FMA1127DA-40N [FUJITSU]

Microprocessor Circuit, CMOS, 5 X 5 MM, 0.85 MM HEIGHT, 0.40 MM PITCH, QFN-40;
FMA1127DA-40N
型号: FMA1127DA-40N
厂家: FUJITSU    FUJITSU
描述:

Microprocessor Circuit, CMOS, 5 X 5 MM, 0.85 MM HEIGHT, 0.40 MM PITCH, QFN-40

外围集成电路
文件: 总32页 (文件大小:1657K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
FMA1127DA  
Touch Sensor Controller  
Overview  
The FMA1127DA is a low-power, compact, flexible touch sensor  
controller that converts capacitance generated between the human  
body and a conductive touch pad to digital data without any analog  
signal processing.  
Touch Pad  
Zin  
Zin  
Impendance  
Change  
Its programmability increases design flexibility and gives better  
performance and stability for a broad range of applications.The  
FMA1127DA’s Automatic Impedance Calibration (AIC™) function  
can be easily configured to support different sensitivities for  
individual channels independently as well as to change values of  
parameters, such as calibration intervals. AIC may also be  
temporarily paused and resumed by a host MCU.  
Zref  
Detection  
Zref  
Zin < Zref  
Touch Pad System Model  
Impedance Status  
Among the many new features of the FMA1127DA is Adjacent  
Pattern Interference Suppression (APIS™). APIS is a filtering  
function that eliminates adjacent key or pattern interference. The  
FMA1127DA also gives touch-strength output in addition to touch  
on/off output.There is a number of DIOs depending on the package  
type that can be configured and programmed to meet a customers  
specific needs, giving customers even greater flexibility and value.  
Ztouch  
Touch Pad  
Zin  
Zin  
Impendance  
Change  
Zref  
Detection  
Zref  
The FMA1127DA comes with various package types to support  
different number of input channels and DIOs.  
Touch  
Detected  
Touch Pad System Model  
Impedance Status  
The FMA1127DA touch sensor controller is developed and owned by  
ATLab Inc., South Korea, and is distributed by Fujitsu  
Microelectronics America, Inc.  
• Three different modes for Adjacent Pattern Interference Suppres-  
sion (APIS™).  
• Configurable DIO pins as direct touch outputs, extended GPIOs,  
or external interrupt inputs.  
Features  
• Patented full-digital architecture  
• Extremely low power consumption (110μA in active mode)  
• Beep generation for tactile feeling  
• Idle and Sleep modes for power saving  
• De-bounced touch outputs  
• Supports 12 input channels (40QFN and 30SSOP) or  
9 input channels (32QFN and 24SSOP) or 6 input  
channels (24QFN and 20SSOP)  
• Programmable registers to characterize applications  
• I2C interface with the host MCU  
• Configurable Automatic Impedance Calibration (AIC™)  
Applications  
• Portable devices such as PDAs, cellular phones, MP3  
players, remote controllers, and other integrated input devices  
• Home appliances and consumer electronic products  
• Computer input devices such as mice and keyboards  
Two types of interrupts (GINT for general purpose and TINT for  
touch detection)  
• 8-bit resolution of touch strength data (256 steps)  
Touch Sensor Controller  
Table of Contents  
Ordering Information .................................................................................................................................................................... 1  
Package Pinouts ........................................................................................................................................................................... 1  
Electrical Characteristics ................................................................................................................................................................ 3  
Operation Principles ...................................................................................................................................................................... 4  
Touch Detection..................................................................................................................................................................... 4  
AIC™ (Automatic Impedance Calibration) ................................................................................................................................ 4  
APIS™ Touch Output ............................................................................................................................................................ 4  
Functional Characteristics .............................................................................................................................................................. 6  
2
Communication Specifications for I C .............................................................................................................................................. 7  
Application Information ................................................................................................................................................................ 9  
40-pin Package (40QFN) ........................................................................................................................................................ 9  
32-pin Package (32QFN) ....................................................................................................................................................... 11  
24-pin Package (24QFN) ...................................................................................................................................................... 13  
30-pin Package (30SSOP) ..................................................................................................................................................... 15  
24-pin Package (24SSOP) ..................................................................................................................................................... 17  
20-pin Package (20SSOP) ...................................................................................................................................................... 19  
Power Connection ....................................................................................................................................................................... 21  
Power Sequence ........................................................................................................................................................................... 22  
Register Map Summary ................................................................................................................................................................ 23  
Package Dimensions .................................................................................................................................................................... 24  
40QFN ................................................................................................................................................................................ 24  
32QFN ............................................................................................................................................................................... 25  
24QFN ................................................................................................................................................................................ 26  
30SSOP ............................................................................................................................................................................... 27  
24SSOP .............................................................................................................................................................................. 28  
20SSOP .............................................................................................................................................................................. 29  
Revision History ......................................................................................................................................................................... 30  
Fujitsu MicroelectronicsAmerica,Inc.
FMA1127DA  
Ordering Information  
Number of Sensor  
Number of Digital  
Outputs  
Product Code  
Package Type  
Package Dimension  
Pin Pitch  
Inputs  
FMA1127DA-40N  
FMA1127DA-32N  
FMA1127DA-24N  
FMA1127DA-30S  
FMA1127DA-24S  
FMA1127DA-20S  
40QFN  
32QFN  
5mm x 5mm x 0.85mm  
4mm x 4mm x 0.9mm  
0.4mm  
0.4mm  
0.5mm  
0.8mm  
0.65mm  
0.65mm  
12  
9
12  
8
24QFN  
4mm x 4mm x 0.85mm  
12.7mm x 10.3mm x 2.5mm  
8.2mm x 7.8mm x 2.0mm  
6.5mm x 6.4mm x 1.85mm  
6
3
30SSOP  
24SSOP  
20SSOP  
12  
9
6
3
6
2
Package Pinouts  
31  
20  
S2  
S9  
32  
19  
25  
16  
15  
14  
13  
12  
11  
10  
9
S1  
S10  
S3  
S2  
S8  
33  
18  
26  
27  
28  
29  
30  
31  
32  
S0  
S11  
AREF  
34  
17  
RESET_N  
AREF  
S1  
CONFIG_0  
CONFIG_1  
DIO_6  
35  
16  
ID_1  
CONFIG_0  
S0  
FMA1127DA  
FMA1127DA  
32N  
36  
37  
38  
39  
40  
15  
ID_0  
DIO_5  
DIO_4  
DIO_3  
DIO_2  
CONFIG_1  
RESET_N  
ID  
14  
40N  
DIO_6  
DIO_7  
13  
DIO_7  
DIO_3  
DIO_2  
DIO_8  
12  
DIO_8  
DIO_9  
11  
DIO_9  
32-Pin QFN  
40-Pin QFN  
19  
12  
11  
10  
S2  
S8  
20  
21  
22  
23  
24  
S1  
S0  
AREF  
CONFIG_0  
CONFIG_2  
DIO_8  
FMA1127DA  
9
8
7
RESET_N  
ID  
24N  
DIO_2  
TOSC  
24-Pin QFN  
Fujitsu Microelectronics America, Inc.  
1
Touch Sensor Controller  
1
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
RESET_N  
ID  
S0  
2
S1  
3
DIO_5  
DIO_4  
DIO_3  
DIO_2  
DIO_1  
DIO_0  
SDA  
S2  
4
S3  
1
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
SO  
RESET_N  
ID  
S1  
5
S4  
2
S2  
6
S5  
3
S3  
7
VPH  
VLDO  
V25  
S6  
4
DIO_0  
SDA  
S4  
8
5
S5  
9
6
SCL  
VPH  
VLDO  
V25  
S6  
10  
11  
12  
13  
14  
15  
SCL  
7
TINT  
TINT  
S7  
8
GINT  
GINT  
TCLK  
VSS  
S8  
9
TCLK  
VSS  
S9  
10  
11  
12  
S8  
S10  
S11  
DIO_8  
DIO_6  
S9  
AREF  
AREF  
30-Pin SSOP  
24-Pin SSOP  
1
2
3
4
5
6
7
8
9
10  
20  
RESET_N  
ID  
S0  
19  
18  
17  
16  
15  
14  
13  
12  
11  
S1  
S2  
S3  
DIO_0  
SDA  
SCL  
VPH  
VLDO  
V25  
VSS  
S8  
TINT  
GINT  
TCLK  
DIO_8  
AREF  
S9  
20-Pin SSOP  
2
Fujitsu Microelectronics America, Inc.  
FMA1127DA  
Electrical Characteristics  
Symbol  
Parameter  
Conditions  
Min.  
Typ.  
Max.  
Unit  
ABSOLUTE MAXIMUM RATINGS  
Tstg  
Topr  
Hopr  
VPH  
VLDO  
V25  
Storage Temperature  
Operating Temperature  
Operating Humidity  
-45  
-40  
5
95  
90  
oC  
oC  
%
V
95  
IO Power Supply Voltage  
Core Power Supply Voltage  
Core Input Voltage  
VPH should be higher than 3V when using internal LDO  
2.3  
2.3  
2.3  
3.3  
2.5  
2.5  
5.5  
2.7  
2.7  
V
V
RECOMMENDED OPERATING CONDITIONS  
Toprr  
Vddp  
Vddc  
Tr_i  
Operating Temperature  
-40  
2.4  
2.4  
25  
90  
5.3  
2.6  
5
oC  
V
Power Supply Voltage (VPH)  
Power Supply Voltage (VLDO)  
Digital Input Rising Time  
Digital Input Falling Time  
2.5  
V
ns  
ns  
Tf_i  
5
AC ELECTRICAL SPECIFICATIONS (Typical values at Ta=250C and VPH=3.3V)  
fsys  
fi  
System Clock  
1.3  
2.5  
10  
1.6  
2
MHz  
KHz  
Input frequency (Sensor  
Clock)  
When System Clock is 1.6MHz  
When System Clock is 1.6MHz  
20  
fsmp  
Stch  
Sample frequency  
20,000  
Hz  
pF  
Touch Sensitivity  
0.078  
15  
Rs_i  
Sensor Input Resistance  
Tuning Capacitor in Aref or Sin  
Output Rising Time  
KΩ  
pF  
TCsr_i  
Tr_o  
0
15  
60  
60  
Load = 100pF  
Load = 100pF  
50  
50  
ns  
Tf_o  
Output Falling Time  
ns  
DC ELECTRICAL SPECIFICATIONS (Typical values at Ta=250C and VPH=3.3V)  
Idd_a  
Idd_i  
Idd_ael  
Idd_iel  
Idd_aeo  
Idd_ieo  
Idd_s  
Vil  
Supply Current (Active mode)  
Supply Current (Idle mode)  
Supply Current (Active mode)  
Supply Current (Idle mode)  
Supply Current (Active mode)  
Supply Current (Idle mode)  
Supply Current (Sleep mode)  
Digital Input Low Voltage  
When using internal 2.5V LDO and internal Clock  
When using external 2.5V LDO and internal Clock  
When using external 2.5V LDO and external Clock  
When using external 2.5V LDO  
50  
20  
20  
35  
15  
10  
110  
70  
170  
130  
150  
140  
135  
90  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
V
80  
80  
70  
30  
0.1  
1
0.7  
Vih  
Digital Input High Voltage  
Digital Output Low Voltage  
Digital Output High Voltage  
Internal LDO Output Voltage  
Internal LDO Driving Current  
0.8xVPH  
V
Vol  
0.6  
V
Voh  
VPH-0.5  
2.3  
V
Vldo  
2.5  
3.0  
20  
V
Ildo  
mA  
-2  
16  
(Sync)  
Idr  
Iol  
GPIO Driving Current  
mA  
mA  
(Source)  
8.4  
5.7  
At Vol = 0.6V  
At Vol= 0.4V  
Digital Output Low Current  
Fujitsu Microelectronics America, Inc.  
3
Touch Sensor Controller  
Operation Principles  
Touch Detection  
The FMA1127DA touch sensor controller includes the Impedance Change Detection engine within the device. It detects the impedance difference  
between reference and sensor input.  
Ztouch  
Touch Pad  
Touch Pad  
Zin  
Zin  
Zin  
Impendance  
Change  
Detection  
Zin  
Impendance  
Change  
Detection  
Zref  
Zref  
Zref  
Zref  
Touch  
Detected  
Zin < Zref  
Touch Pad System Model  
Impedance Status  
Touch Pad System Model  
Impedance Status  
Figure 1: When a Pad is Not Touched.  
Figure 2: When a Pad is Touched.  
As shown in Figure 1, if the pad is not touched, the impedance of the sensor input Zin should be kept less than the impedance of the reference  
Zref. If the pad is touched, as shown in Figure 2, Zin is increased by Ztouch. When Ztouch by touching becomes greater than the difference of Zin  
and Zref in the not touched state, i.e., if Zin in touched state becomes greater than Zref by a value higher than 0.078pF, the ICD (Impedance  
Change Detection) engine within the chip generates the acknowledged output signal indicating it senses the touch.  
1, if Zin – Zref > 0.078pF  
IDC =  
0, otherwise  
Notice the value of 0.078pF or higher is needed to maintain stable output against various noises. The sensor input impedance, Zin, includes  
parasitic capacitance of the input line, tuning capacitance of input pin and on-chip input impedance, while Zref includes on-chip impedance, AIC  
control values and external tuning capacitance if necessary.  
AIC™ (Automatic Impedance Calibration)  
Automatic Impedance Calibration (AIC) maintains consistent sensitivity against external environmental changes such as temperature, supply  
voltage and current, humidity, and system-level variations. This helps users develop their applications more conveniently by providing the actual  
impedance value of each sensor input. For developers, a Tuning Viewer program is provided, which helps to optimize the PCB design and to  
decide AIC input parameters. More detailed information is available in the FM1127 Tuning Guide.  
The ICD engine residing in the FMA1127DA controls reference impedance values for each sensor input pin by acquiring each input impedance  
data. It periodically updates all reference impedance values under the condition that all twelve touch pads remain in no-touched status. This  
auto-calibration function absorbs environmental changes and guarantees product stability.  
APIS™ Touch Output  
When touch pads are arranged too closely to each other, it is sometimes difficult to identify which pad is touched. APIS™ (Adjacent Pattern  
Interference Suppression) is a filtering function to identify which pads are intentionally touched. If APIS mode is not defined, all touch data  
without APIS filtering are transmitted to the MCU. For example, if the application is a numeric keypad, the user can use the APIS mode1 to get  
the strongest output and filter out all other weakly touched inputs. Without APIS, the host may have to do this filtering function. APIS reduces  
the burden of the host computing time.  
4
Fujitsu Microelectronics America, Inc.  
FMA1127DA  
There are three modes in APIS:  
APIS mode 1: reports the strongest output only (Figure 3).  
APIS mode 2: reports all outputs that exceeds pre-defined thresholds (value of Strength Threshold register) (Figure 4).  
APIS mode 3: reports two strongest outputs (suitable for multi-touch applications) (Figure 5).  
All three modes are described in the Figures below. The red-colored circles and bars show the output.  
1
4
7
2
5
8
0
3
6
9
#
1
4
7
2
5
8
0
3
6
9
#
APIS Mode I  
Output Data  
Touch Interference  
Area  
strength  
*
*
8
0
#
*
*
*
Real Touch Output  
Touch Output by APIS I  
1
4
7
2
5
8
0
3
6
9
#
1
4
7
2
5
8
0
3
6
9
#
APIS Mode II  
Output Data  
Touch Interference  
Area  
strength  
Strength  
Threshold  
*
*
8
0
#
Real Touch Output  
Touch Output by APIS II  
1
4
7
2
5
8
0
3
6
9
#
1
4
7
2
5
8
0
3
6
9
#
APIS Mode III  
Output Data  
Touch Interference  
Area  
strength  
*
*
8
0
#
Real Touch Output  
Touch Output by APIS III  
Fujitsu Microelectronics America, Inc.  
5
Touch Sensor Controller  
Functional Characteristics  
Active to Idle  
Idle to Active  
Active to Sleep  
Idle to Sleep  
Sleep to Active  
Min: 2ns,  
Max: 10ms  
System Clock: 1.6MHz,  
Sensor Clock: 20kHz  
1ns  
1ns  
10μs  
0.25 x A sec.  
Min: 2ns,  
Max: 20ms  
System Clock: 1.6MHz,  
Sensor Clock: 10kHz  
1ns  
1ns  
1ns  
1ns  
1ns  
1ns  
1ns  
1ns  
1ns  
1ns  
1ns  
1ns  
1ns  
1ns  
10μs  
10μs  
10μs  
10μs  
10μs  
10μs  
10μs  
0.5 x A sec.  
0.5 x A sec.  
1 x A sec.  
1 x A sec.  
2 x A sec.  
2 x A sec.  
4 x A sec.  
Min: 2ns,  
Max: 20ms  
System Clock: 800kHz,  
Sensor Clock: 10kHz  
Min: 2ns,  
Max: 40ms  
System Clock: 800Hz,  
Sensor Clock: 5kHz  
Min: 2ns,  
Max: 40ms  
System Clock: 400kHz,  
Sensor Clock: 5kHz  
Min: 2ns,  
Max: 80ms  
System Clock: 400kHz,  
Sensor Clock: 2.5kHz  
Min: 2ns,  
Max: 80ms  
System Clock: 200kHz,  
Sensor Clock: 2.5kHz  
Min: 2ns,  
Max: 160ms  
System Clock: 200kHz,  
Sensor Clock: 1.25kHz  
A = IDLE Time Register Value  
6
Fujitsu Microelectronics America, Inc.  
FMA1127DA  
Communication Specifications for I2C  
2
Table 1: DC Electrical Specifications for I C Bus  
Standard-Mode  
Fast-Mode  
Symbol  
Parameter  
Unit  
Min.  
Max.  
Min.  
Max  
LOW Level Input Voltage:  
n/a  
1.5  
Fixed Input Levels  
-0.5  
-0.5  
n/a  
V
V
VIL  
(1)  
0.3 VDD  
0.3 x VDD  
VDD Related Input Levels  
-0.5  
HIGH Level Input Voltage:  
Fixed Input Levels  
3.0  
n/a  
V
V
VIH  
(2)  
(2)  
n/a  
0.7 x VDD  
0.7 x VDD  
(2)  
VDD Related Input Levels  
Hysteresis of Schmitt Trigger Inputs:  
3.0  
n/a  
VDD > 2V  
VDD < 2V  
V
V
Vhys  
(2)  
(2)  
n/a  
0.7 x VDD  
0.7 x VDD  
(2)  
LOW Level Output Voltage (open drain or collector)  
at 3mA Sink Current:  
VDD > 2V  
(6)  
V
V
OL1  
OL3  
(6)  
0.4  
0
0.4  
n/a  
0
0
V
V
VDD < 2V  
0.2 x VDD  
n/a  
Digital Output Low Current at  
Vol = 0.6V  
8.4  
5.7  
8.4  
5.7  
mA  
mA  
Iol  
tof  
Vol = 0.4V  
Output Fall Time from VIHmin to VILmax with a Bus  
Capacitance from 10pF to 400pF  
250(4)  
n/a  
20 + 0.1Cb(3)  
ns  
ns  
Pulse Width of Spike Which Must be Suppressed by  
the Input Filter  
n/a  
-10  
0
50  
tsp  
Input Current each I/O Pin with an Input Voltage  
Between 0.1VDD and 0.9V VDDmax  
-10(5)  
10(5)  
10  
10  
10  
μA  
Ii  
pF  
Ci  
Capacitance for Each I/O Pin  
Note:  
1. Devices that use non-standard supply voltages which do not conform to the intended I2C bus system levels must relate their input levels to the VDD voltage to which  
the pull-up resistors Rp are connected.  
2. Maximum VIH = VDDmax + 0.5V.  
3. Cb = capacitance of one bus line in pF.  
4. The maximum tf for the SDA and SCL bus lines quoted in Table 2 (300ns) is longer than the specified maximum tof for the output stages (250ns). The allows  
series protection resistors (RS) to be connected between the SDA/SCL pins and the SDA/SCL bus lines as shown in Figure 6 without exceeding the maximum  
specified for tf.  
5. I/O pins of Fast-mode devices must not obstruct the SDA and SCL lines if VDD is switched off.  
6. VIH = 1.21V, VIL = 0.76V. Hence Hysteresis is about 0.45V at the condition of 500kHz input frequncey. Input Impedance Cin is about 2pF.  
n/a = not applicable.  
Fujitsu Microelectronics America, Inc.  
7
Touch Sensor Controller  
2
Table 2. AC Electrical Specifications for I C Bus  
Standard-Mode  
Fast-Mode  
Symbol  
Parameter  
Unit  
Min.  
Max.  
Min.  
Max  
SCL Clock Frequency  
0
100  
0
400  
kHz  
fSCL  
Hold Time (repeated) START Condition. After this  
Period, the First Clock Pulse is Generated  
0.6  
4.0  
μs  
tHD:STA  
LOW Period of the SCL Clock  
4.7  
4.0  
4.7  
1.3  
0.6  
0.6  
μs  
μs  
μs  
tLOW  
tHIGH  
HIGH Period of the SCL Clock  
Setup Time for a Repeated START Condition  
tSU:STA  
Data Hold Time:  
5.0  
μs  
μs  
tHD:DAT  
For CBUS Compatible Master  
For I2C Bus Devices  
2(2)  
3.45(3)  
0(2)  
0.9(3)  
100(4)  
250  
ns  
ns  
ns  
μs  
μs  
pF  
tSU:DAT  
tr  
Data Setup Time  
(5)  
20 + 0.1Cb  
20 + 0.1Cb  
0.6  
1000  
300  
300  
300  
Rise Time of Both SDA and SCL Signals  
Fall Time of Both SDA and SCL Signals  
Setup Time for STOP Condition  
(5)  
tf  
4.0  
4.7  
tSU:STO  
fBUF  
Cb  
1.3  
Bus Free Time Between a STOP and START Condition  
Capacitive Load for Each Bus Line  
400  
400  
Noise Margin at the LOW Level for Each Connected  
Device (including Hysteresis)  
0.1 x VDD  
0.2 x VDD  
0.1 x VDD  
0.2 x VDD  
V
V
VnL  
VnH  
Noise Margin at the HIGH Level for Each Connected  
Device (including Hysteresis)  
Notes:  
1. All values referred to VIHmin and VILmax levels (see Table 1).  
2. A device must internally provide a hold time of al least 300ns for the SDA signal (referred to the VIHmin of the SCL signal) to bridge the undefined regions of the  
falling edge of SCL.  
3. The maximum tHD:DAT has only to be met if the device does not stretch the LOW period (tLOW) of the SCL signal.  
4. A Fast-mode I2C-bus device can be used in a Standard-mode I2C-bus system, but the requirement tSU:DAT Š 250ns must then be met. This will automatically be the  
case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit  
to the SDA line tmax + tSU:DAT = 1,000 + 250 = 1,250ns (according to the Standard-mode I2C bus specification) before the SCL line is released.  
5. Cb = total capacitance of one bus line in pF. If mixed with Hs-mode devices, faster fall-times according the Table 2 are allowed.  
n/a = not applicable.  
SDA  
t
t
SU:DAT  
HD:STA  
t
t
t
t
BUF  
f
f
SP  
t
t
r
r
t
LOW  
SCL  
t
t
SU:STO  
t
SU:STA  
HD:STA  
t
t
HD:DAT  
HIGH  
S
Sr  
P
S
2
Figure 6: Definition of Timing for F/S-mode Devices on the I C-Bus  
8
Fujitsu Microelectronics America, Inc.  
FMA1127DA  
Application Information  
Top View of 40-pin Package (40QFN)  
31  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
S2  
S9  
32  
S1  
S10  
33  
S0  
S11  
34  
RESET_N  
AREF  
CONFIG_0  
CONFIG_1  
DIO_6  
DIO_7  
DIO_8  
DIO_9  
35  
ID_1  
FMA1127DA  
40N  
36  
ID_0  
37  
DIO_5  
38  
DIO_4  
39  
DIO_3  
40  
DIO_2  
40-Pin QFN  
Pin Description  
Name  
IO  
Pin #  
Description  
RESET_N  
TCLK  
S
I
I
I
I
34  
Reset, active LOW  
8
18-23 28-33  
17  
External clock Input. Should be grounded if not used.  
Twelve Sensor Inputs from external Touch Pads.  
Reference Input.  
A_REF  
Configured by HOST:  
- extended GPIOs, Direct Button Outputs or External Interrupt inputs  
DIO  
IO  
1, 2, 9–14, 38–40  
SDA  
SCL  
IO  
I
3
4
Bidirectional I2C Data from/to Host  
I2C CLK from Host  
TINT  
GINT  
BEEP  
ID  
O
O
O
I
5
Touch Interrupt, it can be generated when touch status is changed.  
6
General Interrupts including touch interrupt and EINT. Can be masked.  
7
Beep Output.  
35, 36  
15,16  
27  
I2C Chip ID Select(00:0x58, 01:0x59, 10:0x5A, 11:0x5B)  
Test pins. Should be grounded.  
Power (2.3V-5.5V)  
CONFIG  
VPH  
I
P
O
P
P
VLDO  
V25  
26  
2.5V Regulator Power Output  
2.5V Power Input  
25  
VSS  
24  
Ground  
Fujitsu Microelectronics America, Inc.  
9
Touch Sensor Controller  
Typical Application Circuit  
Touch PAD0  
Touch PAD1  
Touch PAD2  
Touch PAD3  
Touch PAD0~11  
10K  
1uF  
R1  
RESET_N (From MCU)  
C1  
Data Sensor  
Tuning Cap  
1
30  
29  
28  
DIO_1  
S3  
S4  
2K  
R2 2K R3  
2
DIO_0  
3
MCU  
SDA  
S5  
Touch PAD4  
4
27  
26  
SCL  
VPH  
VLDO  
V25  
VGG  
S6  
VDD  
MCU  
MCU  
5
TINT  
Touch PAD5  
Touch PAD6  
FMA1127DA  
40N  
6
25  
24  
23  
22  
21  
GINT  
7
BEEP  
8
TCLK  
9
DIO_11  
S7  
Touch PAD7  
Touch PAD8  
10  
DIO_10  
S8  
Touch PAD9  
Touch PAD10  
VDD  
Touch PAD11  
DIO_N  
(LED Control Circuit)  
Notes:  
• The voltage range of VDD can be from 2.3V to 5.5V. If internal LDO is used, it should be from 3V to 5.5V.  
• Pull-Up resistors are required for I2C communication. For 5V application, 2K ohm resistor is typically used. For 3V application, 1K  
ohm resistor is typically used.  
• Each tuning capacitor is an optional component depending on PCB layout environment.  
• The circuit above is a typical application circuit using an internal LDO.  
• RESET_N pin should be connected to host MCU GPIO and needs an RC filter. (R1=10KΩ, C1=1uF)  
• For LED control through DIO ports, sink current circuit is mandatory as shown above.  
• I2C has no recovery specification when clk is attacked by noise glitch or ESD. Sometimes ‘additional’ clock by noise glitch generates  
unintentional START condition which causes the TSC to wait indefinitely.  
Recommendations to avoid such a noise glitch:  
2
1. Addition of serial resister on I C clock line and data line having values ranging from 100ohm to 500ohm.  
2
2. Addition of about capacitor on I C clock line and data line and connect other end to ground. This would add some filtering mechanism. The size  
of capacitor depends on existing parasitic capacitance of the board (~Value ranging from 30pf to 300pf).  
10 Fujitsu Microelectronics America, Inc.  
FMA1127DA  
Top View of 32-pin Package (32QFN)  
25  
16  
15  
14  
13  
12  
11  
10  
9
S3  
S8  
26  
S2  
AREF  
27  
S1  
CONFIG_0  
CONFIG_1  
DIO_6  
28  
S0  
FMA1127DA  
29  
30  
31  
32  
RESET_N  
ID  
32N  
DIO_7  
DIO_3  
DIO_2  
DIO_8  
DIO_9  
Pin Description  
Name  
IO  
Pin #  
Description  
RESET_N  
TCLK  
S
I
I
I
I
29  
7
Reset, active LOW  
External Clock Input. Should be grounded if not used.  
Nine Sensor Inputs from external Touch Pads.  
Reference Input.  
16–18, 23–28  
15  
AREF  
Configured by HOST:  
- extended GPIOs, Direct Button Outputs or External Interrupt inputs  
DIO  
IO  
1, 2, 9–12, 31, 32  
SDA  
SCL  
IO  
I
3
4
Bidirectional I2C Data from/to Host  
I2C CLK from Host  
TINT  
GINT  
TOSC  
ID  
O
O
I
5
Touch Interrupt, it can be generated when touch status is changed.  
6
General Interrupts including touch interrupt and EINT. Can be masked.  
Test Pin, Should be grounded.  
I2C Chip ID Select(0:0x58, 1:0x5B)  
Test pins. Should be grounded.  
Power (2.5V~5.5V)  
8
I
30  
13, 14  
22  
21  
20  
19  
CONFIG  
VPH  
I
P
O
P
P
VLDO  
V25  
2.5V Regulator Power Output  
2.5V Power Input  
VSS  
Ground  
Fujitsu Microelectronics America, Inc. 11  
Touch Sensor Controller  
Typical Application Circuit  
Touch PAD  
Touch_Sensor_8  
Touch PAD  
Data Sensor  
Tuning Cap  
Touch_Sensor_7  
Touch_Sensor_6  
24  
23  
22  
21  
20  
19  
18  
17  
Touch_Sensor_3  
Touch_Sensor_2  
Touch_Sensor_1  
Touch_Sensor_0  
Touch_Sensor_8  
S3  
S2  
S1  
S0  
S8  
25  
26  
27  
28  
29  
16  
15  
Touch_Sensor_5  
Touch_Sensor_4  
Touch_Sensor_3  
AREF  
CONFIG_0  
CONFIG_1  
DIO_6  
Reference Sensor  
Tuning Cap  
14  
FMA1127DA  
13  
12  
11  
10  
9
RESET_N  
32N  
Touch_Sensor_2  
Touch_Sensor_1  
Touch_Sensor_0  
ID  
DIO_7  
30  
31  
32  
DIO_3  
DIO 2  
DIO_8  
DIO_9  
1
2
3
4
5
6
7
8
10K  
R1  
2K  
2K  
RESET_N(From MCU)  
1uF  
C1  
VDD  
DIO_N  
(LED Control Circuit)  
Notes:  
• The voltage range of VDD can be from 2.3V to 5.5V. If internal LDO is used, it should be from 3V to 5.5V.  
2
• Pull-Up resistors are required for I C communication. For 5V application, 2K ohm resistor is typically used. For 3V application, 1K ohm  
resistor is typically used.  
• Each tuning capacitor is an optional component depending on PCB layout environment.  
• The circuit above is a typical application circuit using an internal LDO.  
• RESET_N pin should be connected to host MCU GPIO and needs an RC filter. (R1=10KΩ, C1=1uF)  
• For LED control through DIO ports, sink current circuit is mandatory as shown above.  
2
I C has no recovery specification when clk is attacked by noise glitch or ESD. Sometimes ‘additional’ clock by noise glitch generates uninten-  
tional START condition which causes the TSC to wait indefinitely.  
Recommendations to avoid such a noise glitch:  
2
1. Addition of serial resister on I C clock line and data line having values ranging from 100ohm to 500ohm.  
2
2. Addition of about capacitor on I C clock line and data line and connect other end to ground. This would add some filtering  
mechanism. The size of capacitor depends on existing parasitic capacitance of the board (~Value ranging from 30pf to 300pf).  
12 Fujitsu Microelectronics America, Inc.  
FMA1127DA  
Top View of 24-pin Package (24QFN)  
19  
12  
11  
10  
9
S2  
S8  
20  
S1  
AREF  
21  
S0  
CONFIG_0  
CONFIG_2  
DIO_8  
FMA1127DA  
24N  
22  
RESET_N  
23  
8
ID  
24  
7
DIO_2  
TOSC  
Pin Description  
Name  
IO  
Pin #  
Description  
RESET_N  
TCLK  
S
I
I
I
I
22  
Reset, active LOW  
6
12, 17-21  
11  
External Clock Input. Should be grounded if not used.  
Nine Sensor Inputs from external Touch Pads.  
Reference Input.  
AREF  
Configured by HOST:  
- extended GPIOs, Direct Button Outputs or External Interrupt inputs  
DIO  
IO  
1, 8, 24  
SDA  
SCL  
IO  
I
2
3
Bidirectional I2C Data from/to Host  
I2C CLK from Host  
TINT  
GINT  
TOSC  
ID  
O
O
I
4
Touch Interrupt, it can be generated when touch status is changed.  
5
General Interrupts including touch interrupt and EINT. Can be masked.  
Test Pins. Should be grounded.  
I2C Chip ID Select(0:0x58, 1:0x5B)  
Test pins. Should be grounded.  
Power (2.5V-5.5V)  
7
I
23  
9, 10  
16  
15  
14  
13  
CONFIG  
VPH  
I
P
O
P
P
VLDO  
V25  
2.5V Regulator Power Output  
2.5V Power Input  
VSS  
Ground  
Fujitsu Microelectronics America, Inc. 13  
Touch Sensor Controller  
Typical Application Circuit  
Touch PAD  
Touch_Sensor_8  
13  
18  
17  
16  
15  
14  
12  
11  
Touch_Sensor_4  
Touch_Sensor_3  
Touch_Sensor_2  
Touch_Sensor_1  
Touch_Sensor_0  
Touch_Sensor_8  
S8  
S2  
S1  
19  
20  
X pF  
AREF  
Reference Sensor  
Tuning Cap  
10  
9
Touch_Sensor_2  
Touch_Sensor_1  
Touch_Sensor_0  
S0  
CONFIG_1  
21  
22  
FMA1127DA  
24N  
RESET_N  
ID  
CONFIG_0  
DIO_8  
8
23  
24  
7
DIO_2  
TOSC  
6
Touch PAD  
Data Sensor  
Tuning Cap  
1
2
3
4
5
2K  
2K  
VDD  
10K R1  
1uF  
RESET_N  
(From MCU)  
C1  
DIO_N  
(LED Control Circuit)  
Notes:  
• The voltage range of VDD can be from 2.3V to 5.5V. If internal LDO is used, it should be from 3V to 5.5V.  
2
• Pull-Up resistors are required for I C communication. For 5V application, 2K ohm resistor is typically used. For 3V application, 1K ohm  
resistor is typically used.  
• Each tuning capacitor is an optional component depending on PCB layout environment.  
• The circuit above is a typical application circuit using an internal LDO.  
• RESET_N pin should be connected to host MCU GPIO and needs an RC filter. (R1=10KΩ, C1=1uF)  
• For LED control through DIO ports, sink current circuit is mandatory as shown above.  
• I2C has no recovery specification when clk is attacked by noise glitch or ESD. Sometimes ‘additional’ clock by noise glitch generates uninten-  
tional START condition which causes the TSC to wait indefinitely.  
Recommendations to avoid such a noise glitch:  
2
1. Addition of serial resister on I C clock line and data line having values ranging from 100ohm to 500ohm.  
2
2. Addition of about capacitor on I C clock line and data line and connect other end to ground. This would add some filtering mechanism. The  
size of capacitor depends on existing parasitic capacitance of the board (~Value ranging from 30pf to 300pf).  
14 Fujitsu Microelectronics America, Inc.  
FMA1127DA  
Top View of 30-pin Package (30SSOP)  
1
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
RESET_N  
S0  
2
ID  
S1  
3
DIO_5  
S2  
4
DIO_4  
S3  
5
DIO_3  
S4  
6
DIO_2  
S5  
7
DIO_1  
VPH  
VLDO  
V25  
S6  
8
DIO_0  
9
SDA  
10  
SCL  
11  
TINT  
S7  
12  
GINT  
S8  
13  
TCLK  
S9  
14  
VSS  
S10  
S11  
15  
AREF  
30-Pin SSOP  
Pin Description  
Name  
IO  
Pin #  
Description  
RESET_N  
TCLK  
S
I
I
I
I
1
Reset, active LOW  
13  
16–21, 25–30  
15  
External Clock Input. Should be grounded if not used.  
Twelve Sensor Inputs from external Touch Pads.  
Reference Input.  
AREF  
Configured by HOST as below:  
-extended GPIOs, Direct Button Outputs or External Interrupt inputs  
DIO  
IO  
3–8  
SDA  
SCL  
TINT  
GINT  
ID  
IO  
I
9
Bidirectional I2C Data from/to Host  
10  
11  
12  
2
I2C CLK from Host  
O
O
I
Touch Interrupt, it can be generated when touch status is changed.  
General Interrupts including touch interrupt and EINT. Can be masked.  
I2C Chip ID Select(0:0x58, 1:0x5B)  
Power (2.5V~5.5V)  
VPH  
VLDO  
V25  
P
O
P
P
24  
23  
22  
14  
2.5V Regulator Power Output  
2.5V Power Input  
VSS  
Ground  
Fujitsu Microelectronics America, Inc. 15  
Touch Sensor Controller  
Typical Application Circuit  
Touch PAD  
Touch PAD  
Data Sensor  
Tuning Cap  
Touch_Sensor_11  
Touch_Sensor_10  
Touch_Sensor_9  
Touch_Sensor_8  
30 29 28 27 26  
25  
24  
22  
20 19  
23  
21  
18 17  
16  
Touch_Sensor_7  
Touch_Sensor_6  
FMA1127DA  
30S  
Touch_Sensor_5  
Touch_Sensor_4  
Touch_Sensor_3  
Touch_Sensor_2  
Touch_Sensor_1  
Touch_Sensor_0  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
2K  
2K  
Reference Sensor  
Tuning Cap  
VDD  
10K  
R1  
C1  
RESET_N  
(From MCU)  
1uF  
DIO_N  
(LED Control Circuit)  
Notes:  
• The voltage range of VDD can be from 2.3V to 5.5V. If internal LDO is used, it should be from 3V to 5.5V.  
2
• Pull-Up resistors are required for I C communication. For 5V application, 2K ohm resistor is typically used. For 3V application, 1K ohm  
resistor is typically used.  
• Each tuning capacitor is an optional component depending on PCB layout environment.  
• The circuit above is a typical application circuit using an internal LDO.  
• RESET_N pin should be connected to host MCU GPIO and needs an RC filter. (R1=10KΩ, C1=1uF)  
• For LED control through DIO ports, sink current circuit is mandatory as shown above.  
• I2C has no recovery specification when clk is attacked by noise glitch or ESD. Sometimes ‘additional’ clock by noise glitch generates uninten-  
tional START condition which causes the TSC to wait indefinitely.  
Recommendations to avoid such a noise glitch:  
2
1. Addition of serial resister on I C clock line and data line having values ranging from 100ohm to 500ohm.  
2
2. Addition of about capacitor on I C clock line and data line and connect other end to ground. This would add some filtering mechanism.  
The size of capacitor depends on existing parasitic capacitance of the board (~Value ranging from 30pf to 300pf).  
16 Fujitsu Microelectronics America, Inc.  
FMA1127DA  
Top View of 24-pin Package (24SSOP)  
1
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
SO  
S1  
2
RESET_N  
ID  
S2  
3
S3  
4
DIO_0  
SDA  
S4  
5
S5  
6
SCL  
VPH  
VLDO  
V25  
S6  
7
TINT  
8
GINT  
TCLK  
VSS  
9
10  
11  
12  
S8  
DIO_8  
DIO_6  
S9  
AREF  
Pin Description  
Name  
IO  
Pin #  
Description  
RESET_N  
TCLK  
S
I
I
I
I
2
Reset, active LOW  
9
1, 14–16, 20–24  
13  
External Clock Input. Should be grounded if not used.  
Nine Sensor Inputs from external Touch Pads.  
Reference Input.  
AREF  
Configured by HOST:  
-extended GPIOs, Direct Button Outputs or External Interrupt inputs  
DIO  
IO  
4, 11, 12  
SDA  
SCL  
TINT  
GINT  
ID  
IO  
I
5
6
Bidirectional I2C Data from/to Host  
I2C CLK from Host  
O
O
I
7
Touch Interrupt, it can be generated when touch status is changed.  
General Interrupts including touch interrupt, and they can be masked.  
I2C Chip ID Select(0:0x58, 1:0x5B)  
Power (2.5V-5.5V)  
8
3
VPH  
VLDO  
V25  
P
O
P
P
19  
18  
17  
10  
2.5V Regulator Power Output  
2.5V Power Input  
VSS  
Ground  
Fujitsu Microelectronics America, Inc. 17  
Touch Sensor Controller  
Typical Application Circuit  
Touch PAD  
Touch_Sensor_9  
Touch_Sensor_8  
Touch_Sensor_6  
23  
22  
21  
20  
19  
18  
16  
15  
24  
17  
14  
13  
Touch_Sensor_5  
Touch_Sensor_4  
Touch_Sensor_3  
Touch_Sensor_2  
Touch_Sensor_1  
Touch_Sensor_0  
FMA1127DA  
24S  
1
2
3
4
5
6
7
8
9
10  
11  
12  
Touch PAD  
2K  
2K  
Data Sensor  
Tuning Cap  
VDD  
R1 10K  
RESET_N  
(From MCU)  
DIO_N  
1uF  
C1  
(LED Control Circuit)  
Notes:  
• The voltage range of VDD can be from 2.3V to 5.5V. If internal LDO is used, it should be from 3V to 5.5V.  
2
• Pull-Up resistors are required for I C communication. For 5V application, 2K ohm resistor is typically used. For 3V application, 1K ohm  
resistor is typically used.  
• Each tuning capacitor is an optional component depending on PCB layout environment.  
• The circuit above is a typical application circuit using an internal LDO.  
• RESET_N pin should be connected to host MCU GPIO and needs an RC filter. (R1=10KΩ, C1=1uF)  
• For LED control through DIO ports, sink current circuit is mandatory as shown above.  
• I2C has no recovery specification when clk is attacked by noise glitch or ESD. Sometimes ‘additional’ clock by noise glitch generates uninten-  
tional START condition which causes the TSC to wait indefinitely.  
Recommendations to avoid such a noise glitch:  
2
1. Addition of serial resister on I C clock line and data line having values ranging from 100ohm to 500ohm.  
2
2. Addition of about capacitor on I C clock line and data line and connect other end to ground. This would add some filtering mechanism.  
The size of capacitor depends on existing parasitic capacitance of the board (~Value ranging from 30pf to 300pf).  
18 Fujitsu Microelectronics America, Inc.  
FMA1127DA  
Top View of 20-pin Package (20SSOP)  
1
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
RESET_N  
S0  
2
ID  
S1  
3
DIO_0  
S2  
4
SDA  
S3  
5
SCL  
VPH  
VLDO  
V25  
VSS  
S8  
6
TINT  
7
GINT  
8
TCLK  
9
DIO_8  
10  
AREF  
S9  
Pin Description  
Name  
IO  
Pin #  
Description  
RESET_N  
TCLK  
S
I
I
I
I
1
Reset, active LOW  
8
11-12, 17-20  
10  
External Clock Input. Should be grounded if not used.  
Six Sensor Inputs from external Touch Pads.  
Reference Input.  
AREF  
Configured by HOST:  
-extended GPIOs, Direct Button Outputs or External Interrupt inputs  
DIO  
IO  
3, 9  
SDA  
SCL  
TINT  
GINT  
ID  
IO  
I
4
5
Bidirectional I2C Data from/to Host  
I2C CLK from Host  
O
O
I
6
Touch Interrupt, it can be generated when touch status is changed.  
General Interrupts including touch interrupt, and they can be masked.  
I2C Chip ID Select(0:0x58, 1:0x5B)  
Power (2.5V-5.5V)  
7
2
VPH  
VLDO  
V25  
P
O
P
P
16  
15  
14  
13  
2.5V Regulator Power Output  
2.5V Power Input  
VSS  
Ground  
Fujitsu Microelectronics America, Inc. 19  
Touch Sensor Controller  
Typical Application Circuit  
Touch PAD  
Touch_Sensor_9  
Touch_Sensor_8  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
Touch_Sensor_3  
Touch_Sensor_2  
Touch_Sensor_1  
Touch_Sensor_0  
FMA1127DA  
20S  
Touch PAD  
1
2
3
5
7
8
9
4
6
10  
Data Sensor  
Tuning Cap  
X pF  
2K  
2K  
Reference Sensor  
Tuning Cap  
10K  
1uF  
R1  
RESET_N  
(From MCU)  
C1  
VDD  
DIO_N  
(LED Control Circuit)  
Notes:  
• The voltage range of VDD can be from 2.3V to 5.5V. If internal LDO is used, it should be from 3V to 5.5V.  
2
• Pull-Up resistors are required for I C communication. For 5V application, 2K ohm resistor is typically used. For 3V application, 1K ohm  
resistor is typically used.  
• Each tuning capacitor is an optional component depending on PCB layout environment.  
• The circuit above is a typical application circuit using an internal LDO.  
• RESET_N pin should be connected to host MCU GPIO and needs an RC filter. (R1=10KΩ, C1=1uF)  
• For LED control through DIO ports, sink current circuit is mandatory as shown above.  
2
• I C has no recovery specification when clk is attacked by noise glitch or ESD. Sometimes ‘additional’ clock by noise glitch generates uninten-  
tional START condition which causes the TSC to wait indefinitely.  
Recommendations to avoid such a noise glitch:  
2
1. Addition of serial resister on I C clock line and data line having values ranging from 100ohm to 500ohm.  
2
2. Addition of about capacitor on I C clock line and data line and connect other end to ground. This would add some filtering mechanism.  
The size of capacitor depends on existing parasitic capacitance of the board (~Value ranging from 30pf to 300pf).  
20 Fujitsu Microelectronics America, Inc.  
FMA1127DA  
Power Connection  
There are two methods to supply power to the FMA1127DA touch sensor controller. One is to receive V25 core voltage from internal LDO and  
the other is to receive core voltage from an external power supply. In the case of using internal LDO, the LDO should be turned on in Sleep mode  
and hence it will cause slightly higher power consumption than using an external power supply for V25 core voltage.  
In Case E, if VPH receives 2.5V, internal LDO can not be used because VLDO can not output 2.5V when VPH receives 2.5V from external LDO.  
Case A.  
Case B.  
VPH: External 5V  
VLDO: Internal LDO 2.5V  
VPH: External 5V  
VLDO: External 2.5V (Internal LDO Off: Register Control)  
5V  
5V  
VPH  
VPH  
V25  
2.5V  
V25  
10µF  
External LDO  
VLDO  
External LDO  
VLDO  
VGG  
GND  
GND  
VGG  
IO interface to over chip is 5V  
IO interface to over chip is 5V  
Case C.  
VPH: External 3.3V  
Case D.  
VPH: External 3.3V  
VLDO: External 2.5V (Internal LDO Off: Register Control)  
VLDO: Internal LDO 2.5V  
3.3V  
3.3V  
VPH  
VPH  
V25  
2.5V  
V25  
10µF  
External LDO  
VLDO  
External LDO  
VLDO  
VGG  
GND  
GND  
VGG  
IO interface to over chip is 3.3V  
IO interface to over chip is 3.3V  
Case E.  
VPH: External 2.5V  
VLDO: External 2.5V  
VPH  
V25  
2.5V  
GND  
External LDO  
VLDO  
VGG  
IO interface to over chip is 2.5V  
Fujitsu Microelectronics America, Inc. 21  
Touch Sensor Controller  
Power Sequence  
To initialize the ATA2508DA properly, please refer to the Power Sequence below when the power is given initially during boot-up.  
If the reset transition time during power on does not follow the time sequence below, the Internal LDO and oscillator would not operate  
normally.  
The Power Sequence is based on the Power Connection type and is shown in the following example.  
Power Connection Type is Case B or Case D  
VDDH(3.3V or 5.5V) X 0.9  
VDDH(IO)  
RESET PERIOD  
GND + 0.3V  
RESET_N  
Min 0.1 msec  
Fixed L”  
Power Connection type is Case A, Case C, or Case E  
VDDH(2.5V or 3.3V or 5.5V) X 0.9  
VDDH(IO)  
V25(2.5V) X 0.9  
V25(Core)  
RESET PERIOD  
GND + 0.3V  
RESET_N  
Min 0.1 msec  
Fixed L”  
In order to delay RESET_N transition about 0.1msec than VDDH transition, 10KO resistor and 1uF capacitor should be attached on  
RESET_N pin. Please see the typical application circuits described in the previous chapter. Also note that pulse width of RESET_N which is  
active low and generated by MCU must be longer than 0.1msec to be valid RESET signal.  
22 Fujitsu Microelectronics America, Inc.  
FMA1127DA  
Register Map Summary  
Ads  
Reg Name  
Ads  
Reg Name  
Ads  
Reg Name  
00  
01  
02  
03  
04  
05  
06  
07  
08  
09  
0A  
0B  
0C  
0D  
0E  
0F  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
1A  
1B  
1C  
1D  
1E  
1F  
20  
21  
22  
23  
24  
25  
Feature  
26  
27  
28  
29  
2A  
2C  
2D  
2E  
2F  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
3A  
3B  
3C  
3D  
3E  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
5A  
5B  
5C  
5D  
Strength Threshold 10  
Strength Threshold 11  
Sampling Interval  
Integration Time  
IDLE Time  
5E  
5F  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
6A  
6B  
6C  
6D  
6E  
6F  
70  
71  
72  
73  
74  
75  
76  
79  
7A  
7B  
FA  
FB  
FC  
FD  
FE  
FF  
Calibrated Impedance 2  
Calibrated Impedance 3  
Calibrated Impedance 4  
Calibrated Impedance 5  
Calibrated Impedance 6  
Calibrated Impedance 7  
Calibrated Impedance 8  
Calibrated Impedance 9  
Calibrated Impedance 10  
Calibrated Impedance 11  
Impedance 0  
ALPHA 0  
ALPHA 1  
ALPHA 2  
ALPHA 3  
ALPHA 4  
MODE  
ALPHA 5  
GPIO REG L  
ALPHA 6  
GPIO REG H  
ALPHA 7  
GPIO Configuration L  
GPIO Configuration H  
GPIO Direction L  
GPIO Direction H  
Control  
ALPHA 8  
ALPHA 9  
ALPHA 10  
Impedance 1  
ALPHA 11  
Impedance 2  
BETA  
Interrupt Mask  
Interrupt Clear  
Interrupt Edge  
Control 2  
Impedance 3  
COT  
Impedance 4  
Reference Delay  
Hysteresis Delay 0  
Hysteresis Delay 1  
Hysteresis Delay 2  
Hysteresis Delay 3  
Hysteresis Delay 4  
Hysteresis Delay 5  
Hysteresis Delay 6  
Hysteresis Delay 7  
Hysteresis Delay 8  
Hysteresis Delay 9  
Hysteresis Delay 10  
Hysteresis Delay 11  
Strength Threshold 0  
Strength Threshold 1  
Strength Threshold 2  
Strength Threshold 3  
Strength Threshold 4  
Strength Threshold 5  
Strength Threshold 6  
Strength Threshold 7  
Strength Threshold 8  
Strength Threshold 9  
Impedance 5  
Impedance 6  
Beep Period  
Impedance 7  
Beep Frequency  
Calibration Interval  
EINT Enable  
Impedance 8  
Impedance 9  
Impedance 10  
EINT Polarity  
FILTER Period  
FILTER Threshold  
Strength 0  
Impedance 11  
Status  
Touch Byte L  
Touch Byte H  
Strength 1  
Interrupt Pending  
GPIO IN L  
Strength 2  
Strength 3  
GPIO IN H  
Strength 4  
BIAS OFF  
Strength 5  
BIAS ON  
Strength 6  
Wakeup SLEEP  
Enter SLEEP  
Strength 7  
Strength 8  
Cold Reset  
Strength 9  
Warm Reset  
Strength 10  
Strength 11  
Calibrated Impedance 0  
Calibrated Impedance 1  
Notes:  
Please refer to the FMA1127DA Application Guide for detailed register descriptions.  
Fujitsu Microelectronics America, Inc. 23  
Touch Sensor Controller  
Package Dimensions  
40QFN  
5.00  
M
G
Pin #1 ID  
1
5.00  
M
Side View  
Top View  
3.8 0.1  
Exposed Pad  
10  
31  
Pin #1 ID  
N-1 N  
1
30  
0.35 0.05  
45°  
3.8 0.1  
0.40  
Detail ‘G’  
0.40  
0.1  
Terminal Tip  
21  
10  
20  
11  
0.35 0.05  
0.2 0.05  
Bottom View  
0.85 0.05  
0.203  
0~0.05  
Units: mm  
Seating Plane  
24 Fujitsu Microelectronics America, Inc.  
FMA1127DA  
32QFN  
4.00 BSC  
3.75 BSC  
2.80  
0.60  
32  
32  
R0.20 4x  
1
1
0.60  
ø0.50  
Dp 0.1 Max.  
R0.20  
4.00 BSC  
2.80  
3.75 BSC  
0.500.10  
See Detail A  
0.500.10  
0.40 Typ.  
Bottom View  
Top View  
4–10  
0.650.05  
0.900.10  
+0.05  
-0.07  
0.30  
0.20 Ref.  
0.05 Max.  
Side View  
+0.05  
-0.07  
0.20  
Detail ‘A’  
Units: mm  
Fujitsu Microelectronics America, Inc. 25  
Touch Sensor Controller  
24QFN  
4.00  
M
G
Pin #1 ID  
1
4.00  
M
Side View  
Top View  
2.700.01  
Exposed Pad  
19  
24  
Pin #1 ID  
(not soldering)  
18  
1
2.700.01  
0.350.05  
0.350.05  
0.50  
13  
6
0.50  
Detail ‘G’  
0.1  
Terminal Tip  
7
12  
0.230.05  
Bottom View  
0.850.05  
0.203  
0~0.05  
Units: mm  
Seating Plane  
26 Fujitsu Microelectronics America, Inc.  
FMA1127DA  
30SSOP  
0.203  
12.740.20  
30  
16  
0.600.20  
9.53  
10.300.30  
7.500.20  
1
15  
0.350.10  
Top View  
End View  
2.300.10  
2.50 Max.  
0.05 Min.  
0.80 Typ.  
Side View  
Units: mm  
Fujitsu Microelectronics America, Inc. 27  
Touch Sensor Controller  
24SSOP  
0.25 BSC  
0 Min.  
24  
12  
1.20  
8
0.05 Min.  
ø3.00  
5.400.10  
7.800.20  
1.65  
0–8  
ø1.0  
1.20  
1
R0.20  
R0.20  
+0.0  
-0.05  
+0.0  
-0.05  
0.20  
0.30  
1.00  
4.10  
End View  
Top View  
R0.20 4x  
12  
0.75  
1.700.50  
2.00 Max.  
0.75  
8
0.65 Typ.  
Side View  
Units: mm  
28 Fujitsu Microelectronics America, Inc.  
FMA1127DA  
20SSOP  
6.500.10  
0.25 BSC  
5
20  
10  
1.00  
9
ø2.00  
4.400.10  
6.400.20  
5.40  
1.25  
0–8  
ø1.0  
1.00  
1
R0.30  
R0.30  
+0.10  
-0.05  
+0.10  
-0.05  
0.15  
0.22  
2.30  
End View  
Top View  
10  
0.675  
0.675  
1.50  
1.85 Max  
8
0.65 Typ.  
0.05 Min.  
Units: mm  
Side View  
Fujitsu Microelectronics America, Inc. 29  
Revision History  
Date  
Revision  
Updates  
November 16, 2007  
June 10, 2008  
October 23, 2008  
May 1, 2009  
V1.0  
V1.1  
V1.2  
V1.3  
V1.4  
First Release  
Copy Updates  
Copy Updates  
Part number change  
Additions and updates  
May 29, 2009  
Notations in Electrical Characteristics are changed.  
Power Sequence is added  
Notes in Typical Applications are changed.  
RESET_N pin connection is changed in Typical Applications.  
Pin descriptions are updated.  
June 12, 2009  
V2.0  
Iol is added to Electrical Characteristics and I2C DC specification.  
Note6 is added to I2C DC specification.  
Cb in I2C AC specification is modified.  
The FMA1127DA touch sensor controller is developed and owned by  
ATLab Inc., South Korea, and is distributed by Fujitsu Microelectronics America, Inc.  
FUJITSU MICROELECTRONICS AMERICA, INC.  
©2009 Fujitsu Microelectronics America, Inc.  
All rights reserved.  
Corporate Headquarters  
1250 East Arques Avenue, M/S 333, Sunnyvale, California 94085-5401  
Tel: (800) 866-8608 Fax: (408) 737-5999  
E-mail: inquiry@fma.fujitsu.com Web Site: http://us.fujitsu.com/micro  
All company and product names are trademarks or  
registered trademarks of their respective owners.  
Printed in U.S.A. MCU-DS-21355-06/2009  

相关型号:

FMA1127DC-24N

Microprocessor Circuit, CMOS, 4 X 4 MM, 0.85 MM HEIGHT, 0.50 MM PITCH, QFN-24
FUJITSU

FMA1127DC-24S

Microprocessor Circuit, CMOS, PDSO24, 8.20 X 7.80 MM, 2 MM HEIGHT, 0.65 MM PITCH, SSOP-24
FUJITSU

FMA1127DC-32N

Microprocessor Circuit, CMOS, 4 X 4 MM, 0.90 MM HEIGHT, 0.40 MM PITCH, QFN-32
FUJITSU

FMA1127DC-40N

Microprocessor Circuit, CMOS, 5 X 5 MM, 0.85 MM HEIGHT, 0.40 MM PITCH, QFN-40
FUJITSU

FMA11A

Emitter common (dual digital transistors)
ROHM

FMA11AT148

Small Signal Bipolar Transistor, 0.1A I(C), 50V V(BR)CEO, 2-Element, PNP, Silicon, SMT5, SC-74A, 5 PIN
ROHM

FMA11AT149

Small Signal Bipolar Transistor, 0.1A I(C), 50V V(BR)CEO, 2-Element, PNP, Silicon,
ROHM

FMA153T452

250 V, 50 HZ, THREE PHASE EMI FILTER
HITACHI

FMA16N50E

Power Field-Effect Transistor, 16A I(D), 500V, 0.38ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-220AB, ROHS COMPLIANT, TO-220F, 3 PIN
FUJI

FMA16N60E

Power Field-Effect Transistor, 16A I(D), 600V, 0.47ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-220AB, ROHS COMPLIANT, TO-220F, 3 PIN
FUJI

FMA19N60E

Power Field-Effect Transistor, 19A I(D), 600V, 0.365ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-220AB, ROHS COMPLIANT, TO-220F, 3 PIN
FUJI

FMA1A

General purpose (dual digital transistors)
ROHM