICLK/LSRCID[0]  
SPISEL/LSRCID[1]  
G22  
IO  
IO  
IO  
IO  
OVDD  
OVDD  
OVDD  
OVDD  
K20  
G23  
H22  
FEC Management  
FEC_MDC  
FEC_MDIO  
H23  
L20  
O
OVDD  
OVDD  
IO  
FEC1/GTM/GPIO  
AB20  
FEC1_COL/GTM1_TIN[1]/GPIO[16]  
FEC1_CRS/GTM1_TGATE1_B/GPIO[17]  
FEC1_RX_CLK/GPIO[18]  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
AC21  
Y17  
FEC1_RX_DV/GTM1_TIN[2]/GPIO[19]  
FEC1_RX_ER/GTM1_TGATE[2]_B/GPIO[20]  
FEC1_RXD0/GPIO[21]  
Y18  
AB19  
AC20  
FEC1_RXD1/GTM1_TIN[3]/GPIO[22]  
FEC1_RXD2/GTM1_TGATE[3]_B/GPIO[23]  
AC19  
AC18  
MPC8306 PowerQUICC II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 0  
56  
Freescale Semiconductor  
Package and Pin Listings  
Table 52. MPC8306Pinout Listing (continued)  
Signal  
FEC1_RXD3/GPIO[24]  
Package Pin Number  
Pin Type  
Power Supply  
Notes  
AB17  
Y15  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
FEC1_TX_CLK/GTM1_TIN4/GPIO[25]  
FEC1_TX_EN/GTM1_TGATE[4]_B/GPIO[26]  
FEC1_TX_ER/GTM1_TOUT[4]_B/GPIO[27]  
FEC1_TXD0/GTM1_TOUT[1]_B/GPIO[28]  
FEC1_TXD1/GTM1_TOUT[2]_B/GPIO[29]  
FEC1_TXD2/GTM1_TOUT[3]_B/GPIO[30]  
FEC1_TXD3/GPIO[31]  
Y16  
AC17  
AB16  
AC16  
AC15  
AB14  
FEC2/GPIO  
AC14  
AB13  
Y14  
FEC2_COL/GPIO[32]  
FEC2_CRS/GPIO[33]  
FEC2_RX_CLK/GPIO[34]  
FEC2_RX_DV/GPIO[35]  
FEC2_RX_ER/GPIO[36]  
FEC2_RXD0/GPIO[37]  
FEC2_RXD1/GPIO[38]  
FEC2_RXD2/GPIO[39]  
FEC2_RXD3/GPIO[40]  
FEC2_TX_CLK/GPIO[41]  
FEC2_TX_EN/GPIO[42]  
FEC2_TX_ER/GPIO[43]  
FEC2_TXD0/GPIO[44]  
FEC2_TXD1/GPIO[45]  
FEC2_TXD2/GPIO[46]  
FEC2_TXD3/GPIO[47]  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
AC13  
Y13  
AC12  
AB11  
AC11  
AB10  
Y12  
AC10  
AC9  
AC8  
Y11  
AC7  
Y10  
FEC3/GPIO  
J23  
FEC3_COL/GPIO[48]  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
FEC3_CRS/GPIO[49]  
K23  
FEC3_RX_CLK/GPIO[50]  
M20  
FEC3_RX_DV/FEC1_TMR_TX_ESFD/GPIO[51]  
FEC3_RX_ER/FEC1_TMR_RX_ESFD/GPIO[52]  
FEC3_RXD0/FEC2_TMR_TX_ESFD/GPIO[53]  
FEC3_RXD1/FEC2_TMR_RX_ESFD/GPIO[54]  
FEC3_RXD2/TSEC_TMR_TRIG1/GPIO[55]  
FEC3_RXD3/TSEC_TMR_TRIG2/GPIO[56]  
K22  
L22  
L23  
M23  
N22  
N23  
MPC8306 PowerQUICC II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 0  
Freescale Semiconductor  
57  
Package and Pin Listings  
Table 52. MPC8306Pinout Listing (continued)  
Signal  
Package Pin Number  
Pin Type  
Power Supply  
Notes  
FEC3_TX_CLK/TSEC_TMR_CLK/GPIO[57]  
FEC3_TX_EN/TSEC_TMR_GCLK/GPIO[58]  
FEC3_TX_ER/TSEC_TMR_PP1/GPIO[59]  
FEC3_TXD0/TSEC_TMR_PP2/GPIO[60]  
FEC3_TXD1/TSEC_TMR_PP3/GPIO[61]  
FEC3_TXD2/TSEC_TMR_ALARM1/GPIO[62]  
FEC3_TXD3/TSEC_TMR_ALARM2/GPIO[63]  
N20  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
P20  
P22  
R20  
T22  
T23  
T20  
HDLC/GPIO/TDM  
U23  
HDLC1_RXCLK/TDM1_RCK/GPIO[1]  
HDLC1_RXD/TDM1_RD/GPIO[3]  
IO  
IO  
IO  
OVDD  
OVDD  
OVDD  
U22  
HDLC1_TXCLK/GPIO[0]/TDM1_TCK/QE_BRG[5  
]
AC22  
HDLC1_TXD/GPIO[2]/TDM1_TD/CFG_RESET_  
SOURCE[0]  
W18  
IO  
OVDD  
HDLC1_CD_B/GPIO[4]/TDM1_TFS  
HDLC1_CTS_B/GPIO[5]/TDM1_RFS  
W19  
Y20  
IO  
IO  
IO  
OVDD  
OVDD  
OVDD  
HDLC1_RTS_B/GPIO[6]/TDM1_STROBE_B/CF  
G_RESET_SOURCE[1]  
AB22  
HDLC2_TXCLK/GPIO[16]/TDM2_TCK/QE_BRG[  
7]  
AB23  
AA23  
W20  
IO  
IO  
IO  
OVDD  
OVDD  
OVDD  
HDLC2_RXCLK/GPIO[17]/TDM2_RCK/QE_BRG  
[8]  
HDLC2_TXD/GPIO[18]/TDM2_TD/CFG_RESET  
_SOURCE[2]  
HDLC2_RXD/GPIO[19]/TDM2_RD  
HDLC2_CD_B/GPIO[20]/TDM2_TFS  
HDLC2_CTS_B/GPIO[21]/TDM2_RFS  
Y23  
Y22  
W23  
W22  
IO  
IO  
IO  
IO  
OVDD  
OVDD  
OVDD  
OVDD  
HDLC2_RTS_B/GPIO[22]/TDM2_STROBE_B/C  
FG_RESET_SOURCE[3]  
Power  
L16  
AVDD1  
AVDD2  
AVDD3  
GVDD  
M16  
N8  
G5, H5, J5, K5, L5, M5,  
N5, P5, R5, T5, U5  
MPC8306 PowerQUICC II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 0  
58  
Freescale Semiconductor  
Package and Pin Listings  
Table 52. MPC8306Pinout Listing (continued)  
Signal  
Package Pin Number  
Pin Type  
Power Supply  
Notes  
OVDD  
E7,E8,E9,E10,E11,E12,  
E13,E14, E15,  
E16,E17,G19,H19,J19,K  
19,L19,M19,  
N19,P19,R19,T19,U19,  
W7,W8,W9, W10,W11,  
W12,W13, W14,W15,  
W16, W17  
VDD  
H8,H9,H10,H11,H12,H1  
3,H14,H15,H16,J8,J16,K  
8,K16,M8,N16,P8,P16,R  
8,R16,T8,T9,T10,T11,T1  
2,T13,T14,T15,T16  
VSS  
A1,B4,B6,B9,B12,B15,B  
18,B21,C22,D2,D5,D18,  
D20,F2,F22,J2,J9,J10,J  
11,J12,J13,J14,J15,J22,  
K4,K9,K10,K11,K12,K13  
,K14,K15,L9,L10,L11,L1  
2,L13,L14,L15,M2,M9,M  
10,M11,M12,M13,M14,M  
15,M22,N9,N10,N11,N1  
2,N13,N14,N15,P9,P10,  
P11,P12,P13,P14,P15,R  
2,R9,R10,R11,R12,R13,  
R14,R15,R22,T4,V2,V19  
,V22,W4,Y19,AA2,AA22,  
AB4,AB6,AB9,AB12,AB1  
5,AB18,AB21,AC1,AC23  
NC  
A23  
Notes  
1. This pin is an open drain signal. A weak pull-up resistor (1 k) should be placed on this pin to OVDD  
2. This pin is an open drain signal. A weak pull-up resistor (2-10 k) should be placed on this pin to OVDD  
3. This pin has weak pull-up that is always enabled.  
MPC8306 PowerQUICC II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 0  
Freescale Semiconductor  
59  
Clocking  
22 Clocking  
Figure 42 shows the internal distribution of clocks within the MPC8306.  
e300c3 core  
MPC8306  
core_clk  
Core PLL  
to DDR  
csb_clk  
memory  
controller  
DDR  
Clock  
Divider  
MEMC_MCK  
MEMC_MCK  
DDR  
Memory  
Device  
/2  
ddr_clk  
Clock  
Unit  
lbc_clk  
System  
PLL  
/n  
SYS_CLK_IN  
LBC  
Clock  
Divider  
Local Bus  
Memory  
Device  
LCLK[0:1]  
to local bus  
csb_clk to rest  
of the device  
qe_clk  
QE Block  
CLK Gen  
QE_CLK_IN  
QE PLL  
Figure 42. MPC8306 Clock Subsystem  
The primary clock source for MPC8306 is SYS_CLK_IN.  
MPC8306 PowerQUICC II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 0  
60  
Freescale Semiconductor  
Clocking  
22.1 System Clock Domains  
As shown in Figure 42, the primary clock input (frequency) is multiplied up by the system phase-locked  
loop (PLL) and the clock unit to create four major clock domains:  
The coherent system bus clock (csb_clk)  
The QUICC Engine clock (qe_clk)  
The internal clock for the DDR controller (ddr_clk)  
The internal clock for the local bus controller (lbc_clk)  
The csb_clk frequency is derived from the following equation:  
csb_clk = SYS_CLK_IN × SPMF  
Eqn. 1  
The csb_clk serves as the clock input to the e300 core. A second PLL inside the core multiplies up the  
csb_clk frequency to create the internal clock for the core (core_clk). The system and core PLL multipliers  
are selected by the SPMF and COREPLL fields in the reset configuration word low (RCWL) which is  
loaded at power-on reset or by one of the hard-coded reset options.For more information, see the Reset  
Configuration chapter in the MPC8306 PowerQUICC II Pro Communications Processor Reference  
Manual.  
The qe_clk frequency is determined by the QUICC Engine PLL multiplication factor (RCWL[CEPMF])  
and the QUICC Engine PLL division factor (RCWL[CEPDF]) as the following equation:  
qe_clk = (QE_CLK_IN × CEPMF) (1 + CEPDF)  
qe_clk = (QE_CLK_IN × CEPMF) (1 + CEPDF)  
Eqn. 2  
Eqn. 3  
For more information, see the QUICC Engine PLL Multiplication Factor section and the “QUICC Engine  
PLL Division Factor” section in the MPC8306 PowerQUICC II Pro Communications Processor  
Reference Manual for more information.  
The DDR SDRAM memory controller operates with a frequency equal to twice the frequency of csb_clk.  
Note that ddr_clk is not the external memory bus frequency; ddr_clk passes through the DDR clock divider  
(2) to create the differential DDR memory bus clock outputs (MCK and MCK). However, the data rate  
is the same frequency as ddr_clk.  
The local bus memory controller operates with a frequency equal to the frequency of csb_clk. Note that  
lbc_clk is not the external local bus frequency; lbc_clk passes through the LBC clock divider to create the  
external local bus clock outputs (LCLK). The LBC clock divider ratio is controlled by LCCR[CLKDIV].  
For more information, see the LBC Bus Clock and Clock Ratios section in the MPC8306 PowerQUICC  
II Pro Communications Processor Reference Manual.  
MPC8306 PowerQUICC II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 0  
Freescale Semiconductor  
61  
Clocking  
In addition, some of the internal units may be required to be shut off or operate at lower frequency than  
the csb_clk frequency. These units have a default clock ratio that can be configured by a memory mapped  
register after the device comes out of reset.  
Table 53 specifies which units have a configurable clock frequency. For detailed description, refer to the  
“System Clock Control Register (SCCR)” section in the MPC8306 PowerQUICC II Pro Communications  
Processor Reference Manual.  
Table 53. Configurable Clock Units  
Unit  
Default Frequency  
Options  
I2C,SDHC, USB, DMA Complex  
csb_clk  
Off, csb_clk, csb_clk/2, csb_clk/3  
NOTE  
Setting the clock ratio of these units must be performed prior to any access  
to them.  
Table 54 provides the maximum operating frequencies for the MPC8306 MAPBGA under recommended  
operating conditions (see Table 2).  
Table 54. Operating Frequencies for MAPBGA  
Characteristic1  
e300 core frequency (core_clk)  
Max Operating Frequency  
Unit  
266  
133  
200  
133  
66  
MHz  
MHz  
MHz  
MHz  
MHz  
Coherent system bus frequency (csb_clk)  
QUICC Engine frequency (qe_clk)  
DDR2 memory bus frequency (MCLK)2  
Local bus frequency (LCLKn)3  
1
The SYS_CLK_IN frequency, RCWL[SPMF], and RCWL[COREPLL] settings must be chosen such that the resulting csb_clk,  
MCLK, LCLK, and core_clk frequencies do not exceed their respective maximum or minimum operating frequencies.  
The DDR2 data rate is 2× the DDR2 memory bus frequency.  
The local bus frequency is 1/2, 1/4, or 1/8 of the lb_clk frequency (depending on LCCR[CLKDIV]) which is in turn 1× or 2× the  
csb_clk frequency (depending on RCWL[LBCM]).  
2
3
22.2 System PLL Configuration  
The system PLL is controlled by the RCWL[SPMF] parameter. Table 55 shows the multiplication factor  
encodings for the system PLL.  
NOTE  
System PLL VCO frequency = 2 × (CSB frequency) × (System PLL VCO  
divider). The VCO divider needs to be set properly so that the System PLL  
VCO frequency is in the range of 450–750 MHz.  
As described in Section 22, “Clocking,” the LBCM, DDRCM, and SPMF parameters in the reset  
configuration word low select the ratio between the primary clock input (SYS_CLK_IN) and the internal  
MPC8306 PowerQUICC II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 0  
62  
Freescale Semiconductor  
Clocking  
Table 55. System PLL Multiplication Factors  
RCWL[SPMF]  
System PLL Multiplication Factor  
0000  
0001  
Reserved  
Reserved  
× 2  
0010  
0011  
× 3  
0100  
× 4  
0101  
× 5  
0110  
× 6  
0111–1111  
Reserved  
coherent system bus clock (csb_clk). Table 56 shows the expected frequency values for the CSB frequency  
for selected csb_clk to SYS_CLK_IN ratios.  
Table 56. CSB Frequency Options  
SYS_CLK_IN(MHz)  
SPMF  
csb_clk : sys_clk_in Ratio  
25  
33.33  
66.67  
csb_clk Frequency (MHz)  
0010  
0011  
0100  
0101  
0110  
2:1  
3:1  
4:1  
5:1  
6:1  
133  
133  
125  
22.3 Core PLL Configuration  
RCWL[COREPLL] selects the ratio between the internal coherent system bus clock (csb_clk) and the e300  
core clock (core_clk). Table 57 shows the encodings for RCWL[COREPLL]. COREPLL values not listed  
in Table 57 should be considered reserved.  
Table 57. e300 Core PLL Configuration  
RCWL[COREPLL]  
core_clk : csb_clk Ratio  
VCO Divider  
0-1  
2-5  
6
nn  
0000  
n
PLL bypassed  
PLL bypassed  
(PLL off, csb_clk clocks core directly) (PLL off, csb_clk clocks core directly)  
00  
01  
0001  
0001  
0
0
1:1  
1:1  
2  
4  
MPC8306 PowerQUICC II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 0  
Freescale Semiconductor  
63  
Clocking  
Table 57. e300 Core PLL Configuration (continued)  
RCWL[COREPLL]  
2-5  
core_clk : csb_clk Ratio  
VCO Divider  
0-1  
6
10  
11  
00  
01  
10  
11  
00  
01  
10  
11  
00  
01  
10  
11  
00  
01  
10  
11  
0001  
0001  
0001  
0001  
0001  
0001  
0010  
0010  
0010  
0010  
0010  
0010  
0010  
0010  
0011  
0011  
0011  
0011  
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1:1  
1:1  
8  
8  
1.5:1  
1.5:1  
1.5:1  
1.5:1  
2:1  
2  
4  
8  
8  
2  
4  
8  
8  
2  
4  
8  
8  
2  
4  
8  
8  
2:1  
2:1  
2:1  
2.5:1  
2.5:1  
2.5:1  
2.5:1  
3:1  
3:1  
3:1  
3:1  
NOTE  
Core VCO frequency = core frequency VCO divider. The VCO divider  
(RCWL[COREPLL[0:1]]), must be set properly so that the core VCO  
frequency is in the range of 400–800 MHz.  
22.4 QUICC Engine PLL Configuration  
The QUICC Engine PLL is controlled by the RCWL[CEPMF] and RCWL[CEPDF] parameters. Table 58  
shows the multiplication factor encodings for the QUICC Engine PLL.  
Table 58. QUICC Engine PLL Multiplication Factors  
QUICC Engine PLL Multiplication Factor = RCWL[CEPMF]/  
RCWL[CEPMF]  
RCWL[CEPDF]  
(1 + RCWL[CEPDF)  
00000–00001  
00010  
0
0
0
0
Reserved  
2  
00011  
3  
00100  
4  
MPC8306 PowerQUICC II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 0  
64  
Freescale Semiconductor  
Clocking  
Table 58. QUICC Engine PLL Multiplication Factors (continued)  
QUICC Engine PLL Multiplication Factor = RCWL[CEPMF]/  
RCWL[CEPMF]  
RCWL[CEPDF]  
(1 + RCWL[CEPDF)  
00101  
00110  
0
0
0
0
0
5  
6  
00111  
7  
01000  
8  
01001–11111  
Reserved  
The RCWL[CEVCOD] denotes the QUICC Engine PLL VCO internal frequency as shown in Table 59.  
Table 59. QUICC Engine PLL VCO Divider  
RCWL[CEVCOD]  
VCO Divider  
00  
01  
10  
11  
2
4
8
Reserved  
NOTE  
The VCO divider (RCWL[CEVCOD]) must be set properly so that the  
QUICC Engine VCO frequency is in the range of 300–600 MHz. The  
QUICC Engine frequency is not restricted by the CSB and core frequencies.  
The CSB, core, and QUICC Engine frequencies should be selected  
according to the performance requirements.  
The QUICC Engine VCO frequency is derived from the following  
equations:  
qe_clk = (primary clock input × CEPMF) (1 + CEPDF)  
QUICC Engine VCO Frequency = qe_clk × VCO divider × (1 + CEPDF)  
22.5 Suggested PLL Configurations  
To simplify the PLL configurations, the MPC8306 might be separated into two clock domains. The first  
domain contains the CSB PLL and the core PLL. The core PLL is connected serially to the CSB PLL, and  
has the csb_clk as its input clock. The second clock domain has the QUICC Engine PLL. The clock  
domains are independent, and each of their PLLs are configured separately.  
Table 60 shows suggested PLL configurations for 33, 25, and 66 MHz input clocks.  
MPC8306 PowerQUICC II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 0  
Freescale Semiconductor  
65  
Clocking  
Table 60. Suggested PLL Configurations  
QUICC  
Engine  
Frequency  
(MHz)  
Input Clock  
Frequency  
(MHz)  
CSB  
Frequency  
(MHz)  
Core  
Frequency  
(MHz)  
Core  
PLL  
Conf No.  
SPMF  
CEMF  
CEDF  
1
2
0100  
0010  
0000100  
0000100  
0110  
0011  
0
0
33.33  
66.67  
133.33  
133.33  
266.66  
266.66  
200  
200  
MPC8306 PowerQUICC II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 0  
66  
Freescale Semiconductor  
Thermal  
23 Thermal  
This section describes the thermal specifications of the MPC8306.  
23.1 Thermal Characteristics  
Table 61 provides the package thermal characteristics for the 369, 19 19 mm MAPBGA of the  
MPC8306.  
Table 61. Package Thermal Characteristics for MAPBGA  
Characteristic  
Board type  
Symbol  
Value  
Unit  
Notes  
Junction-to-ambient natural convection  
Junction-to-ambient natural convection  
Junction-to-ambient (@200 ft/min)  
Junction-to-ambient (@200 ft/min)  
Junction-to-board  
Single-layer board (1s)  
Four-layer board (2s2p)  
Single-layer board (1s)  
Four-layer board (2s2p)  
RJA  
RJA  
RJMA  
RJMA  
RJB  
RJC  
JT  
39  
24  
32  
21  
14  
9
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
1, 2  
1, 2 ,3  
1, 3  
1, 3  
4
Junction-to-case  
5
Junction-to-package top  
Notes:  
Natural convection  
2
6
1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board)  
temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal  
resistance.  
2. Per JEDEC JESD51-2 with the single layer board horizontal. Board meets JESD51-9 specification.  
3. Per JEDEC JESD51-6 with the board horizontal.  
4. Thermal resistance between the die and the printed-circuit board per JEDEC JESD51-8. Board temperature is measured on  
the top surface of the board near the package.  
5. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method  
1012.1).  
6. Thermal characterization parameter indicating the temperature difference between package top and the junction temperature  
per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JT.  
23.1.1 Thermal Management Information  
For the following sections, P = (V I ) + P , where P is the power dissipation of the I/O  
D
DD  
DD  
I/O  
I/O  
drivers.  
23.1.2 Estimation of Junction Temperature with Junction-to-Ambient  
Thermal Resistance  
An estimation of the chip junction temperature, T , can be obtained from the equation:  
J
T = T + (R J P )  
Eqn. 1  
J
A
A
D
where:  
T = junction temperature (C)  
J
MPC8306 PowerQUICC II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 0  
Freescale Semiconductor  
67  
Thermal  
T = ambient temperature for the package (C)  
A
R
= junction-to-ambient thermal resistance (C/W)  
JA  
P = power dissipation in the package (W)  
D
The junction-to-ambient thermal resistance is an industry standard value that provides a quick and easy  
estimation of thermal performance. As a general statement, the value obtained on a single layer board is  
appropriate for a tightly packed printed-circuit board. The value obtained on the board with the internal  
planes is usually appropriate if the board has low power dissipation and the components are well separated.  
Test cases have demonstrated that errors of a factor of two (in the quantity T – T ) are possible.  
J
A
23.1.3 Estimation of Junction Temperature with Junction-to-Board  
Thermal Resistance  
The thermal performance of a device cannot be adequately predicted from the junction-to-ambient thermal  
resistance. The thermal performance of any component is strongly dependent on the power dissipation of  
surrounding components. In addition, the ambient temperature varies widely within the application. For  
many natural convection and especially closed box applications, the board temperature at the perimeter  
(edge) of the package is approximately the same as the local air temperature near the device. Specifying  
the local ambient conditions explicitly as the board temperature provides a more precise description of the  
local ambient conditions that determine the temperature of the device.  
At a known board temperature, the junction temperature is estimated using the following equation:  
T = T + (R J P )  
Eqn. 2  
J
B
B
D
where:  
T = junction temperature (C)  
J
T = board temperature at the package perimeter (C)  
B
R
= junction-to-board thermal resistance (C/W) per JESD51-8  
JB  
P = power dissipation in package (W)  
D
When the heat loss from the package case to the air can be ignored, acceptable predictions of junction  
temperature can be made. The application board should be similar to the thermal test condition: the  
component is soldered to a board with internal planes.  
23.1.4 Experimental Determination of Junction Temperature  
To determine the junction temperature of the device in the application after prototypes are available, the  
thermal characterization parameter () can be used to determine the junction temperature with a  
JT  
measurement of the temperature at the top center of the package case using the following equation:  
T = T + (JT P )  
Eqn. 3  
J
T
D
where:  
T = junction temperature (C)  
J
MPC8306 PowerQUICC II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 0  
68  
Freescale Semiconductor  
Thermal  
T = thermocouple temperature on top of package (C)  
T
= thermal characterization parameter (C/W)  
JT  
P = power dissipation in package (W)  
D
The thermal characterization parameter is measured per JESD51-2 specification using a 40 gauge type T  
thermocouple epoxied to the top center of the package case. The thermocouple should be positioned so  
that the thermocouple junction rests on the package. A small amount of epoxy is placed over the  
thermocouple junction and over about 1 mm of wire extending from the junction. The thermocouple wire  
is placed flat against the package case to avoid measurement errors caused by cooling effects of the  
thermocouple wire.  
23.1.5 Heat Sinks and Junction-to-Case Thermal Resistance  
In some application environments, a heat sink is required to provide the necessary thermal management of  
the device. When a heat sink is used, the thermal resistance is expressed as the sum of a junction-to-case  
thermal resistance and a case to ambient thermal resistance as shown in the following equation:  
R
= R  
+ R  
CA  
Eqn. 4  
JA  
JC  
where:  
R
R
R
= junction-to-ambient thermal resistance (C/W)  
= junction-to-case thermal resistance (C/W)  
= case-to-ambient thermal resistance (C/W)  
JA  
JC  
CA  
Ris device related and cannot be influenced by the user. The user controls the thermal environment to  
JC  
change the case-to-ambient thermal resistance, R. For instance, the user can change the size of the heat  
CA  
sink, the air flow around the device, the interface material, the mounting arrangement on printed-circuit  
board, or change the thermal dissipation on the printed-circuit board surrounding the device.  
To illustrate the thermal performance of the devices with heat sinks, the thermal performance has been  
simulated with a few commercially available heat sinks. The heat sink choice is determined by the  
application environment (temperature, air flow, adjacent component power dissipation) and the physical  
space available. Because there is not a standard application environment, a standard heat sink is not  
required.  
Accurate thermal design requires thermal modeling of the application environment using computational  
fluid dynamics software which can model both the conduction cooling and the convection cooling of the  
air moving through the application. Simplified thermal models of the packages can be assembled using the  
junction-to-case and junction-to-board thermal resistances listed in the thermal resistance table. More  
detailed thermal models can be made available on request.  
23.2 Heat Sink Attachment  
When attaching heat sinks to these devices, an interface material is required. The best method is to use  
thermal grease and a spring clip. The spring clip should connect to the printed-circuit board, either to the  
board itself, to hooks soldered to the board, or to a plastic stiffener. Avoid attachment forces which would  
lift the edge of the package or peel the package from the board. Such peeling forces reduce the solder joint  
MPC8306 PowerQUICC II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 0  
Freescale Semiconductor  
69  
System Design Information  
lifetime of the package. Recommended maximum force on the top of the package is 10 lb (4.5 kg) force.  
If an adhesive attachment is planned, the adhesive should be intended for attachment to painted or plastic  
surfaces and its performance verified under the application requirements.  
23.2.1 Experimental Determination of the Junction Temperature with a  
Heat Sink  
When heat sink is used, the junction temperature is determined from a thermocouple inserted at the  
interface between the case of the package and the interface material. A clearance slot or hole is normally  
required in the heat sink. Minimizing the size of the clearance is important to minimize the change in  
thermal performance caused by removing part of the thermal interface to the heat sink. Because of the  
experimental difficulties with this technique, many engineers measure the heat sink temperature and then  
back calculate the case temperature using a separate measurement of the thermal resistance of the  
interface.  
From this case temperature, the junction temperature is determined from the junction-to-case thermal  
resistance using the following equation:  
T = T + (R  
P )  
Eqn. 5  
J
C
JC  
D
where:  
T = case temperature of the package (C)  
C
R
= junction-to-case thermal resistance (C/W)  
JC  
P = power dissipation (W)  
D
24 System Design Information  
This section provides electrical and thermal design recommendations for successful application of the  
MPC8306.  
24.1 System Clocking  
The MPC8306 includes three PLLs.  
The system PLL (AV  
) generates the system clock from the externally supplied SYS_CLK_IN  
DD2  
input. The frequency ratio between the system and SYS_CLK_IN is selected using the system PLL  
ratio configuration bits as described in Section 22.2, “System PLL Configuration.”  
The e300 core PLL (AV  
ratio between the e300 core clock and the system clock is selected using the e300 PLL ratio  
configuration bits as described in Section 22.3, “Core PLL Configuration.”  
) generates the core clock as a slave to the system clock. The frequency  
DD3  
The QUICC Engine PLL (AV  
) which uses the same reference as the system PLL. The QUICC  
DD1  
Engine block generates or uses external sources for all required serial interface clocks.  
MPC8306 PowerQUICC II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 0  
70  
Freescale Semiconductor  
System Design Information  
24.2 PLL Power Supply Filtering  
Each of the PLLs listed above is provided with power through independent power supply pins. The voltage  
level at each AV n pin should always be equivalent to V , and preferably these voltages are derived  
DD  
DD  
directly from V through a low frequency filter scheme such as the following.  
DD  
There are a number of ways to reliably provide power to the PLLs, but the recommended solution is to  
provide independent filter circuits as illustrated in Figure 43, one to each of the three AV pins. By  
DD  
providing independent filters to each PLL the opportunity to cause noise injection from one PLL to the  
other is reduced.  
This circuit is intended to filter noise in the PLLs resonant frequency range from a 500 kHz to 10 MHz  
range. It should be built with surface mount capacitors with minimum effective series inductance (ESL).  
Consistent with the recommendations of Dr. Howard Johnson in High Speed Digital Design: A Handbook  
of Black Magic (Prentice Hall, 1993), multiple small capacitors of equal value are recommended over a  
single large value capacitor.  
Each circuit should be placed as close as possible to the specific AV pin being supplied to minimize  
DD  
noise coupled from nearby circuits. It should be possible to route directly from the capacitors to the AV  
pin, which is on the periphery of package, without the inductance of vias.  
DD  
Figure 43 shows the PLL power supply filter circuit.  
10  
VDD  
AVDD  
2.2 µF  
2.2 µF  
Low ESL Surface Mount Capacitors (<0.5 nH)  
GND  
Figure 43. PLL Power Supply Filter Circuit  
24.3 Decoupling Recommendations  
Due to large address and data buses, and high operating frequencies, the MPC8306 can generate transient  
power surges and high frequency noise in its power supply, especially while driving large capacitive loads.  
This noise must be prevented from reaching other components in the MPC8306 system, and MPC8306  
itself requires a clean, tightly regulated source of power. Therefore, it is recommended that the system  
designer place at least one decoupling capacitor at each V , OV , and GV pins of the MPC8306.  
DD  
DD  
DD  
These decoupling capacitors should receive their power from separate V , OV , GV , and GND  
DD  
DD  
DD  
power planes in the PCB, utilizing short traces to minimize inductance. Capacitors may be placed directly  
under the device using a standard escape pattern. Others may surround the part.  
These capacitors should have a value of 0.01 or 0.1 µF. Only ceramic SMT (surface mount technology)  
capacitors should be used to minimize lead inductance, preferably 0402 or 0603 sizes.  
In addition, it is recommended that there be several bulk storage capacitors distributed around the PCB,  
feeding the V , OV , and GV planes, to enable quick recharging of the smaller chip capacitors.  
DD  
DD  
DD  
These bulk capacitors should have a low ESR (equivalent series resistance) rating to ensure the quick  
response time necessary. They should also be connected to the power and ground planes through two vias  
MPC8306 PowerQUICC II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 0  
Freescale Semiconductor  
71  
System Design Information  
to minimize inductance. Suggested bulk capacitors—100 to 330 µF (AVX TPS tantalum or Sanyo  
OSCON).  
24.4 Output Buffer DC Impedance  
2
For all buses, the driver is a push-pull single-ended driver type (open drain for I C).  
To measure Z for the single-ended drivers, an external resistor is connected from the chip pad to OV  
0
DD  
or GND. Then, the value of each resistor is varied until the pad voltage is OV /2 (see Figure 44). The  
DD  
output impedance is the average of two components, the resistances of the pull-up and pull-down devices.  
When data is held high, SW1 is closed (SW2 is open) and R is trimmed until the voltage at the pad equals  
P
OV /2. R then becomes the resistance of the pull-up devices. R and R are designed to be close to each  
DD  
P
P
N
other in value. Then, Z = (R + R )/2.  
0
P
N
OVDD  
RN  
SW2  
SW1  
Pad  
Data  
RP  
OGND  
Figure 44. Driver Impedance Measurement  
The value of this resistance and the strength of the driver’s current source can be found by making two  
measurements. First, the output voltage is measured while driving logic 1 without an external differential  
termination resistor. The measured voltage is V = R  
while driving logic 1 with an external precision differential termination resistor of value R . The  
I  
. Second, the output voltage is measured  
1
source  
source  
term  
measured voltage is V = (1/(1/R + 1/R )) I . Solving for the output impedance gives  
2
1
2
source  
R
= R  
(V /V – 1). The drive current is then I  
= V /R  
.
source  
term  
1
2
source  
1
source  
MPC8306 PowerQUICC II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 0  
72  
Freescale Semiconductor  
Ordering Information  
Table 62 summarizes the signal impedance targets. The driver impedance are targeted at minimum V  
,
DD  
nominal OV , 105C.  
DD  
Table 62. Impedance Characteristics  
Local Bus, Ethernet, DUART, Control,  
Configuration and Power Management  
Impedance  
DDR DRAM  
Symbol  
Unit  
R
R
42 Target  
42 Target  
NA  
20 Target  
20 Target  
NA  
Z0  
Z0  
N
P
Differential  
ZDIFF  
Note: Nominal supply voltages. See Table 1, Tj = 105C.  
24.5 Configuration Pin Multiplexing  
The MPC8306 provides the user with power-on configuration options which can be set through the use of  
external pull-up or pull-down resistors of 4.7 kon certain output pins (Refer to the “Reset, Clocking  
and Initialization” of MPC8306S PowerQUICC II Pro Integrated Communications Processor Family  
Reference Manual). These pins are generally used as output only pins in normal operation.  
While HRESET is asserted however, these pins are treated as inputs. The value presented on these pins  
while HRESET is asserted, is latched when HRESET deasserts, at which time the input receiver is disabled  
and the I/O circuit takes on its normal function. Careful board layout with stubless connections to these  
pull-up/pull-down resistors coupled with the large value of the pull-up/pull-down resistor should minimize  
the disruption of signal quality or speed for output pins thus configured.  
25 Ordering Information  
This section presents ordering information for the devices discussed in this document, and it shows an  
example of how the parts are marked. Ordering information for the devices fully covered by this document  
is provided in Section 25.1, “Part Numbers Fully Addressed by This Document.”  
25.1 Part Numbers Fully Addressed by This Document  
Table 63 provides the Freescale part numbering nomenclature for the MPC8306 family. Note that the  
individual part numbers correspond to a maximum processor core frequency. For available frequencies,  
contact your local Freescale sales office. In addition to the maximum processor core frequency, the part  
numbering scheme also includes the maximum effective DDR memory speed and QUICC Engine bus  
frequency. Each part number also contains a revision code which refers to the die mask revision number.  
MPC8306 PowerQUICC II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 0  
Freescale Semiconductor  
73  
Ordering Information  
Table 63. Part Numbering Nomenclature  
MPC nnnn  
VM  
AF  
D
C
A
C
QUICC  
Engine  
Frequency  
Product  
Code  
Part  
Identifier  
Temperature  
Range1  
e300 Core  
DDR  
Frequency  
Revision  
Level  
Package2  
Frequency3  
MPC  
8306  
Blank = 0 to  
105C  
C = –40 to  
VM = Pb-free  
AB = 133MHz D = 266 MHz C = 200 MHz Contact local  
AC = 200 MHz  
AD = 266 MHz  
Freescale  
sales office  
105C  
Notes:  
1. Contact local Freescale office on availability of parts with C temperature range.  
2. See Section 21, “Package and Pin Listings,” for more information on available package types.  
3. Processor core frequencies supported by parts addressed by this specification only. Not all parts described in this  
specification support all core frequencies. Additionally, parts addressed by Part Number Specifications may support other  
maximum core frequencies.  
25.2 Part Marking  
Parts are marked as in the example shown in Figure 45.  
MPCnnnnetppaaar  
core/platform MHZ  
ATWLYYWW  
CCCCC  
*MMMMM  
YWWLAZ  
MAPBGA  
Notes:  
ATWLYYWW is the traceability code.  
CCCCC is the country code.  
MMMMM is the mask number.  
YWWLAZ is the assembly traceability code.  
Figure 45. Freescale Part Marking for MAPBGA Devices  
Table 64 shows the SVR Settings.  
Table 64. SVR Settings  
Device  
MPC8306  
Note: PVR = 0x8085_0020  
Package  
MAPBGA  
SVR (Rev 1.0)  
0x8110_0210  
SVR (Rev 1.1)  
0x8110_0211  
MPC8306 PowerQUICC II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 0  
74  
Freescale Semiconductor  
Document Revision History  
26 Document Revision History  
Table 65 provides a revision history for this hardware specification.  
Table 65. Document Revision History  
Rev.  
No.  
Date  
Substantive Change(s)  
0
03/2011 Initial Release.  
MPC8306 PowerQUICC II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 0  
Freescale Semiconductor  
75  
How to Reach Us:  
Home Page:  
www.freescale.com  
Web Support:  
http://www.freescale.com/support  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor, Inc.  
Technical Information Center, EL516  
2100 East Elliot Road  
Tempe, Arizona 85284  
1-800-521-6274 or  
Information in this document is provided solely to enable system and software  
implementers to use Freescale Semiconductor products. There are no express or  
implied copyright licenses granted hereunder to design or fabricate any integrated  
circuits or integrated circuits based on the information in this document.  
+1-480-768-2130  
www.freescale.com/support  
Freescale Semiconductor reserves the right to make changes without further notice to  
any products herein. Freescale Semiconductor makes no warranty, representation or  
guarantee regarding the suitability of its products for any particular purpose, nor does  
Freescale Semiconductor assume any liability arising out of the application or use of  
any product or circuit, and specifically disclaims any and all liability, including without  
limitation consequential or incidental damages. “Typical” parameters which may be  
provided in Freescale Semiconductor data sheets and/or specifications can and do  
vary in different applications and actual performance may vary over time. All operating  
parameters, including “Typicals” must be validated for each customer application by  
customer’s technical experts. Freescale Semiconductor does not convey any license  
under its patent rights nor the rights of others. Freescale Semiconductor products are  
not designed, intended, or authorized for use as components in systems intended for  
surgical implant into the body, or other applications intended to support or sustain life,  
or for any other application in which the failure of the Freescale Semiconductor product  
could create a situation where personal injury or death may occur. Should Buyer  
purchase or use Freescale Semiconductor products for any such unintended or  
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor  
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all  
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,  
directly or indirectly, any claim of personal injury or death associated with such  
unintended or unauthorized use, even if such claim alleges that Freescale  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
www.freescale.com/support  
Japan:  
Freescale Semiconductor Japan Ltd.  
Headquarters  
ARCO Tower 15F  
1-8-1, Shimo-Meguro, Meguro-ku  
Tokyo 153-0064  
Japan  
0120 191014 or  
+81 3 5437 9125  
support.japan@freescale.com  
Asia/Pacific:  
Freescale Semiconductor China Ltd.  
Exchange Building 23F  
No. 118 Jianguo Road  
Chaoyang District  
Semiconductor was negligent regarding the design or manufacture of the part.  
Beijing 100022  
China  
+86 10 5879 8000  
support.asia@freescale.com  
Freescale, the Freescale logo, CodeWarrior, ColdFire, PowerQUICC,  
StarCore, and Symphony are trademarks of Freescale Semiconductor, Inc.  
Reg. U.S. Pat. & Tm. Off. CoreNet, QorIQ, QUICC Engine, and VortiQa are  
trademarks of Freescale Semiconductor, Inc. All other product or service  
names are the property of their respective owners. The Power Architecture  
and Power.org word marks and the Power and Power.org logos and related  
marks are trademarks and service marks licensed by Power.org. RapidIO is  
a registered trademark of the RapidIO Trade Association. IEEE 1588,  
802.11i, 802.3 and 1149.1 are registered trademarks of the Institute of  
Electrical and Electronics Engineers, Inc. (IEEE). This product is not  
endorsed or approved by the IEEE.  
For Literature Requests Only:  
Freescale Semiconductor  
Literature Distribution Center  
1-800 441-2447 or  
+1-303-675-2140  
Fax: +1-303-675-2150  
LDCForFreescaleSemiconductor  
@hibbertgroup.com  
© 2011 Freescale Semiconductor, Inc.  
Document Number: MPC8306EC  
Rev. 0  
03/2011  

相关型号:

MPC8306S

PowerQUICC II Pro Processor
FREESCALE

MPC8306SEC

PowerQUICC II Pro Integrated Communications Processor Family Hardware Specifications
FREESCALE

MPC8306VMADDCA

32-BIT, 266MHz, RISC PROCESSOR, PBGA369, 19 MM X 19 MM, 0.80 MM PITCH, LEAD FREE, PLASTIC, MAPBGA-369
NXP

MPC8308

PowerQUICC II Pro Processor
FREESCALE

MPC8308-RDB

MPC8308 PowerQUICC II Pro processor up
FREESCALE

MPC8308CVMADDA

MPC8308 PowerQUICC II Pro Processor Hardware Specification
FREESCALE

MPC8308CVMAFDA

MPC8308 PowerQUICC II Pro Processor Hardware Specification
FREESCALE

MPC8308CVMAGDA

MPC8308 PowerQUICC II Pro Processor Hardware Specification
FREESCALE

MPC8308VMADDA

MPC8308 PowerQUICC II Pro Processor Hardware Specification
FREESCALE

MPC8308VMADDA

PowerQUICC, Power Architecture SoC 266MHz, DDR2, PCIe, GbE, USB, 0 to 105C, Rev 1.1
NXP

MPC8308VMAFD

IC,MICROPROCESSOR,32-BIT,CMOS,BGA,473PIN,PLASTIC
ROCHESTER

MPC8308VMAFDA

MPC8308 PowerQUICC II Pro Processor Hardware Specification
FREESCALE