MSC8122TMP6400V [FREESCALE]

Quad Core 16-Bit Digital Signal Processor; 四核的16位数字信号处理器
MSC8122TMP6400V
型号: MSC8122TMP6400V
厂家: Freescale    Freescale
描述:

Quad Core 16-Bit Digital Signal Processor
四核的16位数字信号处理器

数字信号处理器
文件: 总88页 (文件大小:2993K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MSC8122  
Rev. 13, 10/2006  
Freescale Semiconductor  
Technical Data  
MSC8122  
Quad Core 16-Bit Digital Signal Processor  
The raw processing power of  
this highly integrated system-  
on- a-chip device will enable  
developers to create next-  
generation networking  
SC140  
SC140  
SC140  
SC140  
Extended Core  
Extended Core  
Extended Core  
Extended Core  
MQBus  
128  
128  
products that offer  
tremendous channel  
SQBus  
Boot  
ROM  
64  
Local Bus  
densities, while maintaining  
system flexibility, scalability,  
and upgradeability. The  
MSC8122 is offered in three  
core speed levels: 300, 400,  
and 500 MHz.  
IP Master  
32 Timers  
UART  
M2  
RAM  
Memory  
Controller  
RS-232  
4 TDMs  
GPIO Pins  
Interrupts  
PLL/Clock  
PLL  
IPBus  
32  
GPIO  
GIC  
What’s New?  
Rev. 13 includes the following:  
Chapter 2 updates Table 2-13 to  
add timings 17 and 18 for IRQs.  
JTAG Port  
JTAG  
8 Hardware  
Semaphores  
MII/RMII/SMII  
DSI Port  
Ethernet  
Internal Local Bus  
SIU  
64  
Direct  
Slave  
Interface  
(DSI)  
32/64  
System  
Interface  
DMA  
Bridge  
Registers  
System Bus  
32/64  
64  
Memory  
Controller  
Internal System Bus  
Figure 1. MSC8122 Block Diagram  
The MSC8122 is a highly integrated system-on-a-chip that combines four SC140 extended cores with an RS-232  
serial interface, four time-division multiplexed (TDM) serial interfaces, thirty-two general-purpose timers, a  
flexible system interface unit (SIU), an Ethernet interface, and a multi-channel DMA engine. The four extended  
cores can deliver a total 4800/6400/8000 DSP MMACS performance at 300/400/500 MHz.  
Each core has four arithmetic logic units (ALUs), internal memory, a write buffer, and two interrupt controllers.  
The MSC8122 targets high-bandwidth highly computational DSP applications and is optimized for wireless  
transcoding and packet telephony as well as high-bandwidth base station applications. The MSC8122 delivers  
enhanced performance while maintaining low power dissipation and greatly reducing system cost.  
© Freescale Semiconductor, Inc., 2004, 2006. All rights reserved.  
Table of Contents  
Table of Contents  
Features...............................................................................................................................................................iv  
Product Documentation ......................................................................................................................................ix  
Chapter 1  
Signals/Connections  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
1.8  
1.9  
Power Signals ...................................................................................................................................................1-3  
Clock Signals....................................................................................................................................................1-3  
Reset and Configuration Signals.......................................................................................................................1-3  
Direct Slave Interface, System Bus, Ethernet, and Interrupt Signals ...............................................................1-4  
Memory Controller Signals ............................................................................................................................1-14  
GPIO, TDM, UART, and Timer Signals.........................................................................................................1-16  
Dedicated Ethernet Signals.............................................................................................................................1-23  
EOnCE Event and JTAG Test Access Port Signals........................................................................................1-24  
Reserved Signals.............................................................................................................................................1-24  
Chapter 2  
Specifications  
2.1  
2.2  
2.3  
2.4  
2.5  
Maximum Ratings.............................................................................................................................................2-1  
Recommended Operating Conditions...............................................................................................................2-2  
Thermal Characteristics....................................................................................................................................2-3  
DC Electrical Characteristics............................................................................................................................2-3  
AC Timings.......................................................................................................................................................2-4  
Chapter 3  
Chapter 4  
Packaging  
3.1  
Package Description .........................................................................................................................................3-1  
3.2  
MSC8122 Package Mechanical Drawing.......................................................................................................3-20  
Design Considerations  
4.1  
4.2  
4.3  
4.4  
4.5  
Start-up Sequencing Recommendations...........................................................................................................4-1  
Power Supply Design Considerations...............................................................................................................4-1  
Connectivity Guidelines ...................................................................................................................................4-3  
External SDRAM Selection..............................................................................................................................4-4  
Thermal Considerations....................................................................................................................................4-5  
Data Sheet Conventions  
OVERBAR  
Used to indicate a signal that is active when pulled low (For example, the RESET pin is active  
when low.)  
“asserted”  
“deasserted”  
Examples:  
Means that a high true (active high) signal is high or that a low true (active low) signal is low  
Means that a high true (active high) signal is low or that a low true (active low) signal is high  
Signal/Symbol  
Logic State  
True  
Signal State  
Asserted  
Voltage  
VIL/VOL  
VIH/VOH  
VIH/VOH  
VIL/VOL  
PIN  
PIN  
PIN  
PIN  
False  
Deasserted  
Asserted  
True  
False  
Deasserted  
Note: Values for VIL, VOL, VIH, and VOH are defined by individual product specifications.  
MSC8122 Technical Data, Rev. 13  
ii  
Freescale Semiconductor  
Data Sheet Conventions  
Address  
Register  
File  
Data ALU  
Register  
File  
Program  
Sequencer  
Address  
ALU  
Data  
ALU  
SC140  
Core  
JTAG  
EOnCE  
Power  
Management  
M1  
RAM  
SC140 Core  
64  
Xa  
64  
Xb  
P
128  
Instruction  
Cache  
QBus  
Interface  
QBC  
128  
QBus  
PIC  
IRQs  
QBus  
Bank 1  
QBus  
Bank 3  
LIC  
IRQs  
MQBus  
SQBus  
128  
128  
64  
Local Bus  
Notes: 1. The arrows show the data transfer direction.  
2. The QBus interface includes a bus switch, write buffer, fetch unit, and a  
control unit that defines four QBus banks. In addition, the QBC handles internal  
memory contentions.  
Figure 2. SC140 Extended Core Block Diagram  
MSC8122 Technical Data, Rev. 13  
Freescale Semiconductor  
iii  
Features  
Features  
Feature  
Description  
Four SC140 cores:  
Up to 8000 MMACS using 16 ALUs running at up to 500 MHz.  
A total of 1436 KB of internal SRAM (224 KB per core + 16 KB ICache per core + the shared M2 memory).  
Each SC140 core provides the following:  
Up to 2000 MMACS using an internal 500 MHz clock. A MAC operation includes a multiply-accumulate  
command with the associated data move and pointer update.  
4 ALUs per SC140 core.  
16 data registers, 40 bits each.  
27 address registers, 32 bits each.  
Hardware support for fractional and integer data types.  
Very rich 16-bit wide orthogonal instruction set.  
Up to six instructions executed in a single clock cycle.  
Variable-length execution set (VLES) that can be optimized for code density and performance.  
IEEE Std 1149.1™ JTAG port.  
SC140 Cores  
Enhanced on-device emulation (EOnCE) with real-time debugging capabilities.  
Each SC140 core is embedded within an extended core that provides the following:  
224 KB M1 memory that is accessed by the SC140 core with zero wait states.  
Support for atomic accesses to the M1 memory.  
16 KB instruction cache, 16 ways.  
A four-entry write buffer that frees the SC140 core from waiting for a write access to finish.  
External cache support by asserting the global signal (GBL) when predefined memory banks are accessed.  
Programmable interrupt controller (PIC).  
Extended Core  
Local interrupt controller (LIC).  
476 KB M2 memory (shared memory) working at the core frequency, accessible from the local bus, and  
accessible from all four SC140 cores using the MQBus.  
4 KB bootstrap ROM.  
Multi-Core Shared  
Memories  
A QBus protocol multi-master bus connecting the four SC140 cores to the M2 memory.  
Data bus access of up to 128-bit read and up to 64-bit write.  
Operation at the SC140 core frequency.  
A central efficient round-robin arbiter controlling SC140 core access on the MQBus.  
Atomic operation control of access to M2 memory by the four SC140 cores and the local bus.  
M2-Accessible Multi-  
Core Bus (MQBus)  
Generates up to 500 MHz core clock and up to166 MHz bus clocks for the 60x-compatible local and system  
buses and other modules.  
Internal PLL  
PLL values are determined at reset based on configuration signal values.  
64/32-bit data and 32-bit address 60x bus.  
Support for multiple-master designs.  
Four-beat burst transfers (eight-beat in 32-bit wide mode).  
Port size of 64, 32, 16, and 8 controlled by the internal memory controller.  
Bus can access external memory expansion or off-device peripherals, or it can enable an external host device to  
access internal resources.  
60x-Compatible  
System Bus  
Slave support, direct access by an external host to internal resources including the M1 and M2 memories.  
On-device arbitration between up to four master devices.  
A 32/64-bit wide slave host interface that operates only as a slave device under the control of an external host  
processor.  
21–25 bit address, 32/64-bit data.  
Direct access by an external host to internal and external resources, including the M1 and the M2 memories as  
well as external devices on the system bus.  
Synchronous and asynchronous accesses, with burst capability in the synchronous mode.  
Dual or Single strobe modes.  
Write and read buffers improve host bandwidth.  
Byte enable signals enables 1, 2, 4, and 8 byte write access granularity.  
Sliding window mode enables access with reduced number of address pins.  
Chip ID decoding enables using one CS signal for multiple DSPs.  
Broadcast CS signal enables parallel write to multiple DSPs.  
Big-endian, little-endian, and munged little-endian support.  
Direct Slave  
Interface (DSI)  
64-bit DSI, 32-bit system bus.  
32-bit DSI, 64-bit system bus.  
32-bit DSI, 32-bit system bus.  
3-Mode Signal  
Multiplexing  
MSC8122 Technical Data, Rev. 13  
iv  
Freescale Semiconductor  
Features  
Feature  
Description  
Flexible eight-bank memory controller:  
Three user-programmable machines (UPMs), general-purpose chip-select machine (GPCM), and a page-mode  
SDRAM machine.  
Glueless interface to SRAM, page mode SDRAM, DRAM, EPROM, Flash memory, and other user-definable  
peripherals.  
Byte enables for either 64-bit or 32-bit bus width mode.  
Eight external memory banks (banks 0–7). Two additional memory banks (banks 9, 11) control IPBus  
peripherals and internal memories. Each bank has the following features:  
32-bit address decoding with programmable mask.  
Variable block sizes (32 KB to 4 GB).  
Selectable memory controller machine.  
Memory Controller  
Two types of data errors check/correction: normal odd/even parity and read-modify-write (RMW) odd/even  
parity for single accesses.  
Write-protection capability.  
Control signal generation machine selection on a per-bank basis.  
Support for internal or external masters on the system bus.  
Data buffer controls activated on a per-bank basis.  
Atomic operation.  
RMW data parity check (on system bus only).  
Extensive external memory-controller/bus-slave support.  
Parity byte select pin, which enables a fast, glueless connection to RMW-parity devices (on the system bus  
only).  
Data pipeline to reduce data set-up time for synchronous devices.  
16 time-multiplexed unidirectional channels.  
Services up to four external peripherals.  
Supports DONE or DRACK protocol on two external peripherals.  
Each channel group services 16 internal requests generated by eight internal FIFOs. Each FIFO generates:  
—A watermark request to indicate that the FIFO contains data for the DMA to empty and write to the destination.  
—A hungry request to indicate that the FIFO can accept more data.  
Priority-based time-multiplexing between channels using 16 internal priority levels.  
Round-robin time-multiplexing between channels.  
Multi-Channel DMA  
Controller  
A flexible channel configuration:  
All channels support all features.  
All channels connect to the system bus or local bus.  
Flyby transfers in which a single data access is transferred directly from the source to the destination without  
using a DMA FIFO.  
Up to four independent TDM modules, each with the following features:  
Optional operating configurations:  
Totally independent receive and transmit channels, each having one data line, one clock line, and one frame  
sync line.  
Four data lines with one clock and one frame sync shared among the transmit and receive lines.  
Connects gluelessly to most T1/E1 framers as well as to common buses such as the ST-BUS.  
Hardware A-law/μ-law conversion.  
Up to 62.5 Mbps per TDM (62.5 MHz bit clock if one data line is used, 31.25 MHz if two data lines are used,  
15.63 MHz if four data lines are used).  
Up to 256 channels.  
Up to 16 MB per channel buffer (granularity 8 bytes), where A/μ law buffer size is double (granularity 16 byte).  
Receive buffers share one global write offset pointer that is written to the same offset relative to their start  
address.  
Time-Division  
Multiplexing (TDM)  
Transmit buffers share one global read offset pointer that is read from the same offset relative to their start  
address.  
All channels share the same word size.  
Two programmable receive and two programmable transmit threshold levels with interrupt generation that can  
be used, for example, to implement double buffering.  
Each channel can be programmed to be active or inactive.  
2-, 4-, 8-, or 16-bit channels are stored in the internal memory as 2-, 4-, 8-, or 16-bit channels, respectively.  
The TDM Transmitter Sync Signal (TxTSYN) can be configured as either input or output.  
Frame Sync and Data signals can be programmed to be sampled either on the rising edge or on the falling edge  
of the clock.  
Frame sync can be programmed as active low or active high.  
Selectable delay (0–3 bits) between the Frame Sync signal and the beginning of the frame.  
MSB or LSB first support.  
MSC8122 Technical Data, Rev. 13  
Freescale Semiconductor  
v
Features  
Feature  
Description  
Designed to comply with IEEE® Std 802® including Std. 802.3™, 802.3u™, 802.3x™, and 802.3ac™.  
Three Ethernet physical interfaces:  
10/100 Mbps MII.  
10/100 Mbps RMII.  
10/100 Mbps SMII.  
Full and half-duplex support.  
Full-duplex flow control (automatic PAUSE frame generation or software programmed PAUSE frame generation  
and recognition).  
Out-of-sequence transmit queue for initiating flow-control.  
Programmable maximum frame length supports jumbo frames (up to 9.6k) and virtual local area network (VLAN)  
tags and priority.  
Retransmission from transmit FIFO following a collision.  
CRC generation and verification of inbound/outbound packets.  
Address recognition:  
Each exact match can be programmed to be accepted or rejected.  
Broadcast address (accept/reject).  
Exact match 48-bit individual (unicast) address.  
Hash (256-bit hash) check of individual (unicast) addresses.  
Hash (256-bit hash) check of group (multicast) addresses.  
Promiscuous mode.  
Pattern matching:  
Up to 16 unique 4-byte patterns.  
Pattern match on bit-basis.  
Ethernet Controller  
Matching range up to 256 bytes deep into the frame.  
Offsets to a maximum of 252 bytes.  
Programmable pattern size in 4-byte increments up to 64 bytes.  
Accept or reject frames if a match is detected.  
Up to eight unicast addresses for exact matches.  
Pattern matching accepts/rejects IP addresses.  
Filing of receive frames based on pattern match; prioritization of frames.  
Insertion with expansion or replacement for transmit frames; VLAN tag insertion.  
RMON statistics.  
Master DMA on the local bus for fetching descriptors and accessing the buffers.  
Ethernet PHY can be exposed either on GPIO pins or on the high most significant bits of the DSI/system when  
the DSI and the system bus are both 32 bits.  
MPC8260 8-byte width buffer descriptor mode as well as 32 byte width buffer descriptor mode.  
MII Bridge (MIIGSK):  
Programmable selection of the 50 MHz RMII reference clock source (external or internal).  
Independent 2 bit wide transmit and receive data paths.  
Six operating modes.  
Four general-purpose control signals.  
Programmable transmitted inter-frame bits to support inter-frame gap for frames in the SMII domain.  
SMII features:  
Multiplexed only with GPIO signals  
Convey complete MII information between the PHY and MAC.  
Allow direct MAC-to-MAC communication in SMII mode.  
Can generate an interrupt request line while receiving inter-frame segments.  
MSC8122 Technical Data, Rev. 13  
vi  
Freescale Semiconductor  
Features  
Feature  
Description  
Two signals for transmit data and receive data.  
No clock, asynchronous mode.  
Can be serviced either by the SC140 DSP cores or an external host on the system bus or the DSI.  
Full-duplex operation.  
Standard mark/space non-return-to-zero (NRZ) format.  
13-bit baud rate selection.  
Programmable 8-bit or 9-bit data format.  
Separately enabled transmitter and receiver.  
Programmable transmitter output polarity.  
Two receiver wake-up methods:  
Idle line wake-up.  
Address mark wake-up.  
Separate receiver and transmitter interrupt requests.  
Nine flags, the first five can generate interrupt request:  
Transmitter empty.  
UART  
Transmission complete.  
Receiver full.  
Idle receiver input.  
Receiver overrun.  
Receiver active.  
Noise error.  
Framing error.  
Parity error.  
Receiver framing error detection.  
Hardware parity checking.  
1/16 bit-time noise detection.  
Maximum bit rate 6.25 Mbps.  
Single-wire and loop operations.  
32 bidirectional signal lines that either serve the peripherals or act as programmable I/O ports.  
Each port can be programmed separately to serve up to two dedicated peripherals, and each port supports  
open-drain output mode.  
General-Purpose I/O  
(GPIO) Port  
Booting from a serial EEPROM.  
Uses GPIO timing.  
2
I C Software Module  
Two modules of 16 timers each.  
Cyclic or one-shot.  
Input clock polarity control.  
Interrupt request when counting reaches a programmed threshold.  
Pulse or level interrupts.  
Dynamically updated programmed threshold.  
Read counter any time.  
Timers  
Watchdog mode for the timers that connect to the device.  
Eight coded hardware semaphores, locked by simple write access without need for read-modify-write mechanism.  
Hardware  
Semaphores  
Consolidation of chip maskable interrupt and non-maskable interrupt sources and routing to INT_OUT,  
NMI_OUT, and to the cores.  
Global Interrupt  
Controller (GIC)  
Generation of 32 virtual interrupts (eight to each SC140 core) by a simple write access.  
Generation of virtual NMI (one to each SC140 core) by a simple write access.  
Low power CMOS design.  
Separate power supply for internal logic (1.2 V or 1.1 V) and I/O (3.3 V).  
Low-power standby modes.  
Reduced Power  
Dissipation  
Optimized power management circuitry (instruction-dependent, peripheral-dependent, and mode-dependent).  
0.8 mm pitch flip-chip plastic ball-grid array (FC-PBGA) with lead-free or lead-bearing spheres.  
431-connection (ball).  
20 mm × 20 mm.  
Packaging  
The real-time operating system (RTOS) fully supports device architecture (multi-core, memory hierarchy, ICache,  
timers, DMA controller, interrupts, peripherals), as follows:  
High-performance and deterministic, delivering predictive response time.  
Optimized to provide low interrupt latency with high data throughput.  
Preemptive and priority-based multitasking.  
Fully interrupt/event driven.  
Small memory footprint.  
Comprehensive set of APIs.  
Real-Time Operating  
System (RTOS)  
MSC8122 Technical Data, Rev. 13  
Freescale Semiconductor  
vii  
Features  
Feature  
Description  
One instance of kernel code in all four SC140 cores.  
Dynamic and static memory allocation from local memory (M1) and shared memory (M2).  
Multi-Core Support  
Enables transparent inter-task communications between tasks running inside the SC140 cores and the other tasks  
running in on-board devices or remote network devices:  
Distributed System  
Support  
Messaging mechanism between tasks using mailboxes and semaphores.  
Networking support; data transfer between tasks running inside and outside the device using networking  
protocols.  
Includes integrated device drivers for such peripherals as TDM, UART, and external buses.  
Task debugging utilities integrated with compilers and vendors.  
Board support package (BSP) for the application development system (ADS).  
Integrated development environment (IDE):  
C/C++ compiler with in-line assembly so developers can generate highly optimized DSP code. Translates  
C/C++ code into parallel fetch sets and maintains high code density.  
Librarian. User can create libraries for modularity.  
A collection of C/C++ functions for developer use.  
Highly efficient linker to produce executables from object code.  
Seamlessly integrated real-time, non-intrusive multi-mode debugger for debugging highly optimized DSP  
algorithms. The developer can choose to debug in source code, assembly code, or mixed mode.  
Device simulation models enable design and simulation before hardware availability.  
Profiler using a patented binary code instrumentation (BCI) technique helps developers identify program  
design inefficiencies.  
Software Support  
Version control. Metrowerks® CodeWarrior® includes plug-ins for ClearCase, Visual SourceSafe, and  
CVS.  
External memory.  
External host.  
UART.  
Boot Options  
TDM.  
2
I C  
Host debug through single JTAG connector supports both processors.  
MSC8103 as the MSC8122 host with both devices on the board. The MSC8103 system bus connects to the  
MSC8122 DSI.  
Flash memory for stand-alone applications.  
Communications ports:  
10/100Base-T.  
155 Mbit ATM over Optical.  
T1/E1 TDM interface.  
MSC8122ADS  
H.110.  
Voice codec.  
RS-232.  
High-density (MICTOR) logic analyzer connectors to monitor MSC8122 signals  
6U CompactPCI form factor.  
Emulates MSC8122 DSP farm by connecting to three other ADS boards.  
MSC8122 Technical Data, Rev. 13  
viii  
Freescale Semiconductor  
Product Documentation  
Product Documentation  
The documents listed in Table 1 are required for a complete description of the MSC8122 and are necessary to  
design properly with the part. Documentation is available from a local Freescale distributor, a Freescale  
semiconductor sales office, or a Freescale Literature Distribution Center. For documentation updates, visit the  
Freescale DSP website. See the contact information on the back of this document.  
Table 1. MSC8122 Documentation  
Name  
Description  
Order Number  
MSC8122  
MSC8122  
Technical Data  
MSC8122 features list and physical, electrical, timing, and package specifications  
MSC8122  
User’s Guide  
User information includes system functionality, getting started, and programming  
topics  
Availability TBD  
MSC8122  
Reference Manual  
Detailed functional description of the MSC8122 memory and peripheral configuration, MSC8122RM  
operation, and register programming  
StarCore™ SC140 DSP  
Core Reference Manual  
Detailed description of the SC140 family processor core and instruction set  
MNSC140CORE  
Application Notes  
Documents describing specific applications or optimized device operation including  
code examples  
Refer to the MSC8122  
product page.  
MSC8122 Technical Data, Rev. 13  
Freescale Semiconductor  
ix  
MSC8122 Technical Data, Rev. 13  
x
Freescale Semiconductor  
Signals/Connections  
1
The MSC8122 external signals are organized into functional groups, as shown in Table 1-1 and Figure 1-1.  
Table 1-1 lists the functional groups, the number of signal connections in each group, and references the table that  
gives a detailed listing of multiplexed signals within each group. Figure 1-1 shows MSC8122 external signals  
organized by function.  
Table 1-1. MSC8122 Functional Signal Groupings  
Number of  
Functional Group  
Signal  
Description  
Connections  
Power (V , V , and GND)  
155  
3
Table 1-2 on page 1-3  
Table 1-3 on page 1-3  
Table 1-4 on page 1-3  
Table 1-5 on page 1-4  
Table 1-6 on page 1-14  
Table 1-7 on page 1-16  
DD  
CC  
Clock  
Reset and configuration  
4
DSI, system bus, Ethernet, and interrupts  
Memory controller  
210  
16  
32  
General-purpose input/output (GPIO), time-division multiplexed (TDM) interface,  
universal asynchronous receiver/ transmitter (UART), Ethernet, and timers  
Dedicated Ethernet signals  
3
7
1
Table 1-8 on page 1-23  
Table 1-9 on page 1-24  
Table 1-10 on page 1-24  
EOnCE and JTAG test access port  
Reserved (denotes connections that are always reserved)  
MSC8122 Technical Data, Rev. 13  
Freescale Semiconductor  
1-1  
Signals/Connections  
HD0/SWTE  
HD1/DSISYNC  
HD2/DSI64  
HD3/MODCK1  
HD4/MODCK2  
HD5/CNFGS  
1
1
1
1
1
1
26  
8
1
1
1
1
2
1
1
1
1
4
1
1
1
1
1
1
1
3
3
1
19  
4
4
32 A[0–31]  
1
1
3
5
4
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
TT0/HA7  
TT1  
D
S
I
TT[2–4]/CS[5–7]  
CS[0–4]  
TSZ[0–3]  
TBST  
/
HD[6–31]  
S
Y
S.  
B
U
S
/
E
T
H
E
R
N
E
T
HD[32-39]/D[32-39]/reserved  
HD40/D40/ETHRXD0  
HD41/D41/ETHRXD1  
HD42/D42/ETHRXD2/reserved  
HD43/D43/ETHRXD3/reserved  
HD[44-45]/D[44-45]/reserved  
HD46/D46/ETHTXD0  
HD47/D47/ETHTXD1  
HD48/D48/ETHTXD2/reserved  
HD49/D49/ETHTXD3/reserved  
HD[50-53]/D[50-53]/reserved  
HD54/D54/ETHTX_EN  
HD55/D55/ETHTX_ER/reserved  
IRQ1/GBL  
IRQ3/BADDR31  
IRQ2/BADDR30  
IRQ5/BADDR29  
BADDR28  
BADDR27  
BR  
BG  
DBG  
S
Y
S
T
E
M
ABB/IRQ4  
DBB/IRQ5  
TS  
AACK  
ARTRY  
HD56/D56/ETHRX_DV/ETHCRS_DV  
HD57/D57/ETHRX_ER  
32 D[0–31]  
HD58/D58/ETHMDC  
HD59/D59/ETHMDIO  
HD60/D60/ETHCOL/reserved  
HD[61–63]/D[61-63]/reserved  
HCID[0–2]  
1
1
1
1
1
1
1
1
1
reserved/DP0/DREQ1/EXT_BR2  
IRQ1/DP1/DACK1/EXT_BG2  
IRQ2/DP2/DACK2/EXT_DBG2  
IRQ3/DP3/DREQ2/EXT_BR3  
IRQ4/DP4/DACK3/EXT_DBG3  
IRQ5/DP5/DACK4/EXT_BG3  
IRQ6/DP6/DREQ3  
B
U
S
HCID3/HA8  
HA[11–29]  
M
E
M
C
HWBS[0–3]/HDBS[0–3]/HWBE[0–3]/HDBE[0–3]  
HWBS[4–7]/HDBS[4–7]/HWBE[4–7]/HDBE[4–7]/  
IRQ7/DP7/DREQ4  
TA  
PWE[4–7]/PSDDQM[4–7]/PBS[4–7]  
HRDS/HRW/HRDE  
1
1
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
3
1
4
1
1
1
1
1
1
TEA  
HBRST  
HDST[0–1]/HA[9–10]  
NMI  
D
S
I
NMI_OUT  
PSDVAL  
HCS  
HBCS  
HTA  
HCLKIN  
IRQ7/INT_OUT  
BCTL0  
BCTL1/CS5  
M
E
M
C
GPIO0/CHIP_ID0/IRQ4/ETHTXD0  
GPIO1/TIMER0/CHIP_ID1/IRQ5/ETHTXD1  
GPIO2/TIMER1/CHIP_ID2/IRQ6  
GPIO3/TDM3TSYN/IRQ1/ETHTXD2  
GPIO4/TDM3TCLK/IRQ2/ETHTX_ER  
GPIO5/TDM3TDAT/IRQ3/ETHRXD3  
GPIO6/TDM3RSYN/IRQ4/ETHRXD2  
GPIO7/TDM3RCLK/IRQ5/ETHTXD3  
GPIO8/TDM3RDAT/IRQ6/ETHCOL  
GPIO9/TDM2TSYN/IRQ7/ETHMDIO  
GPIO10/TDM2TCLK/IRQ8/ETHRX_DV/ETHCRS_DV/NC  
GPIO11/TDM2TDAT/IRQ9/ETHRX_ER/ETHTXD  
GPIO12/TDM2RSYN/IRQ10/ETHRXD1/ETHSYNC  
GPIO13/TDM2RCLK/IRQ11/ETHMDC  
GPIO14/TDM2RDAT/IRQ12/ETHRXD0/NC  
BM[0–2]/TC[0–2]/BNKSEL[0–2]  
ALE  
G
P
I
O
/
PWE[0–3]/PSDDQM[0–3]/PBS[0–3]  
PSDA10/PGPL0  
PSDWE/PGPL1  
S
Y
S
POE/PSDRAS/PGPL2  
PSDCAS/PGPL3  
PGTA/PUPMWAIT/PGPL4/PPBS  
T
D
M
/
E
T
H
E
R
N
E
T
/
PSDAMUX/PGPL5  
De  
bug  
C
1
1
1
1
1
EE0  
EE1  
CLKOUT  
Reserved  
CLKIN  
L
K
R
E
S
E
T
GPIO15/TDM1TSYN/DREQ1  
GPIO16/TDM1TCLK/DONE1/DRACK1  
GPIO17/TDM1TDAT/DACK1  
GPIO18/TDM1RSYN/DREQ2  
GPIO19/TDM1RCLK/DACK2  
GPIO20/TDM1RDAT  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
PORESET  
HRESET  
SRESET  
RSTCONF  
TMS  
J
T
A
G
TDI  
TCK  
TRST  
TDO  
T
I
GPIO21/TDM0TSYN  
GPIO22/TDM0TCLK/DONE2/DRACK2  
GPIO23/TDM0TDAT/IRQ13  
GPIO24/TDM0RSYN/IRQ14  
GPIO25/TDM0RCLK/IRQ15  
GPIO26/TDM0RDAT  
M
E
R
S
/
I
2
C
GPIO27/URXD/DREQ1  
GPIO28/UTXD/DREQ2  
GPIO29/CHIP_ID3/ETHTX_EN  
GPIO30/TIMER2/TMCLK/SDA  
GPIO31/TIMER3/SCL  
Ded.  
Eth.  
Net  
1
1
1
ETHRX_CLK/ETHSYNC_IN  
ETHTX_CLK/ETHREF_CLK/ETHCLOCK  
ETHCRS/ETHRXD  
Power signals are: V , V  
DD  
, V  
, GND, GND , and GND  
. Reserved signals can be left unconnected. NC signals must not be connected.  
SYN  
DDH  
CCSYN  
H
Figure 1-1. MSC8122 External Signals  
MSC8122 Technical Data, Rev. 13  
1-2  
Freescale Semiconductor  
Power Signals  
1.1 Power Signals  
Table 1-2. Power and Ground Signal Inputs  
Signal Name  
Description  
V
Internal Logic Power  
dedicated for use with the device core. The voltage should be well-regulated and the input should be provided with  
DD  
V
DD  
an extremely low impedance path to the V power rail.  
DD  
V
V
Input/Output Power  
DDH  
This source supplies power for the I/O buffers. The user must provide adequate external decoupling capacitors.  
System PLL Power  
CCSYN  
V
dedicated for use with the system Phase Lock Loop (PLL). The voltage should be well-regulated and the input  
CC  
should be provided with an extremely low impedance path to the V power rail.  
CC  
GND  
GND  
System Ground  
An isolated ground for the internal processing logic and I/O buffers. This connection must be tied externally to all chip  
ground connections, except GND  
. The user must provide adequate external decoupling capacitors.  
SYN  
System PLL Ground  
SYN  
Ground dedicated for system PLL use. The connection should be provided with an extremely low-impedance path to  
ground.  
1.2 Clock Signals  
Table 1-3. Clock Signals  
Signal Description  
Signal Name  
Type  
CLKIN  
Input  
Clock In  
Primary clock input to the MSC8122 PLL.  
CLKOUT  
Reserved  
Output  
Input  
Clock Out  
The bus clock.  
Reserved. Pull down to ground.  
1.3 Reset and Configuration Signals  
Table 1-4. Reset and Configuration Signals  
Signal Name  
Type  
Signal Description  
PORESET  
Input  
Power-On Reset  
When asserted, this line causes the MSC8122 to enter power-on reset state.  
RSTCONF  
Input  
Reset Configuration  
Used during reset configuration sequence of the chip. A detailed explanation of its function is provided in  
the MSC8122 Reference Manual. This signal is sampled upon deassertion of PORESET.  
Note:  
When PORESET is deasserted, the MSC8122 also samples the following signals:  
• BM[0–2]—Selects the boot mode.  
• MODCK[1–2]—Selects the clock configuration.  
• SWTE—Enables the software watchdog timer.  
• DSISYNC, DSI64, CNFGS, and CHIP_ID[0–3]—Configures the DSI.  
Refer to Table 1-5 for details on these signals.  
HRESET  
SRESET  
Input/Output Hard Reset  
When asserted as an input, this signal causes the MSC8122 to enter hard reset state. After the device  
enters a hard reset state, it drives the signal as an open-drain output.  
Input/Output Soft Reset  
When asserted as an input, this signal causes the MSC8122 to enter soft reset state. After the device  
enters a soft reset state, it drives the signal as an open-drain output.  
MSC8122 Technical Data, Rev. 13  
Freescale Semiconductor  
1-3  
Signals/Connections  
1.4 Direct Slave Interface, System Bus, Ethernet, and  
Interrupt Signals  
The direct slave interface (DSI) is combined with the system bus because they share some common signal lines.  
Individual assignment of a signal to a specific signal line is configured through internal registers. Table 1-5  
describes the signals in this group.  
Note: Although there are fifteen interrupt request (IRQ) connections to the core processors, there are multiple  
external lines that can connect to these internal signal lines. After reset, the default configuration enables  
only IRQ[1–7], but includes two input lines each for IRQ[1–3] and IRQ7. The designer must select one line for  
each required interrupt and reconfigure the other external signal line or lines for alternate functions.  
Additional alternate IRQ lines and IRQ[8–15] are enabled through the GPIO signal lines.  
Table 1-5. DSI, System Bus, Ethernet, and Interrupt Signals  
Signal Name  
Type  
Description  
HD0  
Input/ Output Host Data Bus 0  
Bit 0 of the DSI data bus.  
SWTE  
Input  
Software Watchdog Timer Disable.  
It is sampled on the rising edge of PORESET signal.  
HD1  
Input/ Output Host Data Bus 1  
Bit 1 of the DSI data bus.  
DSISYNC  
Input  
DSI Synchronous  
Distinguishes between synchronous and asynchronous operation of the DSI. It is sampled on the rising  
edge of PORESET signal.  
HD2  
Input/ Output Host Data Bus 2  
Bit 2 of the DSI data bus.  
DSI64  
Input  
DSI 64  
Defines the width of the DSI and SYSTEM Data buses. It is sampled on the rising edge of PORESET  
signal.  
HD3  
Input/ Output Host Data Bus 3  
Bit 3 of the DSI data bus.  
MODCK1  
Input  
Clock Mode 1  
Defines the clock frequencies. It is sampled on the rising edge of PORESET signal.  
HD4  
Input/ Output Host Data Bus 4  
Bit 4 of the DSI data bus.  
MODCK2  
Input  
Clock Mode 2  
Defines the clock frequencies. It is sampled on the rising edge of PORESET signal.  
HD5  
Input/ Output Host Data Bus 5  
Bit 5 of the DSI data bus.  
CNFGS  
Input  
Configuration Source  
One signal out of two that indicates reset configuration mode. It is sampled on the rising edge of  
PORESET signal.  
HD[6–31]  
Input/ Output Host Data Bus 6–31  
Bits 6–31 of the DSI data bus.  
MSC8122 Technical Data, Rev. 13  
1-4  
Freescale Semiconductor  
Direct Slave Interface, System Bus, Ethernet, and Interrupt Signals  
Table 1-5. DSI, System Bus, Ethernet, and Interrupt Signals (Continued)  
Signal Name  
Type  
Description  
HD[32–39]  
Input/ Output Host Data Bus 32–39  
Bits 32–39 of the DSI data bus.  
D[32–39]  
Input/ Output System Bus Data 32–39  
For write transactions, the bus master drives valid data on this bus. For read transactions, the slave drives  
valid data on this bus.  
Reserved  
Input  
If the Ethernet port is enabled and multiplexed with the DSI/System bus, these pins are reserved and can  
be left unconnected.  
HD40  
Input/ Output Host Data Bus 40  
Bit 40 of the DSI data bus.  
D40  
Input/ Output System Bus Data 40  
For write transactions, the bus master drives valid data on this line. For read transactions, the slave drives  
valid data on this bus.  
ETHRXD0  
Input  
Ethernet Receive Data 0  
In MII and RMII modes, bit 0 of the Ethernet receive data.  
HD41  
Input/ Output Host Data Bus 41  
Bit 41 of the DSI data bus.  
D41  
Input/ Output System Bus Data 41  
For write transactions, the bus master drives valid data on this line. For read transactions, the slave drives  
valid data on this bus.  
ETHRXD1  
Input  
Ethernet Receive Data 1  
In MII and RMII modes, bit 1 of the Ethernet receive data.  
HD42  
Input/ Output Host Data Bus 42  
Bit 42 of the DSI data bus.  
D42  
Input/ Output System Bus Data 42  
For write transactions, the bus master drives valid data on this line. For read transactions, the slave drives  
valid data on this bus.  
ETHRXD2  
Input  
Input  
Ethernet Receive Data 2  
In MII mode only, bit 2 of the Ethernet receive data.  
Reserved  
In RMII mode, this pin is reserved and can be left unconnected.  
HD43  
Input/ Output Host Data Bus 43  
Bit 43 of the DSI data bus.  
D43  
Input/ Output System Bus Data 43  
For write transactions, the bus master drives valid data on this line. For read transactions, the slave drives  
valid data on this bus.  
ETHRXD3  
Input  
Input  
Ethernet Receive Data 3  
In MII mode only, bit 3 of the Ethernet receive data.  
Reserved  
In RMII mode, this pin is reserved and can be left unconnected.  
HD[44–45]  
Input/ Output Host Data Bus 44–45  
Bits 44–45 of the DSI data bus.  
D[44–56]  
Reserved  
Input/ Output System Bus Data 44–45  
For write transactions, the bus master drives valid data on this bus. For read transactions, the slave drives  
valid data on this bus.  
Input  
If the Ethernet port is enabled and multiplexed with the DSI/System bus, these pins are reserved and can  
be left unconnected.  
MSC8122 Technical Data, Rev. 13  
Freescale Semiconductor  
1-5  
Signals/Connections  
Signal Name  
Table 1-5. DSI, System Bus, Ethernet, and Interrupt Signals (Continued)  
Type Description  
HD46  
Input/ Output Host Data Bus 46  
Bit 46 of the DSI data bus.  
D46  
Input/ Output System Bus Data 46  
For write transactions, the bus master drives valid data on this line. For read transactions, the slave drives  
valid data on this bus.  
ETHTXD0  
Output  
Ethernet Transmit Data 0  
In MII and RMII modes, bit 0 of the Ethernet transmit data.  
HD47  
Input/ Output Host Data Bus 47  
Bit 47 of the DSI data bus.  
D47  
Input/ Output System Bus Data 47  
For write transactions, the bus master drives valid data on this line. For read transactions, the slave drives  
valid data on this bus.  
ETHTXD1  
Output  
Ethernet Transmit Data 1  
In MII and RMII modes, bit 1 of the Ethernet transmit data.  
HD48  
Input/ Output Host Data Bus 48  
Bit 48 of the DSI data bus.  
D48  
Input/ Output System Bus Data 48  
For write transactions, the bus master drives valid data on this line. For read transactions, the slave drives  
valid data on this bus.  
ETHTXD2  
Output  
Input  
Ethernet Transmit Data 2  
In MII mode only, bit 2 of the Ethernet transmit data.  
Reserved  
In RMII mode, this pin is reserved and can be left unconnected.  
HD49  
Input/ Output Host Data Bus 49  
Bit 49 of the DSI data bus.  
D49  
Input/ Output System Bus Data 49  
For write transactions, the bus master drives valid data on this line. For read transactions, the slave drives  
valid data on this bus.  
ETHTXD3  
Output  
Input  
Ethernet Transmit Data 3  
In MII mode only, bit 3 of the Ethernet transmit data.  
Reserved  
In RMII mode, this pin is reserved and can be left unconnected.  
HD[50–53]  
Input/ Output Host Data Bus 50–53  
Bits 50–53 of the DSI data bus.  
D[50–53]  
Input/ Output System Bus Data 50–53  
For write transactions, the bus master drives valid data on this bus. For read transactions, the slave drives  
valid data on this bus.  
Reserved  
Input  
If the Ethernet port is enabled and multiplexed with the DSI/System bus, these pins are reserved and can  
be left unconnected.  
HD54  
Input/ Output Host Data Bus 54  
Bit 54 of the DSI data bus.  
D54  
Input/ Output System Bus Data 54  
For write transactions, the bus master drives valid data on this line. For read transactions, the slave drives  
valid data on this bus.  
ETHTX_EN  
Output  
Ethernet Transmit Data Enable  
In MII and RMII modes, indicates that the transmit data is valid.  
MSC8122 Technical Data, Rev. 13  
1-6  
Freescale Semiconductor  
Direct Slave Interface, System Bus, Ethernet, and Interrupt Signals  
Table 1-5. DSI, System Bus, Ethernet, and Interrupt Signals (Continued)  
Signal Name  
Type  
Description  
HD55  
Input/ Output Host Data Bus 55  
Bit 55 of the DSI data bus.  
D55  
Input/ Output System Bus Data 55  
For write transactions, the bus master drives valid data on this line. For read transactions, the slave drives  
valid data on this bus.  
ETHTX_ER  
Output  
Input  
Ethernet Transmit Data Error  
In MII mode only, indicates a transmit data error.  
Reserved  
In RMII mode, this pin is reserved and can be left unconnected.  
HD56  
Input/ Output Host Data Bus 56  
Bit 56 of the DSI data bus.  
D56  
Input/ Output System Bus Data 56  
For write transactions, the bus master drives valid data on this line. For read transactions, the slave drives  
valid data on this bus.  
ETHRX_DV  
Input  
Input  
Ethernet Receive Data Valid  
Indicates that the receive data is valid.  
ETHCRS_DV  
Ethernet Carrier Sense/Receive Data Valid  
In RMII mode, indicates that a carrier is detected and after the connection is established that the receive  
data is valid.  
HD57  
Input/ Output Host Data Bus 57  
Bit 57 of the DSI data bus.  
D57  
Input/ Output System Bus Data 57  
For write transactions, the bus master drives valid data on this line. For read transactions, the slave drives  
valid data on this bus.  
ETHRX_ER  
Input  
Ethernet Receive Data Error  
In MII and RMII modes, indicates a receive data error.  
HD58  
Input/ Output Host Data Bus 58  
Bit 58 of the DSI data bus.  
D58  
Input/ Output System Bus Data 58  
For write transactions, the bus master drives valid data on this line. For read transactions, the slave drives  
valid data on this bus.  
ETHMDC  
Output  
Ethernet Management Clock  
In MII and RMII modes, used for the MDIO reference clock.  
HD59  
Input/ Output Host Data Bus 59  
Bit 59 of the DSI data bus.  
D59  
Input/ Output System Bus Data 59  
For write transactions, the bus master drives valid data on this line. For read transactions, the slave drives  
valid data on this bus.  
ETHMDIO  
Input/ Output Ethernet Management Data  
In MII and RMII modes, used for station management data input/output.  
MSC8122 Technical Data, Rev. 13  
Freescale Semiconductor  
1-7  
Signals/Connections  
Signal Name  
Table 1-5. DSI, System Bus, Ethernet, and Interrupt Signals (Continued)  
Type Description  
HD60  
Input/ Output Host Data Bus 60  
Bit 60 of the DSI data bus.  
D60  
Input/ Output System Bus Data 60  
For write transactions, the bus master drives valid data on this line. For read transactions, the slave drives  
valid data on this bus.  
ETHCOL  
Input/ Output Ethernet Collision  
In MII mode only, indicates that a collision was detected.  
Reserved  
Input  
In RMII mode, this pin is reserved and can be left unconnected.  
HD[61–63]  
Input/ Output Host Data Bus 61–63  
Bits 61–63 of the DSI data bus.  
D[61–63]  
Input/ Output System Bus Data 61–63  
For write transactions, the bus master drives valid data on this bus. For read transactions, the slave drives  
valid data on this bus.  
Reserved  
HCID[0–2]  
Input  
Input  
If the Ethernet port is enabled and multiplexed with the DSI/System bus, these pins are reserved and can  
be left unconnected.  
Host Chip ID 0–2  
With HCID3, carries the chip ID of the DSI. The DSI is accessed only if HCS is asserted and HCID[0–3]  
matches the Chip_ID, or if HBCS is asserted.  
HCID3  
Input  
Host Chip ID 3  
With HCI[0–2], carries the chip ID of the DSI. The DSI is accessed only if HCS is asserted and HCID[0–3]  
matches the Chip_ID, or if HBCS is asserted.  
HA8  
Input  
Input  
Input  
Host Bus Address 8  
Used by an external host to access the internal address space.  
HA[11–29]  
HWBS[0–3]  
Host Bus Address 11–29  
Used by external host to access the internal address space.  
Host Write Byte Strobes (In Asynchronous dual mode)  
One bit per byte is used as a strobe for host write accesses.  
HDBS[0–3]  
HWBE[0–3]  
HDBE[0–3]  
Input  
Input  
Input  
Host Data Byte Strobe (in Asynchronous single mode)  
One bit per byte is used as a strobe for host read or write accesses  
Host Write Byte Enable (In Synchronous dual mode)  
One bit per byte is used to indicate a valid data byte for host read or write accesses.  
Host Data Byte Enable (in Synchronous single mode)  
One bit per byte is used as a strobe enable for host write accesses  
MSC8122 Technical Data, Rev. 13  
1-8  
Freescale Semiconductor  
Direct Slave Interface, System Bus, Ethernet, and Interrupt Signals  
Table 1-5. DSI, System Bus, Ethernet, and Interrupt Signals (Continued)  
Signal Name  
HWBS[4–7]  
Type  
Description  
Input  
Host Write Byte Strobes (In Asynchronous dual mode)  
One bit per byte is used as a strobe for host write accesses.  
HDBS[4–7]  
HWBE[4–7]  
HDBE[4–7]  
PWE[4–7]  
Input  
Input  
Host Data Byte Strobe (in Asynchronous single mode)  
One bit per byte is used as a strobe for host read or write accesses  
Host Write Byte Enable (In Synchronous dual mode)  
One bit per byte is used to indicate a valid data byte for host write accesses.  
Input  
Host Data Byte Enable (in Synchronous single mode)  
One bit per byte is used as a strobe enable for host read or write accesses  
Output  
System Bus Write Enable  
Outputs of the bus general-purpose chip-select machine (GPCM). These pins select byte lanes for write  
operations.  
PSDDQM[4–7]  
PBS[4–7]  
Output  
Output  
System Bus SDRAM DQM  
From the SDRAM control machine. These pins select specific byte lanes of SDRAM devices.  
System Bus UPM Byte Select  
From the UPM in the memory controller, these signals select specific byte lanes during memory  
operations. The timing of these pins is programmed in the UPM. The actual driven value depends on the  
address and size of the transaction and the port size of the accessed device.  
HRDS  
Input  
Input  
Host Read Data Strobe (In Asynchronous dual mode)  
Used as a strobe for host read accesses.  
HRW  
Host Read/Write Select (in Asynchronous/Synchronous single mode)  
Host read/write select.  
HRDE  
Input  
Input  
Host Read Data Enable (In Synchronous dual mode)  
Indicates valid data for host read accesses.  
HBRST  
Host Burst  
The host asserts this pin to indicate that the current transaction is a burst transaction in synchronous  
mode only.  
HDST[0–1]  
Input  
Host Data Structure 0–1  
Defines the data structure of the host access in DSI little-endian mode.  
HA[9–10]  
HCS  
Host Bus Address 9–10  
Used by an external host to access the internal address space.  
Input  
Input  
Host Chip Select  
DSI chip select. The DSI is accessed only if HCS is asserted and HCID[0–3] matches the Chip_ID.  
HBCS  
Host Broadcast Chip Select  
DSI chip select for broadcast mode. Enables more than one DSI to share the same host chip-select pin for  
broadcast write accesses.  
HTA  
Output  
Input  
Host Transfer Acknowledge  
Upon a read access, indicates to the host when the data on the data bus is valid. Upon a write access,  
indicates to the host that the data on the data bus was written to the DSI write buffer.  
HCLKIN  
A[0–31]  
Host Clock Input  
Host clock signal for DSI synchronous mode.  
Input/ Output Address Bus  
When the MSC8122 is in external master bus mode, these pins function as the system address bus. The  
MSC8122 drives the address of its internal bus masters and responds to addresses generated by external  
bus masters. When the MSC8122 is in internal master bus mode, these pins are used as address lines  
connected to memory devices and are controlled by the MSC8122 memory controller.  
TT0  
Input/ Output Bus Transfer Type 0  
The bus master drives this pins during the address tenure to specify the type of the transaction.  
HA7  
Host Bus Address 7  
Used by an external host to access the internal address space.  
MSC8122 Technical Data, Rev. 13  
Freescale Semiconductor  
1-9  
Signals/Connections  
Signal Name  
Table 1-5. DSI, System Bus, Ethernet, and Interrupt Signals (Continued)  
Type Description  
TT1  
Input/ Output Bus Transfer Type 1  
The bus master drives this pins during the address tenure to specify the type of the transaction. Some  
applications use only the TT1 signal, for example, from MSC8122 to MSC8122 or MSC8122 to MSC8101  
and vice versa. In these applications, TT1 functions as read/write signal.  
TT[2–4]  
Input/ Output Bus Transfer Type 2–4  
The bus master drives these pins during the address tenure to specify the type of the transaction.  
CS[5–7]  
CS[0–4]  
TSZ[0–3]  
Output  
Output  
Chip Select 5–7  
Enables specific memory devices or peripherals connected to the system bus.  
Chip Select 0–4  
Enables specific memory devices or peripherals connected to the system bus.  
Input/ Output Transfer Size 0–3  
The bus master drives these pins with a value indicating the number of bytes transferred in the current  
transaction.  
TBST  
Input/ Output Bus Transfer Burst  
The bus master asserts this pin to indicate that the current transaction is a burst transaction (transfers  
eight words).  
1
IRQ1  
Input  
Interrupt Request 1  
One of fifteen external lines that can request a service routine, via the internal interrupt controller, from the  
SC140 core.  
1
GBL  
Output  
Input  
Global  
When a master within the MSC8122 initiates a bus transaction, it drives this pin. Assertion of this pin  
indicates that the transfer is global and should be snooped by caches in the system.  
1
IRQ3  
Interrupt Request 3  
One of fifteen external lines that can request a service routine, via the internal interrupt controller, from the  
SC140 core.  
1
BADDR31  
Output  
Burst Address 31  
Five burst address output pins are outputs of the memory controller. These pins connect directly to  
burstable memory devices without internal address incrementors controlled by the MSC8122 memory  
controller.  
1
IRQ2  
Input  
Interrupt Request 2  
One of fifteen external lines that can request a service routine, via the internal interrupt controller, from the  
SC140 core.  
1
BADDR30  
Output  
Burst Address 30  
Five burst address output pins are outputs of the memory controller. These pins connect directly to  
burstable memory devices without internal address incrementors controlled by the MSC8122 memory  
controller.  
1
IRQ5  
Input  
Interrupt Request 5  
One of fifteen external lines that can request a service routine, via the internal interrupt controller, from the  
SC140 core.  
1
BADDR29  
Output  
Bus Burst Address 29  
Five burst address output pins are outputs of the memory controller. These pins connect directly to  
burstable memory devices without internal address incrementors controlled by the MSC8122 memory  
controller.  
BADDR28  
BADDR27  
Output  
Output  
Burst Address 28  
Five burst address output pins are outputs of the memory controller. These pins connect directly to  
burstable memory devices without internal address incrementors controlled by the MSC8122 memory  
controller.  
Burst Address 27  
Five burst address output pins are outputs of the memory controller. These pins connect directly to  
burstable memory devices without internal address incrementors controlled by the MSC8122 memory  
controller.  
MSC8122 Technical Data, Rev. 13  
1-10  
Freescale Semiconductor  
Direct Slave Interface, System Bus, Ethernet, and Interrupt Signals  
Table 1-5. DSI, System Bus, Ethernet, and Interrupt Signals (Continued)  
Signal Name  
Type  
Description  
2
BR  
Input/ Output Bus Request  
When an external arbiter is used, the MSC8122 asserts this pin as an output to request ownership of the  
bus. When the MSC8122 controller is used as an internal arbiter, an external master asserts this pin as an  
input to request bus ownership.  
2
BG  
Input/ Output Bus Grant  
When the MSC8122 acts as an internal arbiter, it asserts this pin as an output to grant bus ownership to  
an external bus master. When an external arbiter is used, it asserts this pin as an input to grant bus  
ownership to the MSC8122.  
2
DBG  
ABB  
Input/ Output Data Bus Grant  
When the MSC8122 acts as an internal arbiter, it asserts this pin as an output to grant data bus ownership  
to an external bus master. When an external arbiter is used, it asserts this pin as an input to grant data  
bus ownership to the MSC8122.  
1
Input/ Output Address Bus Busy  
The MSC8122 asserts this pin as an output for the duration of the address bus tenure. Following an  
AACK, which terminates the address bus tenure, the MSC8122 deasserts ABB for a fraction of a bus  
cycle and then stops driving this pin. The MSC8122 does not assume bus ownership as long as it senses  
this pin is asserted as an input by an external bus master.  
IRQ4  
Input  
Interrupt Request 4  
One of fifteen external lines that can request a service routine, via the internal interrupt controller, from the  
SC140 core.  
1
DBB  
Input/ Output Data Bus Busy  
The MSC8122 asserts this pin as an output for the duration of the data bus tenure. Following a TA, which  
terminates the data bus tenure, the MSC8122 deasserts DBB for a fraction of a bus cycle and then stops  
driving this pin. The MSC8122 does not assume data bus ownership as long as it senses that this pin is  
asserted as an input by an external bus master.  
IRQ5  
TS  
Input  
Interrupt Request 5  
One of fifteen external lines that can request a service routine, via the internal interrupt controller, from the  
SC140 core.  
Input/ Output Bus Transfer Start  
Assertion of this pin signals the beginning of a new address bus tenure. The MSC8122 asserts this signal  
when one of its internal bus masters begins an address tenure. When the MSC8122 senses that this pin is  
asserted by an external bus master, it responds to the address bus tenure as required (snoop if enabled,  
access internal MSC8122 resources, memory controller support).  
AACK  
Input/ Output Address Acknowledge  
A bus slave asserts this signal to indicate that it has identified the address tenure. Assertion of this signal  
terminates the address tenure.  
ARTRY  
D[0–31]  
Input/ Output Address Retry  
Assertion of this signal indicates that the bus master should retry the bus transaction. An external master  
asserts this signal to enforce data coherency with its caches and to prevent deadlock situations.  
Input/ Output Data Bus Bits 0–31  
In write transactions, the bus master drives the valid data on this bus. In read transactions, the slave  
drives the valid data on this bus.  
Reserved  
Input  
The primary configuration selection (default after reset) is reserved.  
DP0  
Input/ Output System Bus Data Parity 0  
The agent that drives the data bus also drives the data parity signals. The value driven on the data parity  
0 pin should give odd parity (odd number of ones) on the group of signals that includes data parity 0 and  
D[0–7].  
DREQ1  
Input  
Input  
DMA Request 1  
Used by an external peripheral to request DMA service.  
EXT_BR2  
External Bus Request 2  
An external master asserts this pin to request bus ownership from the internal arbiter.  
MSC8122 Technical Data, Rev. 13  
Freescale Semiconductor  
1-11  
Signals/Connections  
Table 1-5. DSI, System Bus, Ethernet, and Interrupt Signals (Continued)  
Signal Name  
IRQ1  
Type  
Description  
Input  
Interrupt Request 1  
One of fifteen external lines that can request a service routine, via the internal interrupt controller, from the  
SC140 core.  
DP1  
Input/ Output System Bus Data Parity 1  
The agent that drives the data bus also drives the data parity signals. The value driven on the data parity  
1 pin should give odd parity (odd number of ones) on the group of signals that includes data parity 1 and  
D[8–15].  
DACK1  
Output  
DMA Acknowledge 1  
The DMA controller drives this output to acknowledge the DMA transaction on the bus.  
2
EXT_BG2  
Output  
Input  
External Bus Grant 2  
The MSC8122 asserts this pin to grant bus ownership to an external bus master.  
IRQ2  
Interrupt Request 2  
One of fifteen external lines that can request a service routine, via the internal interrupt controller, from the  
SC140 core.  
DP2  
Input/ Output System Bus Data Parity 2  
The agent that drives the data bus also drives the data parity signals. The value driven on the data parity  
2 pin should give odd parity (odd number of ones) on the group of signals that includes data parity 2 and  
D[16–23].  
DACK2  
Output  
DMA Acknowledge 2  
The DMA controller drives this output to acknowledge the DMA transaction on the bus.  
2
EXT_DBG2  
Output  
Input  
External Data Bus Grant 2  
The MSC8122 asserts this pin to grant data bus ownership to an external bus master.  
IRQ3  
Interrupt Request 3  
One of fifteen external lines that can request a service routine, via the internal interrupt controller, from the  
SC140 core.  
DP3  
Input/ Output System Bus Data Parity 3  
The agent that drives the data bus also drives the data parity signals. The value driven on the data parity  
3 pin should give odd parity (odd number of ones) on the group of signals that includes data parity 3 and  
D[24–31].  
DREQ2  
Input  
DMA Request 2  
Used by an external peripheral to request DMA service.  
2
EXT_BR3  
Input  
Input  
External Bus Request 3  
An external master should assert this pin to request bus ownership from the internal arbiter.  
IRQ4  
Interrupt Request 4  
One of fifteen external lines that can request a service routine, via the internal interrupt controller, from the  
SC140 core.  
DP4  
Input/ Output System Bus Data Parity 4  
The agent that drives the data bus also drives the data parity signals. The value driven on the data parity  
4 pin should give odd parity (odd number of ones) on the group of signals that includes data parity 4 and  
D[32–39].  
DACK3  
Output  
Output  
DMA Acknowledge 3  
The DMA controller drives this output to acknowledge the DMA transaction on the bus.  
2
EXT_DBG3  
External Data Bus Grant 3  
The MSC8122 asserts this pin to grant data bus ownership to an external bus master.  
MSC8122 Technical Data, Rev. 13  
1-12  
Freescale Semiconductor  
Direct Slave Interface, System Bus, Ethernet, and Interrupt Signals  
Table 1-5. DSI, System Bus, Ethernet, and Interrupt Signals (Continued)  
Signal Name  
Type  
Description  
IRQ5  
Input  
Interrupt Request 5  
One of fifteen external lines that can request a service routine, via the internal interrupt controller, from the  
SC140 core.  
DP5  
Input/ Output System Bus Data Parity 5  
The agent that drives the data bus also drives the data parity signals. The value driven on the data parity  
5 pin should give odd parity (odd number of ones) on the group of signals that includes data parity 5 and  
D[40–47].  
DACK4  
Output  
DMA Acknowledge 4  
The DMA controller drives this output to acknowledge the DMA transaction on the bus.  
2
EXT_BG3  
Output  
Input  
External Bus Grant 3  
The MSC8122 asserts this pin to grant bus ownership to an external bus.  
IRQ6  
Interrupt Request 6  
One of fifteen external lines that can request a service routine, via the internal interrupt controller, from the  
SC140 core.  
DP6  
Input/ Output System Bus Data Parity 6  
The agent that drives the data bus also drives the data parity signals. The value driven on the data parity  
6 pin should give odd parity (odd number of ones) on the group of signals that includes data parity 6 and  
D[48–55].  
DREQ3  
Input  
Input  
DMA Request 3  
Used by an external peripheral to request DMA service.  
IRQ7  
Interrupt Request 7  
One of fifteen external lines that can request a service routine, via the internal interrupt controller, from the  
SC140 core.  
DP7  
Input/ Output System Bus Data Parity 7  
The agent that drives the data bus also drives the data parity signals. The value driven on the data parity  
7 pin should give odd parity (odd number of ones) on the group of signals that includes data parity 7 and  
D[56–63].  
DREQ4  
TA  
Input  
DMA Request 4  
Used by an external peripheral to request DMA service.  
Input/ Output Transfer Acknowledge  
Indicates that a data beat is valid on the data bus. For single-beat transfers, TA assertion indicates the  
termination of the transfer. For burst transfers, TA is asserted eight times to indicate the transfer of eight  
data beats, with the last assertion indicating the termination of the burst transfer.  
TEA  
Input/ Output Transfer Error Acknowledge  
Indicates a failure of the data tenure transaction.The masters within the MSC8122 monitor the state of this  
pin. The MSC8122 internal bus monitor can assert this pin if it identifies a bus transfer that does not  
complete.  
NMI  
Input  
Non-Maskable Interrupt  
When an external device asserts this line, it generates an non-maskable interrupt in the MSC8122, which  
is processed internally (default) or is directed to an external host for processing (see NMI_OUT).  
NMI_OUT  
Output  
Non-Maskable Interrupt Output  
An open-drain pin driven from the MSC8122 internal interrupt controller. Assertion of this output indicates  
that a non-maskable interrupt is pending in the MSC8122 internal interrupt controller, waiting to be  
handled by an external host.  
PSDVAL  
Input/ Output Port Size Data Valid  
Indicates that a data beat is valid on the data bus. The difference between the TA pin and the PSDVAL pin  
is that the TA pin is asserted to indicate data transfer terminations, while the PSDVAL signal is asserted  
with each data beat movement. When TA is asserted, PSDVAL is always asserted. However, when  
PSDVAL is asserted, TA is not necessarily asserted. For example, if the DMA controller initiates a double  
word (2 × 64 bits) transaction to a memory device with a 32-bit port size, PSDVAL is asserted three times  
without TA and, finally, both pins are asserted to terminate the transfer.  
MSC8122 Technical Data, Rev. 13  
Freescale Semiconductor  
1-13  
Signals/Connections  
Table 1-5. DSI, System Bus, Ethernet, and Interrupt Signals (Continued)  
Signal Name  
IRQ7  
Type  
Description  
Input  
Interrupt Request 7  
One of fifteen external lines that can request a service routine, via the internal interrupt controller, from the  
SC140 core.  
INT_OUT  
Output  
Interrupt Output  
Assertion of this output indicates that an unmasked interrupt is pending in the MSC8122 internal interrupt  
controller.  
Notes: 1. See the System Interface Unit (SIU) chapter in the MSC8122 Reference Manual for details on how to configure these pins.  
2. When used as the bus control arbiter, the MSC8122 can support up to three external bus masters. Each master uses its own  
set of Bus Request, Bus Grant, and Data Bus Grant signals (BR/BG/DBG, EXT_BR2/EXT_BG2/EXT_DBG2, and  
EXT_BR3/EXT_BG3/EXT_DBG3). Each of these signal sets must be configured to indicate whether the external master is or  
is not a MSC8122 master device. See the Bus Configuration Register (BCR) description in the System Interface Unit (SIU)  
chapter in the MSC8122 Reference Manual for details on how to configure these pins. The second and third set of pins is  
defined by EXT_xxx to indicate that they can only be used with external master devices. The first set of pins (BR/BG/DBG)  
have a dual function. When the MSC8122 is not the bus arbiter, it uses these signals (BR/BG/DBG) to obtain master control of  
the bus.  
1.5 Memory Controller Signals  
Refer to the Memory Controller chapter in the MSC8122 Reference Manual for details on configuring these  
signals.  
Table 1-6. Memory Controller Signals  
Signal Name  
Type  
Description  
BCTL0  
Output  
System Bus Buffer Control 0  
Controls buffers on the data bus. Usually used with BCTL1. The exact function of this pin is defined by the  
value of SIUMCR[BCTLC].  
BCTL1  
Output  
System Bus Buffer Control 1  
Controls buffers on the data bus. Usually used with BCTL0. The exact function of this pin is defined by the  
value of SIUMCR[BCTLC].  
CS5  
Output  
Input  
System and Local Bus Chip Select 5  
Enables specific memory devices or peripherals connected to MSC8122 buses.  
BM[0–2]  
Boot Mode 0–2  
Defines the boot mode of the MSC8122. This signal is sampled on PORESET deassertion.  
TC[0–2]  
Input/ Output Transfer Code 0–2  
The bus master drives these pins during the address tenure to specify the type of the code.  
BNKSEL[0–2]  
ALE  
Output  
Output  
Output  
Bank Select 0–2  
Selects the SDRAM bank when the MSC8122 is in 60x-compatible bus mode.  
Address Latch Enable  
Controls the external address latch used in an external master bus.  
PWE[0–3]  
System Bus Write Enable  
Outputs of the bus general-purpose chip-select machine (GPCM). These pins select byte lanes for write  
operations.  
PSDDQM[0–3]  
PBS[0–3]  
Output  
Output  
System Bus SDRAM DQM  
From the SDRAM control machine. These pins select specific byte lanes of SDRAM devices.  
System Bus UPM Byte Select  
From the UPM in the memory controller, these signals select specific byte lanes during memory  
operations. The timing of these pins is programmed in the UPM. The actual driven value depends on the  
address and size of the transaction and the port size of the accessed device.  
MSC8122 Technical Data, Rev. 13  
1-14  
Freescale Semiconductor  
Memory Controller Signals  
Table 1-6. Memory Controller Signals (Continued)  
Signal Name  
PSDA10  
Type  
Description  
Output  
System Bus SDRAM A10  
From the bus SDRAM controller. The precharge command defines which bank is precharged. When the  
row address is driven, it is a part of the row address. When column address is driven, it is a part of column  
address.  
PGPL0  
Output  
System Bus UPM General-Purpose Line 0  
One of six general-purpose output lines from the UPM. The values and timing of this pin are programmed  
in the UPM.  
PSDWE  
Output  
Output  
System Bus SDRAM Write Enable  
From the bus SDRAM controller. Should connect to SDRAM WE input.  
PGPL1  
System Bus UPM General-Purpose Line 1  
One of six general-purpose output lines from the UPM. The values and timing of this pin are programmed  
in the UPM.  
POE  
Output  
Output  
Output  
System Bus Output Enable  
From the bus GPCM. Controls the output buffer of memory devices during read operations.  
PSDRAS  
PGPL2  
System Bus SDRAM RAS  
From the bus SDRAM controller. Should connect to SDRAM RAS input.  
System Bus UPM General-Purpose Line 2  
One of six general-purpose output lines from the UPM. The values and timing of this pin are programmed  
in the UPM.  
PSDCAS  
Output  
Output  
System Bus SDRAM CAS  
From the bus SDRAM controller. Should connect to SDRAM CAS input.  
PGPL3  
System Bus UPM General-Purpose Line 3  
One of six general-purpose output lines from the UPM. The values and timing of this pin are programmed  
in the UPM.  
PGTA  
Input  
Input  
System GPCM TA  
Terminates external transactions during GPCM operation. Requires an external pull-up resistor for proper  
operation.  
PUPMWAIT  
PGPL4  
System Bus UPM Wait  
An external device holds this pin low to force the UPM to wait until the device is ready to continue the  
operation.  
Output  
System Bus UPM General-Purpose Line 4  
One of six general-purpose output lines from the UPM. The values and timing of this pin are programmed  
in the UPM.  
PPBS  
Output  
Output  
System Bus Parity Byte Select  
In systems that store data parity in a separate chip, this output is used as the byte-select for that chip.  
PSDAMUX  
System Bus SDRAM Address Multiplexer  
Controls the system bus SDRAM address multiplexer when the MSC8122 is in external master mode.  
PGPL5  
Output  
System Bus UPM General-Purpose Line 5  
One of six general-purpose output lines from the UPM. The values and timing of this pin are programmed  
in the UPM.  
MSC8122 Technical Data, Rev. 13  
Freescale Semiconductor  
1-15  
Signals/Connections  
1.6 GPIO, TDM, UART, and Timer Signals  
The general-purpose input/output (GPIO), time-division multiplexed (TDM), universal asynchronous  
receiver/transmitter (UART), and timer signals are grouped together because they use a common set of signal lines.  
Individual assignment of a signal to a specific signal line is configured through internal registers. Table 1-7  
describes the signals in this group.  
Table 1-7. GPIO, TDM, UART, Ethernet, and Timer Signals  
Signal Name  
GPIO0  
Type  
Description  
Input/ Output General-Purpose Input Output 0  
One of 32 GPIO pins used as GPIO or as one of two dedicated inputs or one of two dedicated outputs.  
CHIP_ID0  
IRQ4  
Input  
Input  
Chip ID 0  
Determines the chip ID of the MSC8122 DSI. It is sampled on the rising edge of PORESET signal.  
Interrupt Request 4  
One of fifteen external lines that can request a service routine, via the internal interrupt controller, from the  
SC140 core.  
ETHTXD0  
Output  
Ethernet Transmit Data 0  
For MII or RMII mode, bit 0 of the Ethernet transmit data.  
GPIO1  
Input/ Output General-Purpose Input Output 1  
One of 32 GPIO pins used as GPIO or as one of two dedicated inputs or one of two dedicated outputs.  
Input/ Output Timer 0  
Each signal is configured as either input to or output from the counter. See the MSC8122 Reference  
TIMER0  
CHIP_ID1  
IRQ5  
Manual for configuration details.  
Input  
Input  
Chip ID 1  
Determines the chip ID of the MSC8122 DSI. It is sampled on the rising edge of PORESET signal.  
Interrupt Request 5  
One of the fifteen external lines that can request a service routine, via the internal interrupt controller, from  
the SC140 core.  
ETHTXD1  
Output  
Ethernet Transmit Data 1  
For MII or RMII mode, bit 1 of the Ethernet transmit data.  
GPIO2  
Input/ Output General-Purpose Input Output 2  
One of 32 GPIO pins used as GPIO or as one of two dedicated inputs or one of two dedicated outputs. For  
details, refer to the MSC8122 Reference Manual.  
TIMER1  
Input/ Output Timer 1  
Each signal is configured as either input to or output from the counter. For the configuration of the pin  
direction, refer to the MSC8122 Reference Manual.  
CHIP_ID2  
IRQ6  
Input  
Input  
Chip ID 2  
Determines the chip ID of the MSC8122 DSI. It is sampled on the rising edge of PORESET signal.  
Interrupt Request 6  
One of the fifteen external lines that can request a service routine, via the internal interrupt controller, from  
the SC140 core.  
MSC8122 Technical Data, Rev. 13  
1-16  
Freescale Semiconductor  
GPIO, TDM, UART, and Timer Signals  
Table 1-7. GPIO, TDM, UART, Ethernet, and Timer Signals (Continued)  
Signal Name  
GPIO3  
Type  
Description  
Input/ Output General-Purpose Input Output 3  
One of 32 GPIO pins used as GPIO or as one of two dedicated inputs or one of two dedicated outputs. For  
details, refer to the MSC8122 Reference Manual GPIO programming model.  
TDM3TSYN  
IRQ1  
Input/ Output TDM3 Transmit Frame Sync  
Transmit frame sync for TDM 3.  
Input  
Interrupt Request 1  
One of fifteen external lines that can request a service routine, via the internal interrupt controller, from the  
SC140 core.  
ETHTXD2  
Output  
Ethernet Transmit Data 2  
For MII mode only, bit 2 of the Ethernet transmit data.  
GPIO4  
Input/ Output General-Purpose Input Output 4  
One of 32 GPIO pins used as GPIO or as one of two dedicated inputs or one of two dedicated outputs. For  
details, refer to the MSC8122 Reference Manual GPIO programming model.  
TDM3TCLK  
IRQ2  
Input  
Input  
TDM3 Transmit Clock  
Transmit Clock for TDM 3  
Interrupt Request 2  
One of fifteen external lines that can request a service routine, via the internal interrupt controller, from the  
SC140 core.  
ETHTX_ER  
Output  
Ethernet Transmit Data Error  
For MII mode only, indicates whether a transmit data error occurred.  
GPIO5  
Input/ Output General-Purpose Input/Output 5  
One of 32 GPIO pins used as GPIO or as one of two dedicated inputs or one of two dedicated outputs. For  
details, refer to the MSC8122 Reference Manual GPIO programming model.  
TDM3TDAT  
IRQ3  
Input/ Output TDM3 Serial Transmitter Data  
The serial transmit data signal for TDM 3. As an output, it provides the DATA_D signal for TDM 3. For  
configuration details, refer to the MSC8122 Reference Manual chapter describing TDM operation.  
Input  
Input  
Interrupt Request 3  
One of fifteen external lines that can request a service routine, via the internal interrupt controller, from the  
SC140 core.  
ETHRXD3  
Ethernet Receive Data 3  
For MII mode only, bit 3 of the Ethernet receive data.  
GPIO6  
Input/ Output General-Purpose Input Output 6  
One of 32 GPIO pins used as GPIO or as one of two dedicated inputs or one of two dedicated outputs. For  
details, refer to the MSC8122 Reference Manual GPIO programming model.  
TDM3RSYN  
IRQ4  
Input/ Output TDM3 Receive Frame Sync  
The receive sync signal for TDM 3. As an input, this can be the DATA_B data signal for TDM 3.For  
configuration details, refer to the MSC8122 Reference Manual chapter describing TDM operation.  
Input  
Input  
Interrupt Request 4  
One of fifteen external lines that can request a service routine, via the internal interrupt controller, from the  
SC140 core.  
ETHRXD2  
Ethernet Receive Data 2  
For MII mode only, bit 2 of the Ethernet receive data.  
MSC8122 Technical Data, Rev. 13  
Freescale Semiconductor  
1-17  
Signals/Connections  
Signal Name  
Table 1-7. GPIO, TDM, UART, Ethernet, and Timer Signals (Continued)  
Type Description  
GPIO7  
Input/ Output General-Purpose Input Output 7  
One of 32 GPIO pins used as GPIO or as one of two dedicated inputs or one of two dedicated outputs. For  
details, refer to the MSC8122 Reference Manual GPIO programming model.  
TDM3RCLK  
IRQ5  
Input/ Output TDM3 Receive Clock  
The receive clock signal for TDM 3. As an output, this can be the DATA_C data signal for TDM 3. For  
configuration details, refer to the MSC8122 Reference Manual chapter describing TDM operation.  
Input  
Interrupt Request 5  
One of fifteen external lines that can request a service routine, via the internal interrupt controller, from the  
SC140 core.  
ETHTXD3  
Output  
Ethernet Transmit Data 3  
For MII mode only, bit 3 of the Ethernet transmit data.  
GPIO8  
Input/ Output General-Purpose Input Output 8  
One of 32 GPIO pins used as GPIO or as one of two dedicated inputs or one of two dedicated outputs. For  
details, refer to the MSC8122 Reference Manual GPIO programming model.  
TDM3RDAT  
IRQ6  
Input/ Output TDM3 Serial Receiver Data  
The receive data signal for TDM 3. As an input, this can be the DATA_A data signal for TDM 3. For  
configuration details, refer to the MSC8122 Reference Manual chapter describing TDM operation.  
Input  
Input  
Interrupt Request 6  
One of fifteen external lines that can request a service routine, via the internal interrupt controller, from the  
SC140 core.  
ETHCOL  
Ethernet Collision  
For MII mode only, indicates whether a collision was detected.  
GPIO9  
Input/ Output General-Purpose Input Output 9  
One of 32 GPIO pins used as GPIO or as one of two dedicated inputs or one of two dedicated outputs. For  
details, refer to the MSC8122 Reference Manual GPIO programming model.  
TDM2TSYN  
IRQ7  
Input/ Output TDM2 Transmit frame Sync  
Transmit Frame Sync for TDM 2.  
Input  
Interrupt Request 7  
One of fifteen external lines that can request a service routine, via the internal interrupt controller, from the  
SC140 core.  
ETHMDIO  
Input/ Output Ethernet Management Data  
Station management data input/output line in MII, RMII, and SMII modes.  
GPIO10  
Input/ Output General-Purpose Input Output 10  
One of 32 GPIO pins used as GPIO or as one of two dedicated inputs or one of two dedicated outputs. For  
details, refer to the MSC8122 Reference Manual GPIO programming model.  
TDM2TCLK  
IRQ8  
Input  
Input  
TDM 2 Transmit Clock  
Transmit Clock for TDM 2.  
Interrupt Request 8  
One of fifteen external lines that can request a service routine, via the internal interrupt controller, from the  
SC140 core.  
ETHRX_DV  
ETHCRS_DV  
NC  
Input  
Input  
Input  
Ethernet Receive Data Valid  
In MII mode, this signal indicates that the receive data is valid.  
Ethernet Carrier Sense/Receive Data Valid  
In RMII mode, this signal indicates that a carrier is sense or that the receive data is valid.  
Not Connected  
For SMII mode, this signal must be left unconnected.  
MSC8122 Technical Data, Rev. 13  
1-18  
Freescale Semiconductor  
GPIO, TDM, UART, and Timer Signals  
Table 1-7. GPIO, TDM, UART, Ethernet, and Timer Signals (Continued)  
Signal Name  
GPIO11  
Type  
Description  
Input/ Output General-Purpose Input Output 11  
One of 32 GPIO pins used as GPIO or as one of two dedicated inputs or one of two dedicated outputs. For  
details, refer to the MSC8122 Reference Manual GPIO programming model.  
TDM2TDAT  
IRQ9  
Input/ Output TDM2 Serial Transmitter Data  
The transmit data signal for TDM 2. As an output, this can be the DATA_D data signal for TDM 2. For  
configuration details, refer to the MSC8122 Reference Manual chapter describing TDM operation.  
Input  
Interrupt Request 9  
One of fifteen external lines that can request a service routine, via the internal interrupt controller, from the  
SC140 core.  
ETHRX_ER  
Input  
Ethernet Receive Data Error  
In MII and RMII modes, indicates a receive data error.  
ETHTXD  
Output  
Ethernet Transmit Data  
In SMII, used as the Ethernet transmit data line.  
GPIO12  
Input/ Output General-Purpose Input Output 12  
One of 32 GPIO pins used as GPIO or as one of two dedicated inputs or one of two dedicated outputs. For  
details, refer to the MSC8122 Reference Manual GPIO programming model.  
TDM2RSYN  
IRQ10  
Input/ Output TDM2 Receive Frame Sync  
The receive sync signal for TDM 2. As an input, this can be the DATA_B data signal for TDM 2. For  
configuration details, refer to the MSC8122 Reference Manual chapter describing TDM operation.  
Input  
Interrupt Request 10  
One of fifteen external lines that can request a service routine, via the internal interrupt controller, from the  
SC140 core.  
ETHRXD1  
Input  
Ethernet Receive Data 1  
Bit 1 of the Ethernet receive data (MII and RMII mode).  
ETHSYNC  
Output  
Ethernet Sync Signal  
In SMII mode, this is the Ethernet sync signal input.  
GPIO13  
Input/ Output General-Purpose Input Output 13  
One of 32 GPIO pins used as GPIO or as one of two dedicated inputs or one of two dedicated outputs. For  
details, refer to the MSC8122 Reference Manual GPIO programming model.  
TDM2RCLK  
IRQ11  
Input/ Output TDM2 Receive Clock  
The receive clock signal for TDM 2. As an input, this can be the DATA_C data signal for TDM 2. For  
configuration details, refer to the MSC8122 Reference Manual chapter describing TDM operation.  
Input  
Interrupt Request 11  
One of fifteen external lines that can request a service routine, via the internal interrupt controller, from the  
SC140 core.  
ETHMDC  
Output  
Ethernet Management Clock  
Used for the MDIO reference clock for MII, RMII, and SMII modes.  
MSC8122 Technical Data, Rev. 13  
Freescale Semiconductor  
1-19  
Signals/Connections  
Signal Name  
Table 1-7. GPIO, TDM, UART, Ethernet, and Timer Signals (Continued)  
Type Description  
GPIO14  
Input/ Output General-Purpose Input Output 14  
One of 32 GPIO pins used as GPIO or as one of two dedicated inputs or one of two dedicated outputs. For  
details, refer to the MSC8122 Reference Manual GPIO programming model.  
TDM2RDAT  
IRQ12  
Input/ Output TDM2 Serial Receiver Data  
Input  
The receive data signal for TDM 2. As an input, this can be the DATA_A data signal for TDM 2. For  
configuration details, refer to the MSC8122 Reference Manual chapter describing TDM operation.  
Input  
Interrupt Request 12  
One of fifteen external lines that can request a service routine, via the internal interrupt controller, from the  
SC140 core.  
ETHRXD0  
Input  
Input  
Ethernet Receive Data 0  
Bit 0 of the Ethernet receive data (MII and RMII).  
NC  
Not Connected  
For SMII mode, this signal must be left unconnected.  
GPIO15  
Input/ Output General-Purpose Input Output 15  
One of 32 GPIO pins used as GPIO or as one of two dedicated inputs or one of two dedicated outputs. For  
details, refer to the MSC8122 Reference Manual GPIO programming model.  
TDM1TSYN  
Input/ Output TDM1 Transmit frame Sync  
Transmit Frame Sync for TDM 1.  
DREQ1  
Input  
DMA Request 1  
Used by an external peripheral to request DMA service.  
GPIO16  
Input/ Output General-Purpose Input Output 16  
One of 32 GPIO pins used as GPIO or as one of two dedicated inputs or one of two dedicated outputs. For  
details, refer to the MSC8122 Reference Manual GPIO programming model.  
TDM1TCLK  
DONE1  
Input  
TDM1 Transmit Clock  
Transmit Clock for TDM 1.  
Input/ Output DMA Done 1  
Signifies that the channel must be terminated. If the DMA controller generates DONE, the channel  
handling this peripheral is inactive. As an input to the DMA controller, DONE closes the channel much like  
a normal channel closing.  
See the MSC8122 Reference Manual chapters on DMA controller and GPIO for information on  
configuring the DRACK or DONE mode and pin direction.  
DRACK1  
Output  
DMA Data Request Acknowledge 1  
Asserted by the DMA controller to indicate that the DMA controller has sampled the peripheral request.  
GPIO17  
Input/ Output General-Purpose Input Output 17  
One of 32 GPIO pins used as GPIO or as one of two dedicated inputs or one of two dedicated outputs. For  
details, refer to the MSC8122 Reference Manual GPIO programming model.  
TDM1TDAT  
DACK1  
Input/ Output TDM1 Serial Transmitter Data  
The transmit data signal for TDM 1. As an output, this can be the DATA_D data signal for TDM 1.For  
configuration details, refer to the MSC8122 Reference Manual chapter describing TDM operation.  
Output  
DMA Acknowledge 1  
The DMA controller drives this output to acknowledge the DMA transaction on the bus.  
MSC8122 Technical Data, Rev. 13  
1-20  
Freescale Semiconductor  
GPIO, TDM, UART, and Timer Signals  
Table 1-7. GPIO, TDM, UART, Ethernet, and Timer Signals (Continued)  
Signal Name  
GPIO18  
Type  
Description  
Input/ Output General-Purpose Input Output 18  
One of 32 GPIO pins used as GPIO or as one of two dedicated inputs or one of two dedicated outputs. For  
details, refer to the MSC8122 Reference Manual GPIO programming model.  
TDM1RSYN  
Input/ Output TDM1 Receive Frame Sync  
The receive sync signal for TDM 1. As an input, this can be the DATA_B data signal for TDM 1. For  
configuration details, refer to the MSC8122 Reference Manual.  
DREQ2  
Input  
DMA Request 1  
Used by an external peripheral to request DMA service.  
GPIO19  
Input/ Output General-Purpose Input Output 19  
One of 32 GPIO pins used as GPIO or as one of two dedicated inputs or one of two dedicated outputs. For  
details, refer to the MSC8122 Reference Manual GPIO programming model.  
TDM1RCLK  
Input/ Output TDM1 Receive Clock  
The receive clock signal for TDM 1. As an input, this can be the DATA_C data signal for TDM 1. For  
configuration details, refer to the MSC8122 Reference Manual chapter describing TDM operation.  
DACK2  
Output  
DMA Acknowledge 2  
The DMA controller drives this output to acknowledge the DMA transaction on the bus.  
GPIO20  
Input/ Output General-Purpose Input Output 20  
One of 32 GPIO pins used as GPIO or as one of two dedicated inputs or one of two dedicated outputs. For  
details, refer to the MSC8122 Reference Manual GPIO programming model.  
TDM1RDAT  
Input/ Output TDM1 Serial Receiver Data  
The receive data signal for TDM 1. As an input, this can be the DATA_A data signal for TDM 1. For  
configuration details, refer to the MSC8122 Reference Manual.  
GPIO21  
Input/ Output General-Purpose Input Output 21  
One of 32 GPIO pins used as GPIO or as one of two dedicated inputs or one of two dedicated outputs. For  
details, refer to the MSC8122 Reference Manual GPIO programming model.  
TDM0TSYN  
Input/ Output TDM0 Transmit frame Sync  
Transmit Frame Sync for TDM 0.  
GPIO22  
Input/ Output General-Purpose Input Output 22  
One of 32 GPIO pins used as GPIO or as one of two dedicated inputs or one of two dedicated outputs.For  
details, refer to the MSC8122 Reference Manual GPIO programming model.  
TDM0TCLK  
DONE2  
Input  
TDM 0 Transmit Clock  
Transmit Clock for TDM 0.  
Input/ Output DMA Done 2  
Signifies that the channel must be terminated. If the DMA generates DONE, the channel handling this  
peripheral is inactive. As an input to the DMA, DONE closes the channel much like a normal channel  
closing.  
Note:  
See the MSC8122 Reference Manual chapters on DMA and GPIO for information on  
configuring the DRACK or DONE mode and pin direction.  
DRACK2  
Output  
DMA Data Request Acknowledge 2  
Asserted by the DMA controller to indicate that the DMA controller has sampled the peripheral request.  
MSC8122 Technical Data, Rev. 13  
Freescale Semiconductor  
1-21  
Signals/Connections  
Signal Name  
Table 1-7. GPIO, TDM, UART, Ethernet, and Timer Signals (Continued)  
Type Description  
GPIO23  
Input/ Output General-Purpose Input Output 23  
One of 32 GPIO pins used as GPIO or as one of two dedicated inputs or one of two dedicated outputs. For  
details, refer to the MSC8122 Reference Manual GPIO programming model.  
TDM0TDAT  
Input/ Output TDM0 Serial Transmitter Data  
The transmit data signal for TDM 0. As an output, this can be the DATA_D data signal for TDM 0. For  
configuration details, refer to the MSC8122 Reference Manual chapter describing TDM operation.  
IRQ13  
Input  
Interrupt Request 13  
One of fifteen external lines that can request a service routine, via the internal interrupt controller, from the  
SC140 core.  
GPIO24  
Input/ Output General-Purpose Input Output 24  
One of 32 GPIO pins used as GPIO or as one of two dedicated inputs or one of two dedicated outputs. For  
details, refer to the MSC8122 Reference Manual GPIO programming model.  
TDM0RSYN  
Input/ Output TDM0 Receive Frame Sync  
The receive sync signal for TDM 0. As an input, this can be the DATA_B data signal for TDM 0. For  
configuration details, refer to the MSC8122 Reference Manual chapter describing TDM operation.  
IRQ14  
Input  
Interrupt Request 14  
One of fifteen external lines that can request a service routine, via the internal interrupt controller, from the  
SC140 core.  
GPIO25  
Input/ Output General-Purpose Input Output 25  
One of 32 GPIO pins used as GPIO or as one of two dedicated inputs or one of two dedicated outputs. For  
details, refer to the MSC8122 Reference Manual GPIO programming model.  
TDM0RCLK  
Input/ Output TDM0 Receive Clock  
The receive clock signal for TDM 0. As an input, this can be the DATA_C data signal for TDM 0. For  
configuration details, refer to the MSC8122 Reference Manual chapter describing TDM operation.  
IRQ15  
Input  
Interrupt Request 15  
One of fifteen external lines that can request a service routine, via the internal interrupt controller, from the  
SC140 core.  
GPIO26  
Input/ Output General-Purpose Input Output 26  
One of 32 GPIO pins used as GPIO or as one of two dedicated inputs or one of two dedicated outputs. For  
details, refer to the MSC8122 Reference Manual GPIO programming model.  
TDM0RDAT  
Input/ Output TDM0 Serial Receiver Data  
The receive data signal for TDM 0. As an input, this can be the DATA_A data signal for TDM 0. For  
configuration details, refer to the MSC8122 Reference Manual chapter describing TDM operation.  
GPIO27  
Input/ Output General-Purpose Input Output 27  
One of 32 GPIO pins used as GPIO or as one of two dedicated inputs or one of two dedicated outputs. For  
details, refer to the MSC8122 Reference Manual GPIO programming model.  
DREQ1  
Input  
Input  
DMA Request 1  
Used by an external peripheral to request DMA service.  
URXD  
UART Receive Data  
GPIO28  
Input/ Output General-Purpose Input Output 28  
One of 32 GPIO pins used as GPIO or as one of two dedicated inputs or one of two dedicated outputs. For  
details, refer to the MSC8122 Reference Manual GPIO programming model.  
DREQ2  
UTXD  
Input  
DMA Request 2  
Used by an external peripheral to request DMA service.  
Output  
UART Transmit Data  
MSC8122 Technical Data, Rev. 13  
1-22  
Freescale Semiconductor  
Dedicated Ethernet Signals  
Table 1-7. GPIO, TDM, UART, Ethernet, and Timer Signals (Continued)  
Signal Name  
GPIO29  
Type  
Description  
Input/ Output General-Purpose Input Output 29  
One of 32 GPIO pins used as GPIO or as one of two dedicated inputs or one of two dedicated outputs. For  
details, refer to the MSC8122 Reference Manual GPIO programming model.  
CHIP_ID3  
Input  
Chip ID 3  
Determines the chip ID of the MSC8122 DSI. It is sampled on the rising edge of PORESET signal.  
ETHTX_EN  
Output  
Ethernet Transmit Enable  
Used to enable the Ethernet transmit controller for MII and RMII modes.  
GPIO30  
Input/ Output General-Purpose Input Output 30  
One of 32 GPIO pins used as GPIO or as one of two dedicated inputs or one of two dedicated outputs.For  
details, refer to the MSC8122 Reference Manual GPIO programming model.  
TIMER2  
TMCLK  
Input/ Output Timer 2  
Each signal is configured as either input to the counter or output from the counter. For the configuration of  
the pin direction, refer to the MSC8122 Reference Manual.  
Input  
External TIMER Clock  
An external timer can connect directly to the SIU as the SIU clock.  
2
SDA  
Input/ Output I C-Bus Data Line  
2
This is the data line for the I C bus.  
GPIO31  
Input/ Output General-Purpose Input Output 31  
One of 32 GPIO pins used as GPIO or as one of two dedicated inputs or one of two dedicated outputs. For  
details, refer to the MSC8122 Reference Manual GPIO programming model.  
TIMER3  
SCL  
Input/ Output Timer 3  
Each signal is configured as either input to or output from the counter. For the configuration of the pin  
direction, refer to the MSC8122 Reference Manual.  
2
Input/ Output I C-Bus Clock Line  
2
This the clock line for the I C bus.  
1.7 Dedicated Ethernet Signals  
Most Ethernet signals are multiplexed with the DSI/system bus and the GPIO ports. In addition to the multiplexed  
signals, there are three dedicated Ethernet signals that are described in Table 1-8.  
Table 1-8. Dedicated Ethernet Signals  
Signal Name  
ETHRX_CLK  
Type  
Signal Description  
Input  
Receive Clock  
In MII mode, provides the timing reference for the receive signals.  
ETHSYNC_IN  
Input  
Input  
Sync Input  
In SMII mode, is the sync signal input line.  
ETHTX_CLK  
Transmit Clock  
In MII mode, provides the timing reference for transmit signals.  
ETHREF_CLK  
ETHCLOCK  
Input  
Input  
Reference Clock  
In RMII mode, provides the timing reference.  
Ethernet Clock  
In SMII mode, provides the Ethernet clock signal.  
MSC8122 Technical Data, Rev. 13  
Freescale Semiconductor  
1-23  
Signals/Connections  
Table 1-8. Dedicated Ethernet Signals  
Signal Name  
ETHCRS  
Type  
Signal Description  
Input  
Carrier Sense  
In MII mode, indicates that either the transmit or receive medium is non-idle.  
ETHRXD  
Input  
Ethernet Receive Data  
In SMII mode, used for the Ethernet receive data.  
1.8 EOnCE Event and JTAG Test Access Port Signals  
The MSC8122 uses two sets of debugging signals for the two types of internal debugging modules: EOnCE and the  
JTAG TAP controller. Each internal SC140 core has an EOnce module, but they are all accessed externally by the  
same two signals EE0 and EE1. The MSC8122 supports the standard set of test access port (TAP) signals defined by  
IEEE 1149.1 Standard Test Access Port and Boundary-Scan Architecture specification and described in Table 1-9.  
Table 1-9. JTAG TAP Signals  
Signal Name  
Type  
Signal Description  
EE0  
Input  
EOnCE Event Bit 0  
Puts the internal SC140 cores into Debug mode.  
EE1  
Output  
EOnCE Event Bit 1  
Indicates that at least one on-device SC140 core is in Debug mode.  
TCK  
TDI  
Input  
Input  
Test Clock—Synchronizes JTAG test logic.  
Test Data Input—A test data serial signal for test instructions and data. TDI is sampled on the rising edge  
of TCK and has an internal pull-up resistor.  
TDO  
Output  
Test Data Output—A test data serial signal for test instructions and data. TDO can be tri-stated. The  
signal is actively driven in the shift-IR and shift-DR controller states and changes on the falling edge of  
TCK.  
TMS  
Input  
Input  
Test Mode Select—Sequences the test controller state machine, is sampled on the rising edge of TCK,  
and has an internal pull-up resistor.  
TRST  
Test Reset—Asynchronously initializes the test controller; must be asserted during power up.  
1.9 Reserved Signals  
Table 1-10. Reserved Signals  
Signal Name  
Type  
Signal Description  
TEST  
Input  
Test  
For manufacturing testing. You must connect this pin to GND.  
MSC8122 Technical Data, Rev. 13  
1-24  
Freescale Semiconductor  
Specifications  
2
This document contains detailed information on power considerations, DC/AC electrical characteristics, and AC  
timing specifications. For additional information, see the MSC8122 Users Guide and MSC8122 Reference  
Manual.  
2.1 Maximum Ratings  
CAUTION  
This device contains circuitry protecting against damage  
due to high static voltage or electrical fields; however,  
normal precautions should be taken to avoid exceeding  
maximum voltage ratings. Reliability is enhanced if unused  
inputs are tied to an appropriate logic voltage level (for  
example, either GND or V ).  
DD  
In calculating timing requirements, adding a maximum value of one specification to a minimum value of another  
specification does not yield a reasonable sum. A maximum specification is calculated using a worst case variation  
of process parameter values in one direction. The minimum specification is calculated using the worst case for the  
same parameters in the opposite direction. Therefore, a “maximum” value for a specification never occurs in the  
same device with a “minimum” value for another specification; adding a maximum to a minimum represents a  
condition that can never exist.  
MSC8122 Technical Data, Rev. 13  
Freescale Semiconductor  
2-1  
Specifications  
Table 2-1 describes the maximum electrical ratings for the MSC8122.  
Table 2-1. Absolute Maximum Ratings  
Rating  
Symbol  
Value  
Unit  
Core and PLL supply voltage  
I/O supply voltage  
V
–0.2 to 1.6  
–0.2 to 4.0  
–0.2 to 4.0  
V
V
V
DD  
V
DDH  
Input voltage  
V
IN  
Maximum operating temperature:  
• Standard range  
• Extended range  
T
J
J
90  
105  
°C  
°C  
Minimum operating temperature  
• Standard range  
• Extended range  
T
0
–40  
°C  
°C  
Storage temperature range  
T
–55 to +150  
°C  
STG  
Notes: 1. Functional operating conditions are given in Table 2-2.  
2. Absolute maximum ratings are stress ratings only, and functional operation at the maximum is not guaranteed. Stress beyond  
the listed limits may affect device reliability or cause permanent damage.  
3. Section 4.5, Thermal Considerations includes a formula for computing the chip junction temperature (T ).  
J
2.2 Recommended Operating Conditions  
Table 2-2 lists recommended operating conditions. Proper device operation outside of these conditions is not  
guaranteed.  
Table 2-2. Recommended Operating Conditions  
Rating  
Symbol  
Value  
Unit  
Core and PLL supply voltage:  
• Standard  
V
DD  
V
CCSYN  
— 400 MHz  
— 500 MHz  
• Reduced (300 and 400 MHz)  
1.14 to 1.26  
1.16 to 1.24  
1.07 to 1.13  
V
V
V
I/O supply voltage  
Input voltage  
V
3.135 to 3.465  
V
V
DDH  
V
–0.2 to V  
+0.2  
DDH  
IN  
Operating temperature range:  
• Standard  
• Extended  
T
T
0 to 90  
–40 to 105  
°C  
°C  
J
J
MSC8122 Technical Data, Rev. 13  
2-2  
Freescale Semiconductor  
Thermal Characteristics  
2.3 Thermal Characteristics  
Table 2-3 describes thermal characteristics of the MSC8122 for the FC-PBGA packages.  
Table 2-3. Thermal Characteristics for the MSC8122  
FC-PBGA  
20 × 20 mm5  
Characteristic  
Symbol  
Unit  
Natural  
200 ft/min  
Convection  
(1 m/s) airflow  
1, 2  
Junction-to-ambient  
R
R
R
R
26  
19  
9
21  
15  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
θJA  
θJA  
θJB  
θJC  
1, 3  
Junction-to-ambient, four-layer board  
4
Junction-to-board (bottom)  
5
Junction-to-case  
0.9  
1
6
Junction-to-package-top  
Ψ
JT  
Notes: 1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board)  
temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal  
resistance.  
2. Per SEMI G38-87 and JEDEC JESD51-2 with the single layer board horizontal.  
3. Per JEDEC JESD51-6 with the board horizontal.  
4. Thermal resistance between the die and the printed circuit board per JEDEC JESD 51-8. Board temperature is measured on  
the top surface of the board near the package.  
5. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method  
1012.1).  
6. Thermal characterization parameter indicating the temperature difference between package top and the junction temperature  
per JEDEC JESD51-2.  
Section 4.5, Thermal Considerations provides a detailed explanation of these characteristics.  
2.4 DC Electrical Characteristics  
This section describes the DC electrical characteristics for the MSC8122. The measurements in Table 2-4 assume  
the following system conditions:  
T = 25 °C  
A
VDD  
=
— 300/400 MHz 1.1 V nominal = 1.07–1.13 V  
DC  
— 400 MHz 1.2 V nominal = 1.14–1.26 V  
— 500 MHz 1.2 V nominal = 1.16–1.24 V  
DC  
DC  
VDDH = 3.3 V ± 5% V  
DC  
GND = 0 V  
DC  
Note: The leakage current is measured for nominal VDDH and VDD  
.
MSC8122 Technical Data, Rev. 13  
Freescale Semiconductor  
2-3  
Specifications  
Table 2-4. DC Electrical Characteristics  
Characteristic  
Symbol  
Min  
Typical  
Max  
Unit  
1
Input high voltage , all inputs except CLKIN  
V
2.0  
GND  
2.4  
0
3.465  
0.4  
3.465  
0.4  
1
V
V
IH  
1
Input low voltage  
V
IL  
CLKIN input high voltage  
CLKIN input low voltage  
V
3.0  
0
V
IHC  
V
I
GND  
–1.0  
–1.0  
–1.0  
–1.0  
2.0  
V
ILC  
Input leakage current, V = V  
0.09  
0.09  
0.09  
0.09  
3.0  
µA  
µA  
µA  
µA  
V
IN  
DDH  
IN  
Tri-state (high impedance off state) leakage current, V = V  
I
1
IN  
DDH  
OZ  
2
Signal low input current, V = 0.4 V  
I
1
IL  
L
2
Signal high input current, V = 2.0 V  
I
1
IH  
H
Output high voltage, I = –2 mA,  
V
OH  
OH  
except open drain pins  
Output low voltage, I = 3.2 mA  
V
0
0.4  
V
OL  
OL  
Internal supply current:  
3
Wait mode  
Stop mode  
I
I
375  
290  
mA  
mA  
DDW  
3
DDS  
4
Typical power 400 MHz at 1.2 V  
P
1.15  
W
Notes: 1. See Figure 2-1 for undershoot and overshoot voltages.  
2. Not tested. Guaranteed by design.  
3. Measured for 1.2 V core at 25°C junction temperature.  
4. The typical power values were measured using an EFR code with the device running at a junction temperature of 25°C. No  
peripherals were enabled and the ICache was not enabled. The source code was optimized to use all the ALUs and AGUs and  
®
all four cores. It was created using CodeWarrior 2.5. These values are provided as examples only. Power consumption is  
application dependent and varies widely. To assure proper board design with regard to thermal dissipation and maintaining  
proper operating temperatures, evaluate power consumption for your application and use the design guidelines in Chapter 4 of  
this document and in MSC8102, MSC8122, and MSC8126 Thermal Management Design Guidelines (AN2601).  
VDDH + 17%  
VIH  
V
DDH + 8%  
VDDH  
GND  
GND – 0.3 V  
GND – 0.7 V  
VIL  
Must not exceed 10% of clock period  
Figure 2-1. Overshoot/Undershoot Voltage for VIH and VIL  
2.5 AC Timings  
The following sections include illustrations and tables of clock diagrams, signals, and parallel I/O outputs and  
inputs. When systems such as DSP farms are developed using the DSI, use a device loading of 4 pF per pin. AC  
timings are based on a 20 pF load, except where noted otherwise, and a 50 Ω transmission line. For loads smaller  
than 20 pF, subtract 0.06 ns per pF down to 10 pF load. For loads larger than 20 pF, add 0.06 ns for  
SIU/Ethernet/DSI delay and 0.07 ns for GPIO/TDM/timer delay. When calculating overall loading, also consider  
additional RC delay.  
MSC8122 Technical Data, Rev. 13  
2-4  
Freescale Semiconductor  
AC Timings  
2.5.1 Output Buffer Impedances  
Table 2-5. Output Buffer Impedances  
Output Buffers  
Typical Impedance (Ω)  
System bus  
50  
50  
50  
Memory controller  
Parallel I/O  
Note:  
These are typical values at 65°C. The impedance may vary by ±25% depending on device process and operating temperature.  
2.5.2 Start-Up Timing  
Starting the device requires coordination among several input sequences including clocking, reset, and power.  
Section 2.5.3 describes the clocking characteristics. Section 2.5.4 describes the reset and power-up characteristics.  
You must use the following guidelines when starting up an MSC8122 device:  
PORESET and TRST must be asserted externally for the duration of the power-up sequence. See Table 2-10  
for timing.  
If possible, bring up the VDD and VDDH levels together. For designs with separate power supplies, bring up  
the VDD levels and then the VDDH levels (see Figure 2-3).  
CLKIN should start toggling at least 16 cycles (starting after VDDH reaches its nominal level) before  
PORESET deassertion to guarantee correct device operation (see Figure 2-2 and Figure 2-3).  
CLKIN must not be pulled high during VDDH power-up. CLKIN can toggle during this period.  
The following figures show acceptable start-up sequence examples. Figure 2-2 shows a sequence in which VDD and  
VDDH are raised together. Figure 2-3 shows a sequence in which VDDH is raised after VDD and CLKIN begins to toggle  
as VDDH rises.  
V
V
= Nominal Value  
DDH  
= Nominal Value  
DD  
1
V
Nominal Level  
3.3 V  
2.2 V  
DDH  
1.2 V  
o.5 V  
V
Nominal Level  
DD  
Time  
PORESET/TRST Deasserted  
CLKIN Starts Toggling  
PORESET/TRST Asserted  
V
/V  
Applied  
DD DDH  
Figure 2-2. Start-Up Sequence with VDD and VDDH Raised Together  
MSC8122 Technical Data, Rev. 13  
Freescale Semiconductor  
2-5  
Specifications  
V
V
= Nominal  
= Nominal  
DDH  
DD  
1
V
Nominal  
3.3 V  
DDH  
1.2 V  
o.5 V  
V
Nominal  
DD  
Time  
PORESET/TRST asserted  
applied  
PORESET/TRST deasserted  
CLKIN starts toggling  
applied  
V
DD  
V
DDH  
Figure 2-3. Start-Up Sequence with VDD Raised Before VDDH with CLKIN Started with VDDH  
2.5.3 Clock and Timing Signals  
The following sections include a description of clock signal characteristics. Table 2-6 shows the maximum  
frequency values for internal (Core, Reference, Bus, and DSI) and external (CLKIN and CLKOUT) clocks. The user  
must ensure that maximum frequency values are not exceeded.  
Table 2-6. Maximum Frequencies  
Characteristic  
Maximum in MHz  
Core frequency  
300/400/500  
100/133/166  
100/133/166  
Reference frequency (REFCLK)  
Internal bus frequency (BLCK)  
DSI clock frequency (HCLKIN)  
Core frequency = 300 MHz  
Core frequency = 400/500 MHz  
HCLKIN (min{70 MHz, CLKOUT})  
HCLKIN (min{100 MHz, CLKOUT})  
External clock frequency (CLKIN or CLKOUT)  
100/133/166  
Table 2-7. Clock Frequencies  
300 MHz Device  
400 MHz Device  
500 MHz Device  
Characteristics  
Symbol  
Min  
Max  
Min  
Max  
Min  
Max  
CLKIN frequency  
F
20  
40  
100  
100  
100  
100  
300  
20  
40  
133.3  
133.3  
133.3  
133.3  
400  
20  
40  
166.7  
166.7  
166.7  
166.7  
500  
CLKIN  
BCLK frequency  
F
BCLK  
Reference clock (REFCLK) frequency  
Output clock (CLKOUT) frequency  
SC140 core clock frequency  
F
40  
40  
40  
REFCLK  
CLKOUT  
F
40  
40  
40  
F
200  
200  
200  
CORE  
Note:  
The rise and fall time of external clocks should be 3 ns maximum  
Table 2-8. System Clock Parameters  
Characteristic  
Min  
Max  
Unit  
Phase jitter between BCLK and CLKIN  
CLKIN frequency  
20  
20  
0.3  
ns  
MHz  
ns  
see Table 2-7  
CLKIN slope  
3
PLL input clock (after predivider)  
100  
MHz  
MSC8122 Technical Data, Rev. 13  
2-6  
Freescale Semiconductor  
AC Timings  
Unit  
Table 2-8. System Clock Parameters  
Characteristic  
Min  
Max  
PLL output frequency (VCO output)  
800  
MHz  
MHz  
MHz  
MHz  
300 MHz core  
400 MHz core  
500 MHz core  
1200  
1600  
2000  
1
CLKOUT frequency jitter  
200  
500  
ps  
ps  
1
CLKOUT phase jitter with CLKIN phase jitter of ±100 ps.  
Notes: 1. Peak-to-peak.  
2. Not tested. Guaranteed by design.  
2.5.4 Reset Timing  
The MSC8122 has several inputs to the reset logic:  
Power-on reset (PORESET)  
External hard reset (HRESET)  
External soft reset (SRESET)  
Software watchdog reset  
Bus monitor reset  
Host reset command through JTAG  
All MSC8122 reset sources are fed into the reset controller, which takes different actions depending on the source  
of the reset. The reset status register indicates the most recent sources to cause a reset. Table 2-9 describes the reset  
sources.  
Table 2-9. Reset Sources  
Name  
Direction  
Description  
Power-on reset  
(PORESET)  
Input  
Initiates the power-on reset flow that resets the MSC8122 and configures various attributes of the  
MSC8122. On PORESET, the entire MSC8122 device is reset. SPLL states is reset, HRESET and  
SRESET are driven, the SC140 extended cores are reset, and system configuration is sampled. The  
clock mode (MODCK bits), reset configuration mode, boot mode, Chip ID, and use of either a DSI 64  
bits port or a System Bus 64 bits port are configured only when PORESET is asserted.  
External hard  
reset (HRESET)  
Input/ Output  
Initiates the hard reset flow that configures various attributes of the MSC8122. While HRESET is  
asserted, SRESET is also asserted. HRESET is an open-drain pin. Upon hard reset, HRESET and  
SRESET are driven, the SC140 extended cores are reset, and system configuration is sampled. The  
most configurable features are reconfigured. These features are defined in the 32-bit hard reset  
configuration word described in Hard Reset Configuration Word section of the Reset chapter in the  
MSC8122 Reference Manual.  
External soft reset  
(SRESET)  
Input/ Output  
Initiates the soft reset flow. The MSC8122 detects an external assertion of SRESET only if it occurs  
while the MSC8122 is not asserting reset. SRESET is an open-drain pin. Upon soft reset, SRESET is  
driven, the SC140 extended cores are reset, and system configuration is maintained.  
Software  
watchdog reset  
Internal  
Internal  
Internal  
When the MSC8122 watchdog count reaches zero, a software watchdog reset is signalled. The  
enabled software watchdog event then generates an internal hard reset sequence.  
Bus monitor reset  
When the MSC8122 bus monitor count reaches zero, a bus monitor hard reset is asserted. The  
enabled bus monitor event then generates an internal hard reset sequence.  
Host reset  
command through  
the TAP  
When a host reset command is written through the Test Access Port (TAP), the TAP logic asserts the  
soft reset signal and an internal soft reset sequence is generated.  
Table 2-10 summarizes the reset actions that occur as a result of the different reset sources.  
MSC8122 Technical Data, Rev. 13  
Freescale Semiconductor  
2-7  
Specifications  
Table 2-10. Reset Actions for Each Reset Source  
Power-On  
Reset  
(PORESET)  
Hard Reset (HRESET)  
Soft Reset (SRESET)  
JTAG Command:  
Reset Action/Reset Source  
External or Internal  
External only (SoftwareWatchdogor  
Bus Monitor)  
External  
EXTEST, CLAMP, or  
HIGHZ  
Configuration pins sampled (Refer to  
Yes  
No  
No  
No  
Section 2.5.4.1 for details).  
SPLL state reset  
Yes  
Yes  
No  
No  
No  
No  
No  
No  
System reset configuration write through  
the DSI  
System reset configuration write though  
the system bus  
Yes  
Yes  
No  
No  
HRESET driven  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
No  
No  
No  
SIU registers reset  
IPBus modules reset (TDM, UART,  
Timers, DSI, IPBus master, GIC, HS, and  
GPIO)  
Yes  
Yes  
SRESET driven  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Depends on command  
SC140 extended cores reset  
MQBS reset  
Yes  
Yes  
2.5.4.1 Power-On Reset (PORESET) Pin  
Asserting PORESET initiates the power-on reset flow. PORESET must be asserted externally for at least 16 CLKIN  
cycles after VDD and VDDH are both at their nominal levels.  
2.5.4.2 Reset Configuration  
The MSC8122 has two mechanisms for writing the reset configuration:  
Through the direct slave interface (DSI)  
Through the system bus. When the reset configuration is written through the system bus, the MSC8122  
acts as a configuration master or a configuration slave. If configuration slave is selected, but no special  
configuration word is written, a default configuration word is applied.  
Fourteen signal levels (see Chapter 1 for signal description details) are sampled on PORESET deassertion to define  
the Reset Configuration Mode and boot and operating conditions:  
RSTCONF  
CNFGS  
DSISYNC  
DSI64  
CHIP_ID[0–3]  
BM[0–2]  
SWTE  
MODCK[1–2]  
MSC8122 Technical Data, Rev. 13  
2-8  
Freescale Semiconductor  
AC Timings  
2.5.4.3 Reset Timing Tables  
Table 2-11 and Figure 2-4 describe the reset timing for a reset configuration write through the direct slave  
interface (DSI) or through the system bus.  
Table 2-11. Timing for a Reset Configuration Write through the DSI or System Bus  
No.  
Characteristics  
Expression  
Min  
Max  
Unit  
1
Required external PORESET duration minimum  
16/CLKIN  
CLKIN = 20 MHz  
800  
160  
120  
96  
ns  
ns  
ns  
ns  
CLKIN = 100 MHz (300 MHz core)  
CLKIN = 133 MHz (400 MHz core)  
CLKIN = 166 MHz (500 MHz core)  
2
3
Delay from deassertion of external PORESET to deassertion of internal  
PORESET  
1024/CLKIN  
CLKIN = 20 MHz to 166 MHz  
6.17  
51.2  
µs  
Delay from de-assertion of internal PORESET to SPLL lock  
6400/(CLKIN/RDF)  
(PLL reference clock-  
division factor)  
CLKIN = 20 MHz (RDF = 1)  
320  
64  
96  
320  
64  
96  
µs  
µs  
µs  
µs  
CLKIN = 100 MHz (RDF = 1) (300 MHz core)  
CLKIN = 133 MHz (RDF = 2) (400 MHz core)  
CLKIN = 166 MHz (RDF = 2) (500 MHz core)  
77  
77  
5
6
7
Delay from SPLL to HRESET deassertion  
REFCLK = 40 MHz to 166 MHz  
512/REFCLK  
515/REFCLK  
3.08  
12.8  
µs  
Delay from SPLL lock to SRESET deassertion  
REFCLK = 40 MHz to 166 MHz  
3.10  
3
12.88  
µs  
ns  
Setup time from assertion of RSTCONF, CNFGS, DSISYNC, DSI64,  
CHIP_ID[0–3], BM[0–2], SWTE, and MODCK[1–2] before deassertion of  
PORESET  
8
Hold time from deassertion of PORESET to deassertion of RSTCONF,  
CNFGS, DSISYNC, DSI64, CHIP_ID[0–3], BM[0–2], SWTE, and  
MODCK[1–2]  
5
ns  
Note:  
Timings are not tested, but are guaranteed by design.  
RSTCONF, CNFGS, DSISYNC, DSI64  
CHIP_ID[0–3], BM[0–2], SWTE, MODCK[1–2]  
pins are sampled  
1
PORESET  
Input  
Host programs  
Reset Configuration  
Word  
PORESET  
Internal  
SPLL is locked  
(no external indication)  
1 + 2  
MODCK[3–5]  
HRESET  
Output (I/O)  
3
2
SRESET  
Output (I/O)  
SPLL  
locking period  
Reset configuration write  
sequence during this  
period.  
5
6
Figure 2-4. Timing Diagram for a Reset Configuration Write  
MSC8122 Technical Data, Rev. 13  
Freescale Semiconductor  
2-9  
Specifications  
2.5.5 System Bus Access Timing  
2.5.5.1 Core Data Transfers  
Generally, all MSC8122 bus and system output signals are driven from the rising edge of the reference clock  
(REFCLK). The REFCLK is the CLKIN signal. Memory controller signals, however, trigger on four points within a  
REFCLK cycle. Each cycle is divided by four internal ticks: T1, T2, T3, and T4. T1 always occurs at the rising  
edge of REFCLK (and T3 at the falling edge), but the spacing of T2 and T4 depends on the PLL clock ratio  
selected, as Table 2-12 shows.  
Table 2-12. Tick Spacing for Memory Controller Signals  
Tick Spacing (T1 Occurs at the Rising Edge of REFCLK)  
BCLK/SC140 clock  
T2  
T3  
T4  
1:4, 1:6, 1:8, 1:10  
1/4 REFCLK  
1/6 REFCLK  
2/10 REFCLK  
1/2 REFCLK  
1/2 REFCLK  
1/2 REFCLK  
3/4 REFCLK  
4/6 REFCLK  
7/10 REFCLK  
1:3  
1:5  
Figure 2-5 is a graphical representation of Table 2-12.  
REFCLK  
for 1:4, 1:6, 1:8, 1:10  
T1  
T1  
T1  
T2  
T3  
T3  
T3  
T4  
REFCLK  
REFCLK  
for 1:3  
T2  
T4  
for 1:5  
T2  
T4  
Figure 2-5. Internal Tick Spacing for Memory Controller Signals  
MSC8122 Technical Data, Rev. 13  
2-10  
Freescale Semiconductor  
AC Timings  
The UPM machine and GPCM machine outputs change on the internal tick selected by the memory controller  
configuration. The AC timing specifications are relative to the internal tick. SDRAM machine outputs change only  
on the REFCLK rising edge.  
Table 2-13. AC Timing for SIU Inputs  
Value for Bus Speed in MHz  
Ref = CLKIN  
1.2 V  
Ref = CLKOUT  
1.2 V  
No.  
Characteristic  
Units  
1.1 V  
1.2 V  
166  
100/  
133  
133  
133  
10  
Hold time for all signals after the 50% level of the REFCLK rising edge  
0.5  
3.1  
0.5  
3.0  
0.5  
3.0  
0.5  
3.0  
ns  
ns  
11a  
ARTRY/ABB set-up time before the 50% level of the REFCLK rising  
edge  
11b  
DBG/DBB/BG/BR/TC set-up time before the 50% level of the REFCLK  
rising edge  
3.6  
3.0  
3.3  
2.9  
3.3  
2.9  
3.3  
2.9  
ns  
ns  
11c  
11d  
AACK set-up time before the 50% level of the REFCLK rising edge  
TA/TEA/PSDVAL set-up time before the 50% level of the REFCLK  
rising edge  
Data-pipeline mode  
Non-pipeline mode  
3.5  
4.4  
3.4  
4.0  
3.4  
4.0  
3.4  
4.0  
ns  
ns  
12  
Data bus set-up time before REFCLK rising edge in Normal mode  
Data-pipeline mode  
Non-pipeline mode  
1.9  
4.2  
1.8  
4.0  
1.7  
4.0  
1.8  
4.0  
ns  
ns  
1
13  
Data bus set-up time before the 50% level of the REFCLK rising edge  
in ECC and PARITY modes  
Data-pipeline mode  
Non-pipeline mode  
2.0  
8.2  
2.0  
7.3  
2.0  
7.3  
2.0  
7.3  
ns  
ns  
1
14  
DP set-up time before the 50% level of the REFCLK rising edge  
Data-pipeline mode  
Non-pipeline mode  
2.0  
7.9  
2.0  
6.1  
2.0  
6.1  
2.0  
6.1  
ns  
ns  
15a  
15b  
16  
TS and Address bus set-up time before the 50% level of the REFCLK  
rising edge  
Extra cycle mode (SIUBCR[EXDD] = 0)  
No extra cycle mode (SIUBCR[EXDD] = 1)  
4.2  
5.5  
3.8  
5.0  
3.8  
5.0  
3.8  
5.0  
ns  
ns  
Address attributes: TT/TBST/TSZ/GBL set-up time before the 50%  
level of the REFCLK rising edge  
Extra cycle mode (SIUBCR[EXDD] = 0)  
No extra cycle mode (SIUBCR[EXDD] = 1)  
3.7  
4.8  
3.5  
4.4  
3.5  
4.4  
3.5  
4.4  
ns  
ns  
PUPMWAIT signal set-up time before the 50% level of the REFCLK  
rising edge  
3.7  
3.7  
3.7  
3.7  
ns  
3
17  
18  
IRQx setup time before the 50% level; of the REFCLK rising edge  
4.0  
4.0  
4.0  
4.0  
ns  
ns  
3
IRQx minimum pulse width  
6.0 +  
6.0 +  
6.0 +  
6.0 + T  
REFCLK  
T
T
T
REFCLK  
REFCLK REFCLK  
Notes: 1. Timings specifications 13 and 14 in non-pipeline mode are more restrictive than MSC8102 timings.  
2. Values are measured from the 50% TTL transition level relative to the 50% level of the REFCLK rising edge.  
3. Guaranteed by design.  
MSC8122 Technical Data, Rev. 13  
Freescale Semiconductor  
2-11  
Specifications  
Table 2-14. AC Timing for SIU Outputs  
Value for Bus Speed in MHz3  
Ref = CLKIN  
1.2 V  
Ref = CLKOUT  
1.2 V  
No.  
Characteristic  
Units  
1.1 V  
1.2 V  
166  
100/  
133  
133  
100/133  
2
30  
31  
Minimum delay from the 50% level of the REFCLK for all signals  
0.9  
6.0  
0.8  
4.9  
0.8  
4.9  
1.0  
5.8  
ns  
ns  
PSDVAL/TEA/TA max delay from the 50% level of the REFCLK  
rising edge  
32a  
Address bus max delay from the 50% level of the REFCLK rising  
edge  
Multi-master mode (SIUBCR[EBM] = 1)  
Single-master mode (SIUBCR[EBM] = 0)  
6.4  
5.3  
5.5  
4.2  
5.5  
3.9  
6.4  
5.1  
ns  
ns  
32b  
32c  
Address attributes: TT[0–1]/TBST/TSZ/GBL max delay from the 50%  
level of the REFCLK rising edge  
6.4  
6.9  
5.2  
5.1  
5.7  
4.2  
5.1  
5.7  
4.2  
6.0  
6.6  
5.1  
ns  
ns  
ns  
Address attributes: TT[2–4]/TC max delay from the 50% level of the  
REFCLK rising edge  
32d  
33a  
BADDR max delay from the 50% level of the REFCLK rising edge  
Data bus max delay from the 50% level of the REFCLK rising edge  
Data-pipeline mode  
Non-pipeline mode  
4.8  
7.1  
3.9  
6.1  
3.7  
6.1  
4.8  
7.0  
ns  
ns  
33b  
DP max delay from the 50% level of the REFCLK rising edge  
Data-pipeline mode  
Non-pipeline mode  
6.0  
7.5  
5.3  
6.5  
5.3  
6.5  
6.2  
7.4  
ns  
ns  
34  
Memory controller signals/ALE/CS[0–4] max delay from the 50%  
level of the REFCLK rising edge  
5.1  
6.0  
5.5  
4.2  
4.7  
4.5  
3.9  
4.7  
4.5  
5.1  
5.6  
5.4  
ns  
ns  
ns  
35a  
35b  
DBG/BG/BR/DBB max delay from the 50% level of the REFCLK  
rising edge  
AACK/ABB/TS/CS[5–7] max delay from the 50% level of the  
REFCLK rising edge  
Notes: 1. Values are measured from the 50% level of the REFCLK rising edge to the 50% signal level and assume a 20 pF load except  
where otherwise specified.  
2. The load for specification 30 is 10 pF. The load for the other specifications in this table is 20 pF. For a 15 pF load, subtract 0.3  
ns from the listed value.  
3. The maximum bus frequency depends on the mode:  
• In 60x-compatible mode connected to another MSC8122 device, the frequency is determined by adding the input and output  
longest timing values, which results in the total delay for 20 pF output capacitance. You must also account for other  
influences that can affect timing, such as on-board clock skews, on-board noise delays, and so on.  
• In single-master mode, the frequency depends on the timing of the devices connected to the MSC8122.  
• To achieve maximum performance on the bus in single-master mode, disable the DBB signal by writing a 1 to the  
SIUMCR[BDD] bit. See the SIU chapter in the MSC8122 Reference Manual for details.  
MSC8122 Technical Data, Rev. 13  
2-12  
Freescale Semiconductor  
AC Timings  
REFCLK  
10  
11  
AACK/ARTRY/TA/TEA/DBG/BG/BR  
PSDVAL/ABB/DBB inputs  
10  
12  
13  
Data bus inputs—normal mode  
10  
Data bus inputs—ECC and parity modes  
DP inputs  
14  
15  
10  
18  
Address bus/TS /TT[0–4]/TC[0–2]/  
TBST/TSZ[0–3]/GBL inputs  
PUPMWAIT input  
16  
17  
IRQx inputs  
30  
Min delay for all output pins  
31  
PSDVAL/TEA/TA outputs  
32a/b  
Address bus/TT[0–4]/TC[0–2]/TBST/TSZ[0–3]/GBL outputs  
32c  
33a  
BADDR outputs  
Data bus outputs  
DP outputs  
33b  
34  
Memory controller/ALE outputs  
35  
AACK/ABB/TS/DBG/BG/BR/DBB/CS outputs  
MSC8122 Technical Data, Rev. 13  
Freescale Semiconductor  
2-13  
Specifications  
2.5.5.2 CLKIN to CLKOUT Skew  
Table 2-16 describes the CLKOUT-to-CLKIN skew timing.  
Table 2-15. CLKOUT Skew  
Characteristic  
No.  
Min1  
Max1  
Units  
20  
Rise-to-rise skew  
V
V
= 1.1 V  
= 1.2 V  
0.0  
0.0  
0.95  
0.85  
ns  
ns  
DD  
DD  
21  
22  
23  
24  
Fall-to-fall skew  
V
V
= 1.1 V  
= 1.2 V  
–1.5  
–0.8  
1.0  
1.0  
ns  
ns  
DD  
DD  
CLKOUT phase (1.2 V, 133 MHz)  
Phase high  
Phase low  
2.8  
2.8  
ns  
ns  
CLKOUT phase (1.1 V, 133 MHz)  
Phase high  
Phase low  
2.2  
2.2  
ns  
ns  
CLKOUT phase (1.1 V, 100 MHz)  
Phase high  
Phase low  
3.3  
3.3  
ns  
ns  
Notes: 1. A positive number indicates that CLKOUT precedes CLKIN, A negative number indicates that CLKOUT follows CLKIN.  
2. Skews are measured in clock mode 29, with a CLKIN:CLKOUT ratio of 1:1. The same skew is valid for all clock modes.  
3. CLKOUT skews are measured using a load of 10 pF.  
4. CLKOUT skews and phase are not measured for 500/166 Mhz parts because these parts only use CLKIN mode.  
For designs that use the CLKOUT synchronization mode, use the skew values listed in Table 2-15 to adjust the rise-  
to-fall timing values specified for CLKIN synchronization. Figure 2-6 shows the relationship between the CLKOUT  
and CLKIN timings.  
CLKIN  
CLKOUT  
21  
20  
Figure 2-6. CLKOUT and CLKIN Signals.  
MSC8122 Technical Data, Rev. 13  
2-14  
Freescale Semiconductor  
AC Timings  
2.5.5.3 DMA Data Transfers  
Table 2-16 describes the DMA signal timing.  
Table 2-16. DMA Signals  
Ref = CLKOUT  
(1.2 V only)  
Ref = CLKIN  
No.  
Characteristic  
Units  
Min  
Max  
Min  
Max  
37  
38  
39  
40  
41  
DREQ set-up time before the 50% level of the falling edge of REFCLK  
DREQ hold time after the 50% level of the falling edge of REFCLK  
DONE set-up time before the 50% level of the rising edge of REFCLK  
DONE hold time after the 50% level of the rising edge of REFCLK  
DACK/DRACK/DONE delay after the 50% level of the REFCLK rising edge  
5.0  
0.5  
5.0  
0.5  
0.5  
5.0  
0.5  
5.0  
0.5  
0.5  
ns  
ns  
ns  
ns  
ns  
7.5  
8.4  
The DREQ signal is synchronized with REFCLK. To achieve fast response, a synchronized peripheral should assert  
DREQ according to the timings in Table 2-16. Figure 2-7 shows synchronous peripheral interaction.  
REFCLK  
38  
37  
DREQ  
40  
39  
DONE  
41  
DACK/DONE/DRACK  
Figure 2-7. DMA Signals  
MSC8122 Technical Data, Rev. 13  
Freescale Semiconductor  
2-15  
Specifications  
2.5.6 DSI Timing  
The timings in the following sections are based on a 20 pF capacitive load.  
2.5.6.1 DSI Asynchronous Mode  
Table 2-17. DSI Asynchronous Mode Timing  
No.  
Characteristics  
Min  
Max  
Unit  
1
100  
101  
102  
Attributes set-up time before strobe (HWBS[n]) assertion  
1.5  
1.3  
ns  
ns  
1
Attributes hold time after data strobe deassertion  
Read/Write data strobe deassertion width:  
DCR[HTAAD] = 1  
— Consecutive access to the same DSI  
— Different device with DCR[HTADT] = 01  
— Different device with DCR[HTADT] = 10  
— Different device with DCR[HTADT] = 11  
DCR[HTAAD] = 0  
1.8 + T  
5 + T  
5 + (1.5 × T  
5 + (2.5 × T  
1.8 + T  
ns  
ns  
ns  
ns  
ns  
REFCLK  
REFCLK  
)
)
REFCLK  
REFCLK  
REFCLK  
103  
104  
105  
106  
107  
108  
Read data strobe deassertion to output data high impedance  
Read data strobe assertion to output data active from high impedance  
Output data hold time after read data strobe deassertion  
Read/Write data strobe assertion to HTA active from high impedance  
Output data valid to HTA assertion  
8.5  
ns  
ns  
ns  
ns  
ns  
2.0  
2.2  
2.2  
3.2  
2
Read/Write data strobe assertion to HTA valid  
1.1 V core  
1.2 V core  
7.4  
6.7  
ns  
ns  
109  
110  
111  
Read/Write data strobe deassertion to output HTA high impedance.  
(DCR[HTAAD] = 0, HTA at end of access released at logic 0)  
6.5  
ns  
Read/Write data strobe deassertion to output HTA deassertion.  
(DCR[HTAAD] = 1, HTA at end of access released at logic 1)  
6.5  
ns  
Read/Write data strobe deassertion to output HTA high impedance.  
(DCR[HTAAD] = 1, HTA at end of access released at logic 1  
DCR[HTADT] = 01  
DCR[HTADT] = 10  
DCR[HTADT] = 11  
5 + T  
5 + (1.5 × T  
5 + (2.5 × T  
ns  
ns  
ns  
REFCLK  
)
)
REFCLK  
REFCLK  
112  
201  
202  
Read/Write data strobe assertion width  
1.8 + T  
ns  
ns  
REFCLK  
Host data input set-up time before write data strobe deassertion  
1.0  
Host data input hold time after write data strobe deassertion  
1.1 V core  
1.2 V core  
1.7  
1.5  
ns  
ns  
Notes: 1. Attributes refers to the following signals: HCS, HA[11–29], HCID[0–4], HDST, HRW, HRDS, and HWBSn.  
2. This specification is tested in dual-strobe mode. Timing in single-strobe mode is guaranteed by design.  
3. All values listed in this table are tested or guaranteed by design.  
MSC8122 Technical Data, Rev. 13  
2-16  
Freescale Semiconductor  
AC Timings  
Figure 2-8 shows DSI asynchronous read signals timing.  
HCS  
HA[11–29]  
HCID[0–4]  
HDST  
1
HRW  
HWBSn  
2
100  
101  
112  
1
HDBSn  
2
HRDS  
102  
103  
107  
105  
104  
HD[0–63]  
109  
106  
3
HTA  
108  
110  
4
HTA  
111  
Notes: 1. Used for single-strobe mode access.  
2. Used for dual-strobe mode access.  
3. HTA released at logic 0 (DCR[HTAAD] = 0) at end of access; used with pull-  
down implementation.  
4. HTA released at logic 1 (DCR[HTAAD] = 1) at end of access; used with pull-up  
implementation.  
Figure 2-8. Asynchronous Single- and Dual-Strobe Modes Read Timing Diagram  
MSC8122 Technical Data, Rev. 13  
Freescale Semiconductor  
2-17  
Specifications  
Figure 2-9 shows DSI asynchronous write signals timing.  
HCS  
HA[11–29]  
HCID[0–4]  
HDST  
1
101  
102  
HRW  
100  
2
HRDS  
112  
1
2
HDBSn  
HWBSn  
201  
202  
HD[0–63]  
109  
106  
108  
3
HTA  
110  
4
HTA  
111  
Notes: 1. Used for single-strobe mode access.  
2. Used for dual-strobe mode access.  
3. HTA released at logic 0 (DCR[HTAAD] = 0) at end of access; used with pull-down implementation.  
4. HTA released at logic 1 (DCR[HTAAD] = 1) at end of access; used with pull-up implementation.  
Figure 2-9. Asynchronous Single- and Dual-Strobe Modes Write Timing Diagram  
Figure 2-10 shows DSI asynchronous broadcast write signals timing.  
HCS  
HA[11–29]  
HCID[0–4]  
HDST  
1
101  
102  
HRW  
100  
2
HRDS  
112  
1
2
HDBSn  
HWBSn  
201  
202  
HD[0–63]  
Notes: 1. Used for single-strobe mode access.  
2. Used for dual-strobe mode access.  
Figure 2-10. Asynchronous Broadcast Write Timing Diagram  
MSC8122 Technical Data, Rev. 13  
2-18  
Freescale Semiconductor  
AC Timings  
2.5.6.2 DSI Synchronous Mode  
Table 2-18. DSI Inputs in Synchronous Mode  
1.1 V Core  
1.2 V Core  
No.  
Characteristic  
Expression  
Units  
Min  
Max  
Min  
Max  
1,2  
120  
121  
122  
123  
124  
125  
126  
127  
HCLKIN cycle time  
HTC  
10.0  
4.0  
4.0  
1.2  
0.6  
1.3  
1.2  
1.5  
55.6  
33.3  
33.3  
10.0  
4.0  
4.0  
1.2  
0.4  
1.3  
1.2  
1.5  
55.6  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
HCLKIN high pulse width  
HCLKIN low pulse width  
HA[11–29] inputs set-up time  
HD[0–63] inputs set-up time  
HCID[0–4] inputs set-up time  
All other inputs set-up time  
All inputs hold time  
(0.5 0.1) × HTC  
(0.5 0.1) × HTC  
33.3  
33.3  
Notes: 1. Values are based on a frequency range of 18–100 MHz.  
2. Refer to Table 2-6 for HCLKIN frequency limits.  
Table 2-19. DSI Outputs in Synchronous Mode  
1.1 V Core  
1.2 V Core  
No.  
Characteristic  
Units  
Min  
Max  
Min  
Max  
128  
129  
130  
131  
132  
133  
134  
135  
HCLKIN high to HD[0–63] output active  
2.0  
7.6  
2.0  
6.3  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
HCLKIN high to HD[0–63] output valid  
HD[0–63] output hold time  
1.7  
1.7  
HCLKIN high to HD[0–63] output high impedance  
HCLKIN high to HTA output active  
HCLKIN high to HTA output valid  
HTA output hold time  
8.3  
7.6  
2.2  
2.0  
7.4  
5.9  
1.7  
1.7  
HCLKIN high to HTA high impedance  
7.5  
6.3  
120  
122  
121  
127  
HCLKIN  
123  
HA[11–29] input signals  
127  
127  
124  
HD[0–63] input signals  
125  
HCID[0–4] input signals  
127  
126  
All other input signals  
131  
130  
129  
128  
HD[0–63] output signals  
135  
134  
133  
132  
HTA output signal  
Figure 2-11. DSI Synchronous Mode Signals Timing Diagram  
MSC8122 Technical Data, Rev. 13  
Freescale Semiconductor  
2-19  
Specifications  
2.5.7 TDM Timing  
Table 2-20. TDM Timing  
1.1 V Core  
1.2 V Core  
No.  
Characteristic  
Expression  
Units  
Min  
Max  
Min  
Max  
1
300  
301  
302  
303  
304  
305  
TDMxRCLK/TDMxTCLK  
TC  
16  
7
16  
7
ns  
ns  
ns  
ns  
ns  
ns  
TDMxRCLK/TDMxTCLK high pulse width  
TDMxRCLK/TDMxTCLK low pulse width  
TDM receive all input set-up time  
TDM receive all input hold time  
(0.5 0.1) × TC  
(0.5 0.1) × TC  
7
7
1.3  
1.0  
2.8  
1.3  
1.0  
2.8  
TDMxTCLK high to TDMxTDAT/TDMxRCLK output  
2,3  
active  
306  
307  
308  
TDMxTCLK high to TDMxTDAT/TDMxRCLK output  
2.5  
10.0  
2.5  
8.8  
ns  
ns  
ns  
4
All output hold time  
TDMxTCLK high to TDmXTDAT/TDMxRCLK output high  
10.7  
10.5  
2,3  
impedance  
2
309  
310  
TDMxTCLK high to TDMXTSYN output valid  
9.7  
8.5  
ns  
ns  
4
TDMxTSYN output hold time  
2.5  
2.5  
Notes: 1. Values are based on a a maximum frequency of 62.5 MHz. The TDM interface supports any frequency below 62.5 MHz.  
Devices operating at 300 MHz are limited to a maximum TDMxRCLK/TDMxTCLK frequency of 50 MHz.  
2. Values are based on 20 pF capacitive load.  
3. When configured as an output, TDMxRCLK acts as a second data link. See the MSC8122 Reference Manual for details.  
4. Values are based on 10 pF capacitive load.  
300  
302  
301  
304  
TDMxRCLK  
TDMxRDAT  
303  
304  
303  
TDMxRSYN  
Figure 2-12. TDM Inputs Signals  
300  
302  
301  
TDMxTCLK  
308  
307  
306  
305  
TDMxTDAT  
TDMxRCLK  
309  
310  
TDMxTSYN  
Figure 2-13. TDM Output Signals  
MSC8122 Technical Data, Rev. 13  
2-20  
Freescale Semiconductor  
AC Timings  
2.5.8 UART Timing  
Table 2-21. UART Timing  
Un  
No.  
Characteristics  
Expression  
Min  
Max  
it  
400  
401  
402  
URXD and UTXD inputs high/low duration  
URXD and UTXD inputs rise/fall time  
UTXD output rise/fall time  
16 × T  
160.0  
10  
10  
ns  
ns  
ns  
REFCLK  
401  
401  
UTXD, URXD  
inputs  
400  
400  
Figure 2-14. UART Input Timing  
402  
402  
UTXD output  
Figure 2-15. UART Output Timing  
MSC8122 Technical Data, Rev. 13  
Freescale Semiconductor  
2-21  
Specifications  
2.5.9 Timer Timing  
Table 2-22. Timer Timing  
Ref = CLKIN  
No.  
Characteristics  
Unit  
Min  
Max  
500  
501  
502  
503  
TIMERx frequency  
10.0  
4.0  
ns  
ns  
ns  
TIMERx Input high period  
TIMERx Output low period  
4.0  
TIMERx Propagations delay from its clock input  
1.1 V core  
1.2 V core  
3.1  
2.8  
9.5  
8.1  
ns  
ns  
500  
501  
502  
TIMERx (Input)  
503  
TIMERx (Output)  
Figure 2-16. Timer Timing  
2.5.10 Ethernet Timing  
2.5.10.1 Management Interface Timing  
Table 2-23. Ethernet Controller Management Interface Timing  
Characteristics  
No.  
Min  
Max  
Unit  
801  
802  
ETHMDIO to ETHMDC rising edge set-up time  
ETHMDC rising edge to ETHMDIO hold time  
10  
10  
ns  
ns  
ETHMDC  
801  
802  
Valid  
ETHMDIO  
Figure 2-17. MDIO Timing Relationship to MDC  
MSC8122 Technical Data, Rev. 13  
2-22  
Freescale Semiconductor  
AC Timings  
2.5.10.2 MII Mode Timing  
Table 2-24. MII Mode Signal Timing  
No.  
Characteristics  
Min  
Max  
Unit  
803  
804  
805  
ETHRX_DV, ETHRXD[0–3], ETHRX_ER to ETHRX_CLK rising edge set-up time  
3.5  
3.5  
ns  
ns  
ETHRX_CLK rising edge to ETHRX_DV, ETHRXD[0–3], ETHRX_ER hold time  
ETHTX_CLK to ETHTX_EN, ETHTXD[0–3], ETHTX_ER output delay  
1.1 V core  
1.2 V core  
1
1
14.6  
12.6  
ns  
ns  
ETHRX_CLK  
803  
804  
ETHRX_DV  
ETHRXD[0–3]  
ETHRX_ER  
Valid  
ETHTX_CLK  
805  
ETHTX_EN  
Valid  
Valid  
ETHTXD[0–3]  
ETHTX_ER  
Figure 2-18. MII Mode Signal Timing  
2.5.10.3 RMII Mode  
Table 2-25. RMII Mode Signal Timing  
1.1 V Core  
1.2 V Core  
No.  
Characteristics  
Unit  
ns  
Min  
Max  
Min  
Max  
806  
807  
811  
ETHTX_EN,ETHRXD[0–1], ETHCRS_DV, ETHRX_ER to ETHREF_CLK rising  
edge set-up time  
1.6  
2
11  
ETHREF_CLK rising edge to ETHRXD[0–1], ETHCRS_DV, ETHRX_ER hold  
time  
1.6  
3
1.6  
3
ns  
ETHREF_CLK rising edge to ETHTXD[0–1], ETHTX_EN output delay.  
ETHREF_CLK  
12.5  
ns  
806  
807  
ETHCRS_DV  
ETHRXD[0–1]  
ETHRX_ER  
Valid  
811  
ETHTX_EN  
ETHTXD[0–1]  
Valid  
Valid  
Figure 2-19. RMII Mode Signal Timing  
MSC8122 Technical Data, Rev. 13  
Freescale Semiconductor  
2-23  
Specifications  
2.5.10.4 SMII Mode  
Table 2-26. SMII Mode Signal Timing  
No.  
Characteristics  
Min  
Max  
Unit  
808  
809  
810  
ETHSYNC_IN, ETHRXD to ETHCLOCK rising edge set-up time  
ETHCLOCK rising edge to ETHSYNC_IN, ETHRXD hold time  
ETHCLOCK rising edge to ETHSYNC, ETHTXD output delay  
1.0  
1.0  
ns  
ns  
1
2
1.1 V core.  
1.2 V core.  
1.5  
6.0  
ns  
ns  
1
2
1.5  
5.0  
Notes: 1. Measured using a 5 pF load.  
2. Measured using a 15 pF load.  
ETHCLOCK  
808  
809  
ETHSYNC_IN  
ETHRXD  
Valid  
810  
ETHSYNC  
ETHTXD  
Valid  
Valid  
Figure 2-20. SMII Mode Signal Timing  
2.5.11 GPIO Timing  
Table 2-27. GPIO Timing  
Ref = CLKOUT  
(1.2 V only)  
Ref = CLKIN  
No.  
Characteristics  
Unit  
Min  
Max  
Min  
Max  
601  
602  
603  
604  
605  
REFCLK edge to GPIO out valid (GPIO out delay time)  
REFCLK edge to GPIO out not valid (GPIO out hold time)  
REFCLK edge to high impedance on GPIO out  
1.1  
6.1  
1.3  
6.9  
ns  
ns  
ns  
ns  
ns  
5.4  
6.2  
GPIO in valid to REFCLK edge (GPIO in set-up time)  
REFCLK edge to GPIO in not valid (GPIO in hold time)  
3.5  
0.5  
3.7  
0.5  
MSC8122 Technical Data, Rev. 13  
2-24  
Freescale Semiconductor  
AC Timings  
REFCLK  
601  
603  
602  
GPIO  
(Output)  
High Impedance  
604  
605  
GPIO  
(Input)  
Valid  
Figure 2-21. GPIO Timing  
2.5.12 EE Signals  
Table 2-28. EE Pin Timing  
Number  
Characteristics  
Type  
Min  
65  
66  
EE0 (input)  
Asynchronous  
4 core clock periods  
1 core clock period  
EE1 (output)  
Synchronous to Core clock  
Notes: 1. The core clock is the SC140 core clock. The ratio between the core clock and CLKOUT is configured during power-on-reset.  
2. Refer to Table 1-4 on page 1-6 for details on EE pin functionality.  
Figure 2-22 shows the signal behavior of the EE pins.  
65  
EE0 in  
66  
EE1 out  
Figure 2-22. EE Pin Timing  
2.5.13 JTAG Signals  
Table 2-29. JTAG Timing  
All  
frequencies  
No.  
Characteristics  
Unit  
Min  
Max  
700  
701  
702  
TCK frequency of operation (1/(T × 4); maximum 25 MHz)  
TCK cycle time  
0.0  
25  
MHz  
ns  
C
40.0  
TCK clock pulse width measured at V = 1.6 V  
M
High  
Low  
20.0  
16.0  
ns  
ns  
703  
TCK rise and fall times  
0.0  
3.0  
ns  
MSC8122 Technical Data, Rev. 13  
Freescale Semiconductor  
2-25  
Specifications  
Table 2-29. JTAG Timing (Continued)  
All  
frequencies  
No.  
Characteristics  
Unit  
Min  
Max  
704  
705  
706  
707  
708  
709  
710  
711  
712  
713  
Note:  
Boundary scan input data set-up time  
5.0  
20.0  
0.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Boundary scan input data hold time  
TCK low to output data valid  
TCK low to output high impedance  
TMS, TDI data set-up time  
TMS, TDI data hold time  
30.0  
30.0  
0.0  
5.0  
20.0  
0.0  
TCK low to TDO data valid  
TCK low to TDO high impedance  
TRST assert time  
20.0  
20.0  
0.0  
100.0  
30.0  
TRST set-up time to TCK low  
All timings apply to OnCE module data transfers as well as any other transfers via the JTAG port.  
701  
702  
V
M
V
M
V
TCK  
(Input)  
IH  
V
IL  
703  
703  
Figure 2-23. Test Clock Input Timing Diagram  
V
TCK  
(Input)  
IH  
V
IL  
704  
705  
Data  
Inputs  
Input Data Valid  
706  
Data  
Outputs  
Output Data Valid  
707  
Data  
Outputs  
Figure 2-24. Boundary Scan (JTAG) Timing Diagram  
MSC8122 Technical Data, Rev. 13  
2-26  
Freescale Semiconductor  
AC Timings  
V
IH  
TCK  
(Input)  
V
IL  
709  
708  
Input Data Valid  
TDI  
TMS  
(Input)  
710  
TDO  
(Output)  
Output Data Valid  
711  
TDO  
(Output)  
Figure 2-25. Test Access Port Timing Diagram  
TCK  
(Input)  
713  
TRST  
(Input)  
712  
Figure 2-26. TRST Timing Diagram  
MSC8122 Technical Data, Rev. 13  
Freescale Semiconductor  
2-27  
Specifications  
MSC8122 Technical Data, Rev. 13  
2-28  
Freescale Semiconductor  
Packaging  
3
This section provides information on the MSC8122 package, including diagrams of the package pinouts and tables  
showing how the signals discussed in Chapter 1 are allocated. The MSC8122 is available in a 431-pin flip chip-  
plastic ball grid array (FC-PBGA).  
3.1 Package Description  
Figure 3-1 and Figure 3-2 show top and bottom views of the package, including pinouts. To conform to JEDEC  
requirements, the package is based on a 23 × 23 position (20 × 20 mm) layout with the outside perimeter  
depopulated. Therefore, ball position numbering starts with B2. Signal names shown in the figures are typically the  
signal assigned after reset. Signals that are only used during power-on reset (SWTE, DSISYNC, DSI64, MODCK[1–2],  
CNFGS, and CHIP_ID[0–3]) are not shown in these figures if there is another signal assigned to the pin after reset.  
Also, there are several signals that are designated as IRQ lines immediately after reset, but represent duplicate IRQ  
lines that should be reconfigured by the user. To represent these signals uniquely in the figures, the second  
functions (BADDR[29–31], DP[1–7], and INT_OUT) are used.  
Table 3-1 lists the MSC8122 signals alphabetically by signal name. Connections with multiple names are listed  
individually by each name. Signals with programmable polarity are shown both as signals which are asserted low  
(default) and high (that is, NAME/NAME). Table 3-2 lists the signals numerically by pin number. Each pin number is  
listed once with the various signals that are multiplexed to it. For simplicity, signals with programmable polarity  
are shown in this table only with their default name (asserted low).  
Note: For Ethernet signals multiplexed with the DSI/system Bus (MII and RMII modes only), signals not used by  
the RMII mode are reserved when the Ethernet controller is multiplexed with the DSI/system bus and  
RMII mode is selected. These reserved signals can be left unconnected. These RMII reserved signals are  
not included in Table 3-1, but are indicated in Table 3-2.  
Note: For Ethernet signals multiplexed with the GPIO/TDM signals, signals not used by the RMII or SMII mode  
can be assigned to their alternate GPIO or dedicated function, except for GPIO10 and GPIO14. If the  
Ethernet controller is enabled and multiplexed with the GPIO signals and SMII mode is selected, GPIO10  
and GPIO14 (E21 and F21, respectively) must be left unconnected. These signals are designated as NC (no  
connect) in Table 3-1 and Table 3-2.  
MSC8122 Technical Data, Rev. 13  
Freescale Semiconductor  
3-1  
Packaging  
Top View  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
NMI_  
OUT  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
B
C
D
GND  
GND  
GND  
GND  
GND  
VDD  
GND  
GND  
GND  
GPIO0  
GND  
S
VDD  
EE0  
VDD  
VDD  
GND  
TDI  
TDO  
EE1  
GPIO28 HCID1 GND  
GND  
VDD  
GND  
VDD  
GND  
VDD  
GND GPIO30 GPIO2 GPIO1 GPIO7 GPIO3 GPIO5 GPIO6  
RESET  
VDDH  
VDD  
VDDH  
VDDH  
GND  
HCID2 HCID3 GND  
GND  
VDD  
GND  
VDD  
GPIO31 GPIO29  
GPIO4  
GND GPIO8  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
TCK  
PO  
TRST  
RST  
TMS HRESET GPIO27 HCID0 GND  
GND  
VDD  
GND  
VDD  
GND  
VDD  
GND  
GND  
GND GPIO9 GPIO13 GPIO10 GPIO12  
E
F
ETHRX_ ETHTX_  
VDD  
NMI  
HA25  
VDD  
HA29  
HA23  
HA19  
HA13  
HA22  
GND  
GND  
BM0  
GND  
VDD  
GPIO20 GPIO18 GPIO16 GPIO11 GPIO14 GPIO19  
RESET CONF  
CLK  
CLK  
BADDR  
31  
INT_ ETHCR  
OUT  
VDD  
VDD  
G
H
J
HA24  
HA20  
HA18  
HA15  
HA12  
HD28  
HD26  
HD20  
HD18  
HA27  
HA28  
HA26  
HA21  
HA14  
HD31  
HD30  
HD27  
VDDH  
HA17 PWE0  
ABB  
CS1  
BCTL0 GPIO15 GND GPIO17 GPIO22  
S
PSD  
TEST  
VDD  
VDD  
VDDH  
PGTA  
BM1 ARTRY AACK  
DBB  
VDD  
HTA  
TT4  
CS4 GPIO24 GPIO21  
A31  
CAS  
PSDA BADDR  
VDD  
VDD  
GND  
CLKIN  
GND  
GND  
GND  
GND  
BM2  
GND  
DBG  
GND  
GND  
TT3 PSDA10 BCTL1 GPIO23 GND GPIO25 A30  
MUX  
27  
BADDR  
30  
VDD  
K
HA16 PWE3 PWE1  
POE  
Res.  
GND  
VDDH  
GND CLKOUT  
GND  
TT2  
ALE  
GND  
VDDH  
CS2  
CS3  
GND  
VDDH  
A26  
A27  
A29  
A25  
A24  
A28  
A22  
A21  
A20  
A19  
A16  
BADDR BADDR  
VDDH  
GND  
VDDH  
GND  
VDDH  
VDDH  
HRDS  
TA  
L
HA11  
VDDH  
GND  
28  
29  
HB  
RST  
VDD  
VDDH  
VDDH  
M
N
P
GND  
GND  
GND  
HWBS  
0
VDDH  
HD29  
HD25  
HD24 PWE2  
HBCS  
GND  
BG  
BR  
HCS  
TEA  
DP3  
CS0 PSDWE GPIO26 A23  
PSD  
HWBS HWBS HWBS  
3
GNDSYN VCCSYN  
VDDH  
HD23  
HD22  
HD0  
D2  
HCLKIN GND  
GND  
VDD  
GND  
TT0  
DP0  
DP2  
D30  
GND  
A18  
A15  
A12  
A10  
A7  
2
1
VAL  
HWBS HWBS  
6
VDD  
VDD  
D14  
D12  
VDD  
R
T
GND  
HD1  
HD2  
GND  
HD4  
VDDH  
TSZ1  
TSZ3  
TSZ2  
D9  
GBL  
TBST  
D11  
DP7  
DP6  
DP5  
D25  
TS  
A17  
GND  
VDDH  
4
HWBS HWBS  
7
HD17  
HD16  
HD3  
HD6  
HD7  
VDD  
HD21  
HD19  
VDDH  
TSZ0  
D8  
D16  
D15  
TT1  
D17  
D21  
D19  
D23  
D22  
DP4  
D26  
DP1  
D28  
A14  
A13  
A11  
A6  
5
U
V
D3  
D6  
D31  
D0  
D1  
D4  
D5  
D7  
D10  
D13  
D18  
D20  
GND  
VDDH  
D24  
D27  
D29  
A8  
A9  
VDDH  
VDDH  
VDDH  
VDDH  
W
Y
HD5  
HD15  
HD14  
HD13  
GND  
HD9  
HD10  
HD8  
GND  
VDD  
GND HDST1 HDST0  
GND  
VDDH  
HD40  
HD43  
VDDH  
HD33  
VDDH  
HD32  
HD37  
HD38  
HD41  
GND  
HD34  
HD35  
HD39  
GND  
VDDH  
VDDH  
HD54  
HD55  
HD60  
HD59  
HD61  
HD58  
GND  
GND  
VDDH  
HD51  
HD52  
HD53  
GND  
VDDH  
GND  
HD46  
HD47  
GND  
HD42  
HD44  
A4  
A5  
AA  
HD12  
HD11  
HD63  
HD62  
GND  
GND  
A0  
A2  
A3  
VDD  
AB GND  
HD57  
HD56  
HD50  
HD49  
HD48  
HD45  
HD36  
A1  
Figure 3-1. MSC8122 Package, Top View  
MSC8122 Technical Data, Rev. 13  
3-2  
Freescale Semiconductor  
Package Description  
Bottom View  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
NMI_  
OUT  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
B
C
D
GND  
GPIO0  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
S
VDD  
VDD  
VDD  
VDD  
EE0  
GPIO6 GPIO5 GPIO3 GPIO7 GPIO1 GPIO2 GPIO30 GND  
GND  
VDD  
GND  
VDD  
GND  
VDD  
GND HCID1 GPIO28  
TDO  
EE1  
GND  
TDI  
RESET  
VDDH  
VDDH  
VDD  
VDDH  
GPIO8 GND  
GPIO4  
GPIO29 GPIO31  
GND  
VDD  
GND  
VDD  
GND HCID3 HCID2  
GND  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
GPIO12 GPIO10 GPIO13 GPIO9 GND  
GND  
GND  
GND  
VDD  
GND  
VDD  
GND  
VDD  
GND HCID0 GPIO27 HRESET TMS  
TRST  
RST  
TCK  
PO  
E
F
ETHTX_ ETHRX_  
CLK  
VDD  
GPIO19 GPIO14 GPIO11 GPIO16 GPIO18 GPIO20  
GND  
VDD  
GND  
BM0  
GND  
HA22  
HA29  
HA23  
HA19  
HA13  
NMI  
HA25  
VDD  
CLK  
CONF RESET  
ETHCR INT_  
BADDR  
31  
VDD  
VDD  
G
H
GPIO22 GPIO17 GND GPIO15 BCTL0  
CS1  
ABB  
PWE0 HA17  
HA27  
HA28  
HA26  
HA21  
HA14  
HD31  
HD30  
HD27  
VDDH  
HA24  
HA20  
HA18  
HA15  
HA12  
HD28  
HD26  
HD20  
HD18  
S
OUT  
PSD  
TEST  
CAS  
VDDH  
VDD  
VDD  
A31  
GPIO21 GPIO24 CS4  
TT4  
HTA  
DBB  
VDD  
AACK ARTRY BM1  
PGTA  
BADDR PSDA  
27  
VDD  
VDD  
J
A30 GPIO25 GND GPIO23 BCTL1 PSDA10 TT3  
GND  
DBG  
GND  
BM2  
GND  
CLKIN  
GND  
GND  
GND  
GND  
GND  
MUX  
BADDR  
30  
VDD  
K
A28  
A22  
A21  
A20  
A19  
A16  
A29  
A25  
A24  
A26  
A27  
GND  
VDDH  
CS2  
CS3  
ALE  
GND  
VDDH  
TT2  
CLKOUT GND  
GND  
Res.  
GND  
VDDH  
POE  
PWE1 PWE3 HA16  
BADDR BADDR  
29  
VDDH  
VDDH  
HRDS  
TA  
VDDH  
GND  
VDDH  
GND  
L
GND  
HA11  
VDDH  
28  
HB  
RST  
VDDH  
VDDH  
VDD  
M
N
GND  
GND  
GND  
HWBS  
0
VDDH  
A23 GPIO26 PSDWE CS0  
PSD  
HCS  
TEA  
DP3  
BG  
BR  
GND  
HBCS  
PWE2 HD24  
HD29  
HD25  
HWBS HWBS HWBS  
VDDH  
VCCSYN GNDSYN  
P
GND  
A18  
A15  
A12  
A10  
A7  
DP0  
DP2  
D30  
GND  
TT0  
GND  
VDD  
GND HCLKIN  
HD23  
HD22  
HD0  
D2  
VAL  
1
2
3
HWBS HWBS  
VDD  
VDD  
VDD  
D14  
D12  
R
A17  
GND  
VDDH  
TS  
DP6  
DP5  
D25  
DP7  
GBL  
TBST  
D11  
TSZ3  
TSZ2  
D9  
TSZ1  
GND  
HD1  
HD2  
GND  
HD4  
VDDH  
4
6
HWBS HWBS  
T
A14  
A13  
A11  
A6  
DP1  
D28  
DP4  
D26  
D23  
D22  
D21  
D19  
TT1  
D17  
D16  
D15  
TSZ0  
D8  
HD21  
HD19  
VDDH  
HD17  
HD16  
HD3  
HD6  
HD7  
VDD  
5
7
U
D31  
D6  
D3  
V
A9  
A8  
D29  
D27  
D24  
GND  
VDDH  
D20  
D18  
D13  
D10  
D7  
D5  
D4  
D1  
D0  
VDDH  
VDDH  
VDDH  
VDDH  
W
Y
GND  
VDDH  
GND  
HD34  
HD35  
HD39  
HD32  
HD37  
HD38  
HD41  
HD33  
VDDH  
HD40  
HD43  
VDDH  
GND  
VDDH  
HDST0 HDST1 GND  
GND  
VDD  
GND  
HD9  
HD10  
HD8  
HD5  
HD15  
HD14  
HD13  
VDDH  
HD54  
HD55  
A5  
A4  
GND  
HD42  
HD44  
GND  
HD46  
HD47  
GND  
VDDH  
HD51  
HD52  
HD53  
GND  
VDDH  
HD58  
GND  
HD60  
HD59  
HD61  
AA  
AB  
A3  
A2  
A0  
GND  
GND  
HD63  
HD62  
HD12  
HD11  
VDD  
A1  
HD36  
HD45  
HD48  
HD49  
HD50  
HD56  
HD57  
GND  
Figure 3-2. MSC8122 Package, Bottom View  
MSC8122 Technical Data, Rev. 13  
Freescale Semiconductor  
3-3  
Packaging  
Table 3-1. MSC8122 Signal Listing By Name  
Location  
Designator  
Location  
Designator  
Signal Name  
Signal Name  
A0  
A1  
AA20  
AB21  
AA21  
AA22  
Y21  
Y22  
W22  
W21  
V19  
V20  
V21  
V22  
U21  
U22  
T22  
T21  
R22  
R20  
R21  
P22  
N22  
M22  
L22  
BADDR27  
BADDR28  
BADDR29  
BADDR30  
BADDR31  
BCTL0  
BCTL1  
BG  
J8  
L7  
A2  
L8  
A3  
K8  
A4  
G10  
G18  
J18  
N16  
G11  
H10  
J11  
G11  
H10  
J11  
P16  
B19  
C18  
C17  
D17  
J10  
K14  
W3  
N18  
G17  
K18  
L18  
H17  
K16  
J18  
J16  
H16  
V5  
A5  
A6  
A7  
A8  
BNKSEL0  
BNKSEL1  
BNKSEL2  
BM0  
A9  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
A17  
A18  
A19  
A20  
A21  
A22  
A23  
A24  
A25  
A26  
A27  
A28  
A29  
A30  
A31  
AACK  
ABB  
ALE  
ARTRY  
BM1  
BM2  
BR  
CHIP_ID0  
CHIP_ID1  
CHIP_ID2  
CHIP_ID3  
CLKIN  
CLKOUT  
CNFGS  
CS0  
N21  
M21  
L21  
CS1  
CS2  
CS3  
K20  
L20  
CS4  
CS5  
K22  
K21  
J22  
CS5  
CS6  
CS7  
H22  
H12  
G12  
K17  
H11  
D0  
D1  
V6  
D2  
U5  
D3  
U6  
D4  
V7  
MSC8122 Technical Data, Rev. 13  
3-4  
Freescale Semiconductor  
Package Description  
Table 3-1. MSC8122 Signal Listing By Name (Continued)  
Location  
Designator  
Location  
Designator  
Signal Name  
Signal Name  
D5  
V8  
U7  
D41  
D42  
AB18  
AA17  
Y14  
D6  
D7  
V9  
D43  
D8  
U8  
D44  
AB17  
AB16  
AA15  
AB15  
AB14  
AB13  
AB12  
Y11  
D9  
U9  
D45  
D10  
D11  
D12  
D13  
D14  
D15  
D16  
D17  
D18  
D19  
D20  
D21  
D22  
D23  
D24  
D25  
D26  
D27  
D28  
D29  
D30  
D31  
D32  
D33  
D34  
D35  
D36  
D37  
D38  
D39  
D40  
V10  
U10  
V11  
V12  
U11  
U12  
T12  
U13  
V13  
U14  
V14  
T14  
U15  
T15  
V16  
U16  
U17  
V17  
U18  
V18  
T19  
U19  
W18  
W16  
Y19  
AA19  
AB20  
Y18  
AA18  
AB19  
W14  
D46  
D47  
D48  
D49  
D50  
D51  
D52  
AA11  
AB11  
AA10  
AB10  
AB9  
AB8  
Y8  
D53  
D54  
D55  
D56  
D57  
D58  
D59  
AA7  
Y7  
D60  
D61  
AB7  
AB6  
AA6  
G21  
T18  
D62  
D63  
DACK1  
DACK1  
DACK2  
DACK2  
DACK3  
DACK4  
DBB  
DBG  
DONE1  
DONE2  
DP0  
F22  
R19  
T17  
T16  
H13  
J12  
F19  
G22  
P19  
DP1  
T18  
DP2  
R19  
MSC8122 Technical Data, Rev. 13  
Freescale Semiconductor  
3-5  
Packaging  
Table 3-1. MSC8122 Signal Listing By Name (Continued)  
Location  
Designator  
Location  
Designator  
Signal Name  
Signal Name  
DP3  
DP4  
R17  
T17  
T16  
R16  
R15  
F19  
G22  
E6  
ETHRXD0  
ETHRXD0  
ETHRXD1  
ETHRXD1  
ETHRXD2  
ETHRXD2  
ETHRXD3  
ETHRXD3  
ETHSYNC  
ETHSYNC_IN  
ETHTX_CLK  
ETHTX_EN  
ETHTX_EN  
ETHTX_ER  
ETHTX_ER  
ETHTXD  
ETHTXD0  
ETHTXD0  
ETHTXD1  
ETHTXD1  
ETHTXD2  
ETHTXD2  
ETHTXD3  
ETHTXD3  
EXT_BG2  
EXT_BG3  
EXT_BR2  
EXT_BR3  
EXT_DBG2  
EXT_DBG3  
GBL  
F21  
W14  
E22  
AB18  
C22  
AA17  
C21  
Y14  
E22  
F15  
DP5  
DP6  
DP7  
DRACK1  
DRACK2  
DREQ1  
DREQ1  
G19  
P19  
C6  
DREQ1  
DREQ2  
F16  
DREQ2  
F18  
R17  
R16  
R15  
U4  
D17  
AA10  
D19  
AB10  
F20  
DREQ2  
DREQ3  
DREQ4  
DSI64  
DSISYNC  
EE0  
T4  
B19  
AA15  
C18  
AB15  
C20  
AB14  
C19  
AB13  
T18  
D3  
EE1  
D4  
ETHCLOCK  
ETHCOL  
ETHCOL  
ETHCRS  
ETHCRS_DV  
ETHCRS_DV  
ETHMDC  
ETHMDC  
ETHMDIO  
ETHMDIO  
ETHREF_CLK  
ETHRX_CLK  
ETHRX_DV  
ETHRX_DV  
ETHRX_ER  
ETHRX_ER  
ETHRXD  
F16  
D22  
Y7  
G15  
E21  
AB9  
E20  
Y8  
T16  
P19  
R17  
R19  
T17  
E19  
AA7  
F16  
F15  
E21  
AB9  
F20  
AB8  
G15  
R10  
B4  
GND  
GND  
B5  
GND  
B7  
GND  
B9  
GND  
B11  
MSC8122 Technical Data, Rev. 13  
3-6  
Freescale Semiconductor  
Package Description  
Table 3-1. MSC8122 Signal Listing By Name (Continued)  
Location  
Designator  
Location  
Designator  
Signal Name  
Signal Name  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
B13  
B15  
B17  
B22  
C2  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
L14  
L16  
L17  
M5  
M6  
C8  
M7  
C10  
C12  
C14  
C15  
D5  
M10  
M14  
M19  
N10  
N14  
P10  
P13  
P14  
P21  
R4  
D9  
D11  
D13  
D21  
E8  
E10  
E12  
E14  
E15  
E17  
E18  
F7  
T20  
V4  
V15  
W5  
W6  
W9  
W13  
W19  
W20  
Y9  
F11  
F13  
G20  
J6  
Y12  
Y15  
Y17  
AA8  
AA13  
AA16  
AB2  
P11  
B19  
C18  
J14  
J20  
K10  
K11  
K12  
K13  
K19  
L9  
GND  
SYN  
GPIO0  
GPIO1  
L10  
MSC8122 Technical Data, Rev. 13  
Freescale Semiconductor  
3-7  
Packaging  
Table 3-1. MSC8122 Signal Listing By Name (Continued)  
Location  
Designator  
Location  
Designator  
Signal Name  
Signal Name  
GPIO2  
GPIO3  
GPIO4  
GPIO5  
GPIO6  
GPIO7  
GPIO8  
GPIO9  
GPIO10  
GPIO11  
GPIO12  
GPIO13  
GPIO14  
GPIO15  
GPIO16  
GPIO17  
GPIO18  
GPIO19  
GPIO20  
GPIO21  
GPIO22  
GPIO23  
GPIO24  
GPIO25  
GPIO26  
GPIO27  
GPIO28  
GPIO29  
GPIO30  
GPIO31  
HA7  
C17  
C20  
D19  
C21  
C22  
C19  
D22  
E19  
E21  
F20  
E22  
E20  
F21  
G19  
F19  
G21  
F18  
F22  
F17  
H19  
G22  
J19  
H18  
J21  
N20  
E6  
HA13  
HA14  
HA15  
HA16  
HA17  
HA18  
HA19  
HA20  
HA21  
HA22  
HA23  
HA24  
HA25  
HA26  
HA27  
HA28  
HA29  
HBCS  
HBRST  
HCID0  
HCID1  
HCID2  
HCID3  
HCLKIN  
HCS  
J5  
L3  
K2  
K4  
G6  
J2  
H5  
H2  
K3  
F6  
G5  
G2  
G4  
J3  
G3  
H3  
F5  
N9  
M16  
E7  
C7  
D7  
D8  
P9  
N17  
T5  
HD0  
C6  
HD1  
T4  
D17  
C16  
D16  
R14  
D8  
HD2  
U4  
V2  
W4  
W3  
W2  
Y2  
AB5  
Y5  
AA5  
HD3  
HD4  
HD5  
HA8  
HD6  
HA9  
W11  
W10  
L4  
HD7  
HA10  
HD8  
HA11  
HD9  
HA12  
L2  
HD10  
MSC8122 Technical Data, Rev. 13  
3-8  
Freescale Semiconductor  
Package Description  
Table 3-1. MSC8122 Signal Listing By Name (Continued)  
Location  
Designator  
Location  
Designator  
Signal Name  
Signal Name  
HD11  
HD12  
HD13  
HD14  
HD15  
HD16  
HD17  
HD18  
HD19  
HD20  
HD21  
HD22  
HD23  
HD24  
HD25  
HD26  
HD27  
HD28  
HD29  
HD30  
HD31  
HD32  
HD33  
HD34  
HD35  
HD36  
HD37  
HD38  
HD39  
HD40  
HD41  
HD42  
HD43  
HD44  
HD45  
HD46  
AB4  
AA4  
AB3  
AA3  
Y3  
HD47  
HD48  
AB15  
AB14  
AB13  
AB12  
Y11  
AA11  
AB11  
AA10  
AB10  
AB9  
AB8  
Y8  
HD49  
HD50  
HD51  
U2  
HD52  
T2  
HD53  
R2  
HD54  
U3  
HD55  
P2  
HD56  
T3  
HD57  
R5  
HD58  
P5  
HD59  
AA7  
Y7  
N5  
HD60  
P4  
HD61  
AB7  
AB6  
AA6  
N8  
N2  
HD62  
P3  
HD63  
M2  
HDBE0  
HDBE1  
HDBE2  
HDBE3  
HDBE4  
HDBE5  
HDBE6  
HDBE7  
HDBS0  
HDBS1  
HDBS2  
HDBS3  
HDBS4  
HDBS5  
HDBS6  
HDBS7  
HDST0  
HDST1  
HRDE  
N4  
P8  
N3  
P7  
M3  
P6  
W18  
W16  
Y19  
AA19  
AB20  
Y18  
AA18  
AB19  
W14  
AB18  
AA17  
Y14  
AB17  
AB16  
AA15  
R7  
T7  
R6  
T6  
N8  
P8  
P7  
P6  
R7  
T7  
R6  
T6  
W11  
W10  
N15  
MSC8122 Technical Data, Rev. 13  
Freescale Semiconductor  
3-9  
Packaging  
Table 3-1. MSC8122 Signal Listing By Name (Continued)  
Location  
Designator  
Location  
Designator  
Signal Name  
Signal Name  
HRDS  
HRESET  
HRW  
N15  
E5  
IRQ5  
IRQ5  
H13  
L8  
N15  
H14  
N8  
IRQ5  
T16  
C17  
D22  
R16  
E19  
G14  
R15  
E21  
F20  
E22  
E20  
F21  
J19  
H18  
J21  
V2  
HTA  
IRQ6  
HWBE0  
HWBE1  
HWBE2  
HWBE3  
HWBE4  
HWBE5  
HWBE6  
HWBE7  
HWBS0  
HWBS1  
HWBS2  
HWBS3  
HWBS4  
HWBS5  
HWBS6  
HWBS7  
INT_OUT  
IRQ1  
IRQ6  
P8  
IRQ6  
P7  
IRQ7  
P6  
IRQ7  
R7  
IRQ7  
T7  
IRQ8  
R6  
IRQ9  
T6  
IRQ10  
IRQ11  
IRQ12  
IRQ13  
IRQ14  
IRQ15  
MODCK1  
MODCK2  
NC  
N8  
P8  
P7  
P6  
R7  
T7  
R6  
W4  
E21  
F21  
F4  
T6  
G14  
C20  
R10  
T18  
D19  
K8  
NC  
NMI  
IRQ1  
NMI_OUT  
PBS0  
PBS1  
PBS2  
PBS3  
PBS4  
PBS5  
PBS6  
PBS7  
PGPL0  
PGPL1  
PGPL2  
PGPL3  
PGPL4  
B6  
IRQ1  
G7  
IRQ2  
K6  
IRQ2  
N6  
IRQ2  
R19  
C21  
G10  
R17  
B19  
C22  
G12  
T17  
C18  
C19  
K5  
IRQ3  
R7  
IRQ3  
T7  
IRQ3  
R6  
IRQ4  
T6  
IRQ4  
J17  
N19  
K7  
IRQ4  
IRQ4  
IRQ5  
H7  
IRQ5  
H8  
MSC8122 Technical Data, Rev. 13  
3-10  
Freescale Semiconductor  
Package Description  
Table 3-1. MSC8122 Signal Listing By Name (Continued)  
Location  
Designator  
Location  
Designator  
Signal Name  
Signal Name  
PGPL5  
PGTA  
J7  
H8  
K7  
F2  
TC0  
G11  
H10  
J11  
E2  
TC1  
POE  
TC2  
PORESET  
PPBS  
TCK  
H8  
J17  
J7  
TDI  
D2  
PSDA10  
PSDAMUX  
PSDCAS  
PSDDQM0  
PSDDQM1  
PSDDQM2  
PSDDQM3  
PSDDQM4  
PSDDQM5  
PSDDQM6  
PSDDQM7  
PSDRAS  
PSDVAL  
PSDWE  
PWE0  
TDM0RCLK  
TDM0RDAT  
TDM0RSYN  
TDM0TCLK  
TDM0TDAT  
TDM0TSYN  
TDM1RCLK  
TDM1RDAT  
TDM1RSYN  
TDM1TCLK  
TDM1TDAT  
TDM1TSYN  
TDM2RCLK  
TDM2RDAT  
TDM2RSYN  
TDM2TCLK  
TDM2TDAT  
TDM2TSYN  
TDM3RCLK  
TDM3RDAT  
TDM3RSYN  
TDM3TCLK  
TDM3TDAT  
TDM3TSYN  
TDO  
J21  
N20  
H18  
G22  
J19  
H19  
F22  
F17  
F18  
F19  
G21  
G19  
E20  
F21  
E22  
E21  
F20  
E19  
C19  
D22  
C22  
D19  
C21  
C20  
C4  
H7  
G7  
K6  
N6  
K5  
R7  
T7  
R6  
T6  
K7  
P18  
N19  
G7  
K6  
N6  
K5  
R7  
T7  
PWE1  
PWE2  
PWE3  
PWE4  
PWE5  
PWE6  
R6  
T6  
PWE7  
PUPMWAIT  
Reserved  
RSTCONF  
SCL  
H8  
K9  
F3  
D16  
C16  
C5  
T5  
TEA  
P17  
H6  
SDA  
TEST  
SRESET  
SWTE  
TIMER0  
C18  
C17  
C16  
D16  
TIMER1  
TA  
P15  
T10  
TIMER2  
TBST  
TIMER3  
MSC8122 Technical Data, Rev. 13  
Freescale Semiconductor  
3-11  
Packaging  
Table 3-1. MSC8122 Signal Listing By Name (Continued)  
Location  
Designator  
Location  
Designator  
Signal Name  
Signal Name  
TMCLK  
TMS  
TRST  
TS  
C16  
E4  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
F8  
F9  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
E3  
F10  
F12  
F14  
G8  
R18  
T8  
TSZ0  
TSZ1  
TSZ2  
TSZ3  
TT0  
R8  
T9  
G9  
R9  
G13  
G16  
H4  
R14  
T13  
K16  
J16  
H16  
E6  
TT1  
TT2  
H9  
TT3  
H15  
H20  
J4  
TT4  
URXD  
UTXD  
C6  
J9  
V
P12  
B8  
J13  
J15  
K15  
M8  
CCSYN  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
B10  
B12  
B14  
B16  
B18  
B20  
B21  
C3  
R11  
R12  
R13  
T11  
Y6  
AA2  
B3  
C9  
C11  
C13  
D10  
D12  
D14  
D15  
E9  
AB22  
D6  
V
V
V
V
V
V
V
V
V
DDH  
DDH  
DDH  
DDH  
DDH  
DDH  
DDH  
DDH  
DDH  
D18  
D20  
H21  
L5  
L6  
E11  
E13  
E16  
L15  
L19  
M4  
MSC8122 Technical Data, Rev. 13  
3-12  
Freescale Semiconductor  
Package Description  
Table 3-1. MSC8122 Signal Listing By Name (Continued)  
Location  
Designator  
Location  
Designator  
Signal Name  
Signal Name  
V
V
V
V
V
V
V
V
V
V
V
V
M9  
M15  
M17  
M18  
M20  
N7  
V
V
V
V
V
V
V
V
V
V
V
W12  
W15  
W17  
Y4  
DDH  
DDH  
DDH  
DDH  
DDH  
DDH  
DDH  
DDH  
DDH  
DDH  
DDH  
DDH  
DDH  
DDH  
DDH  
DDH  
DDH  
DDH  
DDH  
DDH  
DDH  
DDH  
DDH  
Y10  
Y13  
P20  
R3  
Y16  
Y20  
U20  
V3  
AA9  
AA12  
AA14  
W7  
W8  
Note: This table lists every signal name. Because many signals are multiplexed, an individual ball designator number may be listed  
several times.  
MSC8122 Technical Data, Rev. 13  
Freescale Semiconductor  
3-13  
Packaging  
Des.  
Table 3-2. MSC8122 Signal Listing by Ball Designator  
Signal Name  
Des.  
Signal Name  
B3  
B4  
V
C18  
C19  
C20  
C21  
C22  
D2  
GPIO1/TIMER0/CHIP_ID1/IRQ5/ETHTXD1  
DD  
GND  
GND  
GPIO7/TDM3RCLK/IRQ5/ETHTXD3  
B5  
GPIO3/TDM3TSYN/IRQ1/ETHTXD2  
B6  
NMI_OUT  
GND  
GPIO5/TDM3TDAT/IRQ3/ETHRXD3  
B7  
GPIO6/TDM3RSYN/IRQ4/ETHRXD2  
B8  
V
TDI  
EE0  
EE1  
GND  
DD  
B9  
GND  
D3  
B10  
B11  
B12  
B13  
B14  
B15  
B16  
B17  
B18  
B19  
B20  
B21  
B22  
C2  
V
D4  
DD  
GND  
D5  
V
D6  
V
DDH  
DD  
GND  
D7  
HCID2  
HCID3/HA8  
GND  
V
D8  
DD  
GND  
D9  
V
D10  
D11  
D12  
D13  
D14  
D15  
D16  
D17  
D18  
D19  
D20  
D21  
D22  
E2  
V
DD  
DD  
GND  
GND  
V
V
DD  
DD  
GPIO0/CHIP_ID0/IRQ4/ETHTXD0  
GND  
V
V
V
V
DD  
DD  
DD  
DD  
GND  
GND  
GPIO31/TIMER3/SCL  
GPIO29/CHIP_ID3/ETHTX_EN  
C3  
V
V
DDH  
DD  
C4  
TDO  
SRESET  
GPIO4/TDM3TCLK/IRQ2/ETHTX_ER  
C5  
V
DDH  
C6  
GPIO28/UTXD/DREQ2  
HCID1  
GND  
C7  
GPIO8/TDM3RDAT/IRQ6/ETHCOL  
C8  
GND  
TCK  
TRST  
C9  
V
E3  
DD  
C10  
C11  
C12  
C13  
C14  
C15  
C16  
C17  
GND  
E4  
TMS  
V
E5  
HRESET  
GPIO27/URXD/DREQ1  
HCID0  
DD  
GND  
E6  
V
E7  
DD  
GND  
E8  
GND  
GND  
E9  
V
DD  
GPIO30/TIMER2/TMCLK/SDA  
GPIO2/TIMER1/CHIP_ID2/IRQ6  
E10  
E11  
GND  
V
DD  
MSC8122 Technical Data, Rev. 13  
3-14  
Freescale Semiconductor  
Package Description  
Table 3-2. MSC8122 Signal Listing by Ball Designator (Continued)  
Des.  
Signal Name  
Des.  
Signal Name  
E12  
E13  
E14  
E15  
E16  
E17  
E18  
E19  
E20  
E21  
E22  
F2  
GND  
G6  
G7  
HA17  
V
PWE0/PSDDQM0/PBS0  
DD  
GND  
GND  
G8  
V
V
DD  
DD  
G9  
V
G10  
G11  
G12  
G13  
G14  
G15  
G16  
G17  
G18  
G19  
G20  
G21  
G22  
H2  
IRQ3/BADDR31  
BM0/TC0/BNKSEL0  
ABB/IRQ4  
DD  
GND  
GND  
GPIO9/TDM2TSYN/IRQ7/ETHMDIO  
V
DD  
GPIO13/TDM2RCLK/IRQ11/ETHMDC  
IRQ7/INT_OUT  
GPIO10/TDM2TCLK/IRQ8/ETHRX_DV/ETHCRS_DV/NC  
ETHCRS/ETHRXD  
GPIO12/TDM2RSYN/IRQ10/ETHRXD1/ETHSYNC  
V
DD  
PORESET  
RSTCONF  
NMI  
CS1  
F3  
BCTL0  
F4  
GPIO15/TDM1TSYN/DREQ1  
F5  
HA29  
GND  
GPIO17/TDM1TDAT/DACK1  
GPIO22/TDM0TCLK/DONE2/DRACK2  
HA20  
F6  
HA22  
F7  
GND  
F8  
V
V
V
DD  
DD  
DD  
F9  
H3  
HA28  
F10  
F11  
F12  
F13  
F14  
F15  
F16  
F17  
F18  
F19  
F20  
F21  
F22  
G2  
H4  
V
DD  
GND  
H5  
HA19  
TEST  
V
H6  
DD  
GND  
H7  
PSDCAS/PGPL3  
V
H8  
PGTA/PUPMWAIT/PGPL4/PPBS  
DD  
ETHRX_CLK/ETHSYNC_IN  
ETHTX_CLK/ETHREF_CLK/ETHCLOCK  
GPIO20/TDM1RDAT  
H9  
V
DD  
H10  
H11  
H12  
H13  
H14  
H15  
H16  
H17  
H18  
H19  
H20  
BM1/TC1/BNKSEL1  
ARTRY  
GPIO18/TDM1RSYN/DREQ2  
GPIO16/TDM1TCLK/DONE1/DRACK1  
GPIO11/TDM2TDAT/IRQ9/ETHRX_ER/ETHTXD  
GPIO14/TDM2RDAT/IRQ12/ETHRXD0/NC  
GPIO19/TDM1RCLK/DACK2  
HA24  
AACK  
DBB/IRQ5  
HTA  
V
DD  
TT4/CS7  
CS4  
G3  
HA27  
GPIO24/TDM0RSYN/IRQ14  
GPIO21/TDM0TSYN  
G4  
HA25  
G5  
HA23  
V
DD  
MSC8122 Technical Data, Rev. 13  
Freescale Semiconductor  
3-15  
Packaging  
Des.  
Table 3-2. MSC8122 Signal Listing by Ball Designator (Continued)  
Signal Name  
Des.  
Signal Name  
H21  
H22  
J2  
V
K15  
K16  
K17  
K18  
K19  
K20  
K21  
K22  
L2  
V
DD  
DDH  
A31  
TT2/CS5  
ALE  
HA18  
HA26  
J3  
CS2  
J4  
V
GND  
A26  
DD  
J5  
HA13  
GND  
J6  
A29  
J7  
PSDAMUX/PGPL5  
BADDR27  
A28  
J8  
HA12  
HA14  
HA11  
J9  
V
L3  
DD  
J10  
J11  
J12  
J13  
J14  
J15  
J16  
J17  
J18  
J19  
J20  
J21  
J22  
K2  
CLKIN  
BM2/TC2/BNKSEL2  
DBG  
L4  
L5  
V
DDH  
DDH  
L6  
V
V
L7  
BADDR28  
IRQ5/BADDR29  
GND  
DD  
GND  
L8  
V
L9  
DD  
TT3/CS6  
L10  
L14  
L15  
L16  
L17  
L18  
L19  
L20  
L21  
L22  
M2  
M3  
M4  
M5  
M6  
M7  
M8  
M9  
M10  
M14  
GND  
PSDA10/PGPL0  
GND  
BCTL1/CS5  
V
DDH  
GPIO23/TDM0TDAT/IRQ13  
GND  
GND  
CS3  
GND  
GPIO25/TDM0RCLK/IRQ15  
A30  
V
DDH  
HA15  
HA21  
A27  
A25  
K3  
K4  
HA16  
A22  
K5  
PWE3/PSDDQM3/PBS3  
PWE1/PSDDQM1/PBS1  
POE/PSDRAS/PGPL2  
IRQ2/BADDR30  
Reserved  
HD28  
HD31  
K6  
K7  
V
DDH  
K8  
GND  
GND  
GND  
K9  
K10  
K11  
K12  
K13  
K14  
GND  
GND  
V
DD  
GND  
V
DDH  
GND  
GND  
GND  
CLKOUT  
MSC8122 Technical Data, Rev. 13  
3-16  
Freescale Semiconductor  
Package Description  
Table 3-2. MSC8122 Signal Listing by Ball Designator (Continued)  
Des.  
Signal Name  
Des.  
Signal Name  
M15  
M16  
M17  
M18  
M19  
M20  
M21  
M22  
N2  
V
P12  
P13  
P14  
P15  
P16  
P17  
P18  
P19  
P20  
P21  
P22  
R2  
V
CCSYN  
DDH  
HBRST  
GND  
V
V
GND  
TA  
DDH  
DDH  
GND  
BR  
V
TEA  
DDH  
A24  
PSDVAL  
A21  
DP0/DREQ1/EXT_BR2  
HD26  
V
DDH  
N3  
HD30  
HD29  
GND  
A19  
N4  
N5  
HD24  
HD18  
N6  
PWE2/PSDDQM2/PBS2  
R3  
V
DDH  
N7  
V
R4  
GND  
DDH  
N8  
HWBS0/HDBS0/HWBE0/HDBE0  
R5  
HD22  
N9  
HBCS  
R6  
HWBS6/HDBS6/HWBE6/HDBE6/PWE6/PSDDQM6/PBS6  
N10  
N14  
N15  
N16  
N17  
N18  
N19  
N20  
N21  
N22  
P2  
GND  
R7  
HWBS4/HDBS4/HWBE4/HDBE4/PWE4/PSDDQM4/PBS4  
GND  
R8  
TSZ1  
TSZ3  
HRDS/HRW/HRDE  
R9  
BG  
R10  
R11  
R12  
R13  
R14  
R15  
R16  
R17  
R18  
R19  
R20  
R21  
R22  
T2  
IRQ1/GBL  
HCS  
V
V
V
DD  
DD  
DD  
CS0  
PSDWE/PGPL1  
GPIO26/TDM0RDAT  
TT0/HA7  
A23  
IRQ7/DP7/DREQ4  
A20  
IRQ6/DP6/DREQ3  
HD20  
IRQ3/DP3/DREQ2/EXT_BR3  
P3  
HD27  
TS  
P4  
HD25  
HD23  
IRQ2/DP2/DACK2/EXT_DBG2  
P5  
A17  
A18  
P6  
HWBS3/HDBS3/HWBE3/HDBE3  
HWBS2/HDBS2/HWBE2/HDBE2  
HWBS1/HDBS1/HWBE1/HDBE1  
HCLKIN  
P7  
A16  
P8  
HD17  
P9  
T3  
HD21  
P10  
P11  
GND  
T4  
HD1/DSISYNC  
HD0/SWTE  
GND  
T5  
SYN  
MSC8122 Technical Data, Rev. 13  
Freescale Semiconductor  
3-17  
Packaging  
Des.  
Table 3-2. MSC8122 Signal Listing by Ball Designator (Continued)  
Signal Name  
Des.  
Signal Name  
T6  
T7  
HWBS7/HDBS7/HWBE7/HDBE7/PWE7/PSDDQM7/PBS7  
U21  
U22  
V2  
A12  
A13  
HWBS5/HDBS5/HWBE5/HDBE5/PWE5/PSDDQM5/PBS5  
T8  
TSZ0  
TSZ2  
TBST  
HD3/MODCK1  
T9  
V3  
V
DDH  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
T21  
T22  
U2  
V4  
GND  
D0  
V
V5  
DD  
D16  
V6  
D1  
TT1  
V7  
D4  
D21  
V8  
D5  
D23  
V9  
D7  
IRQ5/DP5/DACK4/EXT_BG3  
V10  
V11  
V12  
V13  
V14  
V15  
V16  
V17  
V18  
V19  
V20  
V21  
V22  
W2  
D10  
IRQ4/DP4/DACK3/EXT_DBG3  
D12  
IRQ1/DP1/DACK1/EXT_BG2  
D13  
D30  
GND  
A15  
D18  
D20  
GND  
D24  
A14  
HD16  
HD19  
HD2/DSI64  
D2  
D27  
U3  
D29  
U4  
A8  
U5  
A9  
U6  
D3  
A10  
U7  
D6  
A11  
U8  
D8  
HD6  
HD5/CNFGS  
HD4/MODCK2  
GND  
GND  
U9  
D9  
W3  
U10  
U11  
U12  
U13  
U14  
U15  
U16  
U17  
U18  
U19  
U20  
D11  
D14  
D15  
D17  
D19  
D22  
D25  
D26  
D28  
D31  
W4  
W5  
W6  
W7  
V
V
DDH  
DDH  
W8  
W9  
GND  
W10  
W11  
W12  
W13  
W14  
HDST1/HA10  
HDST0/HA9  
V
DDH  
GND  
V
HD40/D40/ETHRXD0  
DDH  
MSC8122 Technical Data, Rev. 13  
3-18  
Freescale Semiconductor  
Package Description  
Table 3-2. MSC8122 Signal Listing by Ball Designator (Continued)  
Des.  
Signal Name  
Des.  
Signal Name  
W15  
W16  
W17  
W18  
W19  
W20  
W21  
W22  
Y2  
V
AA9  
AA10  
AA11  
AA12  
AA13  
AA14  
AA15  
AA16  
AA17  
AA18  
AA19  
AA20  
AA21  
AA22  
AB2  
V
DDH  
DDH  
HD33/D33/reserved  
HD54/D54/ETHTX_EN  
HD52/D52  
V
DDH  
HD32/D32/reserved  
V
DDH  
GND  
GND  
A7  
GND  
V
DDH  
HD46/D46/ETHTXT0  
A6  
GND  
HD7  
HD15  
HD42/D42/ETHRXD2/reserved  
Y3  
HD38/D38/reserved  
Y4  
V
HD35/D35/reserved  
DDH  
Y5  
HD9  
A0  
Y6  
V
A2  
DD  
Y7  
HD60/D60/ETHCOL/reserved  
HD58/D58/ETHMDC  
GND  
A3  
GND  
Y8  
Y9  
AB3  
HD13  
Y10  
Y11  
Y12  
Y13  
Y14  
Y15  
Y16  
Y17  
Y18  
Y19  
Y20  
Y21  
Y22  
AA2  
AA3  
AA4  
AA5  
AA6  
AA7  
AA8  
V
AB4  
HD11  
DDH  
HD51/D51  
GND  
AB5  
HD8  
AB6  
HD62/D62  
V
AB7  
HD61/D61  
DDH  
HD43/D43/ETHRXD3/reserved  
GND  
AB8  
HD57/D57/ETHRX_ER  
HD56/D56/ETHRX_DV/ETHCRS_DV  
HD55/D55/ETHTX_ER/reserved  
HD53/D53  
AB9  
V
AB10  
AB11  
AB12  
AB13  
AB14  
AB15  
AB16  
AB17  
AB18  
AB19  
AB20  
AB21  
AB22  
DDH  
GND  
HD37/D37/reserved  
HD34/D34/reserved  
HD50/D50  
HD49/D49/ETHTXD3/reserved  
HD48/D48/ETHTXD2/reserved  
HD47/D47/ETHTXD1  
HD45/D45  
V
DDH  
A4  
A5  
V
HD44/D44  
DD  
HD14  
HD12  
HD41/D41/ETHRXD1  
HD39/D39/reserved  
HD36/D36/reserved  
A1  
HD10  
HD63/D63  
HD59/D59/ETHMDIO  
GND  
V
DD  
MSC8122 Technical Data, Rev. 13  
Freescale Semiconductor  
3-19  
Packaging  
3.2 MSC8122 Package Mechanical Drawing  
Notes:  
1. All dimensions in millimeters.  
2. Dimensioning and tolerancing  
per ASME Y14.5M–1994.  
3. Features are symmetrical about  
the package center lines unless  
dimensioned otherwise.  
4. Maximum solder ball diameter  
measured parallel to Datum A.  
5. Datum A, the seating plane, is  
determined by the spherical  
crowns of the solder balls.  
6. Parallelism measurement shall  
exclude any effect of mark on  
top surface of package.  
7. Capacitors may not be present  
on all devices.  
8. Caution must be taken not to  
short capacitors or exposed  
metal capacitor pads on  
package top.  
9. FC CBGA (Ceramic) package  
code: 5238.  
FC PBGA (Plastic) package  
code: 5263.  
10.Pin 1 indicator can be in the  
form of number 1 marking or an  
“L” shape marking.  
Figure 3-3. MSC8122 Mechanical Information, 431-pin FC-PBGA Package  
MSC8122 Technical Data, Rev. 13  
3-20  
Freescale Semiconductor  
Design Considerations  
4
The following sections discuss areas to consider when the MSC8122 device is designed into a system.  
4.1 Start-up Sequencing Recommendations  
Use the following guidelines for start-up and power-down sequences:  
Assert PORESET and TRST before applying power and keep the signals driven low until the power reaches the  
required minimum power levels. This can be implemented via weak pull-down resistors.  
CLKIN can be held low or allowed to toggle during the beginning of the power-up sequence. However, CLKIN  
must start toggling before the deassertion of PORESET and after both power supplies have reached nominal  
voltage levels.  
If possible, bring up VDD/VCCSYN and VDDH together. If it is not possible, raise VDD/VCCSYN first and then bring up  
VDDH. VDDH should not exceed VDD/VCCSYN until VDD/VCCSYN reaches its nominal voltage level. Similarly, bring  
both voltage levels down together. If that is not possible reverse the power-up sequence, with VDDH going down  
first and then VDD/VCCSYN  
.
Note: This recommended power sequencing for the MSC8122 is different from the MSC8102.  
External voltage applied to any input line must not exceed the I/O supply VDDH by more than 0.8 V at any time,  
including during power-up. Some designs require pull-up voltages applied to selected input lines during power-up  
for configuration purposes. This is an acceptable exception to the rule. However, each such input can draw up to 80  
mA per input pin per device in the system during start-up.  
After power-up, VDDH must not exceed VDD/VCCSYN by more than 2.6 V.  
4.2 Power Supply Design Considerations  
When used as a drop-in replacement in MSC8102 applications or when implementing a new design, use the  
guidelines described in Migrating Designs from the MSC8102 to the MSC8122 (AN2716) and the MSC8122  
Design Checklist (AN2787) for optimal system performance. MSC8122 and MSC8126 Power Circuit Design  
Recommendations and Examples (AN2937) provides detailed design information.  
Figure 4-1 shows the recommended power decoupling circuit for the core power supply. The voltage regulator and  
the decoupling capacitors should supply the required device current without any drop in voltage on the device pins.  
The voltage on the package pins should not drop below the minimum specified voltage level even for a very short  
spikes. This can be achieved by using the following guidelines:  
For the core supply, use a voltage regulator rated at 1.2 V with nominal rating of at least 3 A. This rating does  
not reflect actual average current draw, but is recommended because it resists changes imposed by transient  
spikes and has better voltage recovery time than supplies with lower current ratings.  
MSC8122 Technical Data, Rev. 13  
Freescale Semiconductor  
4-1  
Design Considerations  
Decouple the supply using low-ESR capacitors mounted as close as possible to the socket. Figure 4-1 shows  
three capacitors in parallel to reduce the resistance. Three capacitors is a recommended minimum number. If  
possible, mount at least one of the capacitors directly below the MSC8122 device.  
Maximum IR drop  
of 15 mV at 1 A  
L
= 2 cm  
max  
1.2 V  
One 0.01 µF capacitor  
for every 3 core supply  
pads.  
Power supply  
or  
MSC8122  
Voltage Regulator  
+
-
Bulk/Tantalum capacitors  
with low ESR and ESL  
(I  
= 3 A)  
min  
High frequency capacitors  
(very low ESR and ESL)  
Note: Use at least three capacitors.  
Each capacitor must be at least 150 μF.  
Figure 4-1. Core Power Supply Decoupling  
Each VCC and VDD pin on the MSC8122 device should have a low-impedance path to the board power supply.  
Similarly, each GND pin should have a low-impedance path to the ground plane. The power supply pins drive  
distinct groups of logic on the chip. The VCC power supply should have at least four 0.1 µF by-pass capacitors to  
ground located as closely as possible to the four sides of the package. The capacitor leads and associated printed  
circuit traces connecting to chip VCC, VDD, and GND should be kept to less than half an inch per capacitor lead. A  
four-layer board is recommended, employing two inner layers as VCC and GND planes.  
All output pins on the MSC8122 have fast rise and fall times. PCB trace interconnection length should be  
minimized to minimize undershoot and reflections caused by these fast output switching times. This  
recommendation particularly applies to the address and data buses. Maximum PCB trace lengths of six inches are  
recommended. For the DSI control signals in synchronous mode, ensure that the layout supports the DSI AC  
timing requirements and minimizes any signal crosstalk. Capacitance calculations should consider all device loads  
as well as parasitic capacitances due to the PCB traces. Attention to proper PCB layout and bypassing becomes  
especially critical in systems with higher capacitive loads because these loads create higher transient currents in the  
VCC, VDD, and GND circuits. Pull up all unused inputs or signals that will be inputs during reset.  
Special care should be taken to minimize the noise levels on the PLL supply pins. There is one pair of PLL supply  
pins: VCCSYN-GNDSYN. To ensure internal clock stability, filter the power to the VCCSYN input with a circuit similar to  
the one in Figure 4-2. For optimal noise filtering, place the circuit as close as possible to VCCSYN. The 0.01-µF  
capacitor should be closest to VCCSYN, followed by the 10-µF capacitor, the 10-nH inductor, and finally the 10-Ω  
resistor to VDD. These traces should be kept short and direct. Provide an extremely low impedance path to the  
ground plane for GNDSYN. Bypass GNDSYN to VCCSYN by a 0.01-µF capacitor located as close as possible to the chip  
package. For best results, place this capacitor on the backside of the PCB aligned with the depopulated void on the  
MSC8122 located in the square defined by positions, L11, L12, L13, M11, M12, M13, N11, N12, and N13.  
VCCSYN  
VDD  
10nH  
10Ω  
10 µF  
0.01 µF  
Figure 4-2. VCCSYN Bypass  
MSC8122 Technical Data, Rev. 13  
4-2  
Freescale Semiconductor  
Connectivity Guidelines  
4.3 Connectivity Guidelines  
Unused output pins can be disconnected, and unused input pins should be connected to the non-active value, via  
resistors to VDDH or GND, except for the following:  
If the DSI is unused (DDR[DSIDIS] is set), HCS and HBCS must pulled up and all the rest of the DSI signals  
can be disconnected.  
When the DSI uses synchronous mode, HTA must be pulled up. In asynchronous mode, HTA should be pulled  
either up or down, depending on design requirements.  
HDST can be disconnected if the DSI is in big-endian mode, or if the DSI is in little-endian mode and the  
DCR[DSRFA] bit is set.  
When the DSI is in 64-bit data bus mode and DCR[BEM] is cleared, pull up HWBS[1–3]/HDBS[1–3]/HWBE[1–3]/  
HDBE[1–3] and HWBS[4–7]/HDBS[4–7]/HWBE[4–7]/HDBE[4–7]/PWE[4–7]/PSDDQM[4–7]/PBS[4–7].  
When the DSI is in 32-bit data bus mode and DCR[BEM] is cleared,  
HWBS[1–3]/HDBS[1–3]/HWBE[1–3]/HDBE[1–3] must be pulled up.  
When the DSI is in asynchronous mode, HBRST and HCLKIN should either be disconnected or pulled up.  
The following signals must be pulled up: HRESET, SRESET, ARTRY, TA, TEA, PSDVAL, and AACK.  
In single-master mode (BCR[EBM] = 0) with internal arbitration (PPC_ACR[EARB] = 0):  
BG, DBG, and TS can be left unconnected.  
EXT_BG[2–3], EXT_DBG[2–3], and GBL can be left unconnected if they are multiplexed to the system bus  
functionality. For any other functionality, connect the signal lines based on the multiplexed functionality.  
BR must be pulled up.  
EXT_BR[2–3] must be pulled up if multiplexed to the system bus functionality.  
If there is an external bus master (BCR[EBM] = 1):  
BR, BG, DBG, and TS must be pulled up.  
EXT_BR[2–3], EXT_BG[2–3], and EXT_DBG[2–3] must be pulled up if multiplexed to the system bus  
functionality.  
In single-master mode, ABB and DBB can be selected as IRQ inputs and be connected to the non-active value. In  
other modes, they must be pulled up.  
Note: The MSC8122 does not support DLL-enabled mode. For the following two clock schemes, ensure that the  
DLL is disabled (that is, the DLLDIS bit in the Hard Reset Configuration Word is set).  
If no system synchronization is required (for example, the design does not use SDRAM), you can use any of  
the available clock modes.  
In the CLKIN synchronization mode, use the following connections:  
— Connect the oscillator output through a buffer to CLKIN.  
— Connect the CLKIN buffer output to the slave device (for example, SDRAM) making sure that the delay  
path between the clock buffer to the MSC8122 and the SDRAM is equal (that is, has a skew less than 100  
ps).  
— Valid clock modes in this scheme are: 0, 7, 15, 19, 21, 23, 28, 29, 30, and 31.  
MSC8122 Technical Data, Rev. 13  
Freescale Semiconductor  
4-3  
Design Considerations  
In CLKOUT synchronization mode (for 1.2 V devices), CLKOUT is the main clock to SDRAM. Use the  
following connections:  
— Connect the oscillator output through a buffer to CLKIN.  
— Connect CLKOUT through a zero-delay buffer to the slave device (for example, SDRAM) using the  
following guidelines:  
The maximum delay between the slave and CLKOUT must not exceed 0.7 ns.  
The maximum load on CLKOUT must not exceed 10 pF.  
Use a zero-delay buffer with a jitter less than 0.3 ns.  
— All clock modes are valid in this clock scheme.  
Note: See the Clock chapter in the MSC8122 Reference Manual for details.  
If the 60x-compatible system bus is not used and SIUMCR[PBSE] is set, PPBS can be disconnected.  
Otherwise, it should be pulled up.  
The following signals: SWTE, DSISYNC, DSI64, MODCK[1–2], CNFGS, CHIPID[0–3], RSTCONF and BM[0–2] are  
used to configure the MSC8122 and are sampled on the deassertion of the PORESET signal. Therefore, they  
should be tied to GND or VDDH or through a pull-down or a pull-up resistor until the deassertion of the PORESET  
signal.  
When they are used, INT_OUT (if SIUMCR[INTODC] is cleared), NMI_OUT, and IRQxx (if not full drive)  
signals must be pulled up.  
When the Ethernet controller is enabled and the SMII mode is selected, GPIO10 and GPIO14 must not be  
connected externally to any signal line.  
Note: For details on configuration, see the MSC8122 User’s Guide and MSC8122 Reference Manual. For  
additional information, refer to the MSC8122 Design Checklist (AN2787).  
4.4 External SDRAM Selection  
The external bus speed implemented in a system determines the speed of the SDRAM used on that bus. However,  
because of differences in timing characteristics among various SDRAM manufacturers, you may have use a faster  
speed rated SDRAM to assure efficient data transfer across the bus. For example, for 166 MHz operation, you may  
have to use 183 or 200 MHz SDRAM. Always perform a detailed timing analysis using the MSC8122 bus timing  
values and the manufacturer specifications for the SDRAM to ensure correct operation within your system design.  
The output delay listed in SDRAM specifications is usually given for a load of 30 pF. Scale the number to your  
specific board load using the typical scaling number provided by the SDRAM manufacturer.  
MSC8122 Technical Data, Rev. 13  
4-4  
Freescale Semiconductor  
Thermal Considerations  
4.5 Thermal Considerations  
An estimation of the chip-junction temperature, T , in °C can be obtained from the following:  
J
TJ = TA + (R JA × PD)  
Equation 1  
θ
where  
T = ambient temperature near the package (°C)  
A
R
= junction-to-ambient thermal resistance (°C/W)  
JA  
θ
P = P  
+ P = power dissipation in the package (W)  
D
INT  
I/O  
P
P
= I × V = internal power dissipation (W)  
INT  
I/O  
DD DD  
= power dissipated from device on output pins (W)  
The power dissipation values for the MSC8122 are listed in Table 2-3. The ambient temperature for the device is  
the air temperature in the immediate vicinity that would cool the device. The junction-to-ambient thermal  
resistances are JEDEC standard values that provide a quick and easy estimation of thermal performance. There are  
two values in common usage: the value determined on a single layer board and the value obtained on a board with  
two planes. The value that more closely approximates a specific application depends on the power dissipated by  
other components on the printed circuit board (PCB). The value obtained using a single layer board is appropriate  
for tightly packed PCB configurations. The value obtained using a board with internal planes is more appropriate  
2
for boards with low power dissipation (less than 0.02 W/cm with natural convection) and well separated  
components. Based on an estimation of junction temperature using this technique, determine whether a more  
detailed thermal analysis is required. Standard thermal management techniques can be used to maintain the device  
thermal junction temperature below its maximum. If T appears to be too high, either lower the ambient  
J
temperature or the power dissipation of the chip. You can verify the junction temperature by measuring the case  
temperature using a small diameter thermocouple (40 gauge is recommended) or an infrared temperature sensor on  
a spot on the device case that is painted black. The MSC8122 device case surface is too shiny (low emissivity) to  
yield an accurate infrared temperature measurement. Use the following equation to determine T :  
J
TJ = TT + (θJA × PD)  
Equation 2  
where  
T = thermocouple (or infrared) temperature on top of the package (°C)  
T
θ
= thermal characterization parameter (°C/W)  
JA  
P = power dissipation in the package (W)  
D
Note: See MSC8102, MSC8122, and MSC8126 Thermal Management Design Guidelines (AN2601/D).  
MSC8122 Technical Data, Rev. 13  
Freescale Semiconductor  
4-5  
Ordering Information  
Consult a Freescale Semiconductor sales office or authorized distributor to determine product availability and  
place an order.  
Core  
Frequency  
(MHz)  
Order Number  
Core  
Operating  
Part  
Package Type  
Voltage Temperature  
Lead-Free  
Lead-Bearing  
MSC8122 Flip Chip Plastic Ball Grid Array (FC-PBGA)  
1.1 V  
1.2 V  
–40° to 105°C  
300  
400  
400  
500  
MSC8122TVT4800V  
MSC8122TVT6400V  
MSC8122TVT6400  
MSC8122VT8000  
MSC8122TMP4800V  
MSC8122TMP6400V  
MSC8122TMP6400  
MSC8122MP8000  
–40° to 105°C  
0° to 90°C  
Information in this document is provided solely to enable system and software implementers to  
use Freescale Semiconductor products. There are no express or implied copyright licenses  
granted hereunder to design or fabricate any integrated circuits or integrated circuits based on  
the information in this document.  
How to Reach Us:  
Home Page:  
www.freescale.com  
E-mail:  
support@freescale.com  
Freescale Semiconductor reserves the right to make changes without further notice to any  
products herein. Freescale Semiconductor makes no warranty, representation or guarantee  
regarding the suitability of its products for any particular purpose, nor does Freescale  
Semiconductor assume any liability arising out of the application or use of any product or  
circuit, and specifically disclaims any and all liability, including without limitation consequential  
or incidental damages. “Typical” parameters which may be provided in Freescale  
Semiconductor data sheets and/or specifications can and do vary in different applications and  
actual performance may vary over time. All operating parameters, including “Typicals” must be  
validated for each customer application by customer’s technical experts. Freescale  
Semiconductor does not convey any license under its patent rights nor the rights of others.  
Freescale Semiconductor products are not designed, intended, or authorized for use as  
components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the  
Freescale Semiconductor product could create a situation where personal injury or death may  
occur. Should Buyer purchase or use Freescale Semiconductor products for any such  
unintended or unauthorized application, Buyer shall indemnify and hold Freescale  
Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless  
against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of,  
directly or indirectly, any claim of personal injury or death associated with such unintended or  
unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent  
regarding the design or manufacture of the part.  
USA/Europe or Locations not listed:  
Freescale Semiconductor  
Technical Information Center, CH370  
1300 N. Alma School Road  
Chandler, Arizona 85224  
+1-800-521-6274 or +1-480-768-2130  
support@freescale.com  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GMBH  
Technical Information Center  
Schatzbogen 7  
81829 München, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
support@freescale.com  
Japan:  
Freescale Semiconductor Japan Ltd.  
Headquarters  
ARCO Tower 15F  
1-8-1, Shimo-Meguro, Meguro-ku,  
Tokyo 153-0064, Japan  
0120 191014 or +81 3 5437 9125  
support.japan@freescale.com  
Freescale, the Freescale logo, and CodeWarrior are trademarks of Freescale Semiconductor,  
Inc. StarCore is a licensed trademark of StarCore LLC. All other product or service names are  
the property of their respective owners.  
Asia/Pacific:  
Freescale Semiconductor Hong Kong Ltd.  
Technical Information Center  
2 Dai King Street  
© Freescale Semiconductor, Inc. 2004, 2006.  
Tai Po Industrial Estate  
Tai Po, N.T. Hong Kong  
+800 2666 8080  
support.asia@freescale.com  
For Literature Requests Only:  
Freescale Semiconductor Literature Distribution Center  
P.O. Box 5405  
Denver, Colorado 80217  
1-800-441-2447 or 303-675-2140  
Fax: 303-675-2150  
LDCForFreescaleSemiconductor@hibbertgroup.com  
MSC8122  
Rev. 13  
10/2006  

相关型号:

MSC8122TVT4800

IC,DSP,16-BIT,CMOS,BGA,431PIN,PLASTIC
NXP

MSC8122TVT4800V

Quad Core 16-Bit Digital Signal Processor
FREESCALE

MSC8122TVT6400

Quad Core 16-Bit Digital Signal Processor
FREESCALE

MSC8122TVT6400V

Quad Core 16-Bit Digital Signal Processor
FREESCALE

MSC8122VT8000

Quad Core 16-Bit Digital Signal Processor
FREESCALE

MSC8122VT8000

32-BIT, 500MHz, OTHER DSP, PBGA431, LEAD FREE, FCBGA-431
ROCHESTER

MSC8122_07

Quad Digital Signal Processor
FREESCALE

MSC8122_08

Quad Digital Signal Processor
FREESCALE

MSC8122_V16

Quad Digital Signal Processor
FREESCALE

MSC81250M

RF & MICROWAVE TRANSISTORS AVIONICS APPLICATIONS
STMICROELECTR

MSC81250M

NPN SILICON RF POWER TRANSISTOR
ASI

MSC8126

Quad Digital Signal Processor
FREESCALE