MSC8126MP8000 [FREESCALE]

Quad Digital Signal Processor; 四核数字信号处理器
MSC8126MP8000
型号: MSC8126MP8000
厂家: Freescale    Freescale
描述:

Quad Digital Signal Processor
四核数字信号处理器

外围集成电路 数字信号处理器 时钟
文件: 总48页 (文件大小:840K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Freescale Semiconductor  
Data Sheet:  
Document Number: MSC8126  
Rev. 13, 12/2007  
MSC8126  
FC PBGA–431  
20 mm × 20 mm  
Quad Digital Signal  
Processor  
Four StarCore™ SC140 DSP extended cores, each with an SC140  
DSP core, 224 Kbyte of internal SRAM M1 memory (1436 Kbyte  
total), 16 way 16 Kbyte instruction cache (ICache), four-entry  
write buffer, external cache support, programmable interrupt  
controller (PIC), local interrupt controller (LIC), and low-power  
Wait and Stop processing modes.  
levels or round-robin time-multiplexing between channels,  
flexible channel configuration with connection to local bus or  
system bus, and flyby transfer support that bypasses the FIFO.  
Up to four independent TDM modules with programmable word  
size (2, 4, 8, or 16-bit), hardware-base A-law/μ-law conversion,  
up to 128 Mbps data rate for all channels, with glueless interface  
to E1 or T1 framers, and can interface with H-MVIP/H.110  
devices, TSI, and codecs such as AC-97.  
Ethernet controller: support for 10/100 Mbps MII/RMII/SMII  
including full- and half-duplex operation, full-duplex flow  
controls, out-of-sequence transmit queues, programmable  
maximum frame length including jumbo frames and VLAN tags  
and priority, retransmission after collision, CRC generation and  
verification of inbound/outbound packets, address recognition  
(including exact match, broadcast address, individual hash check,  
group hash check, and promiscuous mode), pattern matching,  
insertion with expansion or replacement for transmit frames,  
VLAN tag insertion, RMON statistics, local bus master DMA for  
descriptor fetching and buffer access, and optional multiplexing  
with GPIO (MII/RMII/SMII) or DSI/system bus signals lines  
(MII/RMII).  
475 Kbyte M2 memory for critical data/temporary data buffering.  
4 Kbyte boot ROM.  
M2-accessible multi-core MQBus connecting the M2 memory  
with all four cores, operating at the core frequency, with data bus  
access of up to 128-bit reads and up to 64-bit writes, central  
efficient round-robin arbiter for core access to the bus, and atomic  
control of M2 memory access by the cores and local bus.  
Internal PLL configured are reset by configuration signal values.  
60x-compatible system bus with 64 or 32 bit data and 32-bit  
address bus, support for multi-master designs, four-beat burst  
transfers (eight-beat in 32-bit data mode), port size of 64/32/16/8  
bits controlled by the internal memory controller,.access to  
external memory or peripherals, access by an external host to  
internal resources, slave support with direct access to internal  
resources including M1 and M2 memories, and on-device  
arbitration for up to four master devices.  
Direct slave interface (DSI) using a 32/64-bit slave interface with  
21–25 bit addressing and 32/64-bit data transfers, direct access by  
an external host to internal/external resources, synchronous or  
asynchronous accesses with burst capability in synchronous  
mode, dual or single strobe mode, write and read buffers to  
improve host bandwidth, byte enable signals for 1/2/4/8-byte  
write granularity, sliding window mode for access using a reduced  
number of address pins, chip ID decoding to allow one CS signal  
to control multiple DSPs, broadcast mode to write to multiple  
DSPs, and big-endian/little-endian/munged support.  
Three mode signal multiplexing: 64-bit DSI/32-bit system bus,  
32-bit DSI/64-bit system bus, or 32-bit DSI/32-bit system bus.  
Flexible memory controller with three UPMs, a GPCM, a  
page-mode SDRAM machine, glueless interface to a variety of  
memories and devices, byte enables for 64-/32-bit bus widths, 8  
memory banks for external memories, and 2 memory banks for  
IPBus peripherals and internal memories.  
Multi-channel DMA controller with 16 time-multiplexed single  
channels, up to four external peripherals, DONE or DRACK  
protocol for two external peripherals,.service for up to 16 internal  
requests from up to 8 internal FIFOs per channel, FIFO generated  
watermarks and hungry requests, priority-based  
UART with full-duplex operation up to 6.25 Mbps.  
Up to 32 general-purpose input/output (GPIO) ports.  
I2C interface that allows booting from EEPROM devices.  
Two timer modules, each with sixteen configurable 16-bit timers.  
Eight programmable hardware semaphores.  
Global interrupt controller (GIC) with interrupt consolidation and  
routing to INT_OUT, NMI_OUT, and the cores; thirty-two virtual  
maskable interrupts (8 per core) and four virtual NMI (one per  
core) that can be generated by a simple write access.  
Boot options: external memory, external host, UART, TDM, or  
I2C.  
VCOP with fully programmable feed-forward channel decoding,  
feed-forward channel equalization and traceback sessions. Up to  
400 3GPP 12.2 kbps AMR channels (channel decoding, number  
of channels linear to frequency). Up to 200 blind transport format  
detect (BTFD) channels according to the 3GPP standard. Number  
of channels linear to frequency.  
TCOP with full support for 3GPP and CDMA2000 standards in  
Turbo decode; up to 20 turbo-coding 384 kbps channels; 8 state  
PCCC with polynomial as supported by the 3G standards;  
iterative decoding structure based on Maximum A-Posteriori  
probability (MAP), with calculations performed in the LOG  
domain.  
time-multiplexing between channels using 16 internal priority  
© Freescale Semiconductor, Inc., 2004, 2007. All rights reserved.  
Table of Contents  
1
2
Pin Assignments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4  
Figure 9. Timing Diagram for a Reset Configuration Write. . . . . . 21  
Figure 10.Internal Tick Spacing for Memory Controller Signals. . . 22  
Figure 11.SIU Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Figure 12.CLKOUT and CLKIN Signals. . . . . . . . . . . . . . . . . . . . . 26  
Figure 13.DMA Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Figure 14.Asynchronous Single- and Dual-Strobe Modes Read  
Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
1.1 FC-PBGA Ball Layout Diagrams. . . . . . . . . . . . . . . . . . .4  
1.2 Signal List By Ball Location. . . . . . . . . . . . . . . . . . . . . . .7  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
2.1 Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
2.2 Recommended Operating Conditions. . . . . . . . . . . . . .14  
2.3 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . .14  
2.4 DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . .15  
2.5 AC Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
Hardware Design Considerations. . . . . . . . . . . . . . . . . . . . . .40  
3.1 Start-up Sequencing Recommendations . . . . . . . . . . .40  
3.2 Power Supply Design Considerations. . . . . . . . . . . . . .40  
3.3 Connectivity Guidelines . . . . . . . . . . . . . . . . . . . . . . . .42  
3.4 External SDRAM Selection. . . . . . . . . . . . . . . . . . . . . .43  
3.5 Thermal Considerations . . . . . . . . . . . . . . . . . . . . . . . .44  
Ordering Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44  
Package Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45  
Product Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45  
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46  
Figure 15.Asynchronous Single- and Dual-Strobe Modes Write  
Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
3
Figure 16.Asynchronous Broadcast Write Timing Diagram. . . . . . 30  
Figure 17.DSI Synchronous Mode Signals Timing Diagram . . . . . 31  
Figure 18.TDM Inputs Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Figure 19.TDM Output Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Figure 20.UART Input Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Figure 21.UART Output Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Figure 22.Timer Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Figure 23.MDIO Timing Relationship to MDC . . . . . . . . . . . . . . . . 34  
Figure 24.MII Mode Signal Timing. . . . . . . . . . . . . . . . . . . . . . . . . 35  
Figure 26.SMII Mode Signal Timing. . . . . . . . . . . . . . . . . . . . . . . . 36  
Figure 27.GPIO Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Figure 28.EE Pin Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Figure 29.Test Clock Input Timing Diagram. . . . . . . . . . . . . . . . . . 38  
Figure 30.Boundary Scan (JTAG) Timing Diagram . . . . . . . . . . . . 38  
Figure 31.Test Access Port Timing Diagram . . . . . . . . . . . . . . . . . 39  
Figure 32.TRST Timing Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Figure 33.Core Power Supply Decoupling. . . . . . . . . . . . . . . . . . . 41  
4
5
6
7
List of Figures  
Figure 1. MSC8126 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . 3  
Figure 2. StarCore SC140 DSP Extended Core Block Diagram . . 3  
Figure 3. MSC8126 Package, Top View . . . . . . . . . . . . . . . . . . . . 5  
Figure 4. MSC8126 Package, Bottom View. . . . . . . . . . . . . . . . . . 6  
Figure 5. Overshoot/Undershoot Voltage for V and V . . . . . . . 16  
Figure 6. Start-Up Sequence: V and V  
IH  
IL  
Raised Together. . 17  
DD  
DDH  
Figure 34.V  
Bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
CCSYN  
Figure 7. Start-Up Sequence: V Raised Before V  
with CLKIN  
DD  
DDH  
Figure 35.MSC8126 Mechanical Information, 431-pin FC-PBGA  
Package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Started with V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
DDH  
Figure 8. Power-Up Sequence for V  
and V /V  
. . . . . 18  
DDH  
DD CCSYN  
MSC8126 Quad Digital Signal Processor Data Sheet, Rev. 13  
2
Freescale Semiconductor  
SC140  
Extended Core  
SC140  
Extended Core  
SC140  
Extended Core  
SC140  
Extended Core  
MQBus  
128  
128  
64  
SQBus  
Local Bus  
Boot  
ROM  
IP Master  
32 Timers  
M2  
RAM  
Memory  
Controller  
M2  
RAM  
RS-232  
UART  
4 TDMs  
TCOP  
VCOP  
GPIO Pins  
Interrupts  
IPBus  
32  
IP Master  
GPIO  
GIC  
IPBus2  
8 Hardware  
Semaphores  
PLL/Clock  
JTAG Port  
PLL  
MII/RMII/SMII  
DSI Port  
Ethernet  
JTAG  
Internal Local Bus  
SIU  
64  
Direct  
Slave  
Interface  
(DSI)  
System  
Interface  
32/64  
DMA  
Bridge  
Registers  
System Bus  
32/64  
64  
Memory  
Controller  
Internal System Bus  
Figure 1. MSC8126 Block Diagram  
Address  
Data ALU  
Register  
File  
Program  
Register  
File  
Sequencer  
Address  
ALU  
Data  
ALU  
SC140  
Core  
JTAG  
EOnCE  
Power  
Management  
M1  
RAM  
SC140 Core  
64  
Xa  
64  
Xb  
P
128  
Instruction  
Cache  
QBus  
Interface  
QBC  
128  
QBus  
PIC  
IRQs  
QBus  
Bank 1  
QBus  
Bank 3  
LIC  
IRQs  
MQBus  
SQBus  
128  
128  
64  
Local Bus  
Notes: 1. The arrows show the data transfer direction.  
2. The QBus interface includes a bus switch, write buffer, fetch unit, and a control unit that defines  
four QBus banks. In addition, the QBC handles internal memory contentions.  
Figure 2. StarCore SC140 DSP Extended Core Block Diagram  
MSC8126 Quad Digital Signal Processor Data Sheet, Rev. 13  
Freescale Semiconductor  
3
Pin Assignments  
1
Pin Assignments  
This section includes diagrams of the MSC8126 package ball grid array layouts and pinout allocation tables.  
1.1  
FC-PBGA Ball Layout Diagrams  
Top and bottom views of the FC-PBGA package are shown in Figure 3 and Figure 4 with their ball location index numbers.  
MSC8126 Quad Digital Signal Processor Data Sheet, Rev. 13  
4
Freescale Semiconductor  
Pin Assignments  
Top View  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
NMI_  
OUT  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
B
C
D
GND  
GND  
GND  
GND  
GND  
VDD  
GND  
GND  
GND  
GPIO0  
GND  
S
VDD  
EE0  
VDD  
VDD  
GND  
TDI  
TDO  
EE1  
GPIO28 HCID1 GND  
GND  
VDD  
GND  
VDD  
GND  
VDD  
GND GPIO30 GPIO2 GPIO1 GPIO7 GPIO3 GPIO5 GPIO6  
RESET  
VDDH  
VDD  
VDDH  
VDDH  
GND  
HCID2 HCID3 GND  
GND  
VDD  
GND  
VDD  
GPIO31 GPIO29  
GPIO4  
GND GPIO8  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
TCK  
PO  
TRST  
RST  
TMS HRESET GPIO27 HCID0 GND  
GND  
VDD  
GND  
VDD  
GND  
VDD  
GND  
GND  
GND GPIO9 GPIO13 GPIO10 GPIO12  
E
F
ETHRX_ ETHTX_  
VDD  
NMI  
HA25  
VDD  
HA29  
HA23  
HA19  
HA13  
HA22  
GND  
GND  
BM0  
GND  
VDD  
GPIO20 GPIO18 GPIO16 GPIO11 GPIO14 GPIO19  
RESET CONF  
CLK  
CLK  
BADDR  
31  
INT_ ETHCR  
OUT  
VDD  
VDD  
G
H
J
HA24  
HA20  
HA18  
HA15  
HA12  
HD28  
HD26  
HD20  
HD18  
HA27  
HA28  
HA26  
HA21  
HA14  
HD31  
HD30  
HD27  
VDDH  
HA17 PWE0  
ABB  
CS1  
BCTL0 GPIO15 GND GPIO17 GPIO22  
S
PSD  
TEST  
VDD  
VDD  
VDDH  
PGTA  
BM1 ARTRY AACK  
DBB  
VDD  
HTA  
TT4  
CS4 GPIO24 GPIO21  
A31  
CAS  
PSDA BADDR  
VDD  
VDD  
GND  
CLKIN  
GND  
GND  
GND  
GND  
BM2  
GND  
DBG  
GND  
GND  
TT3 PSDA10 BCTL1 GPIO23 GND GPIO25 A30  
MUX  
27  
BADDR  
30  
VDD  
K
HA16 PWE3 PWE1  
POE  
Res.  
GND  
VDDH  
GND CLKOUT  
GND  
TT2  
ALE  
GND  
VDDH  
CS2  
CS3  
GND  
VDDH  
A26  
A27  
A29  
A25  
A24  
A28  
A22  
A21  
A20  
A19  
A16  
BADDR BADDR  
VDDH  
GND  
VDDH  
GND  
VDDH  
VDDH  
HRDS  
TA  
L
HA11  
VDDH  
GND  
28  
29  
HB  
RST  
VDDH  
VDD  
VDDH  
VDDH  
M
N
P
GND  
GND  
HWBS  
0
VDDH  
HD29  
HD25  
HD24 PWE2  
HBCS  
GND  
BG  
BR  
HCS  
TEA  
DP3  
CS0 PSDWE GPIO26 A23  
PSD  
HWBS HWBS HWBS  
3
GNDSYN VCCSYN  
VDDH  
HD23  
HD22  
HD0  
D2  
HCLKIN GND  
GND  
VDD  
GND  
TT0  
DP0  
DP2  
D30  
GND  
A18  
A15  
A12  
A10  
A7  
2
1
VAL  
HWBS HWBS  
6
VDD  
VDD  
D14  
D12  
VDD  
R
T
GND  
HD1  
HD2  
GND  
HD4  
VDDH  
TSZ1  
TSZ3  
TSZ2  
D9  
GBL  
TBST  
D11  
DP7  
DP6  
DP5  
D25  
TS  
A17  
GND  
VDDH  
4
HWBS HWBS  
7
HD17  
HD16  
HD3  
HD6  
HD7  
VDD  
HD21  
HD19  
VDDH  
TSZ0  
D8  
D16  
D15  
TT1  
D17  
D21  
D19  
D23  
D22  
DP4  
D26  
DP1  
D28  
A14  
A13  
A11  
A6  
5
U
V
D3  
D6  
D31  
D0  
D1  
D4  
D5  
D7  
D10  
D13  
D18  
D20  
GND  
VDDH  
D24  
D27  
D29  
A8  
A9  
VDDH  
VDDH  
VDDH  
VDDH  
W
Y
HD5  
HD15  
HD14  
HD13  
GND  
HD9  
HD10  
HD8  
GND  
VDD  
GND HDST1 HDST0  
GND  
VDDH  
HD40  
HD43  
VDDH  
HD33  
VDDH  
HD32  
HD37  
HD38  
HD41  
GND  
HD34  
HD35  
HD39  
GND  
VDDH  
VDDH  
HD54  
HD55  
HD60  
HD59  
HD61  
HD58  
GND  
GND  
VDDH  
HD51  
HD52  
HD53  
GND  
VDDH  
GND  
HD46  
HD47  
GND  
HD42  
HD44  
A4  
A5  
AA  
HD12  
HD11  
HD63  
HD62  
GND  
GND  
A0  
A2  
A3  
VDD  
AB GND  
HD57  
HD56  
HD50  
HD49  
HD48  
HD45  
HD36  
A1  
Figure 3. MSC8126 Package, Top View  
MSC8126 Quad Digital Signal Processor Data Sheet, Rev. 13  
Freescale Semiconductor  
5
Pin Assignments  
Bottom View  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
NMI_  
OUT  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
B
C
D
GND  
GPIO0  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
S
VDD  
VDD  
VDD  
VDD  
EE0  
GPIO6 GPIO5 GPIO3 GPIO7 GPIO1 GPIO2 GPIO30 GND  
GND  
VDD  
GND  
VDD  
GND  
VDD  
GND HCID1 GPIO28  
TDO  
EE1  
GND  
TDI  
RESET  
VDDH  
VDDH  
VDD  
VDDH  
GPIO8 GND  
GPIO4  
GPIO29 GPIO31  
GND  
VDD  
GND  
VDD  
GND HCID3 HCID2  
GND  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
GPIO12 GPIO10 GPIO13 GPIO9 GND  
GND  
GND  
GND  
VDD  
GND  
VDD  
GND  
VDD  
GND HCID0 GPIO27 HRESET TMS  
TRST  
RST  
TCK  
PO  
E
F
ETHTX_ ETHRX_  
CLK  
VDD  
GPIO19 GPIO14 GPIO11 GPIO16 GPIO18 GPIO20  
GND  
VDD  
GND  
BM0  
GND  
HA22  
HA29  
HA23  
HA19  
HA13  
NMI  
HA25  
VDD  
CLK  
CONF RESET  
ETHCR INT_  
BADDR  
31  
VDD  
VDD  
G
H
GPIO22 GPIO17 GND GPIO15 BCTL0  
CS1  
ABB  
PWE0 HA17  
HA27  
HA28  
HA26  
HA21  
HA14  
HD31  
HD30  
HD27  
VDDH  
HA24  
HA20  
HA18  
HA15  
HA12  
HD28  
HD26  
HD20  
HD18  
S
OUT  
PSD  
TEST  
CAS  
VDDH  
VDD  
VDD  
A31  
GPIO21 GPIO24 CS4  
TT4  
HTA  
DBB  
VDD  
AACK ARTRY BM1  
PGTA  
BADDR PSDA  
27  
VDD  
VDD  
J
A30 GPIO25 GND GPIO23 BCTL1 PSDA10 TT3  
GND  
DBG  
GND  
BM2  
GND  
CLKIN  
GND  
GND  
GND  
GND  
GND  
MUX  
BADDR  
30  
VDD  
K
A28  
A22  
A21  
A20  
A19  
A16  
A29  
A25  
A24  
A26  
A27  
GND  
VDDH  
CS2  
CS3  
ALE  
GND  
VDDH  
TT2  
CLKOUT GND  
GND  
Res.  
GND  
VDDH  
POE  
PWE1 PWE3 HA16  
BADDR BADDR  
29  
VDDH  
VDDH  
HRDS  
TA  
VDDH  
GND  
VDDH  
GND  
L
GND  
HA11  
VDDH  
28  
HB  
RST  
VDDH  
VDDH  
VDD  
VDDH  
M
N
GND  
GND  
HWBS  
0
VDDH  
A23 GPIO26 PSDWE CS0  
PSD  
HCS  
TEA  
DP3  
BG  
BR  
GND  
HBCS  
PWE2 HD24  
HD29  
HD25  
HWBS HWBS HWBS  
VDDH  
VCCSYN GNDSYN  
P
GND  
A18  
A15  
A12  
A10  
A7  
DP0  
DP2  
D30  
GND  
TT0  
GND  
VDD  
GND HCLKIN  
HD23  
HD22  
HD0  
D2  
VAL  
1
2
3
HWBS HWBS  
VDD  
VDD  
VDD  
D14  
D12  
R
A17  
GND  
VDDH  
TS  
DP6  
DP5  
D25  
DP7  
GBL  
TBST  
D11  
TSZ3  
TSZ2  
D9  
TSZ1  
GND  
HD1  
HD2  
GND  
HD4  
VDDH  
4
6
HWBS HWBS  
T
A14  
A13  
A11  
A6  
DP1  
D28  
DP4  
D26  
D23  
D22  
D21  
D19  
TT1  
D17  
D16  
D15  
TSZ0  
D8  
HD21  
HD19  
VDDH  
HD17  
HD16  
HD3  
HD6  
HD7  
VDD  
5
7
U
D31  
D6  
D3  
V
A9  
A8  
D29  
D27  
D24  
GND  
VDDH  
D20  
D18  
D13  
D10  
D7  
D5  
D4  
D1  
D0  
VDDH  
VDDH  
VDDH  
VDDH  
W
Y
GND  
VDDH  
GND  
HD34  
HD35  
HD39  
HD32  
HD37  
HD38  
HD41  
HD33  
VDDH  
HD40  
HD43  
VDDH  
GND  
VDDH  
HDST0 HDST1 GND  
GND  
VDD  
GND  
HD9  
HD10  
HD8  
HD5  
HD15  
HD14  
HD13  
VDDH  
HD54  
HD55  
A5  
A4  
GND  
HD42  
HD44  
GND  
HD46  
HD47  
GND  
VDDH  
HD51  
HD52  
HD53  
GND  
VDDH  
HD58  
GND  
HD60  
HD59  
HD61  
AA  
AB  
A3  
A2  
A0  
GND  
GND  
HD63  
HD62  
HD12  
HD11  
VDD  
A1  
HD36  
HD45  
HD48  
HD49  
HD50  
HD56  
HD57  
GND  
Figure 4. MSC8126 Package, Bottom View  
MSC8126 Quad Digital Signal Processor Data Sheet, Rev. 13  
6
Freescale Semiconductor  
Pin Assignments  
1.2  
Signal List By Ball Location  
Table 1 presents signal list sorted by ball number. -  
Table 1. MSC8126 Signal Listing by Ball Designator  
Des.  
Signal Name  
Des.  
Signal Name  
B3  
B4  
V
C18  
C19  
C20  
C21  
C22  
D2  
GPIO1/TIMER0/CHIP_ID1/IRQ5/ETHTXD1  
DD  
GND  
GND  
GPIO7/TDM3RCLK/IRQ5/ETHTXD3  
B5  
GPIO3/TDM3TSYN/IRQ1/ETHTXD2  
B6  
NMI_OUT  
GND  
GPIO5/TDM3TDAT/IRQ3/ETHRXD3  
B7  
GPIO6/TDM3RSYN/IRQ4/ETHRXD2  
B8  
V
TDI  
EE0  
EE1  
GND  
DD  
B9  
GND  
D3  
B10  
B11  
B12  
B13  
B14  
B15  
B16  
B17  
B18  
B19  
B20  
B21  
B22  
C2  
V
D4  
DD  
GND  
D5  
V
D6  
V
DDH  
DD  
GND  
D7  
HCID2  
HCID3/HA8  
GND  
V
D8  
DD  
GND  
D9  
V
D10  
D11  
D12  
D13  
D14  
D15  
D16  
D17  
D18  
D19  
D20  
D21  
D22  
E2  
V
DD  
DD  
GND  
GND  
V
V
DD  
DD  
GPIO0/CHIP_ID0/IRQ4/ETHTXD0  
GND  
V
V
V
V
DD  
DD  
DD  
DD  
GND  
GND  
GPIO31/TIMER3/SCL  
GPIO29/CHIP_ID3/ETHTX_EN  
C3  
V
V
DDH  
DD  
C4  
TDO  
SRESET  
GPIO4/TDM3TCLK/IRQ2/ETHTX_ER  
C5  
V
DDH  
C6  
GPIO28/DREQ2/UTXD  
HCID1  
GND  
C7  
GPIO8/TDM3RDAT/IRQ6/ETHCOL  
C8  
GND  
TCK  
TRST  
C9  
V
E3  
DD  
C10  
C11  
C12  
C13  
C14  
C15  
C16  
C17  
GND  
E4  
TMS  
V
E5  
HRESET  
GPIO27/DREQ1/URXD  
HCID0  
DD  
GND  
E6  
V
E7  
DD  
GND  
E8  
GND  
GND  
E9  
V
DD  
GPIO30/TIMER2/TMCLK/SDA  
GPIO2/TIMER1/CHIP_ID2/IRQ6  
E10  
E11  
GND  
V
DD  
MSC8126 Quad Digital Signal Processor Data Sheet, Rev. 13  
Freescale Semiconductor  
7
Pin Assignments  
Des.  
Table 1. MSC8126 Signal Listing by Ball Designator (continued)  
Signal Name  
Des.  
Signal Name  
E12  
E13  
E14  
E15  
E16  
E17  
E18  
E19  
E20  
GND  
G6  
G7  
HA17  
V
PWE0/PSDDQM0/PBS0  
DD  
GND  
GND  
G8  
V
V
DD  
DD  
G9  
V
G10  
G11  
G12  
G13  
G14  
G15  
G16  
G17  
G18  
G19  
G20  
G21  
G22  
H2  
IRQ3/BADDR31  
BM0/TC0/BNKSEL0  
ABB/IRQ4  
DD  
GND  
GND  
GPIO9/TDM2TSYN/IRQ7/ETHMDIO  
GPIO13/TDM2RCLK/IRQ11/ETHMDC  
V
DD  
IRQ7/INT_OUT  
E21  
E22  
F2  
GPIO10/TDM2TCLK/IRQ8/ETHRX_DV/ETHCRS_DV/NC  
ETHCRS/ETHRXD  
GPIO12/TDM2RSYN/IRQ10/ETHRXD1/ETHSYNC  
V
DD  
PORESET  
RSTCONF  
NMI  
CS1  
F3  
BCTL0  
F4  
GPIO15/TDM1TSYN/DREQ1  
F5  
HA29  
GND  
GPIO17/TDM1TDAT/DACK1  
GPIO22/TDM0TCLK/DONE2/DRACK2  
HA20  
F6  
HA22  
F7  
GND  
F8  
V
V
V
DD  
DD  
DD  
F9  
H3  
HA28  
F10  
F11  
F12  
F13  
F14  
F15  
F16  
F17  
F18  
F19  
F20  
F21  
F22  
G2  
H4  
V
DD  
GND  
H5  
HA19  
TEST  
V
H6  
DD  
GND  
H7  
PSDCAS/PGPL3  
PGTA/PUPMWAIT/PGPL4/PPBS  
V
H8  
DD  
ETHRX_CLK/ETHSYNC_IN  
ETHTX_CLK/ETHREF_CLK/ETHCLOCK  
GPIO20/TDM1RDAT  
H9  
V
DD  
H10  
H11  
H12  
H13  
H14  
H15  
H16  
H17  
H18  
H19  
H20  
K15  
K16  
K17  
BM1/TC1/BNKSEL1  
ARTRY  
GPIO18/TDM1RSYN/DREQ2  
GPIO16/TDM1TCLK/DONE1/DRACK1  
GPIO11/TDM2TDAT/IRQ9/ETHRX_ER/ETHTXD  
GPIO14/TDM2RDAT/IRQ12/ETHRXD0/NC  
GPIO19/TDM1RCLK/DACK2  
HA24  
AACK  
DBB/IRQ5  
HTA  
V
DD  
TT4/CS7  
CS4  
G3  
HA27  
GPIO24/TDM0RSYN/IRQ14  
GPIO21/TDM0TSYN  
G4  
HA25  
G5  
HA23  
V
V
DD  
DD  
H21  
H22  
J2  
V
DDH  
A31  
TT2/CS5  
ALE  
HA18  
MSC8126 Quad Digital Signal Processor Data Sheet, Rev. 13  
8
Freescale Semiconductor  
Pin Assignments  
Table 1. MSC8126 Signal Listing by Ball Designator (continued)  
Des.  
Signal Name  
Des.  
Signal Name  
J3  
J4  
HA26  
K18  
K19  
K20  
K21  
K22  
L2  
CS2  
GND  
A26  
V
DD  
J5  
HA13  
GND  
J6  
A29  
J7  
PSDAMUX/PGPL5  
BADDR27  
A28  
J8  
HA12  
HA14  
HA11  
J9  
V
L3  
DD  
J10  
J11  
J12  
J13  
J14  
J15  
J16  
J17  
J18  
J19  
J20  
J21  
J22  
K2  
CLKIN  
BM2/TC2/BNKSEL2  
DBG  
L4  
L5  
V
V
DDH  
DDH  
L6  
V
L7  
BADDR28  
IRQ5/BADDR29  
GND  
DD  
GND  
L8  
V
L9  
DD  
TT3/CS6  
L10  
L14  
L15  
L16  
L17  
L18  
L19  
L20  
L21  
L22  
M2  
GND  
PSDA10/PGPL0  
GND  
BCTL1/CS5  
V
DDH  
GPIO23/TDM0TDAT/IRQ13  
GND  
GND  
CS3  
GND  
GPIO25/TDM0RCLK/IRQ15  
A30  
V
DDH  
HA15  
HA21  
A27  
A25  
K3  
K4  
HA16  
A22  
K5  
PWE3/PSDDQM3/PBS3  
PWE1/PSDDQM1/PBS1  
POE/PSDRAS/PGPL2  
IRQ2/BADDR30  
Reserved  
HD28  
HD31  
K6  
M3  
K7  
M4  
V
DDH  
K8  
M5  
GND  
GND  
K9  
M6  
K10  
K11  
K12  
K13  
K14  
M15  
M16  
M17  
M18  
M19  
M20  
GND  
M7  
V
DDH  
GND  
M8  
V
DD  
GND  
M9  
V
DDH  
GND  
M10  
M14  
P12  
P13  
P14  
P15  
P16  
P17  
GND  
GND  
CLKOUT  
V
V
CCSYN  
DDH  
HBRST  
GND  
V
V
GND  
TA  
DDH  
DDH  
GND  
BR  
V
TEA  
DDH  
MSC8126 Quad Digital Signal Processor Data Sheet, Rev. 13  
Freescale Semiconductor  
9
Pin Assignments  
Des.  
Table 1. MSC8126 Signal Listing by Ball Designator (continued)  
Signal Name  
Des.  
Signal Name  
M21  
M22  
N2  
A24  
P18  
P19  
P20  
P21  
P22  
R2  
PSDVAL  
A21  
DP0/DREQ1/EXT_BR2  
HD26  
V
DDH  
N3  
HD30  
HD29  
GND  
A19  
N4  
N5  
HD24  
HD18  
N6  
PWE2/PSDDQM2/PBS2  
R3  
V
DDH  
N7  
V
R4  
GND  
DDH  
N8  
HWBS0/HDBS0/HWBE0/HDBE0  
R5  
HD22  
N9  
HBCS  
R6  
HWBS6/HDBS6/HWBE6/HDBE6/PWE6/PSDDQM6/PBS6  
N10  
N14  
N15  
N16  
N17  
N18  
N19  
N20  
N21  
N22  
P2  
GND  
R7  
HWBS4/HDBS4/HWBE4/HDBE4/PWE4/PSDDQM4/PBS4  
GND  
R8  
TSZ1  
TSZ3  
HRDS/HRW/HRDE  
R9  
BG  
R10  
R11  
R12  
R13  
R14  
R15  
R16  
R17  
R18  
R19  
R20  
R21  
R22  
T2  
IRQ1/GBL  
HCS  
V
V
V
DD  
DD  
DD  
CS0  
PSDWE/PGPL1  
GPIO26/TDM0RDAT  
TT0/HA7  
A23  
IRQ7/DP7/DREQ4  
A20  
IRQ6/DP6/DREQ3  
HD20  
IRQ3/DP3/DREQ2/EXT_BR3  
P3  
HD27  
TS  
P4  
HD25  
HD23  
IRQ2/DP2/DACK2/EXT_DBG2  
P5  
A17  
A18  
P6  
HWBS3/HDBS3/HWBE3/HDBE3  
HWBS2/HDBS2/HWBE2/HDBE2  
HWBS1/HDBS1/HWBE1/HDBE1  
HCLKIN  
P7  
A16  
P8  
HD17  
P9  
T3  
HD21  
P10  
P11  
GND  
T4  
HD1/DSISYNC  
HD0/SWTE  
A12  
GND  
T5  
SYN  
T6  
T7  
HWBS7/HDBS7/HWBE7/HDBE7/PWE7/PSDDQM7/PBS7  
U21  
U22  
V2  
HWBS5/HDBS5/HWBE5/HDBE5/PWE5/PSDDQM5/PBS5  
A13  
T8  
TSZ0  
TSZ2  
TBST  
HD3/MODCK1  
T9  
V3  
V
DDH  
T10  
T11  
T12  
T13  
T14  
V4  
GND  
D0  
V
V5  
DD  
D16  
TT1  
D21  
V6  
D1  
V7  
D4  
V8  
D5  
MSC8126 Quad Digital Signal Processor Data Sheet, Rev. 13  
10  
Freescale Semiconductor  
Pin Assignments  
Table 1. MSC8126 Signal Listing by Ball Designator (continued)  
Des.  
Signal Name  
Des.  
Signal Name  
T15  
T16  
T17  
T18  
T19  
T20  
T21  
T22  
U2  
D23  
V9  
V10  
V11  
V12  
V13  
V14  
V15  
V16  
V17  
V18  
V19  
V20  
V21  
V22  
W2  
D7  
D10  
IRQ5/DP5/DACK4/EXT_BG3  
IRQ4/DP4/DACK3/EXT_DBG3  
D12  
IRQ1/DP1/DACK1/EXT_BG2  
D13  
D30  
GND  
A15  
D18  
D20  
GND  
D24  
A14  
HD16  
HD19  
HD2/DSI64  
D2  
D27  
U3  
D29  
U4  
A8  
U5  
A9  
U6  
D3  
A10  
U7  
D6  
A11  
U8  
D8  
HD6  
U9  
D9  
W3  
HD5/CNFGS  
HD4/MODCK2  
GND  
GND  
U10  
U11  
U12  
U13  
U14  
U15  
U16  
U17  
U18  
U19  
U20  
W15  
W16  
W17  
W18  
W19  
W20  
W21  
W22  
Y2  
D11  
D14  
D15  
D17  
D19  
D22  
D25  
D26  
D28  
D31  
W4  
W5  
W6  
W7  
V
V
DDH  
DDH  
W8  
W9  
GND  
W10  
W11  
W12  
W13  
W14  
AA9  
AA10  
AA11  
AA12  
AA13  
AA14  
AA15  
AA16  
AA17  
AA18  
AA19  
AA20  
HDST1/HA10  
HDST0/HA9  
V
DDH  
GND  
V
V
HD40/D40/ETHRXD0  
DDH  
DDH  
V
DDH  
HD33/D33/reserved  
HD54/D54/ETHTX_EN  
HD52/D52  
V
DDH  
HD32/D32/reserved  
V
DDH  
GND  
GND  
A7  
GND  
V
DDH  
HD46/D46/ETHTXT0  
GND  
A6  
HD7  
HD15  
HD42/D42/ETHRXD2/reserved  
HD38/D38/reserved  
HD35/D35/reserved  
A0  
Y3  
Y4  
V
DDH  
Y5  
HD9  
MSC8126 Quad Digital Signal Processor Data Sheet, Rev. 13  
Freescale Semiconductor  
11  
Pin Assignments  
Des.  
Table 1. MSC8126 Signal Listing by Ball Designator (continued)  
Signal Name  
Des.  
Signal Name  
Y6  
V
AA21  
AA22  
AB2  
A2  
DD  
Y7  
HD60/D60/ETHCOL/reserved  
HD58/D58/ETHMDC  
GND  
A3  
GND  
Y8  
Y9  
AB3  
HD13  
Y10  
Y11  
Y12  
Y13  
Y14  
Y15  
Y16  
Y17  
Y18  
Y19  
Y20  
Y21  
Y22  
AA2  
AA3  
AA4  
AA5  
AA6  
AA7  
AA8  
V
AB4  
HD11  
DDH  
HD51/D51  
GND  
AB5  
HD8  
AB6  
HD62/D62  
V
AB7  
HD61/D61  
DDH  
HD43/D43/ETHRXD3/reserved  
GND  
AB8  
HD57/D57/ETHRX_ER  
HD56/D56/ETHRX_DV/ETHCRS_DV  
HD55/D55/ETHTX_ER/reserved  
HD53/D53  
AB9  
V
AB10  
AB11  
AB12  
AB13  
AB14  
AB15  
AB16  
AB17  
AB18  
AB19  
AB20  
AB21  
AB22  
DDH  
GND  
HD37/D37/reserved  
HD34/D34/reserved  
HD50/D50  
HD49/D49/ETHTXD3/reserved  
HD48/D48/ETHTXD2/reserved  
HD47/D47/ETHTXD1  
HD45/D45  
V
DDH  
A4  
A5  
V
HD44/D44  
DD  
HD14  
HD12  
HD41/D41/ETHRXD1  
HD39/D39/reserved  
HD36/D36/reserved  
A1  
HD10  
HD63/D63  
HD59/D59/ETHMDIO  
GND  
V
DD  
MSC8126 Quad Digital Signal Processor Data Sheet, Rev. 13  
12  
Freescale Semiconductor  
Electrical Characteristics  
2
Electrical Characteristics  
This document contains detailed information on power considerations, DC/AC electrical characteristics, and AC timing  
specifications. For additional information, see the MSC8126 Reference Manual.  
2.1  
Maximum Ratings  
CAUTION  
This device contains circuitry protecting against damage  
due to high static voltage or electrical fields; however,  
normal precautions should be taken to avoid exceeding  
maximum voltage ratings. Reliability is enhanced if unused  
inputs are tied to an appropriate logic voltage level (for  
example, either GND or V ).  
DD  
In calculating timing requirements, adding a maximum value of one specification to a minimum value of another specification  
does not yield a reasonable sum. A maximum specification is calculated using a worst case variation of process parameter values  
in one direction. The minimum specification is calculated using the worst case for the same parameters in the opposite direction.  
Therefore, a “maximum” value for a specification never occurs in the same device with a “minimum” value for another  
specification; adding a maximum to a minimum represents a condition that can never exist.  
Table 2 describes the maximum electrical ratings for the MSC8126.  
Table 2. Absolute Maximum Ratings  
Rating  
Symbol  
Value  
Unit  
Core and PLL supply voltage  
I/O supply voltage  
V
–0.2 to 1.6  
–0.2 to 4.0  
–0.2 to 4.0  
V
V
V
DD  
V
DDH  
Input voltage  
V
IN  
Maximum operating temperature:  
• 400 MHz  
• 500 MHz  
T
J
J
105  
90  
°C  
°C  
Minimum operating temperature  
• 400 MHz  
• 500 MHz  
T
–40  
0
°C  
°C  
Storage temperature range  
T
–55 to +150  
°C  
STG  
Notes: 1. Functional operating conditions are given in Table 3.  
2. Absolute maximum ratings are stress ratings only, and functional operation at the maximum is not guaranteed. Stress beyond  
the listed limits may affect device reliability or cause permanent damage.  
3. Section 3.5, Thermal Considerations includes a formula for computing the chip junction temperature (T ).  
J
MSC8126 Quad Digital Signal Processor Data Sheet, Rev. 13  
Freescale Semiconductor  
13  
Electrical Characteristics  
2.2  
Recommended Operating Conditions  
Table 3 lists recommended operating conditions. Proper device operation outside of these conditions is not guaranteed.  
Table 3. Recommended Operating Conditions  
Rating  
Symbol  
Value  
Unit  
Core and PLL supply voltage:  
• Standard  
V
DD  
V
CCSYN  
— 400 MHz  
— 500 MHz  
• Reduced (300 and 400 MHz)  
1.14 to 1.26  
1.16 to 1.24  
1.07 to 1.13  
V
V
V
I/O supply voltage  
Input voltage  
V
3.135 to 3.465  
V
V
DDH  
V
–0.2 to V  
+0.2  
DDH  
IN  
Operating temperature range:  
• Standard  
• Extended  
T
T
0 to 90  
–40 to 105  
°C  
°C  
J
J
2.3  
Thermal Characteristics  
Table 4 describes thermal characteristics of the MSC8126 for the FC-PBGA packages.  
Table 4. Thermal Characteristics for the MSC8126  
FC-PBGA  
20 × 20 mm5  
Characteristic  
Symbol  
Unit  
Natural  
200 ft/min  
Convection  
(1 m/s) airflow  
1, 2  
Junction-to-ambient  
R
R
R
R
26  
19  
9
21  
15  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
θJA  
θJA  
θJB  
θJC  
1, 3  
Junction-to-ambient, four-layer board  
4
Junction-to-board (bottom)  
5
Junction-to-case  
0.9  
1
6
Junction-to-package-top  
Ψ
JT  
Notes: 1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board)  
temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal  
resistance.  
2. Per SEMI G38-87 and JEDEC JESD51-2 with the single layer board horizontal.  
3. Per JEDEC JESD51-6 with the board horizontal.  
4. Thermal resistance between the die and the printed circuit board per JEDEC JESD 51-8. Board temperature is measured on  
the top surface of the board near the package.  
5. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method  
1012.1).  
6. Thermal characterization parameter indicating the temperature difference between package top and the junction temperature  
per JEDEC JESD51-2.  
Section 3.5, Thermal Considerations provides a detailed explanation of these characteristics.  
MSC8126 Quad Digital Signal Processor Data Sheet, Rev. 13  
14  
Freescale Semiconductor  
Electrical Characteristics  
2.4  
DC Electrical Characteristics  
This section describes the DC electrical characteristics for the MSC8126. The measurements in Table 5 assume the  
following system conditions:  
T = 25 °C  
A
VDD  
=
— 400 MHz = 1.14–1.26 V  
— 500 MHz = 1.16–1.24 V  
DC  
DC  
VDDH = 3.3 V ± 5% V  
DC  
GND = 0 V  
DC  
Note: The leakage current is measured for nominal VDDH and VDD  
.
Table 5. DC Electrical Characteristics  
Characteristic  
Symbol  
Min  
Typical  
Max  
Unit  
1
Input high voltage , all inputs except CLKIN  
V
2.0  
GND  
2.4  
0
3.465  
0.4  
3.465  
0.4  
1
V
V
IH  
1
Input low voltage  
V
IL  
CLKIN input high voltage  
CLKIN input low voltage  
V
3.0  
0
V
IHC  
V
I
GND  
–1.0  
–1.0  
–1.0  
–1.0  
2.0  
V
ILC  
Input leakage current, V = V  
0.09  
0.09  
0.09  
0.09  
3.0  
µA  
µA  
µA  
µA  
V
IN  
DDH  
IN  
Tri-state (high impedance off state) leakage current, V = V  
I
1
IN  
DDH  
OZ  
2
Signal low input current, V = 0.4 V  
I
1
IL  
L
2
Signal high input current, V = 2.0 V  
I
1
IH  
H
Output high voltage, I = –2 mA,  
V
OH  
OH  
except open drain pins  
Output low voltage, I = 3.2 mA  
V
0
2
0.4  
4
V
OL  
OL  
V
PLL supply current  
I
mA  
CCSYN  
VCCSYN  
Internal supply current:  
3
Wait mode  
Stop mode  
I
I
375  
290  
mA  
mA  
DDW  
3
DDS  
4
Typical power 400 MHz at 1.2 V  
P
1.15  
W
Notes: 1. See Figure 5 for undershoot and overshoot voltages.  
2. Not tested. Guaranteed by design.  
3. Measured for 1.2 V core at 25°C junction temperature.  
4. The typical power values were measured using an EFR code with the device running at a junction temperature of 25°C. No  
peripherals were enabled and the ICache was not enabled. The source code was optimized to use all the ALUs and AGUs and  
®
all four cores. It was created using CodeWarrior 2.5. These values are provided as examples only. Power consumption is  
application dependent and varies widely. To assure proper board design with regard to thermal dissipation and maintaining  
proper operating temperatures, evaluate power consumption for your application and use the design guidelines in Chapter 4 of  
this document and in MSC8102, MSC8122, and MSC8126 Thermal Management Design Guidelines (AN2601).  
MSC8126 Quad Digital Signal Processor Data Sheet, Rev. 13  
Freescale Semiconductor  
15  
Electrical Characteristics  
VDDH + 17%  
VIH  
V
DDH + 8%  
VDDH  
GND  
GND – 0.3 V  
GND – 0.7 V  
VIL  
Must not exceed 10% of clock period  
Figure 5. Overshoot/Undershoot Voltage for VIH and VIL  
2.5  
AC Timings  
The following sections include illustrations and tables of clock diagrams, signals, and parallel I/O outputs and inputs. When  
systems such as DSP farms are developed using the DSI, use a device loading of 4 pF per pin. AC timings are based on a 20 pF  
load, except where noted otherwise, and a 50 Ω transmission line. For loads smaller than 20 pF, subtract 0.06 ns per pF down  
to 10 pF load. For loads larger than 20 pF, add 0.06 ns for SIU/Ethernet/DSI delay and 0.07 ns for GPIO/TDM/timer delay.  
When calculating overall loading, also consider additional RC delay.  
2.5.1  
Output Buffer Impedances  
Table 6. Output Buffer Impedances  
Output Buffers  
Typical Impedance (Ω)  
System bus  
50  
50  
50  
Memory controller  
Parallel I/O  
Note:  
These are typical values at 65°C. The impedance may vary by ±25% depending on device process and operating temperature.  
2.5.2  
Start-Up Timing  
Starting the device requires coordination among several input sequences including clocking, reset, and power. Section 2.5.3  
describes the clocking characteristics. Section 2.5.4 describes the reset and power-up characteristics. You must use the  
following guidelines when starting up an MSC8126 device:  
PORESET and TRST must be asserted externally for the duration of the power-up sequence. See Table 11 for timing.  
If possible, bring up the VDD and VDDH levels together. For designs with separate power supplies, bring up the VDD  
levels and then the VDDH levels (see Figure 7).  
CLKIN should start toggling at least 16 cycles (starting after VDDH reaches its nominal level) before PORESET  
deassertion to guarantee correct device operation (see Figure 6 and Figure 7).  
CLKIN must not be pulled high during VDDH power-up. CLKIN can toggle during this period.  
Note: See Section 3.1 for start-up sequencing recommendations and Section 3.2 for power supply design  
recommendations.  
The following figures show acceptable start-up sequence examples. Figure 6 shows a sequence in which VDD and VDDH are  
raised together. Figure 7 shows a sequence in which VDDH is raised after VDD and CLKIN begins to toggle as VDDH rises.  
MSC8126 Quad Digital Signal Processor Data Sheet, Rev. 13  
16  
Freescale Semiconductor  
Electrical Characteristics  
V
V
= Nominal Value  
= Nominal Value  
DDH  
DD  
1
V
Nominal Level  
3.3 V  
2.2 V  
DDH  
1.2 V  
o.5 V  
V
Nominal Level  
DD  
Time  
PORESET/TRST Deasserted  
CLKIN Starts Toggling  
PORESET/TRST Asserted  
V
/V  
Applied  
DD DDH  
Figure 6. Start-Up Sequence: VDD and VDDH Raised Together  
V
V
= Nominal  
= Nominal  
DDH  
DD  
1
V
Nominal  
3.3 V  
DDH  
1.2 V  
o.5 V  
V
Nominal  
DD  
Time  
PORESET/TRST asserted  
PORESET/TRST deasserted  
CLKIN starts toggling  
applied  
V
applied  
DD  
V
DDH  
Figure 7. Start-Up Sequence: VDD Raised Before VDDH with CLKIN Started with VDDH  
MSC8126 Quad Digital Signal Processor Data Sheet, Rev. 13  
Freescale Semiconductor  
17  
Electrical Characteristics  
In all cases, the power-up sequence must follow the guidelines shown in Figure 8.  
V
3.3 V  
B
VDDH (IO)  
A
1.2 V  
VDD/VCCSYN  
t (time)  
Figure 8. Power-Up Sequence for VDDH and VDD/VCCSYN  
The following rules apply:  
1. During time interval A, VDDH should always be equal to or less than the VDD/VCCSYN voltage level.  
The duration of interval A should be kept below 10 ms.  
2. The duration of timing interval B should be kept as small as possible and less than 10 ms.  
2.5.3  
Clock and Timing Signals  
The following sections include a description of clock signal characteristics. Table 7 shows the maximum frequency values for  
internal (Core, Reference, Bus, and DSI) and external (CLKIN and CLKOUT) clocks. The user must ensure that maximum  
frequency values are not exceeded.  
Table 7. Maximum Frequencies  
Characteristic  
Maximum in MHz  
Core frequency  
400/500  
Reference frequency (REFCLK)  
Internal bus frequency (BLCK)  
133/166  
133/166  
DSI clock frequency (HCLKIN)  
HCLKIN (min{100 MHz, CLKOUT})  
133/166  
External clock frequency (CLKIN or CLKOUT)  
Table 8. Clock Frequencies  
400 MHz Device  
500 MHz Device  
Characteristics  
Symbol  
Min  
Max  
Min  
Max  
CLKIN frequency  
F
20  
40  
133.3  
133.3  
133.3  
133.3  
400  
20  
40  
166.7  
166.7  
166.7  
166.7  
500  
CLKIN  
BCLK frequency  
F
BCLK  
Reference clock (REFCLK) frequency  
Output clock (CLKOUT) frequency  
SC140 core clock frequency  
F
40  
40  
REFCLK  
CLKOUT  
F
40  
40  
F
200  
200  
CORE  
Note:  
The rise and fall time of external clocks should be 5 ns maximum  
MSC8126 Quad Digital Signal Processor Data Sheet, Rev. 13  
18  
Freescale Semiconductor  
Electrical Characteristics  
Table 9. System Clock Parameters  
Min  
Characteristic  
Max  
Unit  
Phase jitter between BCLK and CLKIN  
20  
0.3  
ns  
MHz  
ns  
CLKIN frequency  
see Table 8  
CLKIN slope  
3
PLL input clock (after predivider)  
20  
100  
MHz  
PLL output frequency (VCO output)  
800  
MHz  
MHz  
MHz  
400 MHz core  
500 MHz core  
1600  
2000  
1
CLKOUT frequency jitter  
200  
500  
ps  
ps  
1
CLKOUT phase jitter with CLKIN phase jitter of ±100 ps  
Notes: 1. Peak-to-peak.  
2. Not tested. Guaranteed by design.  
2.5.4  
Reset Timing  
The MSC8126 has several inputs to the reset logic:  
Power-on reset (PORESET)  
External hard reset (HRESET)  
External soft reset (SRESET)  
Software watchdog reset  
Bus monitor reset  
Host reset command through JTAG  
All MSC8126 reset sources are fed into the reset controller, which takes different actions depending on the source of the reset.  
The reset status register indicates the most recent sources to cause a reset. Table 10 describes the reset sources.  
Table 10. Reset Sources  
Name  
Direction  
Description  
Power-on reset  
(PORESET)  
Input  
Initiates the power-on reset flow that resets the MSC8126 and configures various attributes of the  
MSC8126. On PORESET, the entire MSC8126 device is reset. SPLL states is reset, HRESET and  
SRESET are driven, the SC140 extended cores are reset, and system configuration is sampled. The  
clock mode (MODCK bits), reset configuration mode, boot mode, Chip ID, and use of either a DSI 64  
bits port or a System Bus 64 bits port are configured only when PORESET is asserted.  
External hard  
reset (HRESET)  
Input/ Output  
Initiates the hard reset flow that configures various attributes of the MSC8126. While HRESET is  
asserted, SRESET is also asserted. HRESET is an open-drain pin. Upon hard reset, HRESET and  
SRESET are driven, the SC140 extended cores are reset, and system configuration is sampled. The  
most configurable features are reconfigured. These features are defined in the 32-bit hard reset  
configuration word described in Hard Reset Configuration Word section of the Reset chapter in the  
MSC8126 Reference Manual.  
External soft reset  
(SRESET)  
Input/ Output  
Initiates the soft reset flow. The MSC8126 detects an external assertion of SRESET only if it occurs  
while the MSC8126 is not asserting reset. SRESET is an open-drain pin. Upon soft reset, SRESET is  
driven, the SC140 extended cores are reset, and system configuration is maintained.  
Software  
watchdog reset  
Internal  
Internal  
Internal  
When the MSC8126 watchdog count reaches zero, a software watchdog reset is signalled. The  
enabled software watchdog event then generates an internal hard reset sequence.  
Bus monitor reset  
When the MSC8126 bus monitor count reaches zero, a bus monitor hard reset is asserted. The  
enabled bus monitor event then generates an internal hard reset sequence.  
Host reset  
command through  
the TAP  
When a host reset command is written through the Test Access Port (TAP), the TAP logic asserts the  
soft reset signal and an internal soft reset sequence is generated.  
Table 11 summarizes the reset actions that occur as a result of the different reset sources.  
MSC8126 Quad Digital Signal Processor Data Sheet, Rev. 13  
Freescale Semiconductor  
19  
Electrical Characteristics  
Table 11. Reset Actions for Each Reset Source  
Power-On  
Reset  
(PORESET)  
Hard Reset (HRESET)  
Soft Reset (SRESET)  
JTAG Command:  
Reset Action/Reset Source  
External or Internal  
External only (SoftwareWatchdogor  
Bus Monitor)  
External  
EXTEST, CLAMP, or  
HIGHZ  
Configuration pins sampled (Refer to  
Yes  
No  
No  
No  
Section 2.5.4.1 for details).  
SPLL state reset  
Yes  
Yes  
No  
No  
No  
No  
No  
No  
System reset configuration write through  
the DSI  
System reset configuration write though  
the system bus  
Yes  
Yes  
No  
No  
HRESET driven  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
No  
No  
No  
SIU registers reset  
IPBus modules reset (TDM, UART,  
Timers, DSI, IPBus master, GIC, HS, and  
GPIO)  
Yes  
Yes  
SRESET driven  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Depends on command  
SC140 extended cores reset  
MQBS reset  
Yes  
Yes  
2.5.4.1  
Power-On Reset (PORESET) Pin  
Asserting PORESET initiates the power-on reset flow. PORESET must be asserted externally for at least 16 CLKIN cycles after  
VDD and VDDH are both at their nominal levels.  
2.5.4.2  
Reset Configuration  
The MSC8126 has two mechanisms for writing the reset configuration:  
Through the direct slave interface (DSI)  
Through the system bus. When the reset configuration is written through the system bus, the MSC8126 acts as a  
configuration master or a configuration slave. If configuration slave is selected, but no special configuration word is  
written, a default configuration word is applied.  
Fourteen signal levels (see Chapter 1 for signal description details) are sampled on PORESET deassertion to define the Reset  
Configuration Mode and boot and operating conditions:  
RSTCONF  
CNFGS  
DSISYNC  
DSI64  
CHIP_ID[0–3]  
BM[0–2]  
SWTE  
MODCK[1–2]  
MSC8126 Quad Digital Signal Processor Data Sheet, Rev. 13  
20  
Freescale Semiconductor  
Electrical Characteristics  
2.5.4.3  
Reset Timing Tables  
Table 12 and Figure 9 describe the reset timing for a reset configuration write through the direct slave interface (DSI) or  
through the system bus.  
Table 12. Timing for a Reset Configuration Write through the DSI or System Bus  
No.  
Characteristics  
Expression  
Min  
Max  
Unit  
1
Required external PORESET duration minimum  
16/CLKIN  
CLKIN = 20 MHz  
CLKIN = 133 MHz (400 MHz core)  
CLKIN = 166 MHz (500 MHz core)  
800  
120  
96  
800  
ns  
ns  
ns  
2
3
Delay from deassertion of external PORESET to deassertion of internal  
PORESET  
1024/CLKIN  
CLKIN = 20 MHz to 166 MHz  
6.17  
51.2  
µs  
Delay from de-assertion of internal PORESET to SPLL lock  
6400/(CLKIN/RDF)  
(PLL reference  
clock-division factor)  
CLKIN = 20 MHz (RDF = 1)  
CLKIN = 133 MHz (RDF = 2) (400 MHz core)  
CLKIN = 166 MHz (RDF = 2) (500 MHz core)  
320  
96  
77  
320  
96  
77  
µs  
µs  
µs  
5
6
7
Delay from SPLL to HRESET deassertion  
REFCLK = 40 MHz to 166 MHz  
512/REFCLK  
515/REFCLK  
3.08  
12.8  
µs  
Delay from SPLL lock to SRESET deassertion  
REFCLK = 40 MHz to 166 MHz  
3.10  
3
12.88  
µs  
ns  
Setup time from assertion of RSTCONF, CNFGS, DSISYNC, DSI64,  
CHIP_ID[0–3], BM[0–2], SWTE, and MODCK[1–2] before deassertion of  
PORESET  
8
Hold time from deassertion of PORESET to deassertion of RSTCONF,  
CNFGS, DSISYNC, DSI64, CHIP_ID[0–3], BM[0–2], SWTE, and  
MODCK[1–2]  
5
ns  
Note:  
Timings are not tested, but are guaranteed by design.  
RSTCONF, CNFGS, DSISYNC, DSI64  
CHIP_ID[0–3], BM[0–2], SWTE, MODCK[1–2]  
pins are sampled  
1
PORESET  
Input  
Host programs  
Reset Configuration  
Word  
PORESET  
Internal  
SPLL is locked  
(no external indication)  
1 + 2  
MODCK[3–5]  
HRESET  
Output (I/O)  
3
2
SRESET  
Output (I/O)  
SPLL  
locking period  
Reset configuration write  
sequence during this  
period.  
5
6
Figure 9. Timing Diagram for a Reset Configuration Write  
MSC8126 Quad Digital Signal Processor Data Sheet, Rev. 13  
Freescale Semiconductor  
21  
Electrical Characteristics  
2.5.5  
System Bus Access Timing  
Core Data Transfers  
2.5.5.1  
Generally, all MSC8126 bus and system output signals are driven from the rising edge of the reference clock (REFCLK). The  
REFCLK is the CLKIN signal. Memory controller signals, however, trigger on four points within a REFCLK cycle. Each cycle  
is divided by four internal ticks: T1, T2, T3, and T4. T1 always occurs at the rising edge of REFCLK (and T3 at the falling  
edge), but the spacing of T2 and T4 depends on the PLL clock ratio selected, as Table 13 shows.  
Table 13. Tick Spacing for Memory Controller Signals  
Tick Spacing (T1 Occurs at the Rising Edge of REFCLK)  
BCLK/SC140 clock  
T2  
T3  
T4  
1:4, 1:6, 1:8, 1:10  
1/4 REFCLK  
1/6 REFCLK  
2/10 REFCLK  
1/2 REFCLK  
1/2 REFCLK  
1/2 REFCLK  
3/4 REFCLK  
4/6 REFCLK  
7/10 REFCLK  
1:3  
1:5  
Figure 10 is a graphical representation of Table 13.  
REFCLK  
for 1:4, 1:6, 1:8, 1:10  
T1  
T1  
T1  
T2  
T3  
T3  
T3  
T4  
REFCLK  
REFCLK  
for 1:3  
T2  
T4  
for 1:5  
T2  
T4  
Figure 10. Internal Tick Spacing for Memory Controller Signals  
MSC8126 Quad Digital Signal Processor Data Sheet, Rev. 13  
22  
Freescale Semiconductor  
Electrical Characteristics  
The UPM machine and GPCM machine outputs change on the internal tick selected by the memory controller  
configuration. The AC timing specifications are relative to the internal tick. SDRAM machine outputs change only  
on the REFCLK rising edge.  
Table 14. AC Timing for SIU Inputs  
Value for Bus Speed in MHz  
Ref =  
No.  
Characteristic  
Ref = CLKIN  
Units  
CLKOUT  
133  
166  
133  
10  
Hold time for all signals after the 50% level of the REFCLK rising edge  
0.5  
3.0  
0.5  
3.0  
0.5  
3.0  
ns  
ns  
11a  
ARTRY/ABB set-up time before the 50% level of the REFCLK rising  
edge  
11b  
DBG/DBB/BG/BR/TC set-up time before the 50% level of the  
REFCLK rising edge  
3.3  
2.9  
3.3  
2.9  
3.3  
2.9  
ns  
ns  
11c  
11d  
AACK set-up time before the 50% level of the REFCLK rising edge  
TA/TEA/PSDVAL set-up time before the 50% level of the REFCLK  
rising edge  
Data-pipeline mode  
Non-pipeline mode  
3.4  
4.0  
3.4  
4.0  
3.4  
4.0  
ns  
ns  
12  
Data bus set-up time before REFCLK rising edge in Normal mode  
Data-pipeline mode  
Non-pipeline mode  
1.8  
4.0  
1.7  
4.0  
1.8  
4.0  
ns  
ns  
1
13  
Data bus set-up time before the 50% level of the REFCLK rising edge  
in ECC and PARITY modes  
Data-pipeline mode  
Non-pipeline mode  
2.0  
7.3  
2.0  
7.3  
2.0  
7.3  
ns  
ns  
1
14  
DP set-up time before the 50% level of the REFCLK rising edge  
Data-pipeline mode  
Non-pipeline mode  
2.0  
6.1  
2.0  
6.1  
2.0  
6.1  
ns  
ns  
15a  
15b  
16  
TS and Address bus set-up time before the 50% level of the REFCLK  
rising edge  
Extra cycle mode (SIUBCR[EXDD] = 0)  
No extra cycle mode (SIUBCR[EXDD] = 1)  
3.6  
5.0  
3.6  
5.0  
3.8  
5.0  
ns  
ns  
Address attributes: TT/TBST/TSZ/GBL set-up time before the 50%  
level of the REFCLK rising edge  
Extra cycle mode (SIUBCR[EXDD] = 0)  
No extra cycle mode (SIUBCR[EXDD] = 1)  
3.5  
4.4  
3.5  
4.4  
3.5  
4.4  
ns  
ns  
PUPMWAIT signal set-up time before the 50% level of the REFCLK  
rising edge  
3.7  
3.7  
3.7  
ns  
3
17  
18  
IRQx setup time before the 50% level; of the REFCLK rising edge  
4.0  
4.0  
4.0  
ns  
ns  
3
IRQx minimum pulse width  
6.0 + T  
6.0 + T  
6.0 + T  
REFCLK  
REFCLK  
REFCLK  
Notes: 1. Timings specifications 13 and 14 in non-pipeline mode are more restrictive than MSC8102 timings.  
2. Values are measured from the 50% TTL transition level relative to the 50% level of the REFCLK rising edge.  
3. Guaranteed by design  
MSC8126 Quad Digital Signal Processor Data Sheet, Rev. 13  
Freescale Semiconductor  
23  
Electrical Characteristics  
Table 15. AC Timing for SIU Outputs  
Value for Bus Speed in MHz  
No.  
Characteristic  
Ref = CLKIN  
133  
Ref = CLKOUT Units  
133  
166  
2
30  
31  
Minimum delay from the 50% level of the REFCLK for all signals  
0.8  
4.9  
0.8  
4.9  
1.0  
5.8  
ns  
ns  
PSDVAL/TEA/TA max delay from the 50% level of the REFCLK  
rising edge  
32a  
Address bus max delay from the 50% level of the REFCLK rising  
edge  
Multi-master mode (SIUBCR[EBM] = 1)  
Single-master mode (SIUBCR[EBM] = 0)  
5.5  
4.2  
5.5  
3.9  
6.4  
5.1  
ns  
ns  
32b  
32c  
Address attributes: TT[0–1]/TBST/TSZ/GBL max delay from the 50%  
level of the REFCLK rising edge  
5.1  
5.7  
4.2  
5.1  
5.7  
4.2  
6.0  
6.6  
5.1  
ns  
ns  
ns  
Address attributes: TT[2–4]/TC max delay from the 50% level of the  
REFCLK rising edge  
32d  
33a  
BADDR max delay from the 50% level of the REFCLK rising edge  
Data bus max delay from the 50% level of the REFCLK rising edge  
Data-pipeline mode  
Non-pipeline mode  
3.9  
6.1  
3.7  
6.1  
4.8  
7.0  
ns  
ns  
33b  
DP max delay from the 50% level of the REFCLK rising edge  
Data-pipeline mode  
Non-pipeline mode  
5.3  
6.5  
5.3  
6.5  
6.2  
7.4  
ns  
ns  
34  
Memory controller signals/ALE/CS[0–4] max delay from the 50%  
level of the REFCLK rising edge  
4.2  
4.7  
4.5  
3.9  
4.7  
4.5  
5.1  
5.6  
5.4  
ns  
ns  
ns  
35a  
35b  
DBG/BG/BR/DBB max delay from the 50% level of the REFCLK  
rising edge  
AACK/ABB/TS/CS[5–7] max delay from the 50% level of the  
REFCLK rising edge  
Notes: 1. Values are measured from the 50% level of the REFCLK rising edge to the 50% signal level and assume a 20 pF load except  
where otherwise specified.  
2. The load for specification 30 is 10 pF. The load for the other specifications in this table is 20 pF. For a 15 pF load, subtract 0.3  
ns from the listed value.  
3. The maximum bus frequency depends on the mode:  
4. In 60x-compatible mode connected to another MSC8126 device, the frequency is determined by adding the input and output  
longest timing values, which results in the total delay for 20 pF output capacitance. You must also account for other  
influences that can affect timing, such as on-board clock skews, on-board noise delays, and so on.  
• In single-master mode, the frequency depends on the timing of the devices connected to the MSC8126.  
• To achieve maximum performance on the bus in single-master mode, disable the DBB signal by writing a 1 to the  
SIUMCR[BDD] bit. See the SIU chapter in the MSC8122 Reference Manual for details.  
MSC8126 Quad Digital Signal Processor Data Sheet, Rev. 13  
24  
Freescale Semiconductor  
Electrical Characteristics  
REFCLK  
10  
11  
AACK/ARTRY/TA/TEA/DBG/BG/BR  
PSDVAL/ABB/DBB inputs  
10  
12  
13  
Data bus inputs—normal mode  
10  
Data bus inputs—ECC and parity modes  
DP inputs  
14  
15  
10  
18  
Address bus/TS /TT[0–4]/TC[0–2]/  
TBST/TSZ[0–3]/GBL inputs  
PUPMWAIT input  
16  
17  
IRQx inputs  
30  
Min delay for all output pins  
31  
PSDVAL/TEA/TA outputs  
32a/b  
Address bus/TT[0–4]/TC[0–2]/TBST/TSZ[0–3]/GBL outputs  
32c  
33a  
BADDR outputs  
Data bus outputs  
DP outputs  
33b  
34  
Memory controller/ALE outputs  
35  
AACK/ABB/TS/DBG/BG/BR/DBB/CS outputs  
Figure 11. SIU Timing Diagram  
MSC8126 Quad Digital Signal Processor Data Sheet, Rev. 13  
Freescale Semiconductor  
25  
Electrical Characteristics  
2.5.5.2  
CLKIN to CLKOUT Skew  
Table 17 describes the CLKOUT-to-CLKIN skew timing.  
Table 16. CLKOUT Skew  
Characteristic  
No.  
Min1  
Max1  
Units  
20  
21  
22  
Rise-to-rise skew  
Fall-to-fall skew  
0
0.85  
1.0  
ns  
ns  
ns  
–0.8  
2.8  
CLKOUT phase high and low (1.2 V, 133 MHz)  
Notes: 1. A positive number indicates that CLKOUT precedes CLKIN, A negative number indicates that CLKOUT follows CLKIN.  
2. Skews are measured in clock mode 29, with a CLKIN:CLKOUT ratio of 1:1. The same skew is valid for all clock modes.  
3. CLKOUT skews are measured using a load of 10 pF.  
4. CLKOUT skews and phase are not measured for 500/166 Mhz parts because these parts only use CLKIN mode.  
For designs that use the CLKOUT synchronization mode, use the skew values listed in Table 16 to adjust the rise-to-fall timing  
values specified for CLKIN synchronization. Figure 12 shows the relationship between the CLKOUT and CLKIN timings.  
CLKIN  
CLKOUT  
21  
20  
Figure 12. CLKOUT and CLKIN Signals.  
MSC8126 Quad Digital Signal Processor Data Sheet, Rev. 13  
26  
Freescale Semiconductor  
Electrical Characteristics  
2.5.5.3  
DMA Data Transfers  
Table 17 describes the DMA signal timing.  
Table 17. DMA Signals  
Ref = CLKOUT  
(1.2 V only)  
Ref = CLKIN  
No.  
Characteristic  
Units  
Min  
Max  
Min  
Max  
37  
38  
39  
40  
41  
DREQ set-up time before the 50% level of the falling edge of REFCLK  
DREQ hold time after the 50% level of the falling edge of REFCLK  
DONE set-up time before the 50% level of the rising edge of REFCLK  
DONE hold time after the 50% level of the rising edge of REFCLK  
DACK/DRACK/DONE delay after the 50% level of the REFCLK rising edge  
5.0  
0.5  
5.0  
0.5  
0.5  
5.0  
0.5  
5.0  
0.5  
0.5  
ns  
ns  
ns  
ns  
ns  
7.5  
8.4  
The DREQ signal is synchronized with REFCLK. To achieve fast response, a synchronized peripheral should assert DREQ  
according to the timings in Table 17. Figure 13 shows synchronous peripheral interaction.  
REFCLK  
38  
37  
DREQ  
40  
39  
DONE  
41  
DACK/DONE/DRACK  
Figure 13. DMA Signals  
MSC8126 Quad Digital Signal Processor Data Sheet, Rev. 13  
Freescale Semiconductor  
27  
Electrical Characteristics  
2.5.6  
DSI Timing  
The timings in the following sections are based on a 20 pF capacitive load.  
2.5.6.1 DSI Asynchronous Mode  
Table 18. DSI Asynchronous Mode Timing  
No.  
Characteristics  
Min  
Max  
Unit  
1
100  
101  
102  
Attributes set-up time before strobe (HWBS[n]) assertion  
1.5  
1.3  
ns  
ns  
1
Attributes hold time after data strobe deassertion  
Read/Write data strobe deassertion width:  
DCR[HTAAD] = 1  
— Consecutive access to the same DSI  
— Different device with DCR[HTADT] = 01  
— Different device with DCR[HTADT] = 10  
— Different device with DCR[HTADT] = 11  
DCR[HTAAD] = 0  
1.8 + T  
5 + T  
5 + (1.5 × T  
5 + (2.5 × T  
1.8 + T  
ns  
ns  
ns  
ns  
ns  
REFCLK  
REFCLK  
)
)
REFCLK  
REFCLK  
REFCLK  
103  
104  
105  
106  
107  
108  
Read data strobe deassertion to output data high impedance  
Read data strobe assertion to output data active from high impedance  
Output data hold time after read data strobe deassertion  
Read/Write data strobe assertion to HTA active from high impedance  
Output data valid to HTA assertion  
8.5  
ns  
ns  
ns  
ns  
ns  
2.0  
2.2  
2.2  
3.2  
2
Read/Write data strobe assertion to HTA valid  
1.1 V core  
1.2 V core  
7.4  
6.7  
ns  
ns  
109  
110  
111  
Read/Write data strobe deassertion to output HTA high impedance.  
(DCR[HTAAD] = 0, HTA at end of access released at logic 0)  
6.5  
ns  
Read/Write data strobe deassertion to output HTA deassertion.  
(DCR[HTAAD] = 1, HTA at end of access released at logic 1)  
6.5  
ns  
Read/Write data strobe deassertion to output HTA high impedance.  
(DCR[HTAAD] = 1, HTA at end of access released at logic 1  
DCR[HTADT] = 01  
DCR[HTADT] = 10  
DCR[HTADT] = 11  
5 + T  
5 + (1.5 × T  
5 + (2.5 × T  
ns  
ns  
ns  
REFCLK  
)
)
REFCLK  
REFCLK  
112  
201  
202  
Read/Write data strobe assertion width  
1.8 + T  
ns  
ns  
REFCLK  
Host data input set-up time before write data strobe deassertion  
1.0  
Host data input hold time after write data strobe deassertion  
1.1 V core  
1.2 V core  
1.7  
1.5  
ns  
ns  
Notes: 1. Attributes refers to the following signals: HCS, HA[11–29], HCID[0–4], HDST, HRW, HRDS, and HWBSn.  
2. This specification is tested in dual-strobe mode. Timing in single-strobe mode is guaranteed by design.  
3. All values listed in this table are tested or guaranteed by design.  
MSC8126 Quad Digital Signal Processor Data Sheet, Rev. 13  
28  
Freescale Semiconductor  
Electrical Characteristics  
Figure 14 shows DSI asynchronous read signals timing.  
HCS  
HA[11–29]  
HCID[0–4]  
HDST  
1
HRW  
HWBSn  
2
100  
101  
112  
1
HDBSn  
2
HRDS  
102  
103  
107  
105  
104  
HD[0–63]  
109  
106  
3
HTA  
108  
110  
4
HTA  
111  
Notes: 1. Used for single-strobe mode access.  
2. Used for dual-strobe mode access.  
3. HTA released at logic 0 (DCR[HTAAD] = 0) at end of access; used with  
pull-down implementation.  
4. HTA released at logic 1 (DCR[HTAAD] = 1) at end of access; used with pull-up  
implementation.  
Figure 14. Asynchronous Single- and Dual-Strobe Modes Read Timing Diagram  
MSC8126 Quad Digital Signal Processor Data Sheet, Rev. 13  
Freescale Semiconductor  
29  
Electrical Characteristics  
Figure 15 shows DSI asynchronous write signals timing.  
HCS  
HA[11–29]  
HCID[0–4]  
HDST  
1
101  
102  
HRW  
100  
2
HRDS  
112  
1
2
HDBSn  
HWBSn  
201  
202  
HD[0–63]  
109  
106  
108  
3
HTA  
110  
4
HTA  
111  
Notes: 1. Used for single-strobe mode access.  
2. Used for dual-strobe mode access.  
3. HTA released at logic 0 (DCR[HTAAD] = 0) at end of access; used with pull-down implementation.  
4. HTA released at logic 1 (DCR[HTAAD] = 1) at end of access; used with pull-up implementation.  
Figure 15. Asynchronous Single- and Dual-Strobe Modes Write Timing Diagram  
Figure 16 shows DSI asynchronous broadcast write signals timing.  
HCS  
HA[11–29]  
HCID[0–4]  
HDST  
1
101  
102  
HRW  
100  
2
HRDS  
112  
1
2
HDBSn  
HWBSn  
201  
202  
HD[0–63]  
Notes: 1. Used for single-strobe mode access.  
2. Used for dual-strobe mode access.  
Figure 16. Asynchronous Broadcast Write Timing Diagram  
MSC8126 Quad Digital Signal Processor Data Sheet, Rev. 13  
30  
Freescale Semiconductor  
Electrical Characteristics  
2.5.6.2 DSI Synchronous Mode  
Table 19. DSI Inputs—Synchronous Mode  
No.  
Characteristic  
Expression  
Min  
Max  
Units  
1, 2  
120  
121  
122  
123  
124  
125  
126  
127  
HCLKIN Cycle Time  
HTC  
10.0  
4.0  
4.0  
1.2  
0.4  
1.3  
1.2  
1.5  
55.6  
33.3  
33.3  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
HCLKIN high Pulse Width  
HCLKIN low Pulse Width  
HA[11–29] inputs set-up time  
HD[0–63] inputs set-up time  
HCID[0–4] inputs set-up time  
All other inputs set-up time  
All inputs hold time  
(0.5 0.1) × HTC  
(0.5 0.1) × HTC  
Notes: 1. Values are based on a frequency range of 18–100 MHz.  
2. Refer to Table 7 for HCLKIN frequency limits.  
Table 20. DSI Outputs—Synchronous Mode  
Characteristic  
No.  
Min  
Max  
Units  
128  
129  
130  
131  
132  
133  
134  
135  
HCLKIN high to HD[0–63] output active  
2.0  
6.3  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
HCLKIN high to HD[0–63] output valid  
HD[0–63] output hold time  
1.7  
HCLKIN high to HD[0–63] output high impedance  
HCLKIN high to HTA output active  
HCLKIN high to HTA output valid  
HTA output hold time  
7.6  
2.0  
5.9  
1.7  
HCLKIN high to HTA high impedance  
6.3  
120  
122  
121  
127  
HCLKIN  
123  
HA[11–29] input signals  
127  
127  
124  
HD[0–63] input signals  
125  
HCID[0–4] input signals  
127  
126  
All other input signals  
131  
130  
129  
128  
HD[0–63] output signals  
135  
134  
133  
132  
HTA output signal  
Figure 17. DSI Synchronous Mode Signals Timing Diagram  
MSC8126 Quad Digital Signal Processor Data Sheet, Rev. 13  
Freescale Semiconductor  
31  
Electrical Characteristics  
2.5.7  
TDM Timing  
Table 21. TDM Timing  
Ref = CLKIN  
No.  
Characteristic  
Expression  
Units  
Min  
Max  
1
300  
301  
302  
303  
304  
305  
306  
307  
308  
309  
310  
TDMxRCLK/TDMxTCLK  
TC  
16  
7
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
TDMxRCLK/TDMxTCLK high pulse width  
TDMxRCLK/TDMxTCLK low pulse width  
TDM receive all input set-up time  
(0.5 0.1) × TC  
(0.5 0.1) × TC  
7
1.3  
1.0  
2.8  
TDM receive all input hold time  
2,3  
TDMxTCLK high to TDMxTDAT/TDMxRCLK output active  
2,3  
TDMxTCLK high to TDMxTDAT/TDMxRCLK output valid  
8.8  
5
All output hold time  
2.5  
2,3  
TDMxTCLK high to TDmXTDAT/TDMxRCLK output high impedance  
10.5  
8.5  
2
TDMxTCLK high to TDMXTSYN output valid  
5
TDMxTSYN output hold time  
2.5  
Notes: 1. Values are based on a a maximum frequency of 62.5 MHz. The TDM interface supports any frequency below 62.5 MHz.  
2. Values are based on 20 pF capacitive load.  
3. When configured as an output, TDMxRCLK acts as a second data link. See the MSC8126 Reference Manual for details.  
4. CLKOUT synchronization is not supported for cores operating at above 400 MHz.  
5. Values are based on 10 pF capacitive load.  
300  
302  
301  
304  
TDMxRCLK  
TDMxRDAT  
303  
304  
303  
TDMxRSYN  
Figure 18. TDM Inputs Signals  
300  
302  
301  
TDMxTCLK  
308  
307  
306  
305  
TDMxTDAT  
TDMxRCLK  
309  
310  
TDMxTSYN  
Figure 19. TDM Output Signals  
MSC8126 Quad Digital Signal Processor Data Sheet, Rev. 13  
32  
Freescale Semiconductor  
2.5.8  
UART Timing  
Table 22. UART Timing  
No.  
Characteristics  
Expression  
Min  
Max  
Unit  
400  
401  
402  
URXD and UTXD inputs high/low duration  
URXD and UTXD inputs rise/fall time  
UTXD output rise/fall time  
16 × T  
160.0  
10  
10  
ns  
ns  
ns  
REFCLK  
401  
401  
UTXD, URXD  
inputs  
400  
400  
Figure 20. UART Input Timing  
402  
402  
UTXD output  
Figure 21. UART Output Timing  
MSC8126 Quad Digital Signal Processor Data Sheet, Rev. 13  
Freescale Semiconductor  
33  
2.5.9  
Timer Timing  
Table 23. Timer Timing  
Characteristics  
Ref = CLKIN  
No.  
Unit  
Min  
Max  
500  
501  
502  
503  
TIMERx frequency  
10.0  
4.0  
ns  
ns  
ns  
TIMERx Input high period  
TIMERx Output low period  
4.0  
TIMERx Propagations delay from its clock input  
1.1 V core  
1.2 V core  
3.1  
2.8  
9.5  
8.1  
ns  
ns  
500  
501  
502  
TIMERx (Input)  
503  
TIMERx (Output)  
Figure 22. Timer Timing  
2.5.10 Ethernet Timing  
2.5.10.1 Management Interface Timing  
Table 24. Ethernet Controller Management Interface Timing  
Characteristics  
No.  
Min  
Max  
Unit  
801  
802  
ETHMDIO to ETHMDC rising edge set-up time  
ETHMDC rising edge to ETHMDIO hold time  
10  
10  
ns  
ns  
ETHMDC  
801  
802  
Valid  
ETHMDIO  
Figure 23. MDIO Timing Relationship to MDC  
MSC8126 Quad Digital Signal Processor Data Sheet, Rev. 13  
34  
Freescale Semiconductor  
2.5.10.2 MII Mode Timing  
Table 25. MII Mode Signal Timing  
Characteristics  
No.  
Min  
Max  
Unit  
803  
804  
805  
ETHRX_DV, ETHRXD[0–3], ETHRX_ER to ETHRX_CLK rising edge set-up time  
3.5  
3.5  
ns  
ns  
ETHRX_CLK rising edge to ETHRX_DV, ETHRXD[0–3], ETHRX_ER hold time  
ETHTX_CLK to ETHTX_EN, ETHTXD[0–3], ETHTX_ER output delay  
1.1 V core  
1.2 V core  
1
1
14.6  
12.6  
ns  
ns  
ETHRX_CLK  
803  
804  
ETHRX_DV  
ETHRXD[0–3]  
ETHRX_ER  
Valid  
ETHTX_CLK  
805  
ETHTX_EN  
Valid  
Valid  
ETHTXD[0–3]  
ETHTX_ER  
Figure 24. MII Mode Signal Timing  
2.5.10.3 RMII Mode  
Table 26. RMII Mode Signal Timing  
1.1 V Core  
1.2 V Core  
No.  
Characteristics  
Unit  
ns  
Min  
Max  
Min  
Max  
806  
807  
811  
ETHTX_EN,ETHRXD[0–1], ETHCRS_DV, ETHRX_ER to ETHREF_CLK rising  
edge set-up time  
1.6  
2
11  
ETHREF_CLK rising edge to ETHRXD[0–1], ETHCRS_DV, ETHRX_ER hold  
time  
1.6  
3
1.6  
3
ns  
ETHREF_CLK rising edge to ETHTXD[0–1], ETHTX_EN output delay.  
ETHREF_CLK  
12.5  
ns  
806  
807  
ETHCRS_DV  
ETHRXD[0–1]  
ETHRX_ER  
Valid  
811  
ETHTX_EN  
ETHTXD[0–1]  
Valid  
Valid  
Figure 25. RMII Mode Signal Timing  
MSC8126 Quad Digital Signal Processor Data Sheet, Rev. 13  
Freescale Semiconductor  
35  
2.5.10.4 SMII Mode  
Table 27. SMII Mode Signal Timing  
Characteristics  
No.  
Min  
Max  
Unit  
808  
809  
810  
ETHSYNC_IN, ETHRXD to ETHCLOCK rising edge set-up time  
ETHCLOCK rising edge to ETHSYNC_IN, ETHRXD hold time  
ETHCLOCK rising edge to ETHSYNC, ETHTXD output delay  
1.0  
1.0  
ns  
ns  
1
2
1.1 V core.  
1.2 V core.  
1.5  
6.0  
ns  
ns  
1
2
1.5  
5.0  
Notes: 1. Measured using a 5 pF load.  
2. Measured using a 15 pF load.  
ETHCLOCK  
808  
809  
ETHSYNC_IN  
ETHRXD  
Valid  
810  
ETHSYNC  
ETHTXD  
Valid  
Valid  
Figure 26. SMII Mode Signal Timing  
2.5.11 GPIO Timing  
Table 28. GPIO Timing  
Ref = CLKIN  
Ref = CLKOUT  
No.  
Characteristics  
Unit  
Min  
Max  
Min  
Max  
601  
602  
603  
604  
605  
REFCLK edge to GPIO out valid (GPIO out delay time)  
REFCLK edge to GPIO out not valid (GPIO out hold time)  
REFCLK edge to high impedance on GPIO out  
1.1  
6.1  
1.3  
6.9  
ns  
ns  
ns  
ns  
ns  
5.4  
6.2  
GPIO in valid to REFCLK edge (GPIO in set-up time)  
REFCLK edge to GPIO in not valid (GPIO in hold time)  
3.5  
0.5  
3.7  
0.5  
MSC8126 Quad Digital Signal Processor Data Sheet, Rev. 13  
36  
Freescale Semiconductor  
REFCLK  
601  
603  
602  
GPIO  
(Output)  
High Impedance  
604  
605  
GPIO  
(Input)  
Valid  
Figure 27. GPIO Timing  
2.5.12 EE Signals  
Table 29. EE Pin Timing  
Type  
Number  
Characteristics  
Min  
65  
66  
EE0 (input)  
Asynchronous  
4 core clock periods  
1 core clock period  
EE1 (output)  
Synchronous to Core clock  
Notes: 1. The core clock is the SC140 core clock. The ratio between the core clock and CLKOUT is configured during power-on-reset.  
2. Refer to Table 1-4 on page 1-6 for details on EE pin functionality.  
Figure 28 shows the signal behavior of the EE pins.  
65  
EE0 in  
66  
EE1 out  
Figure 28. EE Pin Timing  
2.5.13 JTAG Signals  
Table 30. JTAG Timing  
All  
frequencies  
No.  
Characteristics  
Unit  
Min  
Max  
700  
701  
702  
TCK frequency of operation (1/(T × 4); maximum 25 MHz)  
TCK cycle time  
0.0  
25  
MHz  
ns  
C
40.0  
TCK clock pulse width measured at V = 1.6 V  
M
High  
Low  
20.0  
16.0  
ns  
ns  
703  
TCK rise and fall times  
0.0  
3.0  
ns  
MSC8126 Quad Digital Signal Processor Data Sheet, Rev. 13  
Freescale Semiconductor  
37  
Table 30. JTAG Timing (continued)  
Characteristics  
All  
frequencies  
No.  
Unit  
Min  
Max  
704  
705  
706  
707  
708  
709  
710  
711  
712  
713  
Note:  
Boundary scan input data set-up time  
Boundary scan input data hold time  
TCK low to output data valid  
TCK low to output high impedance  
TMS, TDI data set-up time  
5.0  
20.0  
0.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
30.0  
30.0  
0.0  
5.0  
TMS, TDI data hold time  
20.0  
0.0  
TCK low to TDO data valid  
TCK low to TDO high impedance  
TRST assert time  
20.0  
20.0  
0.0  
100.0  
30.0  
TRST set-up time to TCK low  
All timings apply to OnCE module data transfers as well as any other transfers via the JTAG port.  
701  
702  
V
M
V
M
V
TCK  
(Input)  
IH  
V
IL  
703  
703  
Figure 29. Test Clock Input Timing Diagram  
V
TCK  
(Input)  
IH  
V
IL  
704  
705  
Data  
Inputs  
Input Data Valid  
706  
707  
Data  
Outputs  
Output Data Valid  
Data  
Outputs  
Figure 30. Boundary Scan (JTAG) Timing Diagram  
MSC8126 Quad Digital Signal Processor Data Sheet, Rev. 13  
38  
Freescale Semiconductor  
V
IH  
TCK  
(Input)  
V
IL  
709  
708  
Input Data Valid  
TDI  
TMS  
(Input)  
710  
TDO  
(Output)  
Output Data Valid  
711  
TDO  
(Output)  
Figure 31. Test Access Port Timing Diagram  
TCK  
(Input)  
713  
TRST  
(Input)  
712  
Figure 32. TRST Timing Diagram  
MSC8126 Quad Digital Signal Processor Data Sheet, Rev. 13  
Freescale Semiconductor  
39  
Hardware Design Considerations  
3
Hardware Design Considerations  
The following sections discuss areas to consider when the MSC8126 device is designed into a system.  
3.1  
Start-up Sequencing Recommendations  
Use the following guidelines for start-up and power-down sequences:  
Assert PORESET and TRST before applying power and keep the signals driven low until the power reaches the  
required minimum power levels. This can be implemented via weak pull-down resistors.  
CLKIN can be held low or allowed to toggle during the beginning of the power-up sequence. However, CLKIN must  
start toggling before the deassertion of PORESET and after both power supplies have reached nominal voltage levels.  
If possible, bring up VDD/VCCSYN and VDDH together. If it is not possible, raise VDD/VCCSYN first and then bring up  
VDDH. VDDH should not exceed VDD/VCCSYN until VDD/VCCSYN reaches its nominal voltage level. Similarly, bring both  
voltage levels down together. If that is not possible reverse the power-up sequence, with VDDH going down first and  
then VDD/VCCSYN  
.
Note: This recommended power sequencing for the MSC8126 is different from the MSC8102. See Section 2.5.2 for  
start-up timing specifications.  
External voltage applied to any input line must not exceed the I/O supply VDDH by more than 0.8 V at any time, including during  
power-up. Some designs require pull-up voltages applied to selected input lines during power-up for configuration purposes.  
This is an acceptable exception to the rule. However, each such input can draw up to 80 mA per input pin per device in the  
system during start-up.  
During the power-up sequence, if VDD rises before VDDH (see Figure 6), current can pass from the VDD supply through the  
device ESD protection circuits to the VDDH supply. The ESD protection diode can allow this to occur when VDD exceeds VDDH  
by more than 0.8 V. Design the power supply to prevent or minimize this effect using one of the following optional methods:  
Never allow VDD to exceed VDDH + 0.8V.  
Design the VDDH supply to prevent reverse current flow by adding a minimum 10 Ω resistor to GND to limit the  
current. Such a design yields an initial VDDH level of VDD – 0.8 V before it is enabled.  
After power-up, VDDH must not exceed VDD/VCCSYN by more than 2.6 V.  
3.2  
Power Supply Design Considerations  
When used as a drop-in replacement in MSC8102 applications or when implementing a new design, use the guidelines  
described in Migrating Designs from the MSC8102 to the MSC8122 (AN2716) and the MSC8126 Design Checklist (AN3374  
for optimal system performance. MSC8122 and MSC8126 Power Circuit Design Recommendations and Examples (AN2937)  
provides detailed design information. See Section 2.5.2 for start-up timing specifications.  
Figure 33 shows the recommended power decoupling circuit for the core power supply. The voltage regulator and the  
decoupling capacitors should supply the required device current without any drop in voltage on the device pins. The voltage on  
the package pins should not drop below the minimum specified voltage level even for a very short spikes. This can be achieved  
by using the following guidelines:  
For the core supply, use a voltage regulator rated at 1.2 V with nominal rating of at least 3 A. This rating does not  
reflect actual average current draw, but is recommended because it resists changes imposed by transient spikes and has  
better voltage recovery time than supplies with lower current ratings.  
MSC8126 Quad Digital Signal Processor Data Sheet, Rev. 13  
40  
Freescale Semiconductor  
Hardware Design Considerations  
Decouple the supply using low-ESR capacitors mounted as close as possible to the socket. Figure 33 shows three  
capacitors in parallel to reduce the resistance. Three capacitors is a recommended minimum number. If possible, mount  
at least one of the capacitors directly below the MSC8126 device.  
Maximum IR drop  
of 15 mV at 1 A  
L
= 2 cm  
max  
1.2 V  
One 0.01 µF capacitor  
for every 3 core supply  
pads.  
Power supply  
or  
MSC8122  
Voltage Regulator  
+
-
Bulk/Tantalum capacitors  
with low ESR and ESL  
(I  
= 3 A)  
min  
High frequency capacitors  
(very low ESR and ESL)  
Note: Use at least three capacitors.  
Each capacitor must be at least 150 μF.  
Figure 33. Core Power Supply Decoupling  
Each VCC and VDD pin on the MSC8126 device should have a low-impedance path to the board power supply. Similarly, each  
GND pin should have a low-impedance path to the ground plane. The power supply pins drive distinct groups of logic on the  
chip. The VCC power supply should have at least four 0.1 µF by-pass capacitors to ground located as closely as possible to the  
four sides of the package. The capacitor leads and associated printed circuit traces connecting to chip VCC, VDD, and GND should  
be kept to less than half an inch per capacitor lead. A four-layer board is recommended, employing two inner layers as VCC and  
GND planes.  
All output pins on the MSC8126 have fast rise and fall times. PCB trace interconnection length should be minimized to  
minimize undershoot and reflections caused by these fast output switching times. This recommendation particularly applies to  
the address and data buses. Maximum PCB trace lengths of six inches are recommended. For the DSI control signals in  
synchronous mode, ensure that the layout supports the DSI AC timing requirements and minimizes any signal crosstalk.  
Capacitance calculations should consider all device loads as well as parasitic capacitances due to the PCB traces. Attention to  
proper PCB layout and bypassing becomes especially critical in systems with higher capacitive loads because these loads create  
higher transient currents in the VCC, VDD, and GND circuits. Pull up all unused inputs or signals that will be inputs during reset.  
Special care should be taken to minimize the noise levels on the PLL supply pins. There is one pair of PLL supply pins:  
VCCSYN-GNDSYN. To ensure internal clock stability, filter the power to the VCCSYN input with a circuit similar to the one in  
Figure 34. For optimal noise filtering, place the circuit as close as possible to VCCSYN. The 0.01-µF capacitor should be closest  
to VCCSYN, followed by the 10-µF capacitor, the 10-nH inductor, and finally the 10-Ω resistor to VDD. These traces should be  
kept short and direct. Provide an extremely low impedance path to the ground plane for GNDSYN. Bypass GNDSYN to VCCSYN  
by a 0.01-µF capacitor located as close as possible to the chip package. For best results, place this capacitor on the backside of  
the PCB aligned with the depopulated void on the MSC8126 located in the square defined by positions, L11, L12, L13, M11,  
M12, M13, N11, N12, and N13.  
VCCSYN  
VDD  
10nH  
10Ω  
10 µF  
0.01 µF  
Figure 34. VCCSYN Bypass  
MSC8126 Quad Digital Signal Processor Data Sheet, Rev. 13  
Freescale Semiconductor  
41  
Hardware Design Considerations  
3.3  
Connectivity Guidelines  
Unused output pins can be disconnected, and unused input pins should be connected to the non-active value, via resistors to  
VDDH or GND, except for the following:  
If the DSI is unused (DDR[DSIDIS] is set), HCS and HBCS must pulled up and all the rest of the DSI signals can be  
disconnected.  
When the DSI uses synchronous mode, HTA must be pulled up. In asynchronous mode, HTA should be pulled either  
up or down, depending on design requirements.  
HDST can be disconnected if the DSI is in big-endian mode, or if the DSI is in little-endian mode and the  
DCR[DSRFA] bit is set.  
When the DSI is in 64-bit data bus mode and DCR[BEM] is cleared, pull up HWBS[1–3]/HDBS[1–3]/HWBE[1–3]/  
HDBE[1–3] and HWBS[4–7]/HDBS[4–7]/HWBE[4–7]/HDBE[4–7]/PWE[4–7]/PSDDQM[4–7]/PBS[4–7].  
When the DSI is in 32-bit data bus mode and DCR[BEM] is cleared, HWBS[1–3]/HDBS[1–3]/HWBE[1–3]/HDBE[1–3]  
must be pulled up.  
When the DSI is in asynchronous mode, HBRST and HCLKIN should either be disconnected or pulled up.  
When the DSI uses sliding window address mode (DCR[SLDWA] = 1), the external HA[11–13] signals must be  
connected (tied) to the correct voltage levels so that the host can perform the first access to the DCR. After reset, the  
DSI expects full address mode (DCR[SLDWA] = 0). The DCR address in the DSI memory map is 0x1BE000, which  
requires the following connections:  
— HA11 must be pulled high (1)  
— HA12 must be pulled high (1)  
— HA13 must be pulled low (0)  
The following signals must be pulled up: HRESET, SRESET, ARTRY, TA, TEA, PSDVAL, and AACK.  
In single-master mode (BCR[EBM] = 0) with internal arbitration (PPC_ACR[EARB] = 0):  
BG, DBG, and TS can be left unconnected.  
EXT_BG[2–3], EXT_DBG[2–3], and GBL can be left unconnected if they are multiplexed to the system bus  
functionality. For any other functionality, connect the signal lines based on the multiplexed functionality.  
BR must be pulled up.  
EXT_BR[2–3] must be pulled up if multiplexed to the system bus functionality.  
If there is an external bus master (BCR[EBM] = 1):  
BR, BG, DBG, and TS must be pulled up.  
EXT_BR[2–3], EXT_BG[2–3], and EXT_DBG[2–3] must be pulled up if multiplexed to the system bus  
functionality.  
In single-master mode, ABB and DBB can be selected as IRQ inputs and be connected to the non-active value. In other  
modes, they must be pulled up.  
Note: The MSC8126 does not support DLL-enabled mode. For the following two clock schemes, ensure that the DLL is  
disabled (that is, the DLLDIS bit in the Hard Reset Configuration Word is set).  
If no system synchronization is required (for example, the design does not use SDRAM), you can use any of the  
available clock modes.  
In the CLKIN synchronization mode, use the following connections:  
— Connect the oscillator output through a buffer to CLKIN.  
— Connect the CLKIN buffer output to the slave device (for example, SDRAM) making sure that the delay path  
between the clock buffer to the MSC8126 and the SDRAM is equal (that is, has a skew less than 100 ps).  
Valid clock modes in this scheme are: 0, 7, 15, 19, 21, 23, 28, 29, 30, and 31.  
In CLKOUT synchronization mode (for 1.2 V devices), CLKOUT is the main clock to SDRAM. Use the following  
connections:  
— Connect the oscillator output through a buffer to CLKIN.  
— Connect CLKOUT through a zero-delay buffer to the slave device (for example, SDRAM) using the following  
guidelines:  
The maximum delay between the slave and CLKOUT must not exceed 0.7 ns.  
MSC8126 Quad Digital Signal Processor Data Sheet, Rev. 13  
42  
Freescale Semiconductor  
Hardware Design Considerations  
The maximum load on CLKOUT must not exceed 10 pF.  
Use a zero-delay buffer with a jitter less than 0.3 ns.  
— All clock modes are valid in this clock scheme.  
Note: See the Clock chapter in the MSC8122 Reference Manual for details.  
If the 60x-compatible system bus is not used and SIUMCR[PBSE] is set, PPBS can be disconnected. Otherwise, it  
should be pulled up.  
The following signals: SWTE, DSISYNC, DSI64, MODCK[1–2], CNFGS, CHIPID[0–3], RSTCONF and BM[0–2] are  
used to configure the MSC8126 and are sampled on the deassertion of the PORESET signal. Therefore, they should  
be tied to GND or VDDH or through a pull-down or a pull-up resistor until the deassertion of the PORESET signal.  
When they are used, INT_OUT (if SIUMCR[INTODC] is cleared), NMI_OUT, and IRQxx (if not full drive) signals must  
be pulled up.  
When the Ethernet controller is enabled and the SMII mode is selected, GPIO10 and GPIO14 must not be connected  
externally to any signal line.  
Note: For details on configuration, see the MSC8126 User’s Guide and MSC8126 Reference Manual. For additional  
information, refer to the MSC8126 Design Checklist (AN2903).  
3.4  
External SDRAM Selection  
The external bus speed implemented in a system determines the speed of the SDRAM used on that bus. However, because of  
differences in timing characteristics among various SDRAM manufacturers, you may have use a faster speed rated SDRAM to  
assure efficient data transfer across the bus. For example, for 166 MHz operation, you may have to use 183 or 200 MHz  
SDRAM. Always perform a detailed timing analysis using the MSC8126 bus timing values and the manufacturer specifications  
for the SDRAM to ensure correct operation within your system design. The output delay listed in SDRAM specifications is  
usually given for a load of 30 pF. Scale the number to your specific board load using the typical scaling number provided by  
the SDRAM manufacturer.  
MSC8126 Quad Digital Signal Processor Data Sheet, Rev. 13  
Freescale Semiconductor  
43  
Ordering Information  
3.5  
Thermal Considerations  
An estimation of the chip-junction temperature, TJ, in °C can be obtained from the following:  
TJ = TA + (R JA × PD)  
Eqn. 1  
θ
where  
TA = ambient temperature near the package (°C)  
R
JA = junction-to-ambient thermal resistance (°C/W)  
θ
PD = PINT + PI/O = power dissipation in the package (W)  
PINT = IDD × VDD = internal power dissipation (W)  
PI/O = power dissipated from device on output pins (W)  
The power dissipation values for the MSC8126 are listed in Table 2-3. The ambient temperature for the device is the air  
temperature in the immediate vicinity that would cool the device. The junction-to-ambient thermal resistances are JEDEC  
standard values that provide a quick and easy estimation of thermal performance. There are two values in common usage: the  
value determined on a single layer board and the value obtained on a board with two planes. The value that more closely  
approximates a specific application depends on the power dissipated by other components on the printed circuit board (PCB).  
The value obtained using a single layer board is appropriate for tightly packed PCB configurations. The value obtained using a  
board with internal planes is more appropriate for boards with low power dissipation (less than 0.02 W/cm2 with natural  
convection) and well separated components. Based on an estimation of junction temperature using this technique, determine  
whether a more detailed thermal analysis is required. Standard thermal management techniques can be used to maintain the  
device thermal junction temperature below its maximum. If TJ appears to be too high, either lower the ambient temperature or  
the power dissipation of the chip. You can verify the junction temperature by measuring the case temperature using a small  
diameter thermocouple (40 gauge is recommended) or an infrared temperature sensor on a spot on the device case that is painted  
black. The MSC8126 device case surface is too shiny (low emissivity) to yield an accurate infrared temperature measurement.  
Use the following equation to determine TJ:  
TJ = TT + (θJA × PD)  
Eqn. 2  
where  
TT = thermocouple (or infrared) temperature on top of the package (°C)  
θ
JA = thermal characterization parameter (°C/W)  
PD = power dissipation in the package (W)  
Note: See MSC8102, MSC8122, and MSC8126 Thermal Management Design Guidelines (AN2601/D).  
4
Ordering Information  
Consult a Freescale Semiconductor sales office or authorized distributor to determine product availability and place an order.  
Core  
Core  
Operating  
Part  
Package Type  
Spheres  
Frequency Order Number  
(MHz)  
Voltage Temperature  
MSC8126 Flip Chip Plastic Ball Grid Array (FC-PBGA)  
Lead-free  
Lead-bearing  
Lead-free  
1.2 V  
–40° to 105°C  
0° to 90°C  
400  
MSC8126TVT6400  
MSC8126TMP6400  
MSC8126VT8000  
MSC8126MP8000  
500  
Lead-bearing  
MSC8126 Quad Digital Signal Processor Data Sheet, Rev. 13  
44  
Freescale Semiconductor  
Package Information  
5
Package Information  
Notes:  
1. All dimensions in millimeters.  
2. Dimensioning and tolerancing  
per ASME Y14.5M–1994.  
3. Features are symmetrical about  
the package center lines unless  
dimensioned otherwise.  
4. Maximum solder ball diameter  
measured parallel to Datum A.  
5. Datum A, the seating plane, is  
determined by the spherical  
crowns of the solder balls.  
6. Parallelism measurement shall  
exclude any effect of mark on  
top surface of package.  
7. Capacitors may not be present  
on all devices.  
8. Caution must be taken not to  
short capacitors or exposed  
metal capacitor pads on  
package top.  
9. FC CBGA (Ceramic) package  
code: 5238.  
FC PBGA (Plastic) package  
code: 5263.  
10.Pin 1 indicator can be in the  
form of number 1 marking or an  
“L” shape marking.  
Figure 35. MSC8126 Mechanical Information, 431-pin FC-PBGA Package  
6
Product Documentation  
MSC8126 Technical Data Sheet (MSC8126). Details the signals, AC/DC characteristics, clock signal characteristics,  
package and pinout, and electrical design considerations of the MSC8126 device.  
MSC8126 Reference Manual (MSC8126RM). Includes functional descriptions of the extended cores and all the  
internal subsystems including configuration and programming information.  
Application Notes. Cover various programming topics related to the StarCore DSP core and the MSC8126 device.  
SC140 DSP Core Reference Manual. Covers the SC3400 core architecture, control registers, clock registers, program  
control, and instruction set.  
MSC8126 Quad Digital Signal Processor Data Sheet, Rev. 13  
Freescale Semiconductor  
45  
Revision History  
7
Revision History  
Table 31 provides a revision history for this data sheet.  
Table 31. Document Revision History  
Revision  
Date  
Description  
0
1
May 2004  
Jun. 2004  
Initial release.  
Updated timing number 32b.  
Updated DSI timing specifications.  
2
Sep 2004  
New orderable parts added with other core voltage and temperature options.  
Updated thermal characteristics.  
In Table 2-14, removed references to 30 pF.  
Design guidelines and layout recommendations updated.  
3
Nov. 2004  
Added 500 MHz core and 166 MHz bus speed options.  
Definitions of GPIO[27–28] updated.  
Bus, TDM, and GPIO timing updated. I2C timing changed to GPIO timing.  
GPIO[27–28] connections updated. MWBEn replaced with correct name HWBEn.  
Design guidelines update.  
4
Jan. 2005  
Package type changed to FC-PBGA for all frequencies.  
Low-voltage 300 MHz power changed to 1.1 V.  
HRESET and SRESET definitions updated.  
Undershoot and overshoot values added for VDDH  
RMII timing updated.  
.
Design guidelines updated and reorganized.  
5
6
7
8
9
May 2005  
May 2005  
Jul. 2005  
Jul. 2005  
Sep. 2005  
Multiple AC timing specifications updated.  
Multiple AC timing specifications updated.  
Multiple AC timing specifications updated.  
AC specification table layout modified.  
ETHTX_EN type and TRST description updated.  
Package drawing updated.  
Clock specifications updated.  
Start-up sequence updated.  
10  
Oct 2005  
VDDH + 10% changed to VDDH + 8% in Figure 2-1.  
VDDH +20% changed to VDDH + 17% in Figure 2-1.  
11  
12  
13  
Apr 2006  
Oct. 2006  
Dec. 2007  
Reset timing updated to reflect actual values in Table 2-11.  
Added new timings 17 and 18 for IRQ set time and pulse width in Table 2-13  
Converted to new data sheet format.  
Added PLL supply current to Table 5 in Section 2.4.  
Modified Figure 5 in Section 2.4 to make it clear that the time limits for undershoot referred to values  
below –0.3 V and not GND.  
Added cross-references between Sections 2.5.2 and Section 3.1 and 3.2.  
Added power-sequence guidelines to Sections 2.5.2.  
Added CLKIN jitter characteristic specifications to Table 9.  
Added additional guidelines to prevent reverse current to Section 3.1.  
Added connectivity guidelines for DSI in sliding windows mode to Section 3.3.  
MSC8126 Quad Digital Signal Processor Data Sheet, Rev. 13  
46  
Freescale Semiconductor  
Revision History  
MSC8126 Quad Digital Signal Processor Data Sheet, Rev. 13  
Freescale Semiconductor  
47  
How to Reach Us:  
Home Page:  
www.freescale.com  
Web Support:  
http://www.freescale.com/support  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor, Inc.  
Technical Information Center, EL516  
2100 East Elliot Road  
Tempe, Arizona 85284  
+1-800-521-6274 or  
+1-480-768-2130  
www.freescale.com/support  
Information in this document is provided solely to enable system and software  
implementers to use Freescale Semiconductor products. There are no express or  
implied copyright licenses granted hereunder to design or fabricate any integrated  
circuits or integrated circuits based on the information in this document.  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
www.freescale.com/support  
Freescale Semiconductor reserves the right to make changes without further notice to  
any products herein. Freescale Semiconductor makes no warranty, representation or  
guarantee regarding the suitability of its products for any particular purpose, nor does  
Freescale Semiconductor assume any liability arising out of the application or use of any  
product or circuit, and specifically disclaims any and all liability, including without  
limitation consequential or incidental damages. “Typical” parameters that may be  
provided in Freescale Semiconductor data sheets and/or specifications can and do vary  
in different applications and actual performance may vary over time. All operating  
parameters, including “Typicals”, must be validated for each customer application by  
customer’s technical experts. Freescale Semiconductor does not convey any license  
under its patent rights nor the rights of others. Freescale Semiconductor products are  
not designed, intended, or authorized for use as components in systems intended for  
surgical implant into the body, or other applications intended to support or sustain life,  
or for any other application in which the failure of the Freescale Semiconductor product  
could create a situation where personal injury or death may occur. Should Buyer  
purchase or use Freescale Semiconductor products for any such unintended or  
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and  
its officers, employees, subsidiaries, affiliates, and distributors harmless against all  
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,  
directly or indirectly, any claim of personal injury or death associated with such  
unintended or unauthorized use, even if such claim alleges that Freescale  
Japan:  
Freescale Semiconductor Japan Ltd.  
Headquarters  
ARCO Tower 15F  
1-8-1, Shimo-Meguro, Meguro-ku  
Tokyo 153-0064  
Japan  
0120 191014 or  
+81 3 5437 9125  
support.japan@freescale.com  
Asia/Pacific:  
Freescale Semiconductor Hong Kong Ltd.  
Technical Information Center  
2 Dai King Street  
Semiconductor was negligent regarding the design or manufacture of the part.  
Tai Po Industrial Estate  
Tai Po, N.T., Hong Kong  
+800 2666 8080  
RoHS-compliant and/or Pb-free versions of Freescale products have the functionality  
and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free  
counterparts. For further information, see http://www.freescale.com or contact your  
Freescale sales representative.  
support.asia@freescale.com  
For Literature Requests Only:  
Freescale Semiconductor  
Literature Distribution Center  
P.O. Box 5405  
For information on Freescale’s Environmental Products program, go to  
http://www.freescale.com/epp.  
Denver, Colorado 80217  
+1-800 441-2447 or  
+1-303-675-2140  
Fax: +1-303-675-2150  
LDCForFreescaleSemiconductor  
@hibbertgroup.com  
Freescale™, the Freescale logo, CodeWarrior, StarCore, and QUICC Engine are  
trademarks of Freescale Semiconductor, Inc. RapidIO is a registered trademark of the  
RapidIO Trade Association. All other product or service names are the property of their  
respective owners.  
© Freescale Semiconductor, Inc. 2004, 2007. All rights reserved.  
Document Number: MSC8126  
Rev. 13  
12/2007  

相关型号:

MSC8126TMP6400

Quad Digital Signal Processor
FREESCALE

MSC8126TVT6400

Quad Digital Signal Processor
FREESCALE

MSC8126VT8000

Quad Digital Signal Processor
FREESCALE

MSC8126_08

Quad Digital Signal Processor
FREESCALE

MSC8126_V15

Quad Digital Signal Processor
FREESCALE

MSC81325M

RF & MICROWAVE TRANSISTORS AVIONICS APPLICATIONS
STMICROELECTR

MSC81350M

RF & MICROWAVE TRANSISTORS AVIONICS APPLICATIONS
STMICROELECTR

MSC81400M

RF & MICROWAVE TRANSISTORS AVIONICS APPLICATIONS
STMICROELECTR

MSC81402

RF & MICROWAVE TRANSISTORS GENERAL PURPOSE AMPLIFIERS APPLICATIONS
STMICROELECTR

MSC81406E3

RF Power Bipolar Transistor, L Band, Silicon, NPN, S010
MICROSEMI

MSC8144

Quad Core Digital Signal Processor
FREESCALE

MSC8144E

Quad Core Digital Signal Processor
FREESCALE