MB3773 [FUJITSU]

Power Supply Monitor with Watch-Dog Timer; 电源监控器与看门狗定时器
MB3773
型号: MB3773
厂家: FUJITSU    FUJITSU
描述:

Power Supply Monitor with Watch-Dog Timer
电源监控器与看门狗定时器

监控
文件: 总25页 (文件大小:365K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
FUJITSU SEMICONDUCTOR  
DATA SHEET  
DS04-27401-4E  
ASSP  
Power Supply Monitor  
with Watch-Dog Timer  
MB3773  
DESCRIPTION  
The Fujitsu MB3773 is designed to monitor the voltage level of a power supply (+5V or an  
arbitrary voltage) in a microprocessor circuit, memory board in a large-size computer, for  
example. The MB3773 also contains a watch-dog timer function to detect uncontrol. Table  
status of processor and reset system/processor.  
If the circuit’s power supply deviates more than a specified amount, then the MB3773  
generates a reset signal to the microprocessor. Thus, the computer data is protected from  
accidental erasure.  
PLASTIC PACKAGE  
When the MB3773 does not receive the clock pulse from the processor in the specified  
period, the MB3773 generates a reset signal to the mciroprocessor.  
DIP-8P-M01  
Using the MB3773 requires few external components. To monitor only a +5 volt supply,  
the MB3773 requires the connection of one external capacitor.  
The MB3773 is available in an 8-pin Dual In-Line package space saving Flat Package, or  
a Single In-Line Package.  
Precision voltage detection (VS = 4.2V ±2.5%)  
Threshold level with hysterisis  
PLASTIC PACKAGE  
FPT-8P-M01  
Low voltage output for reset signal (VCC = 0.8V typ.)  
Precision reference voltage output (VREF = 1.245 V±1.5%)  
External clock monitor and reset signal generator  
Negative-edge input watch-dog timer  
Minimal number of external components (one capacitor min.)  
Available in a variety of packages  
8-pin Dual In-Line Package  
PLASTIC PACKAGE  
SIP-8P-M03  
8-pin Flat Package  
8-pin Single In-Line Package  
This device contains circuitry to protect the inputs  
against damage due to high static voltages or  
electric fields. However, it is advised that normal  
precautions be taken to avoid application of any  
voltage higher than maximum rated voltages to this  
high impedance circuit.  
1
MB3773  
PIN ASSIGNMENT  
8
7
6
RESET  
VS  
VREF  
CT  
RESET  
CK  
8
7
6
5
RESET  
VS  
1
2
VCC  
5
4
Front  
View  
Top View  
GND  
CK  
3
4
VREF  
VCC  
GND  
3
2
1
RESET  
CT  
(DIP-8P-M01)  
(FPT-8P-M01)  
(SIP-8P-M03)  
ABSOLUTE MAXIMUM RATINGS  
Parameter  
Symbol  
Rating  
Unit  
V
Supply voltage  
VCC  
-0.3 to +18  
S
CC  
V
-0.3 to V +0.3 ( +18)  
V
Input voltage  
VS  
VOH  
PD  
-0.3 to +18  
V
RESET, RESET Supply voltage  
Power dissipation(Ta 85°C)  
Storage temperature  
-0.3 to VCC +0.3 (+18)  
200  
V
mW  
°C  
TSTG  
-55 to +125  
NOTE: Permanent device damage may occur if the above Absolute Maximum Ratings are exceeded. Functional operation should be  
restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions  
for extended periods may affect device reliability.  
2
MB3773  
BLOCK DIAGRAM  
VCC  
5
Reference AMP.  
1.24V  
1.24V  
Reference Voltage Generator  
+
_
VREF  
6
100  
kΩ  
1.2µA  
COMP.O  
10µA  
+
_
+
_
10µA  
COMP.S  
+
R
S
Q
_
VS  
7
40kΩ  
Inhibit  
CK  
Watch  
Dog  
3
Timer  
P. G  
GND  
4
2
1
8
CT  
RESET  
RESET  
RECOMMENDED OPERATING CONDITIONS  
Parameter  
Symbol  
VCC  
IOL  
Value  
Unit  
V
Supply voltage  
+3.5 to +16  
0 to 20  
Reset, reset sink current  
VREF output current  
mA  
µA  
ms  
µs  
IOUT  
tWD  
-200 to +5  
0.1 to 1000  
<100  
Watch clock setting time  
Rising/falling time  
tFC, tRC  
CT  
Terminal capacitance  
Operating ambient temperature  
0.001 to 10  
-40 to +85  
µF  
°C  
Ta  
3
MB3773  
ELECTORICAL CHARACTERISTICS  
(
1) DC Characteristics  
(VCC=5V, Ta=25°C)  
Value  
Parameter  
Condition  
Symbol  
Unit  
Min  
Typ  
Max  
Supply current  
Watch dog timer operating  
VCC  
ICC  
-
600  
900  
µA  
4.10  
4.05  
4.20  
4.15  
50  
4.20  
4.20  
4.30  
4.30  
100  
4.30  
4.35  
4.40  
4.45  
150  
VSL  
VSH  
Ta = -40°C to +85°C  
VCC  
Detection voltage  
Hysterisis width  
V
Ta = -40°C to +85°C  
VHYS  
VREF  
mV  
V
VCC  
-
Ta = -40°C to +85°C  
VCC = 3.5 to 16V  
1.227 1.245 1.263  
1.215 1.245 1.275  
Reference voltage  
Reference voltage change rate  
VREF1  
VREF2  
-
3
-
10  
+5  
mV  
mV  
V
Reference voltage output  
loading change rate  
IOUT = -200µA to+5µA  
-5  
CK threshold voltage  
Ta = -40°C to +85°C  
VCK = 5.0V  
VTH  
IIH  
0.8  
-
1.25  
0
2.0  
1.0  
-
CK input current  
µA  
µA  
V
VCK = 0.0V  
IIL  
-1.0  
-0.1  
Watch dog timer operating  
VCT = 1.0V  
CK input current  
ICTD  
7
10  
14  
VS open, IRESET = -5µA  
VS = 0V, IRESET = -5µA  
VS = 0V, IRESET = 3mA  
VS = 0V, IRESET = 10mA  
VS open, IRESET = 3mA  
VS open, IRESET = 10mA  
VS = 0V, VRESET = 1.0V  
VS open, VRESET = 1.0V  
VOH1  
VOH2  
VOL1  
VOL2  
VOL3  
VOL4  
IOL1  
4.5  
4.5  
-
4.9  
4.9  
0.2  
0.3  
0.2  
0.3  
60  
-
-
High level output voltage  
0.4  
0.5  
0.4  
0.5  
-
-
Output saturation voltage  
Output sink current  
V
-
-
20  
20  
mA  
IOL2  
60  
-
4
MB3773  
)
(1) DC Characteristics (Continued  
(VCC=5V, Ta=25°C)  
Value  
Parameter  
Condition  
Symbol  
Unit  
Min  
Typ  
Max  
Power on reset operating  
VCT = 1.0V  
CT charge current  
ICTU  
0.5  
1.2  
2.5  
µA  
V
VRESET = 0.4V  
IRESET = 0.2mA  
Min. supply voltage for RESET  
Min. supply voltage for RESET  
VCCL1  
VCCL2  
-
-
0.8  
0.8  
1.2  
1.2  
VRESET =VCC -0.1V  
RL (2 pin - GND) = 1MΩ  
V
(
2)AC Characteristics  
(VCC=5V, Ta=25°C)  
Value  
Parameter  
Condition  
Symbol  
TPI  
Unit  
Min  
Typ  
Max  
5V  
VCC 4V  
VCC input pulse width  
8.0  
-
-
µs  
CK input pulse width  
CK input frequency  
CK  
TCKW  
3.0  
-
-
µs  
or  
TCK  
20  
5
-
-
µs  
Watch dog timer  
watching time  
CT = 0.1µF  
CT = 0.1µF  
TWD  
10  
15  
ms  
Watch dog timer  
reset time  
TWR  
TPR  
TPD1  
TPD2  
tR  
1
50  
-
2
100  
2
3
ms  
ms  
Rising reset hold time  
T
C = 0.1µF, V  
CC  
150  
10  
RESET, RL = 2.2kΩ  
CL = 100pF  
Output propagation  
Delay time from VCC  
µs  
µs  
RESET, RL = 2.2kΩ  
CL = 100pF  
-
3
10  
RL = 2.2kΩ  
CL = 100pF  
Output rising time *  
Output falling time *  
-
1.0  
0.1  
1.5  
0.5  
RL = 2.2kΩ  
CL = 100pF  
tF  
-
* Output rising/falling time are measured at 10% to 90% of voltage.  
5
MB3773  
Fig. 1 - MB3773 Basic Operation  
VCC  
CT = 0.1µF  
(100ms)  
(10ms)  
VCC  
Logic Circuit  
TPR (ms)  
TWD (ms)  
TWR (ms)  
1000 · CT (µF)  
100 · CT  
(µF)  
RESET  
RESET  
CK  
CT  
RESET  
RESET  
CK  
20 · CT  
(µF)  
(2ms)  
GND  
VCC  
VSH  
VSL  
0.8V  
CK  
TCK  
CT  
TPR  
TWD  
TPR  
RESET  
TWR  
6
MB3773  
TYPICAL CHARACTERISTIC CURVES  
Fig. 2 - Supply current vs. supply voltage  
Fig. 3 - Output voltag vs. supply voltage  
(RESET pin)  
6.0  
5.0  
4.0  
3.0  
2.0  
0.75  
Pull up 2.2kΩ  
Ta = 85°C  
Ta = 25°C  
0.65  
Ta = -40°C, 25°C, 85°C  
Ta = -40°C  
0.55  
CT = 0.1µF  
Ta = -40°C  
0.45  
Ta = 25°C  
0.35  
Ta = 85°C  
0.25  
1.0  
0.15  
0
1.0 2.0 3.0  
4.0 5.0 6.0 7.0  
0
2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0  
Supply voltage VCC (V)  
Supply voltage VCC (V)  
Fig. 5 - Detection voltage  
(VSH, VSL) vs. temperature  
Fig. 4 - Output voltag vs. supply voltage  
(RESET pin)  
(RESET, RESET pin)  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
4.50  
4.44  
4.30  
Pull up 2.2kΩ  
VSH  
VSL  
4.20  
4.10  
4.00  
Ta = 85°C  
Ta = 25°C  
Ta = -40°C  
-40 -20  
0
20  
40  
60  
80 100  
0
1.0 2.0 3.0  
4.0 5.0 6.0 7.0  
Temperature Ta (°C)  
Supply voltage VCC (V)  
Fig. 7 - Output saturation  
voltage vs. output sink current  
(RESET pin)  
Fig. 6 - Output saturation  
voltage vs. output sink current  
500  
400  
(RESET pin)  
CT = 0.1µF  
CT = 0.1µF  
Ta = -40°C  
Ta = -40°C  
400  
Ta = 25°C  
300  
200  
300  
200  
Ta = 25°C  
Ta = 85°C  
Ta = 85°C  
100  
100  
0
2.0  
0
2.0  
4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0  
Output sink current IOL2 (mA)  
4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0  
Output sink current IOL8 (mA)  
7
MB3773  
TYPICAL CHARACTERISTIC CURVES (Continued)  
Fig. 8 - High level output voltage  
vs. high level output current  
(RESET pin)  
Fig. 9 - High level output voltage  
vs. high level output current  
(RESET pin)  
5.0  
5.0  
4.5  
4.0  
CT = 0.1µF  
CT = 0.1µF  
Ta = 25  
Ta = 85  
Ta = 25°C  
4.5  
4.0  
Ta = -40°C  
Ta = -40°C  
Ta= 85°C  
0
-5  
-10  
-15  
0
-5  
-10  
-15  
High level output current IOH2 (µA)  
High level output current IOH8 (µA)  
Fig. 10 - Reference voltage  
vs. supply voltage  
Fig. 11 - Reference voltage  
vs. reference current  
1.246  
1.244  
1.242  
1.240  
1.238  
1.236  
1.234  
Ta = 25°C  
1.255  
1.250  
1.245  
1.240  
CT = 0.1µF  
Ta = 85°C  
Ta = -40°C  
Ta= 25°C  
Ta= 85°C  
CT = 0.1µF  
Ta = -40°C  
0
-40  
-80 -120 -160 -200 -240  
0
3.0 5.0 7.0 9.0 11.0 13.0 15.0 17.0 19.0 21.0  
Supply voltage VCC (V)  
Reference current IREF (µA)  
Fig. 12 - Reference voltage  
vs. temperature  
Fig. 13 - Rising reset hold time  
vs. temperature  
1.27  
1.26  
1.25  
1.24  
160  
140  
120  
100  
VCC = 5V  
CT = 0.1µF  
1.23  
1.22  
1.21  
80  
60  
40  
0
0
-40 -20  
0
20  
40  
60  
80 100  
-40 -20  
0
20  
40  
60  
80 100  
Temperature Ta(°C)  
Temperature Ta(°C)  
8
MB3773  
TYPICAL CHARACTERISTIC CURVES (Continued)  
Fig. 14 - Reset time vs.  
temperature  
Fig. 15 - Watch dog timer watching  
time vs. temperature  
(At watch dog timer)  
16  
VCC = 5V  
CT = 0.1µF  
3
2
VCC = 5V  
CT = 0.1µF  
14  
12  
10  
8
1
0
6
4
0
-40 -20  
0
20 40 60 80 100  
-40 -20  
0
20 40 60 80 100  
Temperature Ta (°C)  
Temperature Ta (°C)  
Fig. 18 - Terminal capacitance vs.  
watch dog timer watching time  
Fig. 16 - Terminal capacitance  
vs. rising reset hold time  
Fig. 17 - Terminal capacitance  
vs. reset time  
(at watch dog timer)  
102  
106  
106  
105  
104  
103  
105  
104  
101  
103  
Ta = -40°C  
Ta=  
25°C,  
85°C  
102  
102  
Ta = -40°C  
100  
101  
101  
Ta =  
-40°C  
Ta = 25°C,  
Ta = 25°C  
10-1  
100  
100  
85°C  
85°C  
10-1  
10-2  
10-3  
10-1  
10-2  
10-3  
10-2  
10-3  
10-3  
101 102  
100  
10-1  
10-2  
10-2  
102  
10-3  
10-1  
100 101  
101102  
10-3 10-2 10-1100  
Terminal capacitance CT (µF)  
Terminal capacitance CT (µF)  
Terminal capacitance CT (µF)  
9
MB3773  
APPLICATION CIRCUIT  
EXAMPLE 1 : Monitoring 5V Supply Voltage and Watch-dog Timer  
VCC (5V)  
MB3773  
Logic circuit  
1
2
3
4
8
7
6
5
RESET  
RESET  
CK  
CT  
GND  
• Supply voltage is monitored using Vs.  
Detection voltage are VSH and VSL.  
EXAMPLE 2 : 5V Supply Voltage Monitoring (external fine-tuning type)  
VCC (5V)  
MB3773  
R1  
R2  
Logic circuit  
1
2
3
4
8
7
6
5
RESET  
RESET  
CK  
CT  
GND  
• Vs detection voltage can be adjusted externally.  
• Selecting R1 and R2 values that are sufficiently lower than the resistance of the IC’s internal  
voltage divider allows the detection voltage to be setaccording to the resistance ratio between  
R1 and R2. (See the table below.)  
R1 (k)  
10  
R2 (k)  
3.9  
Detection voltage:VSL (V)  
Detection voltage:VSH (V)  
4.4  
4.1  
4.5  
4.2  
9.1  
3.9  
10  
MB3773  
EXAMPLE 3 : With Forced Reset (with reset hold)  
a
VCC  
MB3773  
Logic circuit  
1
2
3
4
8
7
6
5
RESET  
RESET  
CK  
CT  
SW  
GND  
• Grouding pin 7 at the time of SW ON sets RESET (pin 8) to Low and RESET (pin 2)  
to High.  
b
VCC  
MB3773  
Logic circuit  
1
2
3
4
8
7
6
5
RESET  
RESET  
CK  
Tr  
10k  
10k  
Cr  
GND  
RESIN  
• Feeding the signal to pin RESIN and turning on Tr sets the RESET pin to Low  
and the RESET pin to High.  
11  
MB3773  
EXAMPLE 4 : Montitoring Two Supply Voltages (with hysterisis, reset output and NMI)  
VCC2(12V)  
VCC1 (5V)  
Logic circuit  
MB3773  
RESET  
RESET  
CK  
1
2
3
4
8
7
6
5
CT  
100k  
R3  
NMI or port  
GND  
180k  
10k  
R6  
R4  
+
+
_
_
Comp. 1  
1.2k  
R1  
Comp. 2  
5.1k  
R2  
4.7k  
R5  
Example  
: Comp. 1, Comp. 2  
: MB4204, MB47393  
NOTE: The 5V supply voltage is monitored by the MB3773.  
The 12V supply viltage is monitored by the external circuit. Its output is connected to the NMI  
pin and, when voltage drops, Comp. 2 interrrupts the logic circuit.  
• Use VCC1 (=5V) to power the comparators (Comp. 1 and Comp. 2) in the external circuit  
shown above.  
• The detection voltage of the VCC2 (=12V) supply voltage is approximately 0.2V.  
VCC2 detection voltage and hysterisis width can be found using the following formulas:  
R3 + (R4 // R5)  
Detection voltage  
× V  
REF  
V2H =  
R4 // R5  
R3 + R5  
(Approx. 9.4V in the above illustration)  
(Approx. 9.2V in the above illustration)  
V2L =  
× VREF  
R5  
HYS  
2H  
2L  
Hysterisis width  
V
= V - V  
12  
MB3773  
EXAMPLE 5 : Montitoring Two (M) Supply Voltages (with hysterisis and reset output)  
VCC2 (12V)  
VCC1 (5V)  
20k  
R6  
MB3773  
Logic circuit  
1
2
3
4
8
7
6
5
RESET  
RESET  
CK  
Diode  
CT  
30k  
R3  
GND  
180k  
R4  
+
_
+
_
Comp. 1  
1.2k  
R1  
Comp. 2  
5.1k  
R2  
4.7k  
R5  
Example  
: Comp. 1, Comp. 2  
: MB4204, MB47393  
SL), the MB3773  
NOTE: When either 5V or 12V supply voltage decreases below its detection voltage (V  
RESET pin is set to High and the MB3773 RESET pin is set to Low.  
• Use VCC1 (=5V) to power the comparators (Comp. 1 and Comp. 2) in the external circuit shown  
above.  
• The detection voltage of the VCC2 (=12V) supply voltage is approximately 9.2V/9.4V and has a  
hysterisis width of approximately 0.2V.  
For the formulas for finding hysterisis width and detection voltage, see section 4.  
13  
MB3773  
EXAMPLE 6 : Montitoring Low voltage and Overvoltage Monitoring (with hysterisis)  
VCC (5V)  
20k  
R6  
MB3773  
Logic circuit  
1
2
3
4
8
7
6
5
RESET  
RESET  
CK  
Diode  
CT  
30k  
R3  
GND  
180k  
R4  
_
+
_
+
Comp. 1  
1.2k  
R1  
Comp. 2  
5.6k  
R2  
4.7k  
R5  
Example  
: Comp. 1, Comp. 2  
: MB4204, MB47393  
RESET  
VCC  
0
V2L V2H  
V1L V1H  
• Comp. 1 and Comp. 2 are used to monitor for overvoltage while the MB3773 is used to monitor for low  
voltage.  
Detection voltages V1/V1H at the time of low voltage areappoximately 4.2V/4.3V. Detection voltages  
V2L/V2H at the time of overvoltage are approximately 6.0V/6.1V.  
For the formulas for finding hysterisis width and detection voltage, see section 4.  
• Use VCC (=5V) to power the comparators (Comp. 1 and Comp. 2) in the external circuit shown above.  
14  
MB3773  
EXAMPLE 7 : Monitoring Supply Voltage Using Delayed Trigger  
VCC  
5V  
VCC  
4V  
MB3773  
Logic circuit  
RESET  
RESET  
CK  
1
2
3
4
8
7
6
5
CT  
C1  
GND  
• Adding voltage such as shown in the figure to VCC increases the minimum input pulse  
width by 50 microseconds (C1 = 1000pF).  
15  
MB3773  
EXAMPLE 8 : Stopping Watch-dog Timer (Monitering only supply voltage)  
These are example application circuts in which the MB3773 monitors supply voltage alone without resetting  
the microcomputer even if the latter, used in standby mode, stops sending the clock pulse to the MB3773.  
•The watch-dog timer is inhibited by clamping the Cr pin voltage to VREF .  
The supply voltage is constantly monitored even while the watch-dog timer is inhibited.  
For this reason, a reset signal is output at the occurrence of either instataneous disruption or a sudden drop  
to low voltage.  
Note that in application examples a and b, the hold signal is inactive when the watch-dog timer is inhibited  
at the time of resetting.  
If the hold signal is active when tie microcomputer is reset, the solution is to add a gate, as in examples c and d.  
a Using NPN transistor  
VCC(5V)  
MB3773  
Logic circuit  
1
2
3
4
8
7
6
5
RESET  
RESET  
CK  
HALT  
GND  
R2=1k  
R1=1M  
CT  
b Using PNP transistor  
VCC (5V)  
MB3773  
Logic circuit  
RESET  
RESET  
CK  
1
2
3
4
8
7
6
5
HALT  
GND  
R2=1k  
R1=51k  
CT  
(Continued)  
16  
MB3773  
(Continued)  
c Using NPN transistor  
VCC (5V)  
MB3773  
Logic circuit  
1
2
3
4
8
7
6
5
RESET  
RESET  
CK  
R1=1M  
HALT  
GND  
R2=1k  
CT  
d Using PNP transistor  
VCC (5V)  
MB3773  
Logic circuit  
1
2
3
4
8
7
6
5
RESET  
RESET  
CK  
R1=51k  
HALT  
GND  
R2=1k  
CT  
17  
MB3773  
EXAMPLE 9 : Reducing Reset Hold Time  
VCC(=5V)  
VCC (=5V)  
MB3773  
MB3773  
Logic circuit  
Logic circuit  
1
2
3
4
8
7
6
5
RESET  
RESET  
CK  
1
2
3
4
8
7
6
5
RESET  
RESET  
CK  
CT  
CT  
GND  
GND  
(a) TPR reduction method  
(b) Standard usage  
• RESET is the only output that can be used.  
• Standard TPR, TWD and TWR value can be found using the following formulas.  
Formulas :  
TPR (ms)  
100 × CT (µF)  
100 × CT (µF)  
16 × CT (µF)  
TWD (ms)  
TWR (ms)  
• The above formulas allow fo standard values in determining TPR, TWD and TWR.  
Reset hold time is compared below between the reduction circuitand the standard circuit.  
CT = 0.1µF  
TPR reduction circuit  
Standard circuit  
100ms  
10ms  
10ms  
1.6ms  
TPR  
TWD  
TWR  
10ms  
2.0ms  
18  
MB3773  
EXAMPLE 10 : Circuit for Monitoring Multiple Microcomputers  
VCC (=5V)  
FF1  
D1  
FF2  
D2  
FF3  
D3  
S
S
S
Q1  
Q2  
Q3  
CK1 Q1  
R
CK2 Q2  
R
CK3 Q3  
R
R2  
R1  
RESET  
RESET  
RESET  
RESET  
CK  
RESET  
CK  
RESET  
CK  
GND  
GND  
GND  
1
2
8
7
6
5
3
4
CT  
MB3773  
Figure 1  
connects from FF1 and FF2 outputs Q1 and Q2 to the NOR input.  
Depending on timing, these connections may not be necessary.  
Example:R1 = R2 = 2.2kΩ  
CT = 0.1µF  
CK1  
Q1  
CK2  
Q2  
CK3  
Q3  
NOR  
Output  
Figure 2  
19  
MB3773  
Description of Application Circuits  
Using one MB3773, this application circuit monitors multiple microcomputers in one system. Signals from each microcomputer  
are sent to FF1, FF2 and FF3 clock inputs. Figure 2 shows these timings. Each flip-flop operates using signals sent from mi-  
crocomputers as its clock pulse. When even one signal stops, the relevant receiving flip-flop stops operating. As a result, cy-  
clical pulses are not generated at output Q3. Since the clock pulse stops arriving at the CK pin of the MB3773, the MB3773  
generates a reset signal.  
Note that output Q3 frequncy f will be in the following range, where the clock frequencies of CK1, CK2 and CK3 are f1, f2 and f3  
respectively.  
1
f0  
1
f
1
1
1
f
3
--- --  
---- --- ----  
+ +  
f
1
f
2
where f0 is the lowest frequency among f1, f2 and f3.  
20  
MB3773  
EXAMPLE 11 : Circuit for Limiting Upper Clock Input Frequency  
VCC (5V)  
R2  
1
2
3
4
8
7
6
5
RESET  
RESET  
CT  
R1=10kΩ  
CK  
Tr1  
GND  
C2  
• This is an example application to limit upper frequency fH of clock pulses sent from the  
microcomputer.  
If the CK cycle sent from the microcomputer exceeds fH, the circuit generates a reset  
signal.  
(The lower freqency has already been set using Cr.)  
• When a clock pulse such as shown below is sent to pin CK, a short T2 prevents C2 voltage  
from reaching the CK input threshold level ( 1.25V), and will cause a reset signal to be  
output.  
The T1 value can be found using the following formula :  
T1 0.3 C2R2  
T2  
CK waveform  
where VCC = 5V, T3 3.0µsec, T2 20µsec  
T3  
C2 voltage  
T1  
Example : Setting C and R allow the upper T1 value to be set (See the table below.)  
C
R
T1  
0.01µF  
0.1µF  
10kΩ  
10kΩ  
30µs  
300µs  
21  
MB3773  
PACKAGE DIMENSIONS  
8 pin, Plastic DIP  
(DIP-8P-M01)  
+0.40  
–0.30  
.370+..001126  
9.40  
6.20±0.25  
(.244±.010)  
1 PIN INDEX  
0.51(.020)MIN  
4.36(.172)MAX  
3.00(.118)MIN  
+0.30  
0.25±0.05  
(.010±.002)  
0.46±0.08  
(.018±.003)  
+0.30  
15°MAX  
0.99  
1.52  
–0  
–0  
7.62(.300)  
TYP  
.039+0.012  
.060+0.012  
+0.35  
–0.30  
.035+..001124  
0.89  
2.54(.100)  
TYP  
Dimensions in mm (inches).  
C
1994 FUJITSU LIMITED D08006S-2C-3  
22  
MB3773  
PACKAGE DIMENSIONS (Continued)  
8 pin, Plastic SOP  
(FPT-8P-M01)  
2.25(.089)MAX  
6.35+00..2205 .250 +..000180  
0.05(.002)MIN  
(STAND OFF)  
6.80+00..2400  
5.30±0.30  
7.80±0.40  
INDEX  
.268+..000186  
(.209±.012) (.307±.016)  
1.27(.050)  
TYP  
0.45±0.10  
(.018±.004)  
0.15+00..0025  
.006+..000012  
0.50±0.20  
(.020±.008)  
M
Ø0.13(.005)  
3.81(.150)REF  
Details of "A" part  
0.20(.008)  
0.50(.020)  
0.18(.007)MAX  
"A"  
0.68(.027)MAX  
0.10(.004)  
Dimensions in mm (inches).  
C
1994 FUJITSU LIMITED F08002S-4C-4  
23  
MB3773  
PACKAGE DIMENSIONS (Continued)  
8 pin, Plastic SIP  
(SIP-8P-M03)  
3.26±0.25  
(.128±.010)  
+0.15  
–0.35  
19.65  
.774 +..001046  
INDEX-1  
6.20±0.25  
(.244±.010)  
8.20±0.30  
(.323±.012)  
INDEX-2  
+0.30  
–0  
.039+0.012  
0.99  
4.00±0.30  
(.157±.012)  
+0.30  
–0  
1.52  
2.54(.100)  
TYP  
0.50±0.08  
(.020±.003)  
0.25±0.05  
(.010±.002)  
.060+0.012  
Dimensions in mm (inches).  
C
1994 FUJITSU LIMITED S08010S-3C-2  
24  
MB3773  
FUJITSU LIMITED  
For further information please contact:  
Japan  
FUJITSU LIMITED  
Corporate Global Business Support Division  
Electronic Devices  
KAWASAKI PLANT, 4-1-1, Kamikodanaka  
Nakahara-ku, Kawasaki-shi  
Kanagawa 211-8588, Japan  
Tel: (044) 754-3763  
All Rights Reserved.  
The contents of this document are subject to change without  
notice. Customers are advised to consult with FUJITSU sales  
representatives before ordering.  
Fax: (044) 754-3329  
http://www.fujitsu.co.jp/  
The information and circuit diagrams in this document presented  
as examples of semiconductor device applications, and are not  
intended to be incorporated in devices for actual use. Also,  
FUJITSU is unable to assume responsibility for infringement of  
any patent rights or other rights of third parties arising from the  
use of this information or circuit diagrams.  
North and South America  
FUJITSU MICROELECTRONICS, INC.  
Semiconductor Division  
3545 North First Street  
San Jose, CA 95134-1804, USA  
Tel: (408) 922-9000  
Fax: (408) 922-9179  
FUJITSU semiconductor devices are intended for use in  
standard applications (computers, office automation and other  
office equipment, industrial, communications, and measurement  
equipment, personal or household devices, etc.).  
CAUTION:  
Customers considering the use of our products in special  
applications where failure or abnormal operation may directly  
affect human lives or cause physical injury or property damage,  
or where extremely high levels of reliability are demanded (such  
as aerospace systems, atomic energy controls, sea floor  
repeaters, vehicle operating controls, medical devices for life  
support, etc.) are requested to consult with FUJITSU sales  
representatives before such use. The company will not be  
responsible for damages arising from such use without prior  
approval.  
Customer Response Center  
Mon. - Fri.: 7 am - 5 pm (PST)  
Tel: (800) 866-8608  
Fax: (408) 922-9179  
http://www.fujitsumicro.com/  
Europe  
FUJITSU MIKROELEKTRONIK GmbH  
Am Siebenstein 6-10  
D-63303 Dreieich-Buchschlag  
Germany  
Tel: (06103) 690-0  
Fax: (06103) 690-122  
Any semiconductor devices have inherently a certain rate of  
failure. You must protect against injury, damage or loss from  
such failures by incorporating safety design measures into your  
facility and equipment such as redundancy, fire protection, and  
prevention of over-current levels and other abnormal operating  
conditions.  
http://www.fujitsu-ede.com/  
Asia Pacific  
FUJITSU MICROELECTRONICS ASIA PTE LTD  
#05-08, 151 Lorong Chuan  
New Tech Park  
Singapore 556741  
Tel: (65) 281-0770  
If any products described in this document represent goods or  
technologies subject to certain restrictions on export under the  
Foreign Exchange and Foreign Trade Control Law of Japan, the  
prior authorization by Japanese government should be required  
for export of those products from Japan.  
Fax: (65) 281-0220  
http://www.fmap.com.sg/  
F9803  
FUJITSU LIMITED Printed in Japan  
25  

相关型号:

MB3773-PF

1-CHANNEL POWER SUPPLY MANAGEMENT CKT, PDSO8, PLASTIC, SOP-8
CYPRESS

MB3773P

Power Supply Management Circuit, Fixed, 1 Channel, PDIP8, PLASTIC, DIP-8
CYPRESS

MB3773P

Power Supply Management Circuit, Fixed, 1 Channel, PDIP8, PLASTIC, DIP-8
SPANSION

MB3773P-E1

暂无描述
SPANSION

MB3773PF-G-BND-JN-ERE1

1-CHANNEL POWER SUPPLY MANAGEMENT CKT, PDSO8, 6.35 X 5.30 MM, 2.25 MM HEIGHT, 1.27 MM PITCH, ROHS COMPLIANT, PLASTIC, SOP-8
CYPRESS

MB3773PF-G-BND-JN-ERE1

Power Supply Management Circuit, Fixed, 1 Channel, BIPolar, PDSO8, 6.35 X 5.30 MM, 2.25 MM HEIGHT, 1.27 MM PITCH, ROHS COMPLIANT, PLASTIC, SOP-8
SPANSION

MB3773PF-G-BND-JN-ERE1

Power Supply Management Circuit, Fixed, 1 Channel, BIPolar, PDSO8, 6.35 X 5.30 MM, 2.25 MM HEIGHT, 1.27 MM PITCH, ROHS COMPLIANT, PLASTIC, SOP-8
FUJITSU

MB3773PF-XXXE1

Power Supply Management Circuit, Fixed, 1 Channel, BIPolar, PDSO8, 5.30 X 6.35 MM, 2.25 MM HEIGHT, 1.27 MM PITCH, ROHS COMPLIANT, PLASTIC, SOP-8
SPANSION

MB3773PS

1-CHANNEL POWER SUPPLY MANAGEMENT CKT, PSIP8, PLASTIC, SIP-8
FUJITSU

MB3773PS

1-CHANNEL POWER SUPPLY MANAGEMENT CKT, PSIP8, PLASTIC, SIP-8
SPANSION

MB3775

SWITCHING REGULATOR CONTROLLER
FUJITSU

MB3775M

Dual Switching Controller, Voltage-mode, 0.75A, 500kHz Switching Freq-Max, PDIP16, PLASTIC, DIP-16
FUJITSU