MB39A123PVK-XXXE1 [FUJITSU]

Dual Switching Controller, 0.4A, 2000kHz Switching Freq-Max, PBCC48, 7 X 7 MM, 0.80 MM HEIGHT, 0.50 MM PITCH, ROHS COMPLIANT, PLASTIC, BCC-48;
MB39A123PVK-XXXE1
型号: MB39A123PVK-XXXE1
厂家: FUJITSU    FUJITSU
描述:

Dual Switching Controller, 0.4A, 2000kHz Switching Freq-Max, PBCC48, 7 X 7 MM, 0.80 MM HEIGHT, 0.50 MM PITCH, ROHS COMPLIANT, PLASTIC, BCC-48

开关
文件: 总44页 (文件大小:433K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
FUJITSU MICROELECTRONICS  
DATA SHEET  
DS04-27257-2Ea  
ASSP For Power Supply Applications  
6 ch DC/DC Converter IC with  
Synchronous Rectification  
MB39A123  
DESCRIPTION  
MB39A123 is a 6-channel DC/DC converter IC using pulse width modulation (PWM) , and it is suitable for up  
conversion, down conversion, and up/down conversion. MB39A123 is built in 6 channels into BCC-48++/LQFP-  
48P package and this IC can control and soft-start at each channel. MB39A123 is suitable for power supply of  
high performance potable instruments such as a digital still camera (DSC).  
FEATURES  
• Supports for step-down with synchronous rectification (ch.1)  
• Supports for step-down and up/down Zeta conversion (ch.2 to ch.4)  
• Supports for step-up and up/down Sepic conversion (ch.5, ch.6)  
• Negative voltage output (Inverting amplifier) (ch.4)  
• Low voltage start-up (ch.5, ch.6) : 1.7 V  
• Power supply voltage range  
• Reference voltage  
: 2.5 V to 11 V  
: 2.0 V 1%  
• Error amplifier reference voltage : 1.0 V 1% (ch.1) , 1.23 V 1% (ch.2 to ch.6)  
• Oscillation frequency range  
: 200 kHz to 2.0 MHz  
• Standby current  
: 0 µA (Typ)  
• Built-in soft-start circuit independent of loads  
• Built-in totem-pole type output for MOS FET  
• Short-circuit detection capability by external signal (INS terminal)  
Two types of packages (BCC-48 pin : 1 type, LQFP-48 pin : 1 type)  
APPLICATIONS  
• Digital still camera(DSC)  
• Digital video camera(DVC)  
• Surveillance camera  
etc.  
Copyright©2006-2008 FUJITSU MICROELECTRONICS LIMITED All rights reserved  
2007.3  
MB39A123  
PIN ASSIGNMENTS  
(TOP VIEW)  
1
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
CTL  
2
3
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
CTL1  
CTL2  
CTL3  
CTL4  
CTL5  
CTL6  
INS  
VCCO  
OUT1-1  
4
OUT1-2  
OUT2  
OUT3  
OUT4  
OUT5  
OUT6  
GNDO  
CS6  
5
6
7
8
9
VREF  
GND  
10  
11  
12  
RT  
CT  
INE6  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
FB6  
(LCC-48P-M08)  
(Continued)  
2
MB39A123  
(Continued)  
(TOP VIEW)  
48 47 46 45 44 43 42 41 40 39 38 37  
1
2
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
CTL  
VCCO  
CTL1  
CTL2  
CTL3  
CTL4  
OUT1-1  
OUT1-2  
3
4
OUT2  
OUT3  
OUT4  
OUT5  
OUT6  
GNDO  
CS6  
5
6
CTL5  
CTL6  
INS  
VREF  
GND  
RT  
7
8
9
10  
11  
12  
INE6  
CT  
FB6  
13 14 15 16 17 18 19 20 21 22 23 24  
(FPT-48P-M26)  
3
MB39A123  
PIN DESCRIPTIONS  
Block  
name  
Pin No. Pin name I/O  
Description  
ch.1Error amplifier output terminal  
37  
38  
39  
FB1  
INE1  
CS1  
O
I
ch.1Error amplifier inverted input terminal  
ch.1Soft-start setting capacitor connection terminal  
ch.1  
ch.1P-ch drive output terminal  
(External main side FET gate driving)  
35  
34  
OUT1-1  
OUT1-2  
O
O
ch.1N-ch drive output terminal  
(External synchronous rectification side FET gate driving)  
43  
42  
41  
40  
33  
44  
45  
46  
47  
32  
14  
15  
16  
17  
31  
19  
18  
23  
22  
21  
20  
30  
24  
25  
26  
27  
29  
DTC2  
FB2  
I
O
I
ch.2 Dead time control terminal  
ch.2 Error amplifier output terminal  
ch.2 Error amplifier inverted input terminal  
ch.2 Soft-start setting capacitor connection terminal  
ch.2 P-ch drive output terminal  
ch.2  
ch.3  
INE2  
CS2  
O
I
OUT2  
DTC3  
FB3  
ch.3 Dead time control terminal  
O
I
ch.3 Error amplifier output terminal  
ch.3 Error amplifier inverted input terminal  
ch.3 Soft-start setting capacitor connection terminal  
ch.3 P-ch drive output terminal  
INE3  
CS3  
O
I
OUT3  
DTC4  
FB4  
ch.4 Dead time control terminal  
O
I
ch.4 Error amplifier output terminal  
ch.4 Error amplifier inverted input terminal  
ch.4 Soft-start setting capacitor connection terminal  
ch.4 P-ch drive output terminal  
INE4  
CS4  
ch.4  
O
I
OUT4  
INA  
OUTA  
DTC5  
FB5  
Inverting amplifier input terminal  
O
I
Inverting amplifier output terminal  
ch.5 Dead time control terminal  
O
I
ch.5 Error amplifier output terminal  
ch.5 Error amplifier inverted input terminal  
ch.5 Soft-start setting capacitor connection terminal  
ch.5 N-ch drive output terminal  
ch.5  
ch.6  
INE5  
CS5  
O
I
OUT5  
DTC6  
FB6  
ch.6 Dead time control terminal  
O
I
ch.6 Error amplifier output terminal  
ch.6 Error amplifier inverted input terminal  
ch.6 Soft-start setting capacitor connection terminal  
ch.6 N-ch drive output terminal  
INE6  
CS6  
O
OUT6  
(Continued)  
4
MB39A123  
(Continued)  
Block  
name  
Pin No. Pin name I/O  
Description  
12  
11  
1
CT  
RT  
I
Triangular wave frequency setting capacitor connection terminal  
Triangular wave frequency setting resistor connection terminal  
Power supply control terminal  
OSC  
CTL  
2
CTL1  
CTL2  
CTL3  
CTL4  
CTL5  
CTL6  
CSCP  
INS  
VCCO  
VCC  
I
ch.1 control terminal  
3
I
ch.2 control terminal  
4
I
ch.3 control terminal  
Control  
5
I
ch.4 control terminal  
6
I
ch.5 control terminal  
7
I
ch.6 control terminal  
13  
8
I
Short-circuit detection circuit capacitor connection terminal  
Short-circuit detection comparator inverted input terminal  
Drive output block power supply terminal  
Power supply terminal  
36  
48  
9
O
Power  
VREF  
GNDO  
GND  
Reference voltage output terminal  
Drive output block ground terminal  
Ground terminal  
28  
10  
5
MB39A123  
BLOCK DIAGRAM  
Step-down  
(Synchronous  
Rectification)  
A
L priority  
VCCO  
INE1  
<<ch.1>>  
Io = 300 mA  
at VCCO = 7 V  
Drive1-1  
P-ch  
Vo1  
(1.2 V)  
A
38  
39  
36  
35  
VREF  
Error  
Amp1  
1.1 µA  
PWM  
Comp.1  
CS1  
FB1  
+
+
OUT1-1  
+
(1.0 V)  
37  
Reference voltage  
1.0 V 1 %  
Drive1-2  
N-ch  
OUT1-2  
34  
Step-down  
Dead Time  
(td = 50 ns)  
Io = 300 mA  
B
at VCCO = 7 V  
L priority  
VREF  
Vo2  
(2.5 V)  
INE2  
<<ch.2>>  
41  
40  
B
C
D
L priority  
VREF  
Error  
Amp2  
Max Duty  
92 % 5 %  
±
PWM  
1.1 µA  
Comp.2  
CS2  
+
+
+
Drive2  
P-ch  
OUT2  
+
33  
1.23 V  
FB2  
42  
43  
Step-down  
Io = 300 mA  
at VCCO = 7 V  
Reference voltage  
1.23 V 1 %  
DTC2  
C
L priority  
VREF  
Vo3  
(3.3 V)  
INE3  
<<ch.3>>  
46  
47  
L priority  
PWM  
VREF  
Max Duty  
92 % 5 %  
Error  
Amp3  
±
1.1 µA  
Comp.3  
CS3  
+
+
Drive3  
P-ch  
+
OUT3  
+
32  
1.23 V  
FB3  
45  
44  
Io = 300 mA  
at VCCO = 7 V  
DTC3  
Reference voltage  
1.23 V 1 %  
INA  
<<ch.4>>  
19  
+
OUTA  
18  
INVAmp  
D
Inverting  
L priority  
VREF  
INE4  
Vo4  
(7.5 V)  
16  
L priority  
PWM  
VREF  
VREF  
VREF  
Error  
Amp4  
Max Duty  
92 % 5 %  
V
IN  
1.1 µA  
1.1 µA  
1.1 µA  
(5 V-11 V)  
Comp.4  
CS4  
+
+
Drive4  
P-ch  
17  
+
+
OUT4  
31  
1.23 V  
FB4  
15  
14  
Io = 300 mA  
at VCCO = 7 V  
Reference voltage  
1.23 V 1 %  
DTC4  
Step-up  
L priority  
VREF  
E
<<ch.5>>  
21  
20  
E
L priority  
PWM  
Max Duty  
92 % 5 %  
INE5  
Error  
Amp5  
Vo5  
(15 V)  
Comp.5  
CS5  
+
+
Drive5  
N-ch  
+
OUT5  
+
30  
1.23 V  
FB5  
22  
23  
Io = 300 mA  
at VCCO = 7 V  
Reference voltage  
1.23 V 1 %  
DTC5  
Transformer  
L priority  
VREF  
Vo6-1  
(15 V)  
Vo6-2  
(5.0 V)  
INE6  
<<ch.6>>  
26  
27  
F
L priority  
PWM  
Max Duty  
92 % 5 %  
Error  
Amp6  
Comp.6  
CS6  
+
+
Drive6  
N-ch  
+
+
OUT6  
29  
28  
1.23 V  
GNDO  
FB6  
25  
24  
Io = 300 mA  
at VCCO = 7 V  
Reference voltage  
1.23 V 1 %  
DTC6  
VREF  
SCP  
H:at SCP  
INS  
Comp.  
Short-circuit  
8
detection signal  
SCP  
+
(L: at short-circuit)  
1 V  
Charge current  
CSCP  
1 µA  
Error Amp power supply  
SCP Comp. power supply  
13  
H:UVLO release  
UVLO1  
0.9 V  
0.4 V  
VCC  
CTL  
48  
Error Amp  
reference  
1.0 V/1.23 V  
2
3
4
5
6
7
CTL1  
CTL2  
CTL3  
CTL4  
CTL5  
CTL6  
H:ON (Power ON)  
L:OFF(Standby mode)  
VTH = 1.0 V  
H:ON  
L:OFF  
VTH = 1.0 V  
bias  
Power  
ON/OFF  
CTL  
1
OSC  
VR  
VREF  
CHCTL  
UVLO2  
Precision  
0.8 %  
2.0 V  
11  
RT  
12  
9
10  
CT  
VREF  
Precision  
GND  
Precision 0.5 %  
(2.0 MHz)  
1 %  
<< 48 Pin >>  
PKG:BCC-48++  
:LQFP-48P  
6
MB39A123  
ABSOLUTE MAXIMUM RATINGS  
Rating  
Parameter  
Symbol  
Conditions  
Unit  
Min  
Max  
Power supply voltage  
Output current  
VCC  
IO  
VCC, VCCO terminals  
12  
V
OUT1-1, OUT1-2, OUT2 to OUT6  
terminals  
20  
mA  
OUT1-1, OUT1-2, OUT2 to OUT6  
terminals  
Duty 5%  
Peak output current  
IOP  
400  
mA  
Ta ≤ +25 °C (BCC-48++)  
Ta ≤ +25 °C (LQFP-48P)  
1670*  
2000*  
+125  
mW  
mW  
°C  
Power dissipation  
PD  
Storage temperature  
TSTG  
55  
* : When mounted on a 117 mm × 84 mm × 0.8 mm FR-4 boards.  
WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current,  
temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.  
7
MB39A123  
RECOMMENDED OPERATING CONDITIONS  
Value  
Typ  
Parameter  
Symbol  
Conditions  
Unit  
Min  
Max  
ch.5, ch.6, VCC, VCCO  
terminals  
Start power supply voltage  
VCC  
1.7  
11  
V
Power supply voltage  
VCC  
IREF  
VCC, VCCO terminals  
VREF terminal  
2.5  
1  
0
4
11  
0
V
mA  
V
Reference voltage output current  
INE1 to INE6 terminals  
INA terminal  
VCC 0.9  
VCC 1.8  
VREF  
VINE  
0.2  
0
V
Input voltage  
INS terminal  
V
VDTC  
VCTL  
DTC2 to DTC6 terminals  
0
VREF  
V
CTL, CTL1 to CTL6  
terminals  
Control input voltage  
Output current  
0
11  
V
OUT1-1, OUT1-2, OUT2 to  
OUT6 terminals  
IO  
15  
+15  
mA  
OUT1-1, OUT1-2, OUT2 to  
OUT6 terminals  
connection FET  
Total gate charge of external FET  
Qg  
2.6  
7.5  
nC  
fosc = 2 MHz  
Oscillation frequency  
Timing capacitor  
fOSC  
CT  
0.2  
27  
3.0  
1.0  
100  
6.8  
0.1  
0.1  
2.0  
680  
39  
MHz  
pF  
Timing resistor  
RT  
CS1 to CS6 terminals  
kΩ  
µF  
Soft-start capacitor  
Short-circuit detection capacitor  
CS  
1.0  
1.0  
CSCP  
µF  
Reference voltage output  
capacitor  
CREF  
Ta  
0.1  
1.0  
µF  
°C  
Operating ambient temperature  
30  
+25  
+85  
WARNING: The recommended operating conditions are required in order to ensure the normal operation of the  
semiconductor device. All of the device’s electrical characteristics are warranted when the device is  
operated within these ranges.  
Always use semiconductor devices within their recommended operating condition ranges. Operation  
outside these ranges may adversely affect reliability and could result in device failure.  
No warranty is made with respect to uses, operating conditions, or combinations not represented on  
the data sheet. Users considering application outside the listed conditions are advised to contact their  
representatives beforehand.  
8
MB39A123  
ELECTRICAL CHARACTERISTICS  
(VCC = VCCO = 4 V, Ta = +25 °C)  
Value  
Unit  
Parameter  
Symbol Pin No.  
Conditions  
VREF = 0 mA  
Min  
Typ  
Max  
VREF1  
VREF2  
VREF3  
Line  
9
9
9
9
9
1.98  
2.00  
2.02  
V
V
Output voltage  
VCC = 2.5 V to 11 V  
1.975 2.000 2.025  
1.975 2.000 2.025  
VREF = 0 mA to 1 mA  
VCC = 2.5 V to 11 V*  
VREF = 0 mA to 1 mA*  
V
Reference  
Voltage Block  
[VREF]  
Input stability  
Load stability  
2
2
mV  
mV  
Load  
Temperature  
stability  
VREF/  
9
9
Ta = 0 °C to +85 °C*  
VREF = 0 V*  
VCC =  
0.20  
130  
1.8  
%
mA  
V
VREF  
Short-circuit  
output current  
IOS  
Under voltage Threshold  
VTH1  
35  
1.7  
1.9  
lockout  
voltage  
protection  
circuit Block  
(ch.1 to ch.4)  
[UVLO1]  
Hysteresis  
width  
VH1  
VRST1  
VTH2  
35  
35  
30  
0.05  
1.55  
1.35  
0.1  
1.7  
1.5  
0.2  
V
V
V
Reset voltage  
VCC =  
1.85  
1.65  
Under voltage Threshold  
lockout  
VCC =  
voltage  
protection  
circuit Block  
(ch.5, ch.6)  
[UVLO2]  
Hysteresis  
width  
VH2  
VRST2  
VTH  
30  
30  
13  
0.02  
1.27  
0.65  
0.05  
1.45  
0.70  
0.1  
V
V
V
Reset voltage  
VCC =  
1.63  
0.75  
Threshold  
voltage  
Short-circuit  
detection Block  
[SCP]  
Input source  
current  
ICSCP  
fosc1  
fosc2  
13  
1.4  
0.95  
0.945  
1.0  
1.0  
1.0  
1.0  
0.6  
µA  
CT = 100 pF,  
RT = 6.8 kΩ  
29 to 35  
29 to 35  
29 to 35  
1.05 MHz  
1.055 MHz  
Oscillation  
frequency  
CT = 100 pF, RT = 6.8 kΩ  
VCC = 2.5 V to 11 V  
Triangular  
Wave Oscilla-  
tor Block  
Frequency  
Input stability  
fOSC/  
fOSC  
CT = 100 pF, RT = 6.8 kΩ  
VCC = 2.5 V to 11 V*  
%
%
[OSC]  
Frequency  
temperature  
stability  
fOSC/  
fOSC  
CT = 100 pF, RT = 6.8 kΩ  
Ta = 0 °C to +85 °C*  
29 to 35  
1.0  
Soft-Start Block  
(ch.1 to ch.6)  
[CS1 to CS6]  
Charge  
current  
17,20,27,  
39,40,47  
ICS  
CS1 to CS6 = 0 V  
1.45 1.1 0.75 µA  
(Continued)  
9
MB39A123  
(VCC = VCCO = 4 V, Ta = +25 °C)  
Value  
Unit  
Parameter  
Symbol Pin No.  
Conditions  
Min  
Typ Max  
VCC = 2.5 V to 11 V  
Ta = +25 °C  
VTH1  
VTH2  
38  
38  
38  
0.990 1.000 1.010  
0.988 1.000 1.012  
V
V
Reference  
voltage  
VCC = 2.5 V to 11 V  
Ta = 0 °C to +85 °C*  
Temperature  
stability  
VTH/  
VTH  
Ta = 0 °C to +85 °C*  
0.1  
%
Input bias  
current  
IB  
38  
37  
37  
INE1 = 0 V  
DC*  
120 30  
nA  
dB  
Error Amp Block  
(ch.1)  
[Error Amp1]  
Voltage gain  
AV  
100  
1.4  
Frequency  
bandwidth  
BW  
AV = 0 dB*  
MHz  
V
VOH  
VOL  
37  
37  
1.7  
1.9  
40  
Output  
voltage  
200 mV  
Output source  
current  
ISOURCE  
ISINK  
37  
37  
FB1 = 0.65 V  
FB1 = 0.65 V  
2  
1  
mA  
Output sink  
current  
150  
200  
µA  
16, 21,  
26, 41,  
46  
VCC = 2.5 V to 11 V  
Ta = +25 °C  
VTH3  
1.217 1.230 1.243  
1.215 1.230 1.245  
V
V
Reference  
voltage  
16, 21,  
26, 41,  
46  
VCC = 2.5 V to 11 V  
Ta = 0 °C to +85 °C*  
VTH4  
16, 21,  
Temperature  
stability  
VTH/  
VTH  
26, 41, Ta = 0 °C to +85 °C*  
46  
0.1  
%
16, 21,  
Input bias  
current  
IB  
26, 41, INE2 to INE6 = 0 V  
46  
120 30  
nA  
dB  
MHz  
V
Error Amp Block  
(ch.2 to ch.6)  
[Error Amp2 to  
Error Amp6]  
15, 22,  
25, 42, DC*  
45  
Voltage gain  
AV  
100  
1.4  
1.9  
40  
15, 22,  
25, 42, AV = 0 dB*  
45  
Frequency  
bandwidth  
BW  
VOH  
VOL  
15, 22,  
25, 42,  
45  
1.7  
Output  
voltage  
15, 22,  
25, 42,  
45  
200 mV  
(Continued)  
10  
MB39A123  
(VCC = VCCO = 4 V, Ta = +25 °C)  
Value  
Unit  
Parameter  
Output source  
Symbol Pin No.  
Conditions  
Min Typ Max  
15, 22,  
ISOURCE  
25, 42, FB2 to FB6 = 0.65 V  
45  
2  
1  
mA  
Error Amp Block  
(ch.2 to ch.6)  
[Error Amp2 to  
Error Amp6]  
current  
15, 22,  
Output sink  
current  
ISINK  
25, 42, FB2 to FB6 = 0.65 V  
45  
150 200  
µA  
Input offset  
voltage  
VIO  
18  
OUTA = 1.23V  
10  
0
+ 10 mV  
Input bias  
current  
IB  
19  
18  
18  
INA = 0V  
DC*  
120 30  
nA  
dB  
Voltage gain  
AV  
100  
1.0  
Frequency  
bandwidth  
Inverting Amp  
Block (ch.4)  
[Inv Amp]  
BW  
AV = 0 dB*  
MHz  
V
VOH  
VOL  
18  
18  
1.7  
1.9  
40  
Output  
voltage  
200 mV  
Output source  
current  
ISOURCE  
18  
18  
OUTA = 1.23V  
OUTA = 1.23V  
2  
1  
mA  
Output sink  
current  
ISINK  
VT0  
150 200  
µA  
PWM  
34, 35 Duty cycle = 0%  
0.35 0.4 0.45  
V
Comparator  
Block  
(ch.1)  
Threshold  
voltage  
VT100  
34, 35 Duty cycle = 100%  
0.85 0.9 0.95  
V
[PWM Comp.1]  
PWM  
Comparator  
Block  
VT0  
29 to 33 Duty cycle = 0%  
29 to 33 Duty cycle = 100%  
0.35 0.4 0.45  
0.85 0.9 0.95  
V
V
Threshold  
voltage  
VT100  
(ch.2 to ch.6)  
[PWM Comp.2 to  
PWM Comp.6]  
Maximumduty  
cycle  
CT = 100 pF,  
29 to 33  
Dtr  
87  
92  
97  
%
RT = 6.8 kΩ  
Output source  
current  
Duty 5%  
OUT = 0 V  
ISOURCE 29 to 35  
130 75 mA  
Output sink  
current  
Duty 5%  
OUT = 4 V  
ISINK  
29 to 35  
75  
130  
mA  
Output Block  
(ch.1 to ch.6)  
[Drive1 to Drive6]  
ROH  
ROL  
tD1  
29 to 35 OUT = − 15 mA  
29 to 35 OUT = 15 mA  
18  
18  
50  
50  
27  
27  
Output on  
resistor  
34, 35 OUT2  
34, 35 OUT1  
OUT1  
OUT2  
*
*
ns  
ns  
Dead time  
tD2  
(Continued)  
11  
MB39A123  
(Continued)  
(VCC = VCCO = 4 V, Ta = +25 °C)  
Value  
Unit  
Parameter  
Symbol Pin No.  
Conditions  
Min Typ Max  
Short-Circuit  
Detection  
Comparator  
Block  
Threshold  
voltage  
VTH  
35  
8
0.97 1.00 1.03  
V
Input bias  
current  
IB  
INS = 0 V  
25 20 17 µA  
[SCP Comp.]  
Output on  
condition  
VIH  
VIL  
1 to 7 CTL, CTL1 to CTL6  
1 to 7 CTL, CTL1 to CTL6  
1.5  
0
11  
V
V
Control Block  
(CTL,  
CTL1 to CTL6)  
[CTL, CHCTL]  
Output off  
condition  
0.5  
ICTLH  
ICTLL  
ICCS  
1 to 7 CTL, CTL1 to CTL6 = 3 V  
1 to 7 CTL, CTL1 to CTL6 = 0 V  
5
30  
0
60  
1
µA  
µA  
µA  
µA  
Input current  
48  
36  
CTL, CTL1 to CTL6 = 0 V  
CTL = 0 V  
2
Standby  
current  
ICCSO  
0
1
General  
Power supply  
current  
ICC  
48  
CTL = 3 V  
4.5  
6.8 mA  
* : Standard design value  
12  
MB39A123  
TYPICAL CHARACTERISTICS  
Power Supply Current vs.  
Power Supply Voltage  
Reference Voltage vs.  
Power Supply Voltage  
5
5
4
3
2
1
0
Ta = + 25 °C  
CTL = 3 V  
Ta = + 25 °C  
CTL = 3 V  
VREF = 0 mA  
4
3
2
1
0
0
2
4
6
8
10  
12  
0
2
4
6
8
10  
12  
Power Supply Voltage VCC (V)  
Power Supply Voltage VCC (V)  
Reference Voltage vs.  
Operating Ambient Temperature  
2.05  
2.04  
2.03  
2.02  
2.01  
2.00  
1.99  
1.98  
1.97  
1.96  
1.95  
VCC = 4 V  
CTL = 3 V  
VREF = 0 mA  
40  
20  
0
+20  
+40  
+60  
+80  
+100  
Operating Ambient Temperature Ta ( °C)  
Reference Voltage vs.  
CTL Terminal Voltage  
CTL Terminal Current vs.  
CTL Terminal Voltage  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
200  
150  
100  
50  
Ta = + 25 °C  
VCC = 4 V  
Ta = + 25 °C  
VCC = 4 V  
VREF = 0 mA  
0
0
2
4
6
8
10  
12  
0
2
4
6
8
10  
12  
CTL Terminal Voltage VCTL (V)  
CTL Terminal Voltage VCTL (V)  
(Continued)  
13  
MB39A123  
Triangular Wave Oscillation Frequency vs.  
Timing Resistor  
Triangular Wave Oscillation Frequency vs.  
Timing Capacity  
10000  
1000  
100  
10000  
Ta = + 25 °C  
VCC = 4 V  
CTL = 3 V  
Ta = + 25 °C  
VCC = 4 V  
CTL = 3 V  
1000  
100  
10  
CT = 27 pF  
RT = 3 kΩ  
CT = 100 pF  
CT = 680 pF CT = 220 pF  
RT = 6.8 kΩ  
RT = 39 kRT = 13 kΩ  
10  
1
10  
100  
1000  
10  
100  
1000  
10000  
Timing Resistor RT (k)  
Timing Capacity CT (pF)  
Triangular Wave Upper and Lower Limit Voltage  
vs. Triangular Wave Oscillation Frequency  
Triangular Wave Upper and Lower Limit Voltage  
vs. Operating Ambient Temperature  
1.20  
1.20  
Ta = + 25 °C  
VCC = 4 V  
1.10  
1.10  
1.00  
0.90  
0.80  
0.70  
0.60  
0.50  
0.40  
0.30  
0.20  
VCC = 4 V  
CTL = 3 V  
CTL = 3 V  
R = 6.8 kΩ  
T
T = 100 pF  
RT = 6.8 kΩ  
C
1.00  
Upper limit  
Upper limit  
0.90  
0.80  
0.70  
0.60  
0.50  
0.40  
Lower limit  
Lower limit  
0.30  
0.20  
0
200 400 600 800 1000 1200 1400 1600 1800 2000 2200  
40  
20  
0
+20  
+40  
+60  
+80  
+100  
Triangular Wave Oscillation Frequency fOSC (kHz)  
Operating Ambient Temperature Ta ( °C)  
Triangular Wave Oscillation Frequency  
vs. Operating Ambient Temperature  
1100  
VCC = 4 V  
1080  
1060  
1040  
1020  
1000  
980  
CTL = 3 V  
R
= 6.8 kΩ  
T = 100 pF  
C
T
960  
940  
920  
900  
40  
20  
0
+20  
+40  
+60  
+80  
+100  
Operating Ambient Temperature Ta ( °C)  
(Continued)  
14  
MB39A123  
ON Duty Cycle vs. DTC Terminal Voltage  
Maximum Duty Cycle vs. Oscillation Frequency  
100  
100  
Ta = + 25 °C  
VCC = 4 V  
Ta = + 25 °C  
VCC = CTL = 4 V  
FB = 2 V  
fosc = 200 kHz  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
CTL = 4 V  
95  
FB = 2 V  
CT = 100 pF  
DTC = Open  
fosc = 1 MHz  
90  
RT = 3 kΩ  
RT = 39 kΩ  
85  
RT = 13 kΩ  
fosc = 2 MHz  
RT = 6.8 kΩ  
80  
75  
70  
0
200 400 600 800 1000 1200 1400 1600 1800 2000 2200  
0.6  
0.65  
0.7  
0.75  
0.8  
0.85  
0.9  
DTC Terminal Voltage VDTC (V)  
Oscillation Frequency fOSC (kHz)  
Maximum Duty Cycle vs.  
Operating Ambient Temperature  
Maximum Duty Cycle vs. Power Supply Voltage  
100  
100  
fosc = 200 kHz  
fosc = 200 kHz  
95  
95  
90  
85  
80  
75  
70  
fosc = 1 MHz  
90  
fosc = 1 MHz  
fosc = 2 MHz  
Ta = + 25 °C  
VCC = CTL  
85  
80  
75  
70  
DTC pin open  
FB = 2 V  
fosc = 2 MHz  
CT = 100 pF  
Ta = + 25 °C  
VCC = CTL = 4 V  
DTC pin open  
FB = 2 V  
CT  
= 100 pF  
0
2
4
6
8
10  
12  
40  
20  
0
+20  
+40  
+60 +80  
+100  
Power Supply Voltage VCC (V)  
Operating Ambient Temperature Ta ( °C)  
Start Power Supply Voltage vs. Timing Resistor  
2
At evaluating Fujitsu EV board system  
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1
Ta = −30 °C  
Ta = + 25 °C  
VCTL = VCC  
CT = 100 pF  
1
10  
100  
Timing Resistor RT (k)  
(Continued)  
15  
MB39A123  
(Continued)  
Error Amp Voltage Gain, Phase vs. Frequency  
50  
40  
225  
180  
135  
90  
Ta = +25 °C  
VCC = 7 V  
Av  
2.0 V  
240 kΩ  
30  
φ
20  
10 kΩ  
+
1 µF  
10  
45  
37  
38  
0
0
2.4 kΩ  
IN  
36  
+
+
10  
20  
30  
40  
50  
45  
90  
135  
180  
225  
OUT  
Error Amp1  
the same as other  
channels  
10 kΩ  
1.5 V 1.0 V  
1 k  
10 k  
100 k  
1 M  
10 M  
Frequency f (Hz)  
Maximum Power Dissipation vs.  
Operating Ambient Temperature  
(for BCC-48++)  
Maximum Power Dissipation vs.  
Operating Ambient Temperature  
(for LQFP-48P)  
2250  
2250  
2000  
1800  
1600  
1400  
1200  
1000  
800  
2000  
1800  
1600  
1400  
1200  
1000  
800  
600  
600  
400  
400  
200  
200  
0
0
40  
20  
0
+20  
+40  
+60  
+80 +100  
40  
20  
0
+20  
+40  
+60  
+80 +100  
Operating Ambient Temperature Ta ( °C)  
Operating Ambient Temperature Ta ( °C)  
16  
MB39A123  
FUNCTIONAL DESCRIPTION  
1. DC/DC Converter Function  
(1) Reference voltage block (VREF)  
The reference voltage circuit uses the voltage supplied from VCC terminal (pin 48) to generate a temperature  
compensated reference voltage (2.0 V Typ) used as the reference voltage for the internal circuits of the IC. It is  
also possible to supply the load current of up to 1 mA to external circuits as a reference voltage through the  
VREF terminal (pin 9) .  
(2) Triangular wave oscillator block (OSC)  
The triangular wave oscillator block generates the triangular wave oscillation waveform width of 0.4 V lower limit  
and 0.5 V amplitude by the timing resistor (RT ) connected to the RT terminal (pin 11) , and the timing capacitor  
(CT) connected to the CT terminal (pin 12) . The triangular wave is input to the PWM comparator circuits on the IC.  
(3) Error amplifier block (Error Amp1 to Error Amp6)  
The error amplifier detects output voltage of the DC/DC converter and outputs PWM control signals. An arbitrary  
loop gain can be set by connecting a feedback resistor and capacitor from the output terminal to inverted input  
terminal of the error amplifier, enabling stable phase compensation for the system.  
You can prevent surge currents when the IC is turned on by connecting soft-start capacitors to the CS1 terminal  
(pin 39) to CS6 terminal (pin 27) which are the noninverting input terminals of the error amplifier. The IC is started  
up at constant soft-start time intervals independent of the output load of the DC/DC converter.  
(4) PWM comparator block (PWM Comp.1 to PWM Comp.6)  
The PWM comparator block is a voltage-pulse width converter that controls the output duty depending on the  
input/output voltage.  
An output transistor is turned on, during intervals when the error amplifier output voltage and DTC voltage (ch.2  
to ch.6) are higher than the triangular wave voltage.  
(5) Output block (Drive1 to Drive6)  
The output circuit uses a totem-pole configuration and is capable of driving an external P-ch MOS FET (main  
side of ch.1, ch.2, ch.3 and ch.4) and N-ch MOS FET (synchronous rectification side of ch.1, ch.5 and ch.6).  
17  
MB39A123  
2. Channel Control Function  
Use the CTL terminal (pin 1), CTL1 terminal (pin 2), CTL2 terminal (pin 3), CTL3 terminal (pin 4), CTL4 terminal  
(pin 5), CTL5 terminal (pin 6), and CTL6 terminal (pin 7) to set ON/OFF to the main and each channels.  
ON/OFF setting conditions for each channel  
CTL CTL1 CTL2 CTL3 CTL4 CTL5 CTL6 Power ch.1  
ch.2  
OFF  
OFF  
OFF  
ON  
ch.3  
OFF  
OFF  
OFF  
OFF  
ON  
ch.4  
OFF  
OFF  
OFF  
OFF  
OFF  
ON  
ch.5  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
ON  
ch.6  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
ON  
L
X
L
H
L
L
L
L
L
H
X
L
L
H
L
L
L
L
H
X
L
L
L
H
L
L
L
H
X
L
L
L
L
H
L
L
H
X
L
L
L
L
L
H
L
H
X
L
L
L
L
L
L
H
H
OFF  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
OFF  
OFF  
ON  
H
H
H
H
H
H
H
H
OFF  
OFF  
OFF  
OFF  
OFF  
ON  
OFF  
OFF  
OFF  
OFF  
ON  
OFF  
OFF  
OFF  
ON  
OFF  
OFF  
ON  
OFF  
ON  
ON  
Note : Note that current which is over standby current flows into VCC terminal when the CTL terminal is in “L” level  
and one of the terminals between CTL1 to CTL6 terminals is set to “H” level.  
(Refer to the following circuit)  
• CTL1 to CTL6 terminals equivalent circuit  
VCC  
48  
CTL1  
200 kΩ  
CTL6  
86 kΩ  
ESD  
protection  
element  
223 kΩ  
GND 10  
18  
MB39A123  
3. Protection Function  
(1) Timer-latch short-circuit protection circuit (SCP, SCP Comp.)  
The short-circuit detection comparator (SCP) detects the output voltage level of each channel. If the output  
voltage of any channel is lower than the short-circuit detection voltage, the timer circuit is actuated to start  
charging to the capacitor (Cscp) externally connected to the CSCP terminal (pin 13).  
When the capacitor (Cscp) voltage becomes about 0.7 V, the output transistor is turned off and the dead time  
is set to 100%.  
The short-circuit detection from external input is capable by using INS terminal (pin 8) on short-circuit detection  
comparator (SCP Comp.) .  
When the protection circuit is actuated, the power supply is rebooted or the CTL terminal (pin 1) is set to "L"  
level, resetting the latch as the voltage at the VREF terminal (pin 9) becomes 1.27 V (Min) or less (Refer to  
SETTING THE TIME CONSTANT FOR TIMER-LATCH SHORT-CIRCUIT PROTECTION CIRCUIT”) .  
(2) Under voltage lockout protection circuit block (UVLO)  
The transient state or a momentary decrease in the power supply voltage, which occurs when the power supply  
is turned on, may cause the control IC to malfunction, resulting in the breakdown or degradation of the system.  
To prevent such malfunctions, under voltage lockout protection circuit detects a decrease in internal reference  
voltage level with respect to the power supply voltage, turns off the output transistor, and sets the dead time to  
100% while holding the CSCP terminal (pin 13) at the "L" level.  
The system returns to the normal state when the power supply voltage reaches the reference voltage of the  
under voltage lockout protection circuit.  
(3) Protection circuit operating function table  
The following table shows the output state that the protection circuit is operating.  
Operation circuit  
OUT1-1 OUT1-2 OUT2  
OUT3  
OUT4  
OUT5  
OUT6  
Short-circuit protection circuit  
H
H
L
L
H
H
H
H
H
H
L
L
L
L
Under voltage lockout protection circuit  
19  
MB39A123  
SETTING THE OUTPUT VOLTAGE  
• ch.1  
R3  
Vo  
R1  
R2  
Error  
Amp  
38  
39  
37  
INE1  
1.00 V  
R2  
+
+
VO =  
(R1 + R2)  
FB1  
1.00 V  
VO  
(R1 + R3) ≥  
100 µA  
CS1  
Set R1 and R3 to prevent the error amp’s response from decreasing by using above formula.  
• ch.2 to ch.6  
R3  
Vo  
R1  
R2  
Error  
Amp  
INEX  
+
+
1.23 V  
R2  
VO =  
(R1 + R2)  
FBX  
1.23 V  
VO  
(R1 + R3) ≥  
100 µA  
CSX  
X : Each channel number  
Set R1 and R3 to prevent the error amp’s response from decreasing by using above formula.  
20  
MB39A123  
• ch.4 (Negative voltage output)  
Vo  
R1  
INA  
INVAmp  
+
19  
1.23 V  
Vo =  
R1  
R2  
R2  
R3  
OUTA  
FB4  
18  
15  
Error  
Amp  
R4  
16  
17  
INE4  
+
+
1.23 V  
CS4  
21  
MB39A123  
SETTING THE TRIANGULAR WAVE OSCILLATION FREQUENCY  
The triangular wave oscillation frequency can be set by connecting a timing resistor (RT ) to the RT terminal (pin  
11) and a timing capacitor (CT) to the CT terminal (pin 12).  
Triangular wave oscillation frequency : fOSC  
680000  
fOSC (kHz) =:  
CT (pF) × RT (k)  
22  
MB39A123  
SETTING THE SOFT-START TIME  
To prevent rush currents when the IC is turned on, you can set a soft-start by connecting soft-start capacitors  
(CS1 to CS6) to the CS1 terminal (pin 39) to CS6 terminal (pin 27) respectively.  
As illustrated below, when each CTLX is set to “H” from “L”, the soft-start capacitors (CS1 to CS6) externally  
connected to the CS1 to CS6 terminals are charged at about 1.1 µA.  
The error amplifier output (FB1 to FB6) is determined by comparison between the lower voltage of the two non-  
inverted input terminal voltage (1.23 V (ch.1 : 1.0 V) , CS terminal voltage) and the inverted input terminal voltage  
(INE1 to INE6) . The FB terminal voltage is decided for the soft-start period (CS terminal voltage < 1.23 V  
(ch.1 : 1.0 V) ) by the comparison between INE terminal voltage and CS terminal voltage. The DC/DC converter  
output voltage rises in proportion to the CS terminal voltage as the soft-start capacitor externally connected to  
the CS terminal is charged. The soft-start time is obtained from the following formula :  
Soft-start time : ts (time until output voltage 100%)  
ch.1  
: ts (s) =: 0.91 × CS1 (µF)  
ch.2 to ch.6 : ts (s) =: 1.12 × CSX (µF)  
X : Each channel number  
Vo  
R1  
INEX  
VREF  
R2  
L priority  
1.1 µA  
Error  
AmpX  
CSX  
+
+
CSX  
1.23 V (ch.1 : 1.0 V)  
FBX  
H : CSX can be charged when CTLX is set to "H" and  
normal operation is selected  
L : CSX is discharged when CTLX is set to "L" and  
protective operation is selected  
CTLX  
CHCTL  
X : Each channel number  
23  
MB39A123  
PROCESSING WHEN NOT USING CS TERMINAL  
When soft-start function is not used, leave the CS1 terminal (pin 39), the CS2 terminal (pin 40), the CS3 terminal  
(pin 47), the CS4 terminal (pin 17), the CS5 terminal (pin 20) and the CS6 terminal (pin 27) open.  
• When not setting soft-start time  
“Open”  
“Open”  
27  
39 CS1  
CS6  
“Open”  
“Open”  
“Open”  
“Open”  
40  
47  
20  
17  
CS2  
CS3  
CS5  
CS4  
24  
MB39A123  
SETTING THE TIME CONSTANT FOR TIMER-LATCH SHORT-CIRCUIT PROTECTION  
CIRCUIT  
Each channel uses the short-circuit detection comparator (SCP) to always compare the error amplifier’s output  
level to the reference voltage.  
While DC/DC converter load conditions are stable on all channels, the short-circuit detection comparator output  
remains at “L” level, and the CSCP terminal (pin 13) is held at “L” level.  
If the load condition on a channel changes rapidly due to a short-circuit of the load, causing the output voltage  
to drop, the output of the short-circuit detection comparator on that channel goes to “H” level.  
This causes the external short-circuit protection capacitor CSCP connected to the CSCP terminal (pin 13) to be  
charged at 1 µA.  
Short-circuit detection time : tCSCP  
tCSCP (s) =: 0.70 × CSCP (µF)  
When the capacitor CSCP is charged to the threshold voltage (VTH =: 0.70 V) , the latch is set to and the external  
FET is turned off (dead time is set to 100%) . At this time, the latch input is closed and CSCP terminal (pin 13)  
is held at “L” level.  
The short-circuit detection from external input is capable by using INS terminal (pin 8) . In this case, the short-  
circuit detection operates when the INS terminal voltage becomes the level of the threshold voltage (VTH =: IV)  
or less.  
Note that the latch is reset as the voltage at the VREF terminal (pin 9) is decreased to 1.27 V (Min) or less by  
either recycling the power supply or setting the CTL terminal (pin 1) to “L” level.  
25  
MB39A123  
• Timer-latch short-circuit protection circuit  
Vo  
FBX  
R1  
Error  
AmpX  
+
INEX  
R2  
1.23 V (ch.1 : 1.0 V)  
SCP  
+
+
Comp.  
1.1 V  
1 µA  
To each  
channel drive  
CSCP  
13  
CTL  
R
VREF  
UVLO  
CTL  
CSCP  
S
Latch  
X : Each channel  
number  
26  
MB39A123  
PROCESSING WHEN NOT USING CSCP TERMINAL  
To disable the timer-latch short-circuit protection circuit, connect the CSCP terminal (pin 13) to GND in the  
shortest distance.  
• Processing when not using the CSCP terminal  
13  
10 GND  
CSCP  
27  
MB39A123  
SETTING THE DEAD TIME (ch.2 to ch.6)  
When the device is set for step-up or inverted output based on the step-up, step-up/down Zeta method, step up/  
down Sepic method, or flyback method, the FB terminal voltage may reach and exceed the triangular wave  
voltage due to load fluctuation. If this is the case, the output transistor is fixed to a full-ON state (ON duty =  
100%). To prevent this, set the maximum duty of the output transistor.  
When the DTC terminal is opened, the maximum duty is 92% (Typ) because of this IC built-in resistor which  
sets the DTC terminal voltage. This is based on the following setting: 1MHz (RT = 6.8k/CT = 100pF).  
To disable the DTC terminal, connect it to the VREF terminal (pin 9) as illustrated below (when dead time is not  
set).  
When dead time is set:  
(Setting with built-in resistor:  
1MHz [RT = 6.8k/CT = 100pF]=: 92%)  
When dead time is not set:  
9
VREF  
DTCX  
“Open”  
DTCX  
X : ch.2 to ch.6  
X : ch.2 to ch.6  
To change the maximum duty using external resistors, set the DTC terminal voltage by dividing resistance using  
the VREF voltage. Refer to “When dead time is set : (Setting by external resistors)”.  
It is possible to set without regard for the built-in resistance value (including tolerance) when setting the external  
resistance value to 1/10 of the built-in resistance or less.  
Note that the VREF load current must be set such that the total current for all the channels does not exceed 1 mA.  
When the DTC terminal voltage is higher than the triangular wave voltage, the output transistor is turned on.  
The formula for calculating the maximum duty is as follows, assuming that the triangular wave amplitude and  
triangular wave lower limit voltage are about 0.5 V and 0.4 V, respectively.  
Vdt 0.4 V  
DUTY (ON) Max =:  
× 100 (%)  
0.5 V  
Rb  
Vdt =  
R1  
10  
R2  
10  
× VREF (V) (condition : Ra <  
, Rb <  
)
Ra + Rb  
Note : DUTY obtained by the above-mentioned formula is a calculated value. For setting, refer to “ON Duty cycle  
vs. DTC terminal voltage”.  
The maximum duty varies depending on the oscillation frequency, regardless of settings in built-in or external  
resistors.  
(This is due to the dependency of the peak value of a triangular wave on the oscillation frequency and RT.  
Therefore, if RT is greater, the maximum duty decreases, even when the same frequency is used.)  
28  
MB39A123  
Furthermore, the maximum duty increases when the power supply voltage and the temperature are high. It is  
therefore recommended to set the duty, based on the “TYPICAL CHARACTERISTICS” data, so that it does  
not exceed 95% under the worst conditions.  
ON duty cycle vs. DTC terminal voltage  
100  
Ta = + 25 °C  
fosc = 200 kHz  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
VCC = CTL = 4 V  
FB = 2 V  
CT = 100 pF  
fosc = 1 MHz  
Calculated value  
fosc = 1 MHz  
fosc = 2 MHz  
0.6  
0.65  
0.7  
0.75  
0.8  
0.85  
0.9  
DTC terminal voltage VDTC (V)  
When dead time is set  
(Setting by external resistors)  
VREF  
9
Ra  
R1 : 131.9 kΩ  
DTCX  
GND  
To PWM Comp.X  
Vdt  
Rb  
R2 : 97.5 kΩ  
10  
X: ch.2 to ch.6  
29  
MB39A123  
Setting example (for an aim maximum ON duty of 80% (Vdt = 0.8 V) with Ra = 13.7 kand Rb = 9.1 k)  
Calculation using external resistors Ra and Rb only  
Rb  
Vdt =  
× VREF =: 0.80 V  
Vdt 0.4 V  
Ra + Rb  
DUTY (ON) Max=:  
× 100 (%) =: 80% ⋅ ⋅ ⋅ ⋅ (1)  
0.5 V  
Calculation taking account of the built-in resistor (tolerance 20%) also  
(Rb, R2 Combined resistance)  
Vdt =  
× VREF =: 0.80 V 0.13%  
(Ra, R1 Combined resistance) + (Rb, R2 Combined resistance)  
Vdt 0.4 V  
DUTY (ON) Max =:  
× 100 (%) =: 80% 0.2% ⋅ ⋅ ⋅ ⋅ (2)  
0.5 V  
Based on (1) and (2) above, selecting external resistances to 1/10th or less of the built-in resistance enables  
the built-in resistance to be ignored.  
As for the duty dispersion, please expect 5% at (fosc = 1 MHz) due to the dispersion of a triangular wave  
amplitude.  
PROCESSING WHEN NOT USING ch.4 INV AMP  
Short-circuit the - INA terminal (pin 19) and OUTA terminal (pin 18) in the shortest distance when not using ch.4  
INV Amp.  
When not using ch.4 INV Amp  
19  
18 OUTA  
INA  
30  
MB39A123  
OPERATION EXPLANATION WHEN CTL TURNING ON AND OFF  
When CTL is turned on, internal reference voltage VR and VREF generate. When VREF exceeds each threshold  
voltage (VTH) of UVLO (under voltage lockout protection circuit) , UVLO is released, and the operation of output  
drive circuit of each channel becomes possible.  
When CTL is off, the CS and CSCP terminals are always set to "L" as soon as output drive circuit of each channel  
is fixed to full off even if UVLO is released. When VR and VREF fall and VREF decreases the threshold voltage  
(VRST) of UVLO (under voltage lockout protection circuit), output drive circuit becomes the UVLO state.  
• CTL block equivalent circuit  
SCP  
ch.1 to ch.4  
To output drive circuit  
H : at SCP  
H : Possible to operate  
L : Forced stop  
UVLO1  
CS1 to CS4  
To SCP circuit  
To charge/discharge circuit  
H : Possible to charge  
L : Forced discharge  
H : UVLO release  
H : Possible to  
operate SCP  
L : CSCP  
ch.5, ch.6  
terminal low  
To output drive circuit  
H : Possible to operate  
L : Forced stop  
UVLO2  
CS5, CS6  
H : UVLO release  
To charge/discharge circuit  
H : Possible to charge  
L : Forced discharge  
Error Amp reference  
1.0 V/1.23 V  
48  
1
VCC  
CTL  
bias  
Power  
ON/OFF  
CTL  
VREF  
VR  
9
VREF  
31  
MB39A123  
Operation waveform when CTL turning on and off  
2  
1  
H
CTL  
L
1.23 V  
VR  
0 V  
2 V  
VTH1  
VTH2  
VRST1  
VRST2  
VREF  
0 V  
H
UVLO1  
UVLO2  
UVLO state  
L
UVLO release  
UVLO state  
UVLO state  
H
UVLO state  
L
UVLO release  
H
ch.1 to ch.4  
Output Drive  
circuit control  
Fixed full off  
L
Fixed full off  
Possible operate  
H
ch.5, ch.6  
Output Drive  
circuit control  
Fixed full off  
L
Fixed full off  
Possible operate  
*1 : Asshowninthesequenceontheabovefigure, whenturningoffCTLwhileeachCHCTListurnedon, intermission  
state may be generated due to noise around the CTL threshold voltage. To prevent this, it is recommended  
to turn off CTL with a slope of - 1 V/50 µs or higher so that the CTL voltage does not remain in the specified  
threshold voltage range (0.5 V to 1.5 V) . If the above slope setting is difficult to achieve, it is recommended  
to turn off CTL after turning off all CHCTLs.  
Moreover, a voltage remains in the FB terminal, when VCC is turned off at the same time as CTL and CHCTL,  
or when VCC is turned off at the same time as CTL while each CHCTL is still turned on. As this may lead to  
an overshoot upon restart, it is recommended to turn off VIN and CTL after turning off all the CHCTLs to reduce  
FB to 0V.  
Likewise, it is recommended to turn off CHCTL with a slope of - 1 V/50 µs or higher.  
*2 : When CTL and CHCTL are turned on at the same time, or when CTL is turned on while each CHCTL is turned  
on, there exists a period (approx. 200 ns) when the error Amp output voltage (FB) is higher than the triangular  
wave voltage (CT) upon the startup of VREF. As a result, when UVLO is released and then the Output Drive  
circuit of each channel becomes operable, the output transistor is turned on, generating a voltage at the DC/  
DC converter output.  
Thevoltagetobegenerated(Vop)dependsonL, CoandVIN. (See  
at CHCTL ON.)  
Vocharacteristics(Vop)whenturningonCTL  
It should be noted that the above event does not occur when CTL is turned on while CHCTL is turned off.  
Therefore, it is recommended to turn on each CHCTL after turning on CTL.  
32  
MB39A123  
Vo characteristics (Vop) when turning on CTL at CHCTL ON  
At evaluating Fujitsu EV board system  
Step-down operation  
VIN = 7.2 V  
10  
CTL[V]  
Vo = 5 V  
5
0
CS[V]  
CTTLL  
L = 15 µH  
2
3
2
1
0
Co = 2.2 µF  
Load = 50 Ω  
CHCTL = ON  
CSS  
Vo[V]  
5
4
3
Vo  
Generated voltage  
Vop=: 0.4 V  
L
VD  
Voo  
2
1
IL  
0
Co  
1
D
t[ms]  
2
4
6
8
10 12 14 16 18 20  
0
TON  
Generated output voltage - Output capacitor value  
600  
At evaluating Fujitsu EV board system  
VD  
VIN  
500  
Ta = + 25 °C  
VCC = CTL = 7.2 V  
When no load is  
applied  
400  
300  
200  
100  
0
IL  
Ip = VIN / L × TON  
Ip  
L = 6.8 µH  
L = 68 µH  
This energy Q  
moves to Co  
Vo  
Vop  
1
10  
100  
Vop = Q / Co  
Output capacitor value Co (µF)  
33  
MB39A123  
ABOUT THE LOW VOLTAGE OPERATION  
1.7 V or more is necessary for the VCC terminal (pin 48) and the VCCO terminal (pin 36) for the self-power  
supply type to use the step-up circuit as the start voltage.  
Even if thereafter VIN voltage decreases to 1.5 V, operation is possible if the VCC terminal (pin 48) voltage and  
the VCCO terminal (pin 36) voltage rise to 2.5 V or more after start-up. However, it is necessary not to exceed  
the maximum duty set value by the duty due to the VIN decrease. Including other channels, execute an enough  
operation margin confirmation when using it.  
VIN  
A
Step-up  
A
<<ch.5>>  
VREF  
R1  
R2  
VCCO  
36  
Error  
Amp5  
Vo5  
(5 V)  
PWM  
Comp.5  
+
21  
INE5  
Drive5  
N-ch  
+
+
OUT5  
+
30  
1.23 V  
CS5  
20  
0.9 V  
0.4 V  
Max Duty  
92% 5%  
VCC  
48  
DTC5  
23  
34  
MB39A123  
I/O EQUIVALENT CIRCUIT  
Control block (CTL, CTL1 to CTL6)  
Reference voltage block  
VCC  
48  
VCC  
ESD  
protection  
element  
+
1.23 V  
CTLX  
VREF  
9
86 kΩ  
ESD  
79 kΩ  
protection  
element  
ESD  
protection  
element  
223 kΩ  
124 kΩ  
GND  
10  
GND  
Soft-start block  
Short-circuit detection block  
Short-circuit detection  
comparator block  
VCC  
VREF  
(2.0 V)  
VCC  
CSX  
100 kΩ  
VREF  
(2.0 V)  
VREF  
VCC  
(2.0 V)  
INS  
8
(1 V)  
2 kΩ  
13  
CSCP  
GND  
GND  
GND  
Triangular wave oscillator block (CT)  
Triangular wave oscillator block (RT)  
VREF  
(2.0 V)  
VCC  
VREF  
(2.0 V)  
VCC  
+
0.64 V  
12  
CT  
11  
RT  
GND  
GND  
Error amplifier block (ch.1 to ch.6)  
VCC  
VREF  
(2.0 V)  
CSX  
INEX  
FBX  
1.0 V (ch.1)  
1.23 V (ch.2 to ch.6)  
GND  
X : Each channel number  
(Continued)  
35  
MB39A123  
(Continued)  
Inverting amplifier block  
VCC  
VREF  
(2.0 V)  
OUTA  
18  
19  
INA  
GND  
PWM comparator block  
Output block  
VCC  
36  
VCCO  
VREF  
131.9 kΩ  
97.5 kΩ  
(2.0 V)  
FB2 to FB6  
DTCX  
CT  
OUTX  
28  
GNDO  
GND  
X : Each channel number  
36  
MB39A123  
LAND MASK PATTERN (BCC-48++)  
7 . 1 0  
6 . 7 5  
0 . 7 0  
7 . 2 0  
0 8 6 .  
0 . 7 0  
37  
MB39A123  
USAGE PRECAUTIONS  
Printed circuit board ground lines should be set up with consideration for common impedance.  
Take appropriate static electricity measures.  
• Containers for semiconductor materials should have anti-static protection or be made of conductive material.  
• After mounting, printed circuit boards should be stored and shipped in conductive bags or containers.  
• Work platforms, tools, and instruments should be properly grounded.  
• Working personnel should be grounded with resistance of 250 kto 1 Mbetween body and ground.  
Do not apply a negative voltages.  
• The use of negative voltages below 0.3 V may create parasitic transistors on LSI lines, which can cause  
abnormal operation.  
ORDERING INFORMATION  
Part number  
Package  
Remarks  
48-pin plastic LQFP  
(FPT-48P- M26)  
MB39A123PMT-❏❏❏E1  
Lead Free version  
48-pin plastic BCC  
(LCC-48P-M08)  
MB39A123PVK-❏❏❏E1  
Lead Free version  
EV BOARD ORDERING INFORMATION  
EV board part No.  
MB39A123EVB-02  
EV board version No.  
Board Rev.1.0  
Remarks  
LQFP-48P  
RoHS COMPLIANCE INFORMATION OF LEAD (Pb) FREE VERSION  
The LSI products of Fujitsu Microelectronics with “E1” are compliant with RoHS Directive , and has observed  
the standard of lead, cadmium, mercury, Hexavalent chromium, polybrominated biphenyls (PBB) , and polybro-  
minated diphenyl ethers (PBDE) .  
The product that conforms to this standard is added “E1” at the end of the part number.  
38  
MB39A123  
MARKING FORMAT (LEAD FREE VERSION)  
MB39A123  
XXXX XXX  
E1  
INDEX  
LQFP-48P  
(FPT-48P-M26)  
Lead Free version  
JAPAN  
MB39A123  
XXXX XXX  
E1  
INDEX  
BCC-48++  
(LCC-48P-M08)  
Lead Free version  
39  
MB39A123  
LABELING SAMPLE (LEAD FREE VERSION)  
Lead-free mark  
JEITA logo  
JEDEC logo  
MB123456P - 789 - GE1  
(3N) 1MB123456P-789-GE1 1000  
G
Pb  
(3N)2 1561190005 107210  
QC PASS  
PCS  
1,000  
MB123456P - 789 - GE1  
ASSEMBLED IN JAPAN  
2006/03/01  
MB123456P - 789 - GE1  
1/1  
1561190005  
0605 - Z01A 1000  
Lead Free version  
40  
MB39A123  
MB39A123PMT-❏❏❏E1, MB39A123PVK-❏❏❏E1  
RECOMMENDED CONDITIONS OF MOISTURE SENSITIVITY LEVEL  
Item  
Condition  
Mounting Method  
Mounting times  
IR (infrared reflow) , Manual soldering (partial heating method)  
2 times  
Please use it within two years after  
Before opening  
Manufacture.  
From opening to the 2nd  
Less than 8 days  
reflow  
Storage period  
When the storage period after  
opening was exceeded  
Please processes within 8 days  
after baking (125 °C, 24H)  
Storage conditions  
5 °C to 30 °C, 70%RH or less (the lowest possible humidity)  
[Temperature Profile for FJ Standard IR Reflow]  
(1) IR (infrared reflow)  
H rank : 260 °C Max  
260 °C  
255 °C  
170 °C  
to  
190 °C  
(b)  
(c)  
(d)  
(e)  
RT  
(a)  
(d')  
(a) Temperature Increase gradient : Average 1 °C/s to 4 °C/s  
(b) Preliminary heating : Temperature 170 °C to 190 °C, 60 s to 180 s  
(c) Temperature Increase gradient : Average 1 °C/s to 4 °C/s  
(d) Actual heating  
: Temperature 260 °C Max; 255 °C or more, 10 s or less  
(d’)  
: Temperature 230 °C or more, 40 s or less  
or  
Temperature 225 °C or more, 60 s or less  
or  
Temperature 220 °C or more, 80 s or less  
(e) Cooling  
: Natural cooling or forced cooling  
Note : Temperature : the top of the package body  
(2) Manual soldering (partial heating method)  
Conditions : Temperature 400 °C Max  
Times  
: 5 s max/pin  
41  
MB39A123  
PACKAGE DIMENSIONS  
48-pin plastic BCC  
Lead pitch  
0.50 mm  
7.00 mm × 7.00 mm  
Plastic mold  
0.80 mm Max  
0.07 g  
Package width ×  
package length  
Sealing method  
Mounting height  
Weight  
(LCC-48P-M08)  
48-pin plastic BCC  
(LCC-48P-M08)  
6.20(.244)TYP  
6.10(.240)TYP  
0.50±0.10  
(.020±.004)  
0.80(.031)MAX  
Mount height  
7.00±0.10(.276±.004)  
37  
25  
0.50(.020)  
TYP  
25  
37  
0.50(.020)  
TYP  
5.00±0.06  
(.197±.002)  
6.20(.244)  
TYP  
0.14(.006)  
MIN  
6.25(.246)  
REF  
4.60(.181)  
6.10(.240)  
TYP  
7.00±0.10  
5.00(.197)  
(.276±.004)  
INDEX AREA  
REF  
4.60(.181)  
0.09(.004)  
MIN  
0.50±0.10  
(.020±.004)  
5.00±0.06  
(.197±.002)  
13  
1
"B"  
"C"  
"A"  
1
13  
5.00(.197)REF  
6.25(.246)REF  
0.075±0.025  
(.003±.001)  
(Stand off)  
Details of "A" part  
Details of "B" part  
0.55±0.06  
Details of "C" part  
C0.20(.008)  
0.14(.006)  
MIN  
0.70±0.06  
(.028±.002)  
0.55±0.06  
(.022±.002)  
(.022±.002)  
0.05(.002)  
0.55±0.06  
(.022±.002)  
0.60±0.06  
(.024±.002)  
0.55±0.06  
(.022±.002)  
0.30±0.06  
(.012±.002)  
Dimensions in mm (inches).  
Note: The values in parentheses are reference values.  
C
2004 FUJITSU LIMITED C48061S-c-1-1  
(Continued)  
42  
MB39A123  
(Continued)  
48-pin plastic LQFP  
Lead pitch  
0.50 mm  
7 × 7 mm  
Package width ×  
package length  
Lead shape  
Sealing method  
Mounting height  
Weight  
Gullwing  
Plastic mold  
1.70 mm MAX  
0.17 g  
Code  
(Reference)  
P-LFQFP48-7×7-0.50  
(FPT-48P-M26)  
48-pin plastic LQFP  
(FPT-48P-M26)  
Note 1) * : These dimensions include resin protrusion.  
Note 2) Pins width and pins thickness include plating thickness.  
Note 3) Pins width do not include tie bar cutting remainder.  
9.00±0.20(.354±.008)SQ  
+0.40  
7.00 –0.10 .276 +..000146 SQ  
0.145±0.055  
(.006±.002)  
*
36  
25  
37  
24  
Details of "A" part  
0.08(.003)  
1.50 +00..1200  
.059 +..000048  
(Mounting height)  
INDEX  
48  
13  
0.10±0.10  
(.004±.004)  
(Stand off)  
"A"  
0˚~8˚  
1
12  
LEAD No.  
0.50(.020)  
0.25(.010)  
0.20±0.05  
M
0.08(.003)  
(.008±.002)  
0.60±0.15  
(.024±.006)  
Dimensions in mm (inches).  
Note: The values in parentheses are reference values.  
C
2003 FUJITSU LIMITED F48040S-c-2-2  
43  
FUJITSU MICROELECTRONICS LIMITED  
Shinjuku Dai-Ichi Seimei Bldg. 7-1, Nishishinjuku 2-chome, Shinjuku-ku,  
Tokyo 163-0722, Japan  
Tel: +81-3-5322-3347 Fax: +81-3-5322-3387  
http://jp.fujitsu.com/fml/en/  
For further information please contact:  
North and South America  
Asia Pacific  
FUJITSU MICROELECTRONICS AMERICA, INC.  
1250 E. Arques Avenue, M/S 333  
Sunnyvale, CA 94085-5401, U.S.A.  
Tel: +1-408-737-5600 Fax: +1-408-737-5999  
http://www.fma.fujitsu.com/  
FUJITSU MICROELECTRONICS ASIA PTE LTD.  
151 Lorong Chuan, #05-08 New Tech Park,  
Singapore 556741  
Tel: +65-6281-0770 Fax: +65-6281-0220  
http://www.fujitsu.com/sg/services/micro/semiconductor/  
Europe  
FUJITSU MICROELECTRONICS SHANGHAI CO., LTD.  
Rm.3102, Bund Center, No.222 Yan An Road(E),  
Shanghai 200002, China  
FUJITSU MICROELECTRONICS EUROPE GmbH  
Pittlerstrasse 47, 63225 Langen,  
Germany  
Tel: +86-21-6335-1560 Fax: +86-21-6335-1605  
http://cn.fujitsu.com/fmc/  
Tel: +49-6103-690-0 Fax: +49-6103-690-122  
http://emea.fujitsu.com/microelectronics/  
FUJITSU MICROELECTRONICS PACIFIC ASIA LTD.  
10/F., World Commerce Centre, 11 Canton Road  
Tsimshatsui, Kowloon  
Korea  
FUJITSU MICROELECTRONICS KOREA LTD.  
206 KOSMO TOWER, 1002 Daechi-Dong,  
Kangnam-Gu,Seoul 135-280  
Korea  
Hong Kong  
Tel: +852-2377-0226 Fax: +852-2376-3269  
http://cn.fujitsu.com/fmc/tw  
Tel: +82-2-3484-7100 Fax: +82-2-3484-7111  
http://www.fmk.fujitsu.com/  
All Rights Reserved.  
The contents of this document are subject to change without notice.  
Customers are advised to consult with sales representatives before ordering.  
The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose  
of reference to show examples of operations and uses of FUJITSU MICROELECTRONICS device; FUJITSU MICROELECTRONICS  
does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporat-  
ing the device based on such information, you must assume any responsibility arising out of such use of the information.  
FUJITSU MICROELECTRONICS assumes no liability for any damages whatsoever arising out of the use of the information.  
Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use  
or exercise of any intellectual property right, such as patent right or copyright, or any other right of FUJITSU MICROELECTRONICS  
or any third party or does FUJITSU MICROELECTRONICS warrant non-infringement of any third-party's intellectual property right or  
other right by using such information. FUJITSU MICROELECTRONICS assumes no liability for any infringement of the intellectual  
property rights or other rights of third parties which would result from the use of information contained herein.  
The products described in this document are designed, developed and manufactured as contemplated for general use, including without  
limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured  
as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect  
to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in  
nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in  
weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).  
Please note that FUJITSU MICROELECTRONICS will not be liable against you and/or any third party for any claims or damages arising  
in connection with above-mentioned uses of the products.  
Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by  
incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current  
levels and other abnormal operating conditions.  
Exportation/release of any products described in this document may require necessary procedures in accordance with the regulations of  
the Foreign Exchange and Foreign Trade Control Law of Japan and/or US export control laws.  
The company names and brand names herein are the trademarks or registered trademarks of their respective owners.  
Edited Strategic Business Development Dept.  

相关型号:

MB39A125

DC/DC Converter IC for Charging Li-ion Battery
FUJITSU

MB39A125PFV

DC/DC Converter IC for Charging Li-ion Battery
FUJITSU

MB39A125WQN

DC/DC Converter IC for Charging Li-ion Battery
FUJITSU

MB39A126

DC/DC Converter IC for Charging Li-ion Battery
FUJITSU

MB39A126PFV

DC/DC Converter IC for Charging Li-ion Battery
FUJITSU

MB39A126WQN

DC/DC Converter IC for Charging Li-ion Battery
FUJITSU

MB39A130A

MB39A130A 1ch DC/DC Buck Converter IC with Synchronous Rectification
CYPRESS

MB39A130APFT

MB39A130A 1ch DC/DC Buck Converter IC with Synchronous Rectification
CYPRESS

MB39A130APFTE1

Switching Regulator
CYPRESS

MB39A132QN

Battery Charge Controller, Voltage-mode, 0.06A, 2000kHz Switching Freq-Max, 0.50 MM PITCH, PLASTIC, QFN-32
FUJITSU

MB39A132QN-E1

Switching Regulator/Controller, Current/voltage-mode, 1.2A, 2000kHz Switching Freq-Max, PQCC32
FUJITSU

MB39A132QN-G-ERE1

ASSP For Power Management Applications (Rechargeable Battery) Synchronous Rectification DC/DC Converter IC for Charging Li-ion Battery
FUJITSU