MB15F72UV [FUJITSU]

Dual Serial Input PLL Frequency Synthesizer; 双串行输入锁相环频率合成器
MB15F72UV
型号: MB15F72UV
厂家: FUJITSU    FUJITSU
描述:

Dual Serial Input PLL Frequency Synthesizer
双串行输入锁相环频率合成器

信号电路 锁相环或频率合成电路 信息通信管理
文件: 总26页 (文件大小:225K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
FUJITSU SEMICONDUCTOR  
DATA SHEET  
DS04-21375-2E  
ASSP  
Dual Serial Input  
PLL Frequency Synthesizer  
MB15F72UV  
DESCRIPTION  
The Fujitsu MB15F72UV is a serial input Phase Locked Loop (PLL) frequency synthesizer with a 1300 MHz and  
a 350 MHz prescalers. A 64/65 or a 128/129 for the 1300 MHz prescaler, and a 8/9 or a 16/17 for the 350 MHz  
prescaler can be selected for the prescaler that enables pulse swallow operation.  
The BiCMOS process is used, as a result a supply current is typically 2.5 mA at 2.7 V. The supply voltage range  
is from 2.4 V to 3.6 V. A refined charge pump supplies well-balanced output current with 1.5 mA and 6 mA  
selectable by serial data. The data format is the same as the previous one MB15F02SL, MB12F72SP/UL. Fast  
locking is achieved for adopting the new circuit.  
MB15F72UV is in the new small package (BCC18) , which decreases a mount area of MB15F72UV about 50%  
comparing with the former BCC20 (for dual PLL) .  
MB15F72UV is ideally suited for wireless mobile communications, such as CDMA.  
FEATURES  
• High frequency operation : RF synthesizer : 1300 MHz Max  
: IF synthesizer : 350 MHz Max  
• Low power supply voltage : VCC = 2.4 V to 3.6 V  
• Ultra low power supply current : ICC = 2.5 mA Typ  
(VCC = 2.7 V, SWIF = SWRF = 0, Ta = +25 °C, in IF, RF locking state)  
(Continued)  
PACKAGE  
18-pin plastic BCC  
(LCC-18P-M05)  
MB15F72UV  
(Continued)  
• Direct power saving function : Power supply current in power saving mode  
Typ 0.1 µA (VCC = 2.7 V, Ta = +25 °C)  
Max 10 µA (VCC = 2.7 V)  
• Software selectable charge pump current : 1.5 mA/6.0 mA Typ  
• Dual modulus prescaler : 1300 MHz prescaler (64/65 or 128/129 ) /350 MHz prescaler (8/9 or 16/17)  
• 23 bit shift resister  
• Serial input 14-bit programmable reference divider : R = 3 to 16,383  
• Serial input programmable divider consisting of :  
- Binary 7-bit swallow counter : 0 to 127  
- Binary 11-bit programmable counter : 3 to 2,047  
• Onchip phase control for phase comparator  
• Onchip phase comparator for fast lock and low noise  
• Built-in digital locking detector circuit to detect PLL locking and unlocking.  
• Operating temperature : Ta = −40 °C to +85 °C  
• Serial data format compatible with MB15F72UL  
• Ultra small package BCC18 (2.4 mm × 2.7 mm × 0.45 mm)  
2
MB15F72UV  
PIN ASSIGNMENTS  
(BCC-18)  
TOP VIEW  
Clock  
OSCIN  
Data  
LE  
1
2
3
4
5
6
18 17 16 15  
14  
GND  
finIF  
finRF  
XfinRF  
GNDRF  
VCCRF  
13  
12  
XfinIF  
GNDIF  
VCCIF  
11  
8
7
9
10  
DoRF  
DoIF  
PSIF  
PSRF  
LD/fout  
(LCC-18P-M05)  
3
MB15F72UV  
PIN DESCRIPTION  
Pin no.  
Pin name I/O  
BCC  
Descriptions  
1
GND  
Ground for OSC input buffer and the shift register circuit.  
Prescaler input pin for the IF-PLL.  
Connection to an external VCO should be via AC coupling.  
2
finIF  
I
I
Prescaler complimentary input pin for the IF-PLL section.  
This pin should be grounded via a capacitor.  
3
4
5
6
XfinIF  
GNDIF  
VCCIF  
DOIF  
Ground for the IF-PLL section.  
Power supply voltage input pin for the IF-PLL section, the OSC input buffer and the  
shift register circuit.  
O
I
Charge pump output pin for the IF-PLL section.  
Power saving mode control for the IF-PLL section. This pin must be set at “L” when  
the power supply is started up. (Open is prohibited.)  
PSIF = “H” ; Normal mode / PSIF = “L” ; Power saving mode  
7
8
9
PSIF  
LD/fout  
PSRF  
Lock detect signal output (LD) /phase comparator monitoring  
output (fout) pins.The output signal is selected by LDS bit in the serial data.  
LDS bit = “H” ; outputs fout signal / LDS bit = “L” ; outputs LD signal  
O
Power saving mode control pin for the RF-PLL section. This pin must be set at “L”  
when the power supply is started up. (Open is prohibited.)  
I
PSRF = “H” ; Normal mode / PSRF = “L” ; Power saving mode  
10  
11  
12  
DORF  
VCCRF  
O
Charge pump output pin for the RF-PLL section.  
Power supply voltage input pin for the RF-PLL section  
Ground for the RF-PLL section  
GNDRF  
Prescaler complimentary input pin for the RF-PLL section.  
This pin should be grounded via a capacitor.  
13  
14  
XfinRF  
finRF  
I
I
Prescaler input pin for the RF-PLL.  
Connection to an external VCO should be via AC coupling.  
Load enable signal input pin (with the schmitt trigger circuit)  
When LE is set “H”, data in the shift register is transferred to the corresponding latch  
according to the control bit in the serial data.  
15  
16  
LE  
I
I
Serial data input pin (with the schmitt trigger circuit)  
Data is transferred to the corresponding latch (IF-ref. counter, IF-prog. counter, RF-ref.  
counter, RF-prog. counter) according to the control bit in the serial data.  
Data  
Clock input pin for the 23-bit shift register (with the schmitt trigger circuit)  
One bit of data is shifted into the shift register on a rising edge of the clock.  
17  
18  
Clock  
I
I
The programmable reference divider input. TCXO should be connected with an AC  
coupling capacitor.  
OSCIN  
4
MB15F72UV  
BLOCK DIAGRAM  
VCCIF GNDIF  
5
4
Intermittent  
mode control  
(IF-PLL)  
3 bit latch  
PSIF 7  
7 bit latch  
Binary 7-bit  
11 bit latch  
Binary 11-bit  
fpIF  
Phase  
comp.  
(IF-PLL)  
Charge  
pump  
(IF-PLL)  
6
DoIF  
Current  
Switch  
swallow counter programmable  
(IF-PLL)  
counter (IF-PLL)  
finIF 2  
Prescaler  
(IF-PLL)  
(8/9, 16/17  
Lock Det.  
(IF-PLL)  
XfinIF 3  
2 bit latch  
14 bit latch  
1 bit latch  
LDIF  
Binary 14-bit pro-  
grammable ref.  
counter(IF-PLL)  
C/P setting  
counter  
T1 T2  
frIF  
Fast  
lock  
OSCIN 18  
Tuning  
Selector  
AND  
LDRF  
frRF  
LD  
frIF  
frRF  
fpIF  
fpRF  
Binary 14-bit pro-  
grammable ref.  
counter (RF-PLL))  
C/P setting  
counter  
T1 T2  
8
LD/  
OR  
fout  
2 bit latch  
14 bit latch  
1 bit latch  
Prescaler  
(RF-PLL)  
(64/65, 128/129)  
finRF 14  
Lock Det.  
(RF-PLL)  
XfinRF 13  
Phase  
comp.  
(RF-PLL)  
Charge  
pump  
(RF-PLL)  
Binary 11-bit  
programmable  
counter (RF-PLL)  
Binary 7-bit  
swallow counter  
(RF-PLL)  
Current  
Switch  
10  
DoRF  
Intermittent  
mode control  
(RF-PLL)  
PSRF 9  
fpRF  
3 bit latch  
7 bit latch  
11 bit latch  
Schmitt  
circuit  
LE 15  
Latch selector  
Schmitt  
circuit  
Schmitt  
circuit  
C
N
1
C
N
2
Data 16  
23-bit shift register  
Clock 17  
1
11  
12  
VCCRF  
GNDRF  
GND  
5
MB15F72UV  
ABSOLUTE MAXIMUM RATINGS  
Rating  
Parameter  
Symbol  
Unit  
Min  
0.5  
0.5  
GND  
GND  
55  
Max  
4.0  
Power supply voltage  
Input voltage  
VCC  
VI  
V
V
VCC + 0.5  
VCC  
LD/fout  
VO  
V
Output voltage  
DoIF, DoRF  
VDO  
Tstg  
VCC  
V
Storage temperature  
+125  
°C  
WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current,  
temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.  
RECOMMENDED OPERATING CONDITIONS  
Value  
Parameter  
Symbol  
Unit  
Remarks  
Min  
2.4  
Typ  
Max  
3.6  
Power supply voltage  
Input voltage  
VCC  
VI  
2.7  
V
VCCRF = VCCIF  
GND  
40  
VCC  
+85  
V
Operating temperature  
Ta  
°C  
Notes : VCCRF and VCCIF must supply equal voltage.  
Even if either RF-PLL or IF-PLL is not used, power must be supplied to VCCRF, and VCCIF to keep them  
equal.  
It is recommended that the non-use PLL is controlled by power saving function.  
Although this device contains an anti-static element to prevent electrostatic breakdown and the circuitry  
has been improved in electrostatic protection, observe the following precautions when handling the  
device.  
When storing and transporting the device, put it in a conductive case.  
Before handling the device, confirm the (jigs and) tools to be used have been uncharged (grounded)  
as well as yourself. Use a conductive sheet on working bench.  
Before fitting the device into or removing it from the socket, turn the power supply off.  
When handling (such as transporting) the device mounted board, protect the leads with a conductive  
sheet.  
WARNING: The recommended operating conditions are required in order to ensure the normal operation of the  
semiconductor device. All of the device’s electrical characteristics are warranted when the device is  
operated within these ranges.  
Always use semiconductor devices within their recommended operating condition ranges. Operation  
outside these ranges may adversely affect reliability and could result in device failure.  
No warranty is made with respect to uses, operating conditions, or combinations not represented on  
the data sheet. Users considering application outside the listed conditions are advised to contact their  
FUJITSU representatives beforehand.  
6
MB15F72UV  
ELECTRICAL CHARACTERISTICS  
(VCC = 2.4 V to 3.6 V, Ta = −40 °C to +85 °C)  
Value  
Unit  
Sym-  
Parameter  
bol  
Condition  
Min  
Typ  
Max  
finIF = 270 MHz,  
VCCIF = VpIF = 2.7 V  
ICCIF *1  
0.6  
1.0  
1.4  
mA  
mA  
Power supply current  
finRF = 910 MHz,  
VCCRF = VpRF = 2.7 V  
ICCRF *1  
1.0  
1.5  
2.1  
IPSIF  
PSIF = PSRF = “L”  
PSIF = PSRF = “L”  
0.1*2  
0.1*2  
10  
10  
µA  
µA  
Power saving current  
Operating frequency  
IPSRF  
finIF *3  
finRF *3  
OSCIN  
finIF  
finIF IF PLL  
finRF RF PLL  
fOSC  
50  
100  
3
350  
1300  
40  
MHz  
MHz  
MHz  
dBm  
dBm  
VP P  
PfinIF IF PLL, 50 system  
PfinRF RF PLL, 50 system  
VOSC  
15  
15  
0.5  
+2  
Input sensitivity  
finRF  
+2  
OSCIN  
VCC  
Data,  
LE,  
Clock  
“H” level input voltage  
“L” level input voltage  
VIH  
Schmitt trigger input  
Schmitt trigger input  
0.7 VCC + 0.4  
V
V
VIL  
0.3 VCC 0.4  
“H” level input voltage  
“L” level input voltage  
VIH  
VIL  
0.7 VCC  
V
V
PSIF,  
PSRF  
0.3 VCC  
Data,  
LE,  
Clock,  
PSIF,  
PSRF  
“H” level input current  
“L” level input current  
IIH *4  
1.0  
1.0  
+1.0  
µA  
µA  
IIL *4  
+1.0  
“H” level input current  
“L” level input current  
IIH  
0
+100  
µA  
µA  
OSCIN  
IIL *4  
100  
0
VCC = 2.7 V,  
IOH = −1 mA  
“H” level output voltage  
“L” level output voltage  
“H” level output voltage  
VOH  
VOL  
VCC 0.4  
VCC 0.4  
V
V
V
LD/fout  
VCC = 2.7 V, IOL = 1 mA  
0.4  
0.4  
VCC = 2.7 V,  
IDOH = −0.5 mA  
VDOH  
DoIF,  
DoRF  
VCC = 2.7 V,  
IDOL = 0.5 mA  
“L” level output voltage  
VDOL  
V
High impedance  
cutoff current  
DoIF,  
DoRF  
VCC = 2.7 V,  
VOFF = 0.5 V to VCC 0.5 V  
IOFF  
2.5  
nA  
“H” level output current  
“L” level output current  
IOH *4 VCC = 2.7 V  
1.0  
mA  
mA  
LD/fout  
IOL  
VCC = 2.7 V  
1.0  
(Continued)  
7
MB15F72UV  
(Continued)  
(VCC = 2.4 V to 3.6 V, Ta = −40 °C to +85 °C)  
Value  
Unit  
Parameter  
Symbol  
Condition  
VCC = 2.7 V,  
VDOH = VCC / 2,  
Ta = +25 °C  
Min  
Typ  
Max  
CS bit = “1”  
CS bit = “0”  
CS bit = “1”  
CS bit = “0”  
8.2  
6.0  
4.1  
mA  
mA  
mA  
mA  
“H” level output  
current  
DoIF *8  
DoRF  
IDOH *4  
2.2  
4.1  
1.5  
6.0  
0.8  
8.2  
VCC = 2.7 V,  
VDOL = VCC / 2,  
Ta = +25 °C  
“L” level output  
current  
DoIF *8  
DoRF  
IDOL  
0.8  
1.5  
2.2  
IDOL/IDOH IDOMT *5  
vs. VDO IDOVD *6  
VDO = VCC / 2  
3
%
%
Charge pump  
current rate  
0.5 V VDO VCC 0.5 V  
10  
40 °C Ta ≤ +85 °C,  
VDO = VCC / 2  
vs.Ta  
IDOTA *7  
5
%
*1 : Conditions ; fosc = 12.8 MHz, Ta = +25 °C, SW = “0” in locking state.  
*2 : VCCIF = VCCRF = 2.7 V, fosc = 12.8 MHz, Ta = +25 °C, in power saving mode PSIF = PSRF = GND, VIH = VCC VIL =  
GND (at CLK, Data, LE)  
*3 : AC coupling. 1000 pF capacitor is connected under the condition of minimum operating frequency.  
*4 : The symbol “–” (minus) means the direction of current flow.  
*5 : VCC = 2.7 V, Ta = +25 °C (||I3| |I4||) / [ (|I3| + |I4|) / 2] × 100 (%)  
*6 : VCC = 2.7 V, Ta = +25°C [ (||I2| |I1||) / 2] / [ (|I1| + |I2|) / 2] × 100 (%) (Applied to both lDOL and lDOH)  
*7 : VCC = 2.7 V, [||IDO (+85°C) | |IDO (–40°C) || / 2] / [|IDO (+85°C) | + |IDO (–40°C) | / 2] × 100 (%) (Applied to both IDOL and IDOH)  
*8 : When Charge pump current is measured, set LDS = “0” , T1 = “0” and T2 = “1”.  
I1  
I3  
I4  
I2  
IDOL  
IDOH  
I1  
VCC/2  
VCC 0.5 VCC  
0.5  
Charge pump output voltage (V)  
8
MB15F72UV  
FUNCTIONAL DESCRIPTION  
1. Pulse swallow function :  
fVCO = [ (P × N) + A] × fOSC ÷ R  
fVCO : Output frequency of external voltage controlled oscillator (VCO)  
P : Preset divide ratio of dual modulus prescaler (8 or 16 for IF-PLL, 64 or 128 for RF-PLL)  
N : Preset divide ratio of binary 11-bit programmable counter (3 to 2,047)  
A : Preset divide ratio of binary 7-bit swallow counter (0 A 127, A < N)  
fOSC : Reference oscillation frequency (OSCIN input frequency)  
R : Preset divide ratio of binary 14-bit programmable reference counter (3 to 16,383)  
2. Serial Data Input  
The serial data is entered using three pins, Data pin, Clock pin, and LE pin. Programmable dividers of IF/  
RF-PLL sections, and programmable reference dividers of IF/RF-PLL sections are controlled individually.  
The serial data of binary data is entered through Data pin.  
On a rising edge of Clock, one bit of the serial data is transferred into the shift register. On a rising edge of load  
enable signal, the data stored in the shift register is transferred to one of latches depending upon the control bit  
data setting.  
The programmable The programmable  
The programmable  
The programmable  
reference counter  
for the IF-PLL  
reference counter counter and the swallow counter and the swallow  
for the RF-PLL  
counter for the IF-PLL  
counter for the RF-PLL  
CN1  
CN2  
0
0
1
0
0
1
1
1
(1) Shift Register Configuration  
• Programmable Reference Counter  
(LSB)  
Data Flow  
(MSB)  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23  
CN1 CN2 T1 T2 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 CS  
X
X
X
X
CS  
R1 to R14 : Divide ratio setting bits for the programmable reference counter (3 to 16,383)  
T1, T2 : LD/fout output setting bit.  
CN1, CN2 : Control bit  
: Charge pump current select bit  
X
: Dummy bits (Set “0” or “1”)  
Note : Data input with MSB first.  
9
MB15F72UV  
• Programmable Counter  
(LSB)  
Data Flow  
(MSB)  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23  
SWIF/RF FCIF/RF  
CN1 CN2 LDS  
A1 A2 A3 A4 A5 A6 A7 N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 N11  
A1 to A7  
: Divide ratio setting bits for the swallow counter (0 to 127)  
N1 to N11 : Divide ratio setting bits for the programmable counter (3 to 2,047)  
LDS  
: LD/fout signal select bit  
SWIF/RF  
FCIF/RF  
: Divide ratio setting bit for the prescaler (IF : SWIF, RF : SWRF)  
: Phase control bit for the phase detector (IF : FCIF, RF : FCRF)  
CN1, CN2 : Control bit  
Note : Data input with MSB first.  
(2) Data setting  
• Binary 14-bit Programmable Reference Counter Data Setting (R1 to R14)  
Divide ratio  
R14 R13 R12 R11 R10 R9  
R8  
R7  
R6  
R5  
R4  
R3 R2  
R1  
3
0
0
0
0
0
0
0
0
0
0
0
0
1
1
4
0
0
0
0
0
0
0
0
0
0
0
1
0
0
16383  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Note : Divide ratio less than 3 is prohibited.  
• Binary 11-bit Programmable Counter Data Setting (N1 to N11)  
Divide ratio  
N11  
N10  
N9  
N8  
N7  
N6  
N5  
N4  
N3  
N2  
N1  
3
0
0
0
0
0
0
0
0
0
1
1
4
0
0
0
0
0
0
0
0
1
0
0
2047  
1
1
1
1
1
1
1
1
1
1
1
Note : Divide ratio less than 3 is prohibited.  
• Binary 7-bit Swallow Counter Data Setting (A1 to A7)  
Divide ratio  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
1
127  
1
1
1
1
1
1
1
10  
MB15F72UV  
• Prescaler Data Setting (SW)  
Divide ratio  
SW = “1”  
8/9  
SW = “0”  
16/17  
Prescaler divide ratio IF-PLL  
Prescaler divide ratio RF-PLL  
64/65  
128/129  
• Charge Pump Current Setting (CS)  
Current value  
±6.0 mA  
CS  
1
±1.5 mA  
0
• LD/fout output Selectable Bit Setting  
LD/fout pin state  
LD output  
frIF  
LDS  
0
T1  
0
T2  
0
0
1
0
0
1
1
1
0
0
frRF  
fpIF  
1
1
0
fout  
outputs  
1
0
1
fpRF  
1
1
1
• Phase Comparator Phase Switching Data Setting (FCIF, FCRF)  
FCIF = “1” FCRF = “1” FCIF = “0” FCRF = “0”  
DoIF DoRF DoIF DoRF  
Phase comparator input  
fr > fp  
fr < fp  
H
L
L
H
Z
fr = fp  
Z
Z : High-impedance  
Depending upon the VCO and LPF polarity, FC bit should be set.  
High  
(1)  
(1) VCO polarity FC = “1”  
(2) VCO polarity FC = “0”  
VCO Output  
Frequency  
(2)  
Max  
LPF Output voltage  
Note : Give attention to the polarity for using active type LPF.  
11  
MB15F72UV  
3. Power Saving Mode (Intermittent Mode Control Circuit)  
Status  
PSIF/PSRF pins  
Normal mode  
H
L
Power saving mode  
The intermittent mode control circuit reduces the PLL power consumption.  
By setting the PS pins low, the device enters into the power saving mode, reducing the current consumption.  
See the Electrical Characteristics chart for the specific value.  
The phase detector output, Do, becomes high impedance.  
For the dual PLL, the lock detector, LD, is as shown in the LD Output Logic table.  
Setting the PS pins high, releases the power saving mode, and the device works normally.  
The intermittent mode control circuit also ensures a smooth startup when the device returns to normal operation.  
When the PLL is returned to normal operation, the phase comparator output signal is unpredictable. This is  
because of the unknown relationship between the comparison frequency (fp) and the reference frequency (fr)  
which can cause a major change in the comparator output, resulting in a VCO frequency jump and an increase  
in lockup time.  
To prevent a major VCO frequency jump, the intermittent mode control circuit limits the magnitude of the error  
signal from the phase detector when it returns to normal operation.  
Notes : When power (VCC) is first applied, the device must be in standby mode, PSIF = PSRF = Low.  
Serial data input are done after the power supply becomes stable, and then the Power saving mode is  
released after completed the data input.  
OFF  
ON  
VCC  
tV  
1 s  
Clock  
Data  
LE  
PSIF  
tPS > 100 ns  
PSRF  
(1)  
(2)  
(3)  
(1) PSIF = PSRF = “L” (power saving mode) at Power-ON  
(2) Set serial data at least 1 µs after the power supply becomes stable (VCC 2.2 V) .  
(3) Release power saving mode (PSIF, PSRF : “L” “H”) at least 100 ns after setting serial  
data.  
12  
MB15F72UV  
4. Serial Data Input Timing  
Frequency multiplier setting is performed through a serial interface using the Data pin, Clock pin, and LE pin.  
Setting data is read into the shift register at the rise of the clock signal, and transferred to a latch at the rise of  
the LE signal. The following diagram shows the data input timing.  
1st data  
2nd data  
Control bit Invalid data  
LSB  
Data  
MSB  
Clock  
t1  
t2  
t3  
t6  
t7  
LE  
t4  
t5  
Parameter  
Min  
20  
Typ  
Max Unit  
Parameter  
Min  
100  
20  
Typ  
Max Unit  
t1  
t2  
t3  
t4  
ns  
ns  
ns  
ns  
t5  
t6  
t7  
ns  
ns  
ns  
20  
30  
100  
30  
Note : LE should be “L” when the data is transferred into the shift register.  
13  
MB15F72UV  
PHASE COMPARATOR OUTPUT WAVEFORM  
frIF/frRF  
fpIF/fpRF  
tWU  
tWL  
LD  
(FC bit = "1")  
H
DoIF/DoRF  
DoIF/DoRF  
Z
L
(FC bit = "0")  
H
Z
L
• LD Output Logic  
IF-PLL section  
RF-PLL section  
Locking state/Power saving state  
Unlocking state  
LD output  
Locking state/Power saving state  
Locking state/Power saving state  
Unlocking state  
H
L
L
L
Locking state/Power saving state  
Unlocking state  
Unlocking state  
Notes : Phase error detection range = −2π to +2π  
Pulses on DoIF/DoRF signals are output to prevent dead zone during locking state.  
LD output becomes low when phase error is tWU or more.  
LD output becomes high when phase error is tWL or less and continues to be so for three cycles  
or more.  
tWU and tWL depend on OSCIN input frequency as follows.  
tWU 2/fosc : e.g. tWU 156.3 ns when fosc = 12.8 MHz  
tWU 4/fosc : e.g. tWL 312.5 ns when fosc = 12.8 MHz  
14  
MB15F72UV  
TEST CIRCUIT (for Measuring Input Sensitivity fin/OSCIN)  
S.G.  
1000 pF  
50 Ω  
S.G.  
1000 pF  
Controller  
(divided ratio setting)  
50 Ω  
OSCIN  
Clock  
Data  
LE  
GND  
XfinIF  
1
2
3
4
5
6
18  
17  
16  
15  
VCCRF  
S.G.  
1000 pF  
finRF  
14  
13  
12  
11  
10  
finIF  
50 Ω  
XfinRF  
1000 pF  
1000 pF  
MB15F72UV  
0.1 µF  
GNDRF  
GNDIF  
DoIF  
VCCRF  
DoRF  
7
8
9
VCCIF  
LD/  
fout  
PSRF  
PSIF  
0.1 µF  
Oscilloscope  
Note : Terminal number shows that of TSSOP-20.  
15  
MB15F72UV  
TYPICAL CHARACTERISTICS  
1. fin input sensitivity  
RF-PLL input sensitivity vs. Input frequency  
10  
0
Catalog guaranteed range  
10  
20  
30  
40  
50  
VCC = 2.4 V  
VCC = 2.7 V  
VCC = 3.0 V  
VCC = 3.6 V  
spec  
0
200  
400  
600  
800  
1000  
1200  
1400  
1600  
1800  
2000  
finRF (MHz)  
IF-PLL input sensitivity vs. Input frequency  
10  
0
Catalog guaranteed range  
10  
20  
30  
40  
50  
VCC = 2.4 V  
VCC = 2.7 V  
VCC = 3.0 V  
VCC = 3.6 V  
spec  
0
100  
200  
300  
400  
500  
600  
700  
800  
finIF (MHz)  
16  
MB15F72UV  
2. OSCIN input sensitivity  
Input sensitivity vs. Input frequency  
10  
Catalog guaranteed  
range  
0
10  
20  
30  
40  
50  
VCC = 2.4 V  
VCC = 2.7 V  
VCC = 3.0 V  
VCC = 3.6 V  
SPEC  
0
50  
100  
150  
Input frequency fOSC (MHz)  
17  
MB15F72UV  
3. RF/IF-PLL Do output current  
• 1.5 mA mode  
IDO - VDO  
2.50  
VCC = 2.7 V, Ta = +25˚C  
2.00  
1.50  
1.00  
0.50  
0.00  
0.50  
1.00  
1.50  
2.00  
2.50  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
Charge pump output voltage VDO (V)  
• 6.0 mA mode  
IDO - VDO  
8.00  
6.00  
VCC = 2.7 V, Ta = +25˚C  
4.00  
2.00  
0.00  
2.00  
4.00  
6.00  
8.00  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
Charge pump output voltage VDO (V)  
18  
MB15F72UV  
4. fin input impedance  
finIF input impedance  
4 : 39.5 Ω  
258.98 Ω  
1.7558 pF  
350.000 000 MHz  
1 : 906.94 Ω  
1.2097 kΩ  
50 MHz  
2 : 156.47 Ω  
588.44 Ω  
150 MHz  
3 : 65.719 Ω  
363.31 Ω  
250 MHz  
1
4
2
3
CENTER 275.000 000 MHz  
SPAN 450.000 000 MHz  
finRF input impedance  
4 : 10.426 Ω  
50.781 Ω  
2.4109 pF  
1 300.000 000 MHz  
1 : 30.711 Ω  
221.73 Ω  
400 MHz  
2 : 16.602 Ω  
120.77 Ω  
700 MHz  
3 : 12.367 Ω  
76.926 Ω  
1 GHz  
1
4
2
3
START 100.000 000 MHz  
STOP 1 500.000 000 MHz  
19  
MB15F72UV  
5. OSCIN input impedance  
OSCIN input impedance  
4 : 074.81 Ω  
1.3334 kΩ  
2.9839 pF  
40.000 000 MHz  
1 :  
882 Ω  
5.1865 kΩ  
10 MHz  
2 : 257.13 Ω  
2.6638 kΩ  
20 MHz  
3 : 121.69 Ω  
1.7799 kΩ  
30 MHz  
4
1
2
3
START 3.000 000 MHz  
STOP 40.000 000 MHz  
20  
MB15F72UV  
REFERENCE INFORMATION  
(for Lock-up Time, Phase Noise and Reference Leakage)  
fVCO = 738.5 MHz VCC = 2.7 V  
Test Circuit  
KV = 30 MHz/V  
fr = 12.5 kHz  
fOSC = 19.8 MHz CP : 6 mA mode  
VVCO = 3.75 V  
Ta = +25 °C  
S.G.  
OSCIN  
LPF  
DO  
fin  
LPF  
8.2 kΩ  
Spectrum  
Analyzer  
3 kΩ  
VCO  
3900 pF  
5600 pF  
56000 pF  
• PLL Reference Leakage  
ATTEN 10 dB  
RL 0 dBm  
VAVG 16  
10 dB/  
MKR 70.00 dB  
12.3 kHz  
MKR  
12.3 kHz  
70.00 dB  
CENTER 738.5000 MHz  
SPAN 200.0 kHz  
SWP 500 ms  
RBW 1.0 kHz  
VBW 1.0 kHz  
• PLL Phase Noise  
ATTEN 10 dB  
RL 0 dBm  
VAVG 16  
10 dB/  
MKR 58.16 dB  
1.00 kHz  
MKR  
1.00 kHz  
58.16 dB  
CENTER 738.50000 MHz  
RBW 30 Hz VBW 30 Hz  
SPAN 10.00 kHz  
SWP 1.92 s  
(Continued)  
21  
MB15F72UV  
(Continued)  
• PLL Lock Up time  
• PLL Lock Up time  
738.5 MHz775.5 MHz within ± 1 kHz  
LchHch 3.267 ms  
775.5 MHz738.5 MHz within ± 1 kHz  
HchLch 3.2 ms  
775.504000 MHz  
738.504000 MHz  
775.500000 MHz  
738.500000 MHz  
775.496000 MHz  
738.496000 MHz  
0.00 s  
5.000 ms  
1.000 ms/div  
T2 3.800 µs  
10.00 ms  
3.267 ms  
0.00 s  
5.000 ms  
1.000 ms/div  
T2 3.733 µs  
10.00 ms  
3.200 ms  
T1 533 µs  
T1 533 µs  
22  
MB15F72UV  
APPLICATION EXAMPLE  
1000 pF  
TCXO  
Controller  
(divided ratio setting)  
OSCIN  
Clock  
Data  
LE  
OUTPUT  
GND  
OUTPUT  
1
18  
17  
16  
15  
1000 pF  
finIF  
1000 pF  
finRF  
2
3
4
5
6
14  
13  
12  
11  
10  
XfinIF  
VCO  
XfinRF  
1000 pF  
1000 pF  
VCO  
LPF  
MB15F72UV  
GNDRF  
GNDIF  
VCCRF  
LPF  
VCCIF  
DoIF  
VCCRF  
DoRF  
0.1 µF  
7
8
9
VCCIF  
PSRF  
PSIF  
0.1 µF  
LD/  
fout  
Lock Detect  
Note : Clock, Data, LE : The schmitt trigger circuit is provided (insert a pull-down or pull-up register  
to prevent oscillation when open-circuit in the input) .  
23  
MB15F72UV  
USAGE PRECAUTIONS  
(1) VCCRF and VCCIF must be equal voltage.  
Even if either RF-PLL or IF-PLL is not used, power must be supplied to VCCRF and VCCIF to keep them  
equal. It is recommended that the non-use PLL is controlled by power saving function.  
(2) To protect against damage by electrostatic discharge, note the following handling precautions :  
-Store and transport devices in conductive containers.  
-Use properly grounded workstations, tools, and equipment.  
-Turn off power before inserting or removing this device into or from a socket.  
-Protect leads with conductive sheet, when transporting a board mounted device.  
ORDERING INFORMATION  
Part number  
MB15F72UVPVB  
Package  
Remarks  
18-pin plastic BCC  
(LCC-18P-M05)  
24  
MB15F72UV  
PACKAGE DIMENSION  
18-pin plastic BCC  
(LCC-18P-M05)  
2.31(.090)  
TYP  
0.45(.018)  
TYP.  
2.70±0.10  
(.106±.004)  
0.45±0.05  
(.018±.002)  
10  
15  
15  
10  
(Mount height)  
2.01(.079)  
TYP  
INDEX AREA  
2.40±0.10  
(.094±.004)  
0.90(.035)  
REF  
1.90(.075)  
REF  
"A"  
0.45(.018)  
TYP.  
"C"  
"B"  
0.075±0.025  
(.003±.001)  
(Stand off)  
1
6
1.35(.053)  
REF  
6
1
2.28(.090)  
REF  
Details of "A" part  
Details of "B" part  
C0.10(.004)  
Details of "C" part  
0.36±0.06  
0.05(.002)  
0.36±0.06  
(.014±.002)  
0.25±0.06  
(.010±.002)  
0.14(.006)  
MIN.  
(.014±.002)  
0.25±0.06  
0.28±0.06  
0.28±0.06  
(.010±.002)  
(.011±.002)  
(.011±.002)  
C
2003 FUJITSU LIMITED C18058S-c-1-1  
Dimensions in mm (inches)  
Note : The values in parentheses are reference values.  
25  
MB15F72UV  
FUJITSU LIMITED  
All Rights Reserved.  
The contents of this document are subject to change without notice.  
Customers are advised to consult with FUJITSU sales  
representatives before ordering.  
The information, such as descriptions of function and application  
circuit examples, in this document are presented solely for the  
purpose of reference to show examples of operations and uses of  
Fujitsu semiconductor device; Fujitsu does not warrant proper  
operation of the device with respect to use based on such  
information. When you develop equipment incorporating the  
device based on such information, you must assume any  
responsibility arising out of such use of the information. Fujitsu  
assumes no liability for any damages whatsoever arising out of  
the use of the information.  
Any information in this document, including descriptions of  
function and schematic diagrams, shall not be construed as license  
of the use or exercise of any intellectual property right, such as  
patent right or copyright, or any other right of Fujitsu or any third  
party or does Fujitsu warrant non-infringement of any third-party’s  
intellectual property right or other right by using such information.  
Fujitsu assumes no liability for any infringement of the intellectual  
property rights or other rights of third parties which would result  
from the use of information contained herein.  
The products described in this document are designed, developed  
and manufactured as contemplated for general use, including  
without limitation, ordinary industrial use, general office use,  
personal use, and household use, but are not designed, developed  
and manufactured as contemplated (1) for use accompanying fatal  
risks or dangers that, unless extremely high safety is secured, could  
have a serious effect to the public, and could lead directly to death,  
personal injury, severe physical damage or other loss (i.e., nuclear  
reaction control in nuclear facility, aircraft flight control, air traffic  
control, mass transport control, medical life support system, missile  
launch control in weapon system), or (2) for use requiring  
extremely high reliability (i.e., submersible repeater and artificial  
satellite).  
Please note that Fujitsu will not be liable against you and/or any  
third party for any claims or damages arising in connection with  
above-mentioned uses of the products.  
Any semiconductor devices have an inherent chance of failure. You  
must protect against injury, damage or loss from such failures by  
incorporating safety design measures into your facility and  
equipment such as redundancy, fire protection, and prevention of  
over-current levels and other abnormal operating conditions.  
If any products described in this document represent goods or  
technologies subject to certain restrictions on export under the  
Foreign Exchange and Foreign Trade Law of Japan, the prior  
authorization by Japanese government will be required for export  
of those products from Japan.  
F0312  
FUJITSU LIMITED Printed in Japan  

相关型号:

MB15F72UVPVB

暂无描述
FUJITSU

MB15F73SP

Dual Serial Input PLL Frequency Synthesizer
FUJITSU

MB15F73SPPFT

Dual Serial Input PLL Frequency Synthesizer
FUJITSU

MB15F73SPPV

Dual Serial Input PLL Frequency Synthesizer
FUJITSU

MB15F73UL

ASSP Dual Serial Input PLL Frequency Synthesizer
FUJITSU

MB15F73ULPFT

Dual Serial Input PLL Frequency Synthesizer
FUJITSU

MB15F73ULPFT

PLL Frequency Synthesizer
SPANSION

MB15F73ULPV

PLL Frequency Synthesizer, BICMOS, PBCC20, PLASTIC, BCC-20
CYPRESS

MB15F73ULPVA

Dual Serial Input PLL Frequency Synthesizer
FUJITSU

MB15F73ULWQN

PLL Frequency Synthesizer
SPANSION

MB15F73UL_01

Dual Serial Input PLL Frequency Synthesizer
FUJITSU

MB15F73UV

Dual Serial Input PLL Frequency Synthesizer
FUJITSU