MB89123 [FUJITSU]

8-bit Proprietary Microcontroller; 8位微控制器专有
MB89123
型号: MB89123
厂家: FUJITSU    FUJITSU
描述:

8-bit Proprietary Microcontroller
8位微控制器专有

微控制器
文件: 总47页 (文件大小:551K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
FUJITSU SEMICONDUCTOR  
DATA SHEET  
DS07-12509-6E  
8-bit Proprietary Microcontroller  
CMOS  
F2MC-8L MB89120/120A Series  
MB89121/P131/123A/P133A/125A/P135A/  
MB89PV130A  
DESCRIPTION  
The MB89120 series is a line of single-chip microcontrollers containing a compact instruction set and a great  
variety of peripheral functions such as a timer, serial interface, and external interrupt. The MB89120A series is  
an extended variant of the MB89120, with a remote control transmission function and wake-up interrupt channels.  
FEATURES  
• F2MC-8L family CPU core  
• Low-voltage operation  
• Low current consumption (allowing for dual clock)  
• Minimum execution time : 0.95 µs at 4.2 MHz  
• 21-bit timebase counter  
• I/O ports : Max. 36 ports  
• External interrupts : 3 channels  
• External interrupts (wake-up function) : 8 channels (only in the MB89120A series)  
• 8-bit serial I/O : 1 channel  
• 8-/16-bit timer/counter : 1 channel  
• Built-in remote-control transmitting frequency generator (only in the MB89120A series)  
• Low-power consumption modes (stop mode, sleep mode, watch mode)  
• Package : QFP-48  
• CMOS technology  
PACKAGE  
48-pin plastic QFP  
(FPT-48P-M13)  
MB89120/120A Series  
PRODUCT LINEUP  
Part number  
MB89121  
MB89123A  
MB89125A  
MB89P133A  
MB89P131  
Item  
Mass-produced products  
(Mask ROM products)  
Classification  
One-time products  
8 K × 8 bits  
4 K × 8 bits  
(InternalPROMto (Internal PROM  
be programmed tobeprogrammed  
4 K × 8 bits  
8 K × 8 bits  
16 K × 8 bits  
ROM size  
(internal mask (internal mask (internal mask  
with a general-  
with a general-  
ROM)  
ROM)  
ROM)  
purpose EPROM purpose EPROM  
programmer)  
programmer)  
RAM size  
128 × 8 bits  
256 × 8 bits  
128 × 8 bits  
The number of instructions  
Instruction bit length  
: 136  
: 8 bits  
Instruction length  
Data bit length  
: 1 to 3 bytes  
: 1, 8, 16 bits  
CPU functions  
Minimum execution time  
Minimum interrupt processing time  
: 0.95 µs at 4.2 MHz  
: 8.57 µs at 4.2 MHz  
Output ports (N-ch open-drain)  
Output ports (CMOS)  
I/O ports (CMOS)  
Total  
: 4 (All also serves as peripherals.)  
: 8  
: 24 (8 ports also serve as peripherals.)  
: 36  
Ports  
Timer/counter  
Serial I/O  
8-bit timer/counter × 2 channels or 16-bit event counter × 1 channel  
8 bits  
LSB/MSB first selectable  
3 Independent channels (edge selection, interrupt vector, source flag)  
Rising edge/falling edge/both edges selectable  
External interrupt 1  
Also for wake-up from stop/sleep mode (edge detection is also permitted in stop mode)  
External interrupt 2  
(wake-up function)  
8 channels (only for level detection)  
Remote control  
transmitting frequen-  
cy generator  
1 channel  
(pulse width and frequency selectable  
by program)  
Standby mode  
Process  
Sleep mode, stop mode, watch mode  
CMOS  
2.2 V to 4.0 V (with the dual clock option)  
2.7 V to 6.0 V  
Operating voltage*  
EPROM for use  
2.2 V to 6.0 V (with the single clock option)  
* : Varies with conditions such as operating frequencies. (See “ELECTRICAL CHARACTERISTICS”.)  
(Continued)  
2
MB89120/120A Series  
(Continued)  
Part number  
MB89P135A  
MB89PV130A  
Item  
Classification  
One-time PROM products  
Piggyback/evaluation product  
16 K × 8 bits  
(internal PROM, to be programmed with  
general-purpose EPROM programmer)  
32 K × 8 bits  
(external ROM)  
ROM size  
RAM size  
512 × 8 bits  
1 K × 8 bits  
The number of instructions  
Instruction bit length  
: 136  
: 8 bits  
Instruction length  
Data bit length  
Minimum execution time  
Minimum interrupt processing time  
: 1 to 3 bytes  
: 1, 8, 16 bits  
: 0.95 µs/4.2 MHz  
: 8.57 µs/4.2 MHz  
CPU functions  
Output ports (N-ch open-drain ports)  
Output ports (CMOS)  
I/O ports (CMOS)  
: 4 (All also serve as peripherals.)  
: 8  
: 24 (8 ports also serve as peripherals.)  
: 36  
Ports  
Total  
Timer/counter  
Serial I/O  
8-bit timer/counter × 2 channels or 16-bit event counter × 1 channel  
8 bits  
LSB/MSB first selectable  
3 independent channels (edge selection, interrupt vector, source flag)  
Rising/falling/both edges selectable  
Used also for wake-up from stop/sleep mode. (Edge detection is also permitted in stop  
mode.)  
External interrupt 1  
External interrupt 2  
(wake-up function)  
8 channels (only for level detection)  
Remote control  
transmitting fre-  
quency generator  
1 channel (Pulse width and cycle selectable by program)  
Standby mode  
Process  
Sleep mode, stop mode, and clock mode  
CMOS  
Operating voltage  
EPROM for use  
2.7 V to 6.0 V  
2.7 V to 6.0 V  
MBM27C256A-20TVM  
3
MB89120/120A Series  
PACKAGE AND CORRESPONDING PRODUCTS  
Package  
FPT-48P-M13  
MQP-48C-P01  
MB89121  
MB89123A  
MB89125A  
MB89P133A  
MB89P131  
×
×
×
×
×
Package  
FPT-48P-M13  
MQP-48C-P01  
MB89P135A  
MB89PV130A  
×
×
×
: Available,  
: Not available  
Note : Package details of OTPROM products and piggyback/evaluation products are common to those of MB89130/  
130A series. Refer to the MB89130/130A series data sheet for details.  
DIFFERENCES AMONG PRODUCTS  
1. Memory Size  
Before evaluating using the one-time ROM product, verify its difference from the product that will actually be  
used. Take particular care on the following points :  
• The number of register banks available is different between the MB89121 and the MB89123A/125A/P135A/  
PV130A.  
• The stack area, etc., is set at the upper limit of the RAM.  
2. Current Consumption  
• When operated at low speed, a product with an OTPROM (EPROM) will consume more current than a product  
with a mask ROM. However, the same is current consumption in the sleep/stop mode is the same. (For more  
information, see “ELECTRICAL CHARACTERISTICS”.)  
• In the case of the MB89PV130A, added is the current consumed by the EPROM which is connected to the  
top socket.  
3. Mask Options  
Functions that can be selected as options and how to designate these options vary with product.  
Before using options, check “MASK OPTIONS”.  
Take particular care on the following point :  
• Pull-up resistor can’t be set for P40 to P43 on the MB89P135A.  
• Options are fixed on the MB89PV130A.  
4
MB89120/120A Series  
PIN ASSIGNMENT  
(TOP VIEW)  
AVCC  
RST  
MOD0  
MOD1  
X0  
X1  
VCC  
X0A  
X1A  
P27  
1
2
3
4
5
6
7
8
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
P36/INT2  
P37/BZ/(RCO)  
P00/(INT20)  
P01/(INT21)  
P02/(INT22)  
P03/(INT23)  
P04/(INT24)  
P05/(INT25)  
P06/(INT26)  
P07/(INT27)  
P10  
9
10  
11  
12  
P26  
P25  
P11  
-
-
(FPT 48P M13)  
Note : Parenthesized function is available only for the MB89120A series.  
5
MB89120/120A Series  
PIN DESCRIPTION  
Pin no.  
Pin name  
X0  
Circuit type  
Function  
5
6
8
9
3
4
A
Main clock crystal oscillator pins (max. 4.2 MHz)  
X1  
X0A  
B
C
Subclock crystal oscillator pins (for 32.768 kHz)  
X1A  
MOD0  
MOD1  
Operation mode select pins  
Connect these pins directly to VSS.  
Reset I/O pin  
This port is of N-ch open-drain output type with pull-up re-  
sistor and a hysteresis input type. The internal circuit is ini-  
tialized by the input of “L”. “L” is output from this pin by an  
internal reset source as optional setting.  
2
RST  
D
I
General-purpose I/O ports  
On the MB89120A series, these pins also serve as exter-  
nal interrupt input.  
P07/ (INT27) to  
P00/ (INT20)  
27 to 34  
External interrupt input is hysteresis input.  
18, 20 to 26  
10 to 17  
P17 to P10  
P27 to P20  
E
General-purpose I/O ports  
G
General-purpose output-only ports  
General-purpose I/O port  
42  
41  
40  
P30/SCK  
P31/SO  
P32/SI  
F
F
F
Also serves as clock I/O for the 8-bit serial I/O interface.  
This port is of hysteresis input type.  
General-purpose I/O port  
Also serves as a serial I/O data output. This port is of hys-  
teresis input type.  
General-purpose I/O port  
Also serves as a serial I/O data input. This port is of hys-  
teresis input type.  
General-purpose I/O port  
Also serves as the external clock input for the 8-bit timer/  
counter. This port is of hysteresis input type.  
System clock output is optional.  
39  
38  
P33/EC/SCO  
P34/TO/INT0  
F
General-purpose I/O port  
Also serves as the overflow output and external  
interrupt input for the 8-bit timer/counter. This port is of  
hysteresis input type.  
F
F
F
General-purpose I/O ports  
Also serve as an external interrupt input. These ports are  
of hysteresis input type.  
36,  
37  
P36/INT2,  
P35/INT1  
General-purpose I/O port  
Also serves as a buzzer output. This port is of  
hysteresis input type. On the MB89120A series, the pin  
also serves as a remote control output.  
35  
P37/BZ/ (RCO)  
(Continued)  
6
MB89120/120A Series  
(Continued)  
Pin no.  
Pin name  
P43 to P40  
VCC  
Circuit type  
Function  
45 to 48  
H
N-ch open-drain output ports  
7
Power supply pin  
19  
VSS  
Power supply (GND) pin  
Power supply (GND) pin  
Use this pin at the same voltage as VCC.  
1
AVCC  
AVR  
AVSS  
44  
43  
Reference voltage input pin  
Power supply (GND) pin  
Use this pin at the same voltage as VSS.  
7
MB89120/120A Series  
I/O CIRCUIT TYPE  
Type  
Circuit  
Remarks  
• Crystal and ceramic oscillation type (main clock)  
• Cricuit for the MB89P133A/P131/P135A/PV130A  
• External clock input select versions of MB89121/  
123A/125A  
X1  
X0  
At an oscillation feedback resistor of approximately  
1 M/ 5 V  
Standby control signal  
A
• Crystal and ceramic oscillation type (main clock)  
• Crystal or ceramic oscillator select versions of  
MB89121/123A/125A  
At an oscillation feedback resistor of approximately  
1 M/ 5 V  
X1  
X0  
Standby control signal  
• Crystal and ceramic oscillation type (sub clock)  
Circuit for the MB89121/123A/125A  
At an oscillation feedback resistor of approximately  
4.5 M/ 5 V  
X1A  
X0A  
Standby control signal  
B
• Crystal and ceramic oscillation type (sub clock)  
Circuit for the MB89P131/P133A/P135A/PV130A  
At an oscillation feedback resistor of approximately  
4.5 M/ 5 V  
X1A  
X0A  
Standby control signal  
C
D
• Output pull-up resistor (P-ch) of approximately  
50 k/ 5 V  
• Hysteresis input  
R
P-ch  
N-ch  
(Continued)  
8
MB89120/120A Series  
(Continued)  
Type  
Circuit  
Remarks  
• CMOS output  
R
• CMOS input  
• Pull-up resistor optional  
P-ch  
P-ch  
E
N-ch  
• CMOS output  
R
• Hysteresis input  
• Pull-up resistor optional  
P-ch  
P-ch  
F
N-ch  
• CMOS output  
P-ch  
G
H
N-ch  
P-ch  
• N-ch open-drain output  
• Pull-up resistor optional  
R
P-ch  
N-ch  
• CMOS output  
R
• CMOS input  
P-ch  
• The interrupt input is a hysteresis input (available  
only on the MB89120A series) .  
• Pull-up resistor optional  
P-ch  
N-ch  
I
Interrupt input  
Only for the MB89120A series  
9
MB89120/120A Series  
HANDLING DEVICES  
1. Preventing Latchup  
Latchup may occur on CMOS ICs if voltage higher than VCC or lower than VSS is applied to input and output pins  
other than medium- and high- voltage pins, or if higher than the voltage which shows on “1. Absolute Maximum  
Ratings” in “ELECTRICAL CHARACTERISTICS” is applied between VCC and VSS.  
When latchup occurs, power supply current increases rapidly, and might thermally damage elements. When  
using, take great care not to exceed the absolute maximum ratings.  
Also, take care to prevent the analog power supply (AVCC and AVR) and analog input from exceeding the digital  
power supply (VCC) when the analog system power supply is turned on and off.  
2. Treatment of Unused Input Pins  
Leaving unused input pins open could cause malfunctions. They should be connected to pull-up or pull-down  
resistor.  
3. Treatment of N.C. Pins  
Be sure to leave (internally connected) N.C. pins open.  
4. Power Supply Voltage Fluctuations  
Although operation is assured within the rated range of VCC power supply voltage, a rapid fluctuation of the  
voltage could cause malfunctions, even if it occurs within the rated range. Stabilizing voltage supplied to the IC  
is therefore important. As stabilization guidelines, it is recommended to control power so that VCC ripple fluctu-  
ations (P-P value) will be less than 10% of the standard VCC value at the commercial frequency (50 to 60 Hz)  
and the transient fluctuation rate will be less than 0.1 V/ms at the time of a momentary fluctuation such as when  
power is switched.  
5. Precautions when Using an External Clock  
When an external clock is used, oscillation stabilization time is required even for power-on reset (optional) and  
release from stop mode.  
6. Turning on the supply voltage (only for the MB89P135A)  
When the power supply is turned on if MB89P135A is used, power on sharply up to 2.0 V within 13 clock cycles  
after starting of oscillation.  
Further, various option may be set, if power supply up to keep this condition.  
10  
MB89120/120A Series  
PROGRAMMING TO THE EPROM ON THE MB89P131  
The MB89P131 is a one-time PROM version of the MB89121.  
1. Features  
• 4-Kbyte PROM on chip  
• Equivalency to the MBM27C256A in EPROM mode (when programmed with the EPROM programmer)  
2. Memory Space  
Memory space in EPROM mode is diagrammed below :  
Address  
0000H  
Single chip  
EPROM mode  
(Corresponding addresses in the EPROM programmer)  
I/O  
Not available  
RAM  
0000H  
Not available  
Not available  
7000H  
F000H  
PROM  
4 KB  
EPROM  
32 KB  
FFFFH  
7FFFH  
3. Programming to the EPROM  
In EPROM mode the MB89P131 functions equivalent to the MBM27C256A. This allows the EPROM to be  
programmed with a general-purpose EPROM programmer by using the dedicated socket adapter. Note, how-  
ever, that the electronic signature mode cannot be used.  
Programming procedure  
(1) Set the EPROM programmer to MBM27C256A.  
(2) Load program data into the EPROM programmer at 7000H to 7FFFH (note that addresses F000H to  
FFFFH while operating as a single chip correspond to 7000H to 7FFFH in EPROM mode) .  
(3) Program with the EPROM programmer.  
11  
MB89120/120A Series  
PROGRAMMING TO THE EPROM ON THE MB89P133A  
The MB89P133A is a one-time PROM version of the MP89123A.  
1. Features  
• 8-Kbyte PROM on chip  
• Equivalency to the MBM27C256A in EPROM mode (when programmed with the EPROM programmer)  
2. Memory Space  
Memory space in EPROM mode is diagrammed below :  
Address  
0000H  
Single chip  
EPROM mode  
(Corresponding addresses in the EPROM programmer)  
I/O  
RAM  
0000H  
Not available  
Not available  
E000H  
FFFFH  
6000H  
PROM  
8 KB  
EPROM  
32 KB  
7FFFH  
3. Programming to the EPROM  
In EPROM mode the MB89P133A functions equivalent to the MBM27C256A, This allows the EPROM to be  
programmed with a general-purpose EPROM programmer by using the dedicated socket adapter. Note, how-  
ever, that the MB89P133A cannot use the electronic signature mode.  
Programming procedure  
(1) Set the EPROM programmer to MBM27C256A.  
(2) Load program data into the EPROM programmer at 6000H to 7FFFH (note that addresses E000H to  
FFFFH while operating as a single chip correspond to 6000H to 7FFFH in EPROM mode) .  
(3) Program with the EPROM programmer.  
12  
MB89120/120A Series  
PROGRAMMING TO THE EPROM ON THE MB89P135A  
The MB89P135A is an OTPROM version of the MB89123A/125A.  
1. Features  
• 16-Kbyte PROM on chip  
• Equivalency to the MBM27C256A in EPROM mode (when programmed with the EPROM programmer)  
2. Memory Space  
Memory space in EPROM mode is diagrammed below.  
Address  
0000H  
Single chip  
I/O  
EPROM mode  
(Corresponding addresses on the EPROM programmer)  
0080H  
0280H  
RAM  
Not available  
Not available  
8000H  
0000H  
Vacancy  
(Read value FFH)  
BFF0H  
BFF6H  
3FF0H  
Option area  
3FF6H  
Not available  
Not available  
Vacancy  
(Read value FFH)  
C000H  
4000H  
PROM  
16 KB  
EPROM  
16 KB  
7FFFH  
FFFFH  
3. Programming to the EPROM  
In EPROM mode, the MB89P135A functions equivalent to the MBM27C256A. This allows the PROM to be  
programmed with a general-purpose EPROM programmer (the electronic signature mode cannot be used) by  
using the dedicated socket adapter.  
Programming procedure  
(1) Set the EPROM programmer to the MBM27C256A.  
(2) Load program data into the EPROM programmer at 4000H to 7FFFH (note that addresses C000H to  
FFFFH while operating as a single chip correspond to 4000H to 7FFFH in EPROM mode) .  
(3) Load option data into the EPROM programmer at 3FF0H to 3FF6H.  
(4) Program with the EPROM programmer.  
13  
MB89120/120A Series  
4. Setting OTPROM Options (MB89P135A Only)  
The programming procedure is the same as that for the PROM. Options can be set by programming values at  
the addresses shown on the memory map. The relationship between bits and options is shown on the following  
bit map :  
OTPROM option bit map  
Address  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Clock mode  
Oscillation  
Vacancy Vacancy Vacancy selection  
Reset pin  
output  
Power-on  
reset  
stabilization time  
3FF0H Readable Readable Readable 1 : Single  
00 : 22/FCH 10 : 216/FCH  
01 : 212/FCH 11 : 218/FCH  
and  
and  
and  
clock  
1 : Yes  
0 : No  
1 : Yes  
0 : No  
writable  
writable  
writable  
0 : Dual  
clock  
P07  
P06  
P05  
P04  
P03  
P02  
P01  
P00  
Pull-up  
1 : Yes  
0 : No  
Pull-up  
1 : Yes  
0 : No  
Pull-up  
1 : Yes  
0 : No  
Pull-up  
1 : Yes  
0 : No  
Pull-up  
1 : Yes  
0 : No  
Pull-up  
1 : Yes  
0 : No  
Pull-up  
1 : Yes  
0 : No  
Pull-up  
1 : Yes  
0 : No  
3FF1H  
3FF2H  
3FF3H  
P17  
P16  
P15  
P14  
P13  
P12  
P11  
P10  
Pull-up  
1 : Yes  
0 : No  
Pull-up  
1 : Yes  
0 : No  
Pull-up  
1 : Yes  
0 : No  
Pull-up  
1 : Yes  
0 : No  
Pull-up  
1 : Yes  
0 : No  
Pull-up  
1 : Yes  
0 : No  
Pull-up  
1 : Yes  
0 : No  
Pull-up  
1 : Yes  
0 : No  
P37  
P36  
P35  
P34  
P33  
P32  
P31  
P30  
Pull-up  
1 : Yes  
0 : No  
Pull-up  
1 : Yes  
0 : No  
Pull-up  
1 : Yes  
0 : No  
Pull-up  
1 : Yes  
0 : No  
Pull-up  
1 : Yes  
0 : No  
Pull-up  
1 : Yes  
0 : No  
Pull-up  
1 : Yes  
0 : No  
Pull-up  
1 : Yes  
0 : No  
Vacancy Vacancy Vacancy Vacancy  
Vacancy  
Vacancy  
Vacancy  
Vacancy  
3FF4H Readable Readable Readable Readable  
Readable Readable Readable Readable  
and  
and  
and  
and  
and  
and  
and  
and  
writable  
writable  
writable  
writable  
writable  
writable  
writable  
writable  
Vacancy Vacancy Vacancy Vacancy  
Vacancy  
Vacancy  
Vacancy  
Vacancy  
3FF5H Readable Readable Readable Readable  
Readable Readable Readable Readable  
and  
and  
and  
and  
and  
and  
and  
and  
writable  
writable  
writable  
writable  
writable  
writable  
writable  
writable  
Vacancy Vacancy Vacancy Vacancy  
Vacancy  
Vacancy  
Vacancy  
Vacancy  
3FF6H Readable Readable Readable Readable  
Readable Readable Readable Readable  
and  
and  
and  
and  
and  
and  
and  
and  
writable  
writable  
writable  
writable  
writable  
writable  
writable  
writable  
Note : Each bit is set to “1” as the initialized value, therefore the pull-up option is not selected.  
14  
MB89120/120A Series  
HANDLING MB89P131/P133A/P135A  
1. Recommended Screening Conditions  
High-temperature aging is recommended as the pre-assembly screening procedure.  
Program, verify  
Aging  
+150 °C, 48 h  
Data verification  
Assembly  
2. Programming Yield  
Due to its nature, bit programming test can’t be conducted as Fujitsu delivery test. For this reason, a programming  
yeild of 100% cannot be assured at all times.  
3. EPROM Programmer Socket Adapter and Recommended Programmer Manufacturer  
Recommended programmer  
manufacturer and programmer name  
Compatible socket adapter  
Part no.  
Package  
Sun Hayato Co., Ltd.  
Minato Electronics Inc.  
1890A  
MB89P131PF  
Recommended  
QFP-48  
ROM-48QF2-28DP-8L  
MB89P133APFM  
Inquiry : Sun Hayato Co., Ltd. : TEL : (81) -3-3986-0403  
FAX : (81) -3-5396-9106  
Minato Electronics Inc. : TEL : USA (1) -916-348-6066  
JAPAN (81) -45-591-5611  
15  
MB89120/120A Series  
PROGRAMMING TO THE EPROM WITH PIGGYBACK/EVALUATION DEVICE  
1. EPROM for Use  
MBM27C256A-20TVM  
2. Programming Socket Adapter  
To program to the PROM using an EPROM programmer, use the socket adapter (manufacturer : Sun Hayato  
Co., Ltd.) listed below :  
Package  
Adapter socket part number  
LCC-32 (Square)  
ROM-32LC-28DP-S  
Inquiry : Sun Hayato Co., Ltd. : TEL (81) -3-3986-0403  
FAX (81) -3-5396-9106  
3. Memory Space  
Memory space in each mode, such as 32-Kbyte PROM is diagrammed below.  
Address  
0000H  
Single chip  
Corresponding addresses on the EPROM programmer  
I/O  
0080H  
0480H  
RAM  
Not available  
8000H  
0000H  
PROM  
32 KB  
EPROM  
32 KB  
7FFFH  
FFFFH  
4. Programming to the EPROM  
(1) Set the EPROM programmer for the MBM27C256A.  
(2) Load program data into the EPROM programmer at 0000H to 7FFFH.  
(3) Program with the EPROM programmer.  
16  
MB89120/120A Series  
BLOCK DIAGRAM  
X0  
X1  
Timebase timer  
Reset circuit  
Main clock oscillator  
Clock controller  
RST  
(WDT)  
X0A  
X1A  
Subclock oscillator  
(32.768 kHz)  
8-bit timer/counter  
8-bit timer/counter  
P34/TO/INT0  
P33/EC/SCO  
CMOS I/O port  
P00/(INT20) to  
P07/(INT27)  
8
8
External interrupt  
(Wake-up)  
P30/SCK  
P32/SI  
8-bit serial I/O  
P10 to P17  
P31/SO  
External interrupt  
P35/INT1  
P36/INT2  
8
Remote control  
transmission  
frequency generator  
P20 to P27  
Buzzer output  
CMOS I/O port  
CMOS output port  
P37/BZ/(RCO)  
N-ch open-drain output port  
RAM  
4
P40 to P43  
F2MC-8L  
CPU  
ROM  
The other pins  
MOD0, MOD1, VCC, VSS  
AVCC, AVR, AVSS  
* : Only the MB89120A series has wake-up interrupt inputs and remote control transmission.  
Note : Parenthesized pins are available only with the MB89120A series.  
17  
MB89120/120A Series  
CPU CORE  
1. Memory Space  
The microcontrollers of the MB89120/A series offer 64 Kbytes of memory for storing all of I/O, data, and program  
areas. The I/O area is allocated from the lowest address. The data area is allocated immediately above the I/  
O area. The data area can be divided into register, stack, and direct areas according to the application. The  
program area is allocated from exactly the opposite end of I/O area, that is, near the highest address. The tables  
of interrupt reset vectors and vector call instructions are allocated from the highest address with the program  
area. The memory space of the MB89120/A series is structured as illustrated below :  
Memory Space  
MB89123A  
MB89125A  
MB89P135A  
MB89PV130A  
MB89121  
MB89P133A  
MB89P131  
0000  
H
0000  
H
0000  
H
0000  
H
0000  
H
I/O  
I/O  
I/O  
I/O  
I/O  
007F  
0080  
H
H
007F  
0080  
H
H
007F  
0080  
H
H
007F  
0080  
H
H
007F  
0080  
H
H
Not available  
RAM  
RAM  
RAM  
RAM  
512 B  
RAM  
1 KB  
00BF  
00C0  
0100  
H
H
H
00FF  
0100  
H
H
00FF  
0100  
H
H
0100  
H
0100  
H
Register  
Register  
Register  
Register  
Register  
01FF  
0200  
H
H
01FF  
0200  
H
H
013F  
0140  
H
H
017F  
0180  
H
H
017F  
0180  
H
H
027F  
0280  
H
H
047F  
0480  
H
H
Not available  
Vacancy  
Not available  
Vacancy  
7FFF  
8000  
H
H
BFFF  
H
H
BFFF  
C000  
H
H
Not available  
C000  
DFFF  
E000  
H
H
External  
ROM  
32 KB  
ROM  
16 KB  
EFFF  
F000  
H
ROM  
ROM  
H
ROM  
FFFF  
H
FFFF  
H
FFFF  
H
FFFF  
H
FFFF  
H
18  
MB89120/120A Series  
2. Registers  
The F2MC-8L family has two types of registers; dedicated hardware registers and general-purpose memory  
registers. The following dedicated registers are provided :  
Program counter (PC) :  
Accumulator (A) :  
A 16-bit-long register for indicating the instruction storage positions  
A 16-bit-long temporary register for arithmetic operations, etc. When the  
instruction is an 8-bit data processing instruction, the lower byte is used.  
Temporary accumulator (T) : A 16-bit-long register which is used for arithmetic operations with the accumu-  
lator When the instruction is an 8-bit data processing instruction, the lower  
byte is used.  
Index register (IX) :  
Extra pointer (EP) :  
Stack pointer (SP) :  
Program status (PS) :  
A 16-bit-long register for index modification  
A 16-bit-long pointer for indicating a memory address  
A 16-bit-long pointer for indicating a stack area  
A 16-bit-long register for storing a register pointer, a condition code  
Initial value  
16 bits  
PC  
A
: Program counter  
: Accumulator  
FFFDH  
Indeterminate  
T
: Temporary accumulator Indeterminate  
IX  
: Index register  
: Extra pointer  
: Stack pointer  
: Program status  
Indeterminate  
Indeterminate  
Indeterminate  
EP  
SP  
PS  
I-flag = 0, IL1, 0 = 11  
The other bit values are Indeterminate.  
The PS can further be divided into higher 8 bits for use as a register bank pointer (RP) and the lower 8 bits for  
use as a condition code register (CCR) (see the diagram below) .  
Structure of the Program Status Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
I
5
4
3
2
Z
1
0
Vacancy Vacancy Vacancy  
PS  
RP  
H
IL1, 0  
N
V
C
RP  
CCR  
19  
MB89120/120A Series  
The RP indicates the address of the register bank currently in use. The relationship between the pointer contents  
and the actual address is based on the conversion rule illustrated below.  
Rule for Conversion of Actual Addresses of the General-purpose Register Area  
RP  
Lower OP codes  
"0" "0" "0" "0" "0" "0" "0" "1" R4 R3 R2 R1 R0 b2 b1 b0  
Generated addresses A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0  
The CCR consists of bits indicating the results of arithmetic operations and the contents of transfer data, and  
bits for control of CPU operations at the time of an interrupt.  
H-flag : Set to “1” when a carry or a borrow from bit 3 to bit 4 occurs as a result of an arithmetic operation.  
Cleared “0” otherwise. This flag is for decimal adjustment instructions.  
I-flag : Interrupt is enabled when this flag is set to “1”. Interrupt is disabled when the flag is cleared to “0”.  
Cleared to “0” at the reset.  
IL1, 0 : Indicates the level of the interrupt currently allowed. Processes an interrupt only if its request level  
is higher than the value indicated by this bit.  
IL1  
0
IL0  
0
Interrupt level  
High-low  
High  
1
0
1
1
0
2
3
1
1
Low  
N-flag : Set to “1” if the MSB becomes “1” as the result of an arithmetic operation. Cleared to “0” otherwise.  
Z-flag : Set to “1” when an arithmetic operation results in 0. Cleared to “0” otherwise.  
V-flag : Set to “1” if the complement on “2” overflows as a result of an arithmetic operation. Cleared to “0” if  
the overflow does not occur.  
C-flag : Set to “1” when a carry or a borrow from bit 7 occurs as a result of an arithmetic operation. Cleared to  
“0” otherwise. Set to the shift-out value in the case of a shift instruction.  
20  
MB89120/120A Series  
The following general-purpose registers are provided :  
General-purpose registers : An 8-bit-long register for storing data  
The general-purpose registers are of 8 bits and located in the register banks of the memory. One bank contains  
eight registers and up to a total of 8 banks can be used on the MB89121/P131, and a total of 16 banks can be  
used on the MB89123A/125A/P133A and a total of 32 banks can be used on the MB89P135A/PV130A.  
The bank currently in use is indicated by the register bank pointer (RP) .  
Register Bank Configuration  
This address = 0100H + 8 × (RP)  
R 0  
R 1  
R 2  
R 3  
R 4  
R 5  
R 6  
R 7  
8 banks (MB89121/P131)  
16 banks (MB89123A/125A/133A)  
32 banks (MB89P135A/PV130A)  
Memory area  
21  
MB89120/120A Series  
I/O MAP  
Address  
00H  
01H  
02H  
03H  
04H  
05H  
06H  
07H  
08H  
09H  
0AH  
0BH  
0CH  
0DH  
0EH  
0FH  
10H  
11H  
12H  
13H  
14H  
15H  
16H  
17H  
18H  
19H  
1AH  
1BH  
1CH  
1DH  
1EH  
1FH  
Read/write  
(R/W)  
(W)  
Register name  
PDR0  
Register description  
Port 0 data register  
DDR0  
Port 0 data direction register  
Port 1 data register  
Port 1 data direction register  
Port 2 data register  
Vacancy  
(R/W)  
(W)  
PDR1  
DDR1  
(R/W)  
PDR2  
Vacancy  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(W)  
SYCC  
STBC  
WDTC  
TBTC  
WPCR  
PDR3  
DDR3  
PDR4  
BZCR  
System clock control register  
Standby control register  
Watchdog control register  
Time-base timer control register  
Watch prescaler control register  
Port 3 data register  
Port 3 data direction register  
Port 4 data register  
Buzzer register  
(R/W)  
(R/W)  
Vacancy  
Vacancy  
(R/W)  
SCGC  
Peripheral control clock register  
Vacancy  
(R/W)  
(R/W)  
RCR1  
RCR2  
Remote control transmission control register 1*  
Remote control transmission control register 2*  
Vacancy  
Vacancy  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
T2CR  
T1CR  
T2DR  
T1DR  
SMR1  
SDR1  
Timer 2 control register  
Timer 1 control register  
Timer 2 data register  
Timer 1 data register  
Serial mode register  
Serial data register  
Vacancy  
Vacancy  
(Continued)  
22  
MB89120/120A Series  
(Continued)  
Address  
Read/write  
Register name  
Register description  
Vacancy  
20H  
21H  
Vacancy  
22H  
Vacancy  
23H  
(R/W)  
(R/W)  
EIC1  
EIC2  
External interrupt control register 1  
External interrupt control register 2  
Vacancy  
24H  
25H  
26H to 31H  
32H  
Vacancy  
(R/W)  
(R/W)  
EIE2  
EIF2  
External interrupt 2 enable register*  
External interrupt 2 flag register*  
Vacancy  
33H  
34H to 7BH  
7CH  
(W)  
(W)  
(W)  
ILR1  
ILR2  
ILR3  
Interrupt level register 1  
Interrupt level register 2  
Interrupt level register 3  
Vacancy  
7DH  
7EH  
7FH  
* : Only in the MB89120A series  
Note : Do not use vacancies.  
23  
MB89120/120A Series  
ELECTRICAL CARACTERISTICS  
1. Absolute Maximum Ratings  
(AVSS = VSS = 0.0 V)  
Value  
Symbol  
Unit  
Remarks  
Parameter  
Min.  
Max.  
VCC  
AVCC  
AVR  
Use VCC, AVCC , and AVR  
set to the same voltage.  
Power supply voltage  
VSS 0.3  
VSS + 7.2  
V
V
MOD1 pin on the  
MB89P131/P133A/P135A  
Program voltage  
VPP  
VSS 0.6  
VSS + 13.0  
Input voltage  
VI  
VO  
IOL  
VSS 0.3  
VSS 0.3  
VCC + 0.3  
VCC + 0.3  
10  
V
V
Output voltage  
“L” level maximum output current  
mA  
Avarage value (operating  
current × operating rate)  
“L” level average output current  
IOLAV  
4
mA  
mA  
“L” level total maximum output cur-  
rent  
ΣIOL  
100  
Avarage value (operating  
current × operating rate)  
“L” level total average output current  
“H” level maximum output current  
“H” level average output current  
ΣIOLAV  
IOH  
20  
10  
2  
mA  
mA  
mA  
Avarage value (operating  
current × operating rate)  
IOHAV  
“H” level total maximum output cur-  
rent  
ΣIOH  
30  
10  
mA  
mA  
Avarage value (operating  
current × operating rate)  
“H” level total average output current  
ΣIOHAV  
Power consumption  
Operating temperature  
Storage temperature  
PD  
TA  
200  
+85  
mW  
°C  
40  
55  
Tstg  
+150  
°C  
WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current,  
temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.  
24  
MB89120/120A Series  
2. Recommended Operating Conditions  
Value  
(AVSS = VSS = 0.0 V)  
Symbol  
Unit  
Remarks  
Parameter  
Min.  
Max.  
Normal operation assurance range  
2.2*  
6.0*  
V
V
Applied to “MB89P131/P133A/P135A/PV130A,  
and single-clock MB89121/123A/125A*”  
Power supply voltage  
Operating temperature  
VCC  
Normal operation assurance range  
Applied to “ Dual-clock MB89121/123A/125A*”  
2.7*  
6.0*  
1.5  
6.0  
V
Retains the RAM state in stop mode  
TA  
40  
+85  
°C  
* : These values vary with the operating conditions. See “ Operating Voltage vs. Main Clock Operating  
Frequency.”  
WARNING: The recommended operating conditions are required in order to ensure the normal operation of the  
semiconductor device. All of the device’s electrical characteristics are warranted when the device is  
operated within these ranges.  
Always use semiconductor devices within their recommended operating condition ranges. Operation  
outside these ranges may adversely affect reliability and could result in device failure.  
No warranty is made with respect to uses, operating conditions, or combinations not represented on  
the data sheet. Users considering application outside the listed conditions are advised to contact their  
FUJITSU representatives beforehand.  
25  
MB89120/120A Series  
Operating Voltage vs. Main Clock Operating Frequency  
Dual-clock MB89121/123A/125A  
6
5
4
Operation assurance range  
3
2
1
1
2
3
4
Main clock operating frequency (Instruction cycle time of 4/FCH) (MHz)  
4.0  
2.0  
1.0  
Minimum execution time (µs)  
MB89P131/P133A/P135A/PV130A, and single-clock MB89121/123A/125A  
6
5
Operation assurance range  
4
3
2
1
1
2
3
4
Main clock oprating frequency (Instruction cycle time of 4/FCH) (MHz)  
4.0  
2.0  
1.0  
Minimum execution time (µs)  
Note : The shaded area is assured only for the MB89121/123A/125A (instruction cycle time of 4/FCH) .  
26  
MB89120/120A Series  
3. DC Characteristics  
(AVCC = VCC = +5.0 V, AVSS = VSS = 0.0 V, TA = −40 °C to +85 °C)  
Value  
Parameter  
Symbol  
Pin  
Condition  
Unit Remarks  
Min.  
Typ.  
Max.  
P00 to P07,  
P10 to P17  
VCC +  
0.3  
VIH  
0.7 VCC  
V
INT20 to  
INT27 are  
available  
only in the  
MB89120A  
series.  
“H” level input  
voltage  
RST,  
P30 to P37,  
INT20 to INT27  
VCC +  
0.3  
VIHS  
0.8 VCC  
V
P00 to P07,  
P10 to P17  
VSS −  
0.3  
VIL  
0.3 VCC  
0.2 VCC  
V
INT20 to  
INT27 are  
available  
“L” level input  
voltage  
RST,  
P30 to P37,  
INT20 to INT27  
VSS −  
0.3  
VILS  
V
only in the  
MB89120A  
series.  
Open-drain  
output pin  
applied voltage  
VSS −  
0.3  
VCC +  
0.3  
VD  
P40 to P43  
V
V
P00 to P07,  
P10 to P17,  
P20 to P27,  
P30 to P37  
“H” level output  
voltage  
VOH  
IOH = −2.0 mA  
2.4  
P00 to P07,  
P10 to P17  
P20 to P27,  
P30 to P37,  
P40 to P43  
VOL  
IOL = 1.8 mA  
IOL = 4.0 mA  
0.4  
0.6  
V
V
“L” level output  
voltage  
VOL2  
RST  
P00 to P07,  
P10 to P17,  
P20 to P27,  
P30 to P37,  
P40 to P43,  
MOD0, MOD1  
Input leakage  
current  
(Hi-z output  
leakage current)  
Without  
µA pull-up  
resistor  
ILI  
0.45 V < VI < VCC  
±5  
P00 to P07,  
P10 to P17,  
P30 to P37,  
P40 to P43,  
RST  
Pull-up resistance  
RPULL  
VI = 0.0 V  
25  
50  
100  
kΩ  
(Continued)  
27  
MB89120/120A Series  
(Continued)  
(AVCC = VCC = +5.0 V, AVSS = VSS = 0.0 V, TA = −40 °C to +85 °C)  
Value  
Parameter  
Symbol  
Pin  
Condition  
Unit Remarks  
Min.  
Typ.  
Max.  
MB89121/  
mA  
4
7
123A/125A  
VCC = 5.0 V  
ICC1  
FCH = 4.00 MHz  
MB89P131/  
mA P133A/  
P135A  
tinst*2 = 1.0 µs  
6
2
10  
5
VCC = 5.0 V  
FCH = 4.00 MHz  
Main sleep mode  
tinst*2 = 1.0 µs  
ICCS1  
mA  
MB89121/  
µA  
50  
1
100  
3
123A/125A  
VCC = 3.0 V  
FCL = 32.768 kHz  
Subclock mode  
ICCL  
MB89P131/  
mA P133A/  
P135A  
VCC  
Power supply  
current*1  
(External clock  
operation)  
VCC = 3.0 V  
FCL = 32.768 kHz  
Subclock sleep  
mode  
ICCLS  
25  
50  
15  
µA  
VCC = 3.0 V  
FCL = 32.768 kHz  
Watch mode  
Main clock stop  
mode at dual  
clock system  
ICCT  
µA  
TA = +25 °C  
Subclock stop  
mode  
Main clock stop  
mode at single  
clock system  
ICCH  
1
µA  
Other than  
AVCC, AVSS,  
VCC, and VSS  
Input capacitance  
CIN  
f = 1 MHz  
10  
pF  
*1 : The measurement conditions of power supply current is external clock. (VCC = 5.0 V, VCC = 3.0 V)  
*2 : For information on tinst, see “ (4) Instruction Cycle” in “4. AC Characteristics.”  
28  
MB89120/120A Series  
4. AC Characteristics  
(1) Reset Timing  
(VCC = +5.0 V ±10%, AVSS = VSS = 0.0 V, TA = −40 °C to +85 °C)  
Value  
Symbol  
Condition  
Unit  
Remarks  
Parameter  
Min.  
Max.  
RST “L” pulse width  
tZLZH  
48 tHCYL*  
ns  
* : tHCYL is the oscillation cycle (1/FCH) input to the X0.  
tZLZH  
RST  
0.8 VCC  
0.2 VCC  
0.2 VCC  
(2) Power-on Reset  
(AVSS = VSS = 0.0 V, TA = −40 °C to +85 °C)  
Value  
Symbol  
Condition  
Unit  
Remarks  
Parameter  
Min.  
Max.  
Power-on reset  
function only  
Power supply rising time  
Power supply cut-off time  
tR  
50  
ms  
ms  
Due to repeated  
operations  
tOFF  
1
Note : Make sure that power supply rises within the oscillation stabilization time selected.  
When the main clock is operating at FCH = 3 MHz and the oscillation stabilization time select option has been  
set to 212/FCH, for example, the oscillation settling time is 1.4 ms and accordingly the maximum value of  
power supply rising time is about 1.4 ms.  
Keep in mind that rapid changes in power supply voltage may cause a power-on reset. If power supply  
voltage needs to be varied in the course of operation, a smooth voltage rise is recommended.  
tR  
tOFF  
2.0 V  
0.2 V  
0.2 V  
0.2 V  
VCC  
29  
MB89120/120A Series  
(3) Clock Timings  
(VSS = 0.0 V, TA = −40 °C to +85 °C)  
Value  
Typ.  
Symbol  
Pin  
Unit  
Remarks  
Parameter  
Min.  
Max.  
FCH  
FCL  
X0, X1  
X0A, X1A  
X0, X1  
1
4.2  
MHz Main clock  
kHz Subclock  
ns Main clock  
µs Subclock  
Clock frequency  
32.768  
30.5  
tHCYL  
tLCYL  
238  
72  
1000  
24  
Clock cycle time  
X0A, X1A  
PWH1  
PWL1  
Input clock pulse width  
X0  
X0  
ns External clock  
ns External clock  
tCR1  
tCF1  
Input clock rising/falling time  
X0, X1 Timings and Conditions of Applied Voltage  
tHCYL  
0.8 VCC  
0.2 VCC  
X0  
PWH1  
PWL1  
tCF1  
tCR1  
Main Clock Conditions of Applied Voltage  
When a crystal  
or  
ceramic resonator is used  
When an external clock is used  
X0  
X1  
X0  
X1  
FCH  
C1  
Open  
C0  
FCH  
30  
MB89120/120A Series  
X0A, X1A Timings and Conditions of Applied Voltage  
tLCYL  
0.8 VCC  
X0A  
Subclock Conditions of Applied Voltage  
When a crystal  
or  
ceramic resonator is used  
Single-clock option is used  
X0A  
X1A  
X0A  
X1A  
Open  
Rd  
FCL  
C0  
C1  
(4) Instruction Cycles  
Parameter  
(VSS = 0.0 V, TA = −40 °C to +85 °C)  
Symbol  
Value (typical)  
Unit  
Remarks  
4/FCH, 8/FCH, 16/FCH,  
64/FCH  
(4/FCH) tinst = 1.0 µs when operating at  
FCH = 4 MHz  
µs  
µs  
Instruction cycle  
(minimum execution time)  
tinst  
tinst = 61.036 µs when operating at FCL  
= 32.768 kHz  
2/FCL  
31  
MB89120/120A Series  
(5) Recommended Resonator Manufacturers  
Sample Application of Piezoelectric Resonator (FAR Series) for Main Clock Oscillation Circuit  
(Only in the MB89120A Series)  
X0  
X1  
R
1
FAR  
2
2
C1  
C2  
*1 : FUJITSU MEDIA DEVICE LIMITED  
Temperature  
characteristics of  
FAR frequency  
Initial deviation of  
FAR frequency  
(TA = +25 °C)  
Loading  
FAR part number  
(built-incapacitortype)  
Frequency Dumping  
(MHz)  
resistor  
capacitors*2  
(TA = −20°Cto+60°C)  
1000  
510  
FAR-C4CC-02000-L00  
2.00  
±0.5%  
±0.5%  
Built-in  
FAR-C4 A-03580- 01  
FAR-C4CB-04000-M00  
3.58  
4.00  
Inquiry : FUJITSU MEDIA DEVICES LIMITED  
32  
MB89120/120A Series  
Sample Application of Ceramic Resonator for Main Clock Oscillation Circuit  
X0  
X1  
R
C1  
C2  
Mask ROM products  
Frequency  
(MHz)  
Resonator manufacturer*  
Resonator  
C1 (pF)  
33  
C2 (pF)  
33  
R (k)  
Not required  
1.5  
Kyocera Corporation  
KBR-4.0MKS  
EFOV4004B  
4.00  
4.00  
1.00  
Matsushita Electronic Compo-  
nents  
Built-in  
Built-in  
CSBF1000J  
100  
Built-in  
100  
100  
Built-in  
100  
6.8  
CSTCS4.00MG800  
CSA4.00MG040  
CST4.00MGW040  
Not required  
Not required  
Not required  
Murata Mfg. Co. Ltd.  
4.00  
Built-in  
Built-in  
Inquiry : Kyocera Corporation  
AVX Corporation  
North American Sales Headquarters : TEL (803) 448-9411  
AVX Limited  
European Sales Headquarters : TEL (01252) 770000  
AVX/Kyocera H.K. Ltd.  
Asian Sales Headquarters : TEL 363-3303  
Matsushita Electronic Components Co., Ltd.  
Ceramic Division : TEL 81-6-908-1101  
Murata Mfg Co., Ltd.  
Murata Electronics North America, Inc. : TEL 1-404-436-1300  
Murata Europe Management GmbH : TEL 49-911-66870  
Murata Electronics Singapore (Pte.) Ltd. : TEL 65-758-4233  
33  
MB89120/120A Series  
Sample Application of Crystal Resonator for Subclock Oscillation Circuit  
X0A  
X1A  
Rd  
C1  
C2  
Mask ROM product  
Frequency  
Resonator manufacturer*  
Resonator  
DS-VT-200  
C1 (pF)  
C2 (pF)  
Rd (k)  
(kHz)  
SII  
32.768  
24  
24  
680  
Inquiry : SII  
Seiko Instruments Inc. (Japan) : TEL 81-43-211-1219  
Seiko Instruments U.S.A. Inc. : TEL 310-517-7770  
Seiko Instruments GmbH :  
TEL 49-6102-297-122  
34  
MB89120/120A Series  
(6) Serial I/O Timings  
Parameter  
(VCC = +5.0 V ±10%, AVSS = VSS = 0.0 V, TA = −40 °C to +85 °C)  
Value  
Symbol  
Pin  
Condition  
Unit Remarks  
Min.  
2 tinst*  
200  
200  
200  
tinst*  
tinst*  
0
Max.  
Serial clock cycle time  
SCK ↓ → SO time  
tSCYC  
tSLOV  
tIVSH  
tSHIX  
tSHSL  
tSLSH  
tSLOV  
tIVSH  
tSHIX  
SCK  
µs  
ns  
ns  
ns  
µs  
µs  
ns  
ns  
ns  
SCK, SO  
SI, SCK  
SCK, SI  
200  
Internal clock  
operation  
Valid SI SCK ↑  
SCK ↑ → Valid SI hold time  
Serial clock “H” pulse width  
Serial clock “L” pulse width  
SCK ↓ → SO time  
SCK  
External clock  
operation  
SCK, SO  
SI, SCK  
SCK, SI  
200  
Valid SI SCK ↑  
200  
200  
SCK ↑ → Valid SI hold time  
* : For information on tinst, see “ (4) Instruction Cycles.”  
Internal Shift Clock Mode  
tSCYC  
SCK  
2.4 V  
0.8 V  
0.8 V  
tSLOV  
2.4 V  
SO  
0.8 V  
tIVSH  
tSHIX  
0.8 VCC  
0.2 VCC  
0.8 VCC  
SI  
0.2 VCC  
External Shift Clock Mode  
tSLSH  
tSHSL  
SCK  
0.8 VCC  
0.8 VCC  
0.2 VCC  
tSLOV  
0.2 VCC  
2.4 V  
0.8 V  
SO  
SI  
tIVSH  
0.8 VCC  
0.2 VCC  
tSHIX  
0.8 VCC  
0.2 VCC  
35  
MB89120/120A Series  
(7) Peripheral Input Timings  
(VCC = +5.0 V ±10%, AVSS = VSS = 0.0 V, TA = −40 °C to +85 °C)  
Value  
Symbol  
Pin  
Unit Remarks  
Parameter  
Min.  
2 tinst*  
2 tinst*  
Max.  
tILIH  
µs  
µs  
Peripheral input “H” pulse width  
Peripheral input “L” pulse width  
EC, INT0 to INT2  
tIHIL  
* : For information on tinst, see “ (4) Instruction Cycle.”  
tIHIL  
tILIH  
EC  
INT0 to INT2  
0.8 VCC  
0.8 VCC  
0.2 VCC  
0.2 VCC  
36  
MB89120/120A Series  
EXAMPLE CHARACTERISTICS  
(1) “L” Level Output Voltage  
VOL vs. IOL  
(2) “H” Level Output Voltage  
VCC VOH vs. IOH  
VCC VOH (V)  
VOL (V)  
VCC = 2.5 V  
VCC = 2.2 V  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
TA = +25 °C  
VCC = 2.2 V  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
VCC = 2.5 V  
TA = +25 °C  
VCC = 3.0 V  
VCC = 4.0 V  
VCC = 3.0 V  
VCC = 5.0 V  
VCC = 6.0 V  
VCC = 4.0 V  
VCC = 5.0 V  
VCC = 6.0 V  
0.0  
.5  
1.0 1.5 2.0 2.5 3.0  
IOH (mA)  
0
1
2
3
4
5
6
7
8
9
10  
IOL (mA)  
(3) “H” Level Input Voltage/“L” Level Input  
Voltage (CMOS Input)  
(4) “H” Level Input Voltage/“L” Level Input  
Voltage (Hysteresis Input)  
VIN vs. VCC  
VIN (V)  
5.0  
VIN vs. VCC  
VIN (V)  
5.0  
TA = +25 °C  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
TA = +25 °C  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
VIHS  
VILS  
.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00  
VCC (V)  
.00  
1.00 2.00 3.00 4.00 5.00 6.00 7.00  
VCC (V)  
VIHS : Threshold when input voltage in hysteresis  
characteristics is set to “H” level  
VILS : Threshold when input voltage in hysteresis  
characteristics is set to “L” level  
(5) Pull-up Resistance  
RPULL vs. VCC  
RPULL (k)  
1000  
TA = +25 °C  
300  
100  
50  
10  
0
2
3
4
5
6
7
1
VCC (V)  
37  
MB89120/120A Series  
(6) Power Supply Current  
ICC1 vs. VCC  
ICCS1 vs. VCC  
ICC (mA)  
5.0  
ICCS (mA)  
3.0  
Divide by 4  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
FCH = 4.0 MHz  
TA = +25 °C  
(ICC1)  
Divide by 4 (ICCS1)  
Divide by 64  
FCH = 4.0 MHz  
TA = +25 °C  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
Divide by 64  
1.0  
0.5  
0.0  
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
6.5  
VCC (V)  
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
6.5  
VCC (V)  
ICCLS vs. VCC  
ICCL vs. VCC  
ICCL (µA)  
ICCLS (µA)  
50  
200  
180  
160  
TA = +25 °C  
TA = +25 °C  
45  
40  
35  
30  
25  
20  
15  
140  
120  
100  
80  
60  
40  
10  
5
20  
0
0
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
6.5  
VCC (V)  
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5  
VCC (V)  
ICCH vs. VCC  
ICCT vs. VCC  
ICCH (µA)  
2.0  
ICCT (µA)  
30  
TA = +25 °C  
TA = +25 °C  
1.8  
1.6  
25  
20  
15  
10  
5
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
0
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5  
VCC (V)  
6.5  
VCC (V)  
38  
MB89120/120A Series  
INSTRUCTIONS (136 INSTRUCTIONS)  
Execution instructions can be divided into the following four groups:  
Transfer  
• Arithmetic operation  
• Branch  
• Others  
Table 1 lists symbols used for notation of instructions.  
Table 1 Instruction Symbols  
Symbol  
dir  
Meaning  
Direct address (8 bits)  
off  
Offset (8 bits)  
ext  
#vct  
#d8  
#d16  
dir: b  
rel  
Extended address (16 bits)  
Vector table number (3 bits)  
Immediate data (8 bits)  
Immediate data (16 bits)  
Bit direct address (8:3 bits)  
Branch relative address (8 bits)  
Register indirect (Example: @A, @IX, @EP)  
@
A
AH  
AL  
Accumulator A (Whether its length is 8 or 16 bits is determined by the instruction in use.)  
Upper 8 bits of accumulator A (8 bits)  
Lower 8 bits of accumulator A (8 bits)  
T
TH  
TL  
Temporary accumulator T (Whether its length is 8 or 16 bits is determined by the instruction in use.)  
Upper 8 bits of temporary accumulator T (8 bits)  
Lower 8 bits of temporary accumulator T (8 bits)  
Index register IX (16 bits)  
IX  
EP  
PC  
SP  
PS  
dr  
CCR  
RP  
Ri  
Extra pointer EP (16 bits)  
Program counter PC (16 bits)  
Stack pointer SP (16 bits)  
Program status PS (16 bits)  
Accumulator A or index register IX (16 bits)  
Condition code register CCR (8 bits)  
Register bank pointer RP (5 bits)  
General-purpose register Ri (8 bits, i = 0 to 7)  
Indicates that the very × is the immediate data.  
(Whether its length is 8 or 16 bits is determined by the instruction in use.)  
×
Indicates that the contents of × is the target of accessing.  
( × )  
(( × ))  
(Whether its length is 8 or 16 bits is determined by the instruction in use.)  
The address indicated by the contents of × is the target of accessing.  
(Whether its length is 8 or 16 bits is determined by the instruction in use.)  
Columns indicate the following:  
Mnemonic: Assembler notation of an instruction  
~:  
#:  
The number of instructions  
The number of bytes  
Operation: Operation of an instruction  
TL, TH, AH:  
A content change when each of the TL, TH, and AH instructions is executed. Symbols in  
the column indicate the following:  
indicates no change.  
• dH is the 8 upper bits of operation description data.  
• AL and AH must become the contents of AL and AH prior to the instruction executed.  
• 00 becomes 00.  
N, Z, V, C:  
OP code:  
An instruction of which the corresponding flag will change. If + is written in this column,  
the relevant instruction will change its corresponding flag.  
Code of an instruction. If an instruction is more than one code, it is written according to  
the following rule:  
Example: 48 to 4F This indicates 48, 49, ... 4F.  
39  
MB89120/120A Series  
Table 2 Transfer Instructions (48 instructions)  
Mnemonic  
MOV dir,A  
MOV @IX +off,A  
MOV ext,A  
MOV @EP,A  
MOV Ri,A  
MOV A,#d8  
MOV A,dir  
MOV A,@IX +off  
MOV A,ext  
MOV A,@A  
MOV A,@EP  
MOV A,Ri  
MOV dir,#d8  
MOV @IX +off,#d8  
MOV @EP,#d8  
MOV Ri,#d8  
MOVW dir,A  
MOVW @IX +off,A  
~
#
Operation  
TL  
TH AH NZVC OP code  
3
4
4
3
3
2
3
4
4
3
3
3
4
5
4
4
4
5
2
2
3
1
1
2
2
2
3
1
1
1
3
3
2
2
2
2
(dir) (A)  
AL  
AL  
AL  
AL  
AL  
AL  
AL  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
+ + – –  
+ + – –  
+ + – –  
+ + – –  
+ + – –  
+ + – –  
+ + – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
45  
46  
61  
( (IX) +off ) (A)  
(ext) (A)  
( (EP) ) (A)  
47  
(Ri) (A)  
(A) d8  
(A) (dir)  
48 to 4F  
04  
05  
06  
60  
92  
(A) ( (IX) +off)  
(A) (ext)  
(A) ( (A) )  
(A) ( (EP) )  
07  
(A) (Ri)  
(dir) d8  
08 to 0F  
85  
86  
87  
88 to 8F  
D5  
( (IX) +off ) d8  
( (EP) ) d8  
(Ri) d8  
(dir) (AH),(dir + 1) (AL)  
( (IX) +off) (AH),  
( (IX) +off + 1) (AL)  
(ext) (AH), (ext + 1) (AL)  
( (EP) ) (AH),( (EP) + 1) (AL)  
(EP) (A)  
D6  
MOVW ext,A  
MOVW @EP,A  
MOVW EP,A  
MOVW A,#d16  
MOVW A,dir  
MOVW A,@IX +off  
5
4
2
3
4
5
3
1
1
3
2
2
AL  
AL  
AL  
AH  
AH  
AH  
dH  
dH  
dH  
– – – –  
– – – –  
– – – –  
+ + – –  
+ + – –  
+ + – –  
D4  
D7  
E3  
E4  
C5  
C6  
(A) d16  
(AH) (dir), (AL) (dir + 1)  
(AH) ( (IX) +off),  
(AL) ( (IX) +off + 1)  
(AH) (ext), (AL) (ext + 1)  
(AH) ( (A) ), (AL) ( (A) ) + 1)  
(AH) ( (EP) ), (AL) ( (EP) + 1)  
(A) (EP)  
MOVW A,ext  
MOVW A,@A  
MOVW A,@EP  
MOVW A,EP  
MOVW EP,#d16  
MOVW IX,A  
MOVW A,IX  
MOVW SP,A  
MOVW A,SP  
MOV @A,T  
MOVW @A,T  
MOVW IX,#d16  
MOVW A,PS  
MOVW PS,A  
MOVW SP,#d16  
SWAP  
5
4
4
2
3
2
2
2
2
3
4
3
2
2
3
2
4
4
2
3
3
3
3
2
3
1
1
1
3
1
1
1
1
1
1
3
1
1
3
1
2
2
1
1
1
1
1
1
AL  
AL  
AL  
AH  
AH  
AH  
dH  
dH  
dH  
dH  
dH  
dH  
dH  
AL  
dH  
dH  
dH  
dH  
dH  
+ + – –  
+ + – –  
+ + – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
+ + + +  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
C4  
93  
C7  
F3  
E7  
E2  
F2  
E1  
F1  
82  
83  
E6  
70  
71  
E5  
10  
(EP) d16  
(IX) (A)  
(A) (IX)  
(SP) (A)  
(A) (SP)  
( (A) ) (T)  
( (A) ) (TH),( (A) + 1) (TL)  
(IX) d16  
(A) (PS)  
(PS) (A)  
(SP) d16  
(AH) (AL)  
(dir): b 1  
(dir): b 0  
(AL) (TL)  
(A) (T)  
(A) (EP)  
(A) (IX)  
(A) (SP)  
(A) (PC)  
SETB dir: b  
CLRB dir: b  
XCH A,T  
A8 to AF  
A0 to A7  
42  
AL  
AL  
AH  
XCHW A,T  
43  
F7  
F6  
F5  
XCHW A,EP  
XCHW A,IX  
XCHW A,SP  
MOVW A,PC  
F0  
Note: During byte transfer to A, T A is restricted to low bytes.  
Operands in more than one operand instruction must be stored in the order in which their mnemonics  
are written. (Reverse arrangement of F2MC-8 family)  
40  
MB89120/120A Series  
Table 3 Arithmetic Operation Instructions (62 instructions)  
Mnemonic  
ADDC A,Ri  
ADDC A,#d8  
ADDC A,dir  
ADDC A,@IX +off  
ADDC A,@EP  
ADDCW A  
ADDC A  
SUBC A,Ri  
SUBC A,#d8  
SUBC A,dir  
SUBC A,@IX +off  
SUBC A,@EP  
SUBCW A  
SUBC A  
INC Ri  
INCW EP  
INCW IX  
INCW A  
DEC Ri  
DECW EP  
DECW IX  
DECW A  
MULU A  
DIVU A  
~
#
Operation  
(A) (A) + (Ri) + C  
TL  
TH AH NZVC OP code  
3
2
3
4
3
3
2
3
2
3
4
3
3
2
4
3
3
3
4
3
3
3
19  
21  
3
3
3
2
3
2
1
2
2
2
1
1
1
1
2
2
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
dL  
00  
dH  
dH  
dH  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + –  
– – – –  
– – – –  
+ + – –  
+ + + –  
– – – –  
– – – –  
+ + – –  
– – – –  
– – – –  
+ + R –  
+ + R –  
+ + R –  
+ + + +  
+ + + +  
+ + – +  
28 to 2F  
24  
(A) (A) + d8 + C  
(A) (A) + (dir) + C  
(A) (A) + ( (IX) +off) + C  
(A) (A) + ( (EP) ) + C  
(A) (A) + (T) + C  
(AL) (AL) + (TL) + C  
(A) (A) (Ri) C  
(A) (A) d8 C  
(A) (A) (dir) C  
(A) (A) ( (IX) +off) C  
(A) (A) ( (EP) ) C  
(A) (T) (A) C  
(AL) (TL) (AL) C  
(Ri) (Ri) + 1  
(EP) (EP) + 1  
(IX) (IX) + 1  
(A) (A) + 1  
(Ri) (Ri) 1  
(EP) (EP) 1  
(IX) (IX) 1  
(A) (A) 1  
25  
26  
27  
23  
22  
38 to 3F  
34  
35  
36  
37  
33  
32  
C8 to CF  
C3  
C2  
C0  
D8 to DF  
D3  
D2  
D0  
01  
11  
63  
73  
53  
12  
dH  
dH  
00  
dH  
dH  
dH  
(A) (AL) × (TL)  
(A) (T) / (AL),MOD (T)  
(A) (A) (T)  
(A) (A) (T)  
(A) (A) (T)  
ANDW A  
ORW A  
XORW A  
CMP A  
CMPW A  
RORC A  
(TL) (AL)  
(T) (A)  
13  
03  
C
A
A
C
ROLC A  
2
1
+ + – +  
02  
(A) d8  
(A) (dir)  
(A) ( (EP) )  
(A) ( (IX) +off)  
CMP A,#d8  
CMP A,dir  
CMP A,@EP  
CMP A,@IX +off  
CMP A,Ri  
DAA  
2
3
3
4
3
2
2
2
2
3
3
4
3
2
2
3
2
2
1
2
1
1
1
1
2
2
1
2
1
1
2
2
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
14  
15  
17  
16  
(A) (Ri)  
18 to 1F  
84  
Decimal adjust for addition  
Decimal adjust for subtraction  
(A) (AL) (TL)  
(A) (AL) d8  
(A) (AL) (dir)  
(A) (AL) ( (EP) )  
(A) (AL) ( (IX) +off)  
(A) (AL) (Ri)  
(A) (AL) (TL)  
(A) (AL) d8  
DAS  
XOR A  
94  
52  
54  
55  
57  
56  
XOR A,#d8  
XOR A,dir  
XOR A,@EP  
XOR A,@IX +off  
XOR A,Ri  
AND A  
58 to 5F  
62  
AND A,#d8  
AND A,dir  
64  
65  
(A) (AL) (dir)  
(Continued)  
41  
MB89120/120A Series  
(Continued)  
Mnemonic  
~
#
Operation  
(A) (AL) ( (EP) )  
TL  
TH AH NZVC OP code  
AND A,@EP  
AND A,@IX +off  
AND A,Ri  
OR A  
OR A,#d8  
3
4
3
2
2
3
3
4
3
5
4
5
4
3
3
1
2
1
1
2
2
1
2
1
3
2
3
2
1
1
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
– – – –  
– – – –  
67  
66  
68 to 6F  
72  
(A) (AL) ( (IX) +off)  
(A) (AL) (Ri)  
(A) (AL) (TL)  
(A) (AL) d8  
(A) (AL) (dir)  
(A) (AL) ( (EP) )  
(A) (AL) ( (IX) +off)  
(A) (AL) (Ri)  
(dir) – d8  
74  
75  
77  
76  
OR A,dir  
OR A,@EP  
OR A,@IX +off  
OR A,Ri  
CMP dir,#d8  
CMP @EP,#d8  
CMP @IX +off,#d8  
CMP Ri,#d8  
INCW SP  
78 to 7F  
95  
97  
96  
98 to 9F  
C1  
( (EP) ) – d8  
( (IX) + off) – d8  
(Ri) – d8  
(SP) (SP) + 1  
(SP) (SP) – 1  
DECW SP  
D1  
Table 4 Branch Instructions (17 instructions)  
Mnemonic  
~
#
Operation  
TL  
TH AH NZVC OP code  
BZ/BEQ rel  
BNZ/BNE rel  
BC/BLO rel  
BNC/BHS rel  
BN rel  
BP rel  
BLT rel  
3
3
3
3
3
3
3
3
5
5
2
3
6
6
3
4
6
2
2
2
2
2
2
2
2
3
3
1
3
1
3
1
1
1
If Z = 1 then PC PC + rel  
If Z = 0 then PC PC + rel  
If C = 1 then PC PC + rel  
If C = 0 then PC PC + rel  
If N = 1 then PC PC + rel  
If N = 0 then PC PC + rel  
If V N = 1 then PC PC + rel  
If V N = 0 then PC PC + reI  
If (dir: b) = 0 then PC PC + rel  
If (dir: b) = 1 then PC PC + rel  
(PC) (A)  
(PC) ext  
Vector call  
Subroutine call  
(PC) (A),(A) (PC) + 1  
Return from subrountine  
Return form interrupt  
dH  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– + – –  
– + – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
Restore  
FD  
FC  
F9  
F8  
FB  
FA  
FF  
FE  
BGE rel  
BBC dir: b,rel  
BBS dir: b,rel  
JMP @A  
JMP ext  
CALLV #vct  
CALL ext  
XCHW A,PC  
RET  
B0 to B7  
B8 to BF  
E0  
21  
E8 to EF  
31  
F4  
20  
30  
RETI  
Table 5 Other Instructions (9 instructions)  
Mnemonic  
~
#
Operation  
TL  
TH AH NZVC OP code  
PUSHW A  
POPW A  
PUSHW IX  
POPW IX  
NOP  
CLRC  
SETC  
4
4
4
4
1
1
1
1
1
1
1
1
1
1
1
1
1
1
dH  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – R  
– – – S  
– – – –  
– – – –  
40  
50  
41  
51  
00  
81  
91  
80  
90  
CLRI  
SETI  
42  
MB89120/120A Series  
INSTRUCTION MAP  
43  
MB89120/120A Series  
MASK OPTIONS  
MB89121  
MB89123A  
MB89125A  
MB89P131  
MB89P133A  
Part number  
MB89P135A  
MB89PV130A  
No.  
Specify when ordering  
masking  
Set with EPROM Specification  
Specifying procedure  
programmer  
impossible  
Pull-up resistors  
Selectable by pin  
All pins fixed to  
1
2
P00 to P07, P10 to P17,  
P30 to P37, P40 to P43  
Selectable by pin (P40 to P43 must be set to without no pull-up resis-  
a pull-up resistor.)  
tor optional  
Power-on reset  
Power-on reset provided  
No power-on reset  
With power-on  
reset  
Selectable  
Selectable  
Selectable  
Selectable  
Selectable  
Selection of oscillation stabiliza-  
tion wait time  
The oscillation stabilization wait  
time initial value is selectable  
from 4 types given below.  
0 : Oscillation stabilization 22/FCH  
1 : Oscillation stabilization 212/FCH  
2 : Oscillation stabilization 216/FCH  
3 : Oscillation stabilization 218/FCH  
Oscillation sta-  
bilization  
218/FCH  
3
Selectable  
Reset pin output  
Reset output provided  
No reset output  
With reset out-  
put  
4
5
6
Selectable  
Selectable  
Selectable  
Selectable  
Selectable  
Selectable  
Clock mode selection  
Single-clock mode  
Dual-clock mode  
Dual-clock  
mode  
Selectable  
Main clock oscillation circuit type  
External clock input  
Not required*1  
Oscillation resonator  
Peripheral control clock  
output function*2  
Not used  
7
Selectable  
Not required*3  
Used  
*1 : Both external clock and oscillation resonator is usable on the one-time product.  
*2 : “Used” must be selected when P33 (39 pin) is used as SCO for the peripheral control clock output.  
*3 : The peripheral control clock function can be used only by software.  
44  
MB89120/120A Series  
MB89P131/P133A STANDARD OPTIONS  
No.  
1
Product option  
Pull-up resistor  
MB89P131-101  
MB89P133A-201  
Not provided for any port  
Provided  
Not provided for any port  
Provided  
2
Power-on reset  
Selection of oscillation stabilization  
time  
3
2 : Oscillation stabilization 216/FCH 2 : Oscillation stabilization 216/FCH  
4
5
Reset pin output  
Provided  
Provided  
Clock mode selection  
Dual-clock mode  
Dual-clock mode  
ORDERING INFORMATION  
Part number  
Package  
Remarks  
MB89121PFM  
MB89123APFM  
MB89125APFM  
48-pin Plastic QFP  
(FPT-48P-M13)  
MB89P131PFM-101  
MB89P133APFM-201  
MB89P135APFM  
48-pin Ceramic MQFP  
(MQP-48C-P01)  
MB89PV130ACF-ES  
45  
MB89120/120A Series  
PACKAGE DIMENSION  
48-pin Plastic QFP  
(FPT-48P-M13)  
13.10±0.40 SQ  
(.516±.016)  
2.35(.093)MAX  
(Mounting height)  
10.00±0.20 SQ  
(.394±.008)  
0(0)MIN  
(STAND OFF)  
36  
25  
Details of "A" part  
37  
24  
0.15(.006)  
0.20(.008)  
8.80  
(.346)  
REF  
11.50±0.30  
(.453±.012)  
INDEX  
"A"  
0.18(.007)MAX  
0.53(.021)MAX  
48  
13  
Details of "B" part  
1
12  
LEAD No.  
0.80(.0315)TYP  
0.15±0.05  
(.006±.002)  
0.30±0.10  
(.012±.004)  
M
0.16(.006)  
0~10°  
"B"  
0.80±0.30  
(.031±.012)  
0.10(.004)  
C
1994 FUJITSU LIMITED F48023S-1C-1  
Dimensions in mm (inches)  
46  
MB89120/120A Series  
FUJITSU LIMITED  
For further information please contact:  
Japan  
All Rights Reserved.  
FUJITSU LIMITED  
Corporate Global Business Support Division  
Electronic Devices  
The contents of this document are subject to change without notice.  
Customers are advised to consult with FUJITSU sales  
representatives before ordering.  
Shinjuku Dai-Ichi Seimei Bldg. 7-1,  
Nishishinjuku 2-chome, Shinjuku-ku,  
Tokyo 163-0721, Japan  
Tel: +81-3-5322-3347  
Fax: +81-3-5322-3386  
The information and circuit diagrams in this document are  
presented as examples of semiconductor device applications, and  
are not intended to be incorporated in devices for actual use. Also,  
FUJITSU is unable to assume responsibility for infringement of  
any patent rights or other rights of third parties arising from the use  
of this information or circuit diagrams.  
http://www.fujitsu.co.jp/  
North and South America  
FUJITSU MICROELECTRONICS, INC.  
3545 North First Street,  
San Jose, CA 95134-1804, U.S.A.  
Tel: +1-408-922-9000  
Fax: +1-408-922-9179  
The contents of this document may not be reproduced or copied  
without the permission of FUJITSU LIMITED.  
Customer Response Center  
Mon. - Fri.: 7 am - 5 pm (PST)  
Tel: +1-800-866-8608  
FUJITSU semiconductor devices are intended for use in standard  
applications (computers, office automation and other office  
equipments, industrial, communications, and measurement  
equipments, personal or household devices, etc.).  
Fax: +1-408-922-9179  
http://www.fujitsumicro.com/  
CAUTION:  
Europe  
Customers considering the use of our products in special  
applications where failure or abnormal operation may directly  
affect human lives or cause physical injury or property damage, or  
where extremely high levels of reliability are demanded (such as  
aerospace systems, atomic energy controls, sea floor repeaters,  
vehicle operating controls, medical devices for life support, etc.)  
are requested to consult with FUJITSU sales representatives before  
such use. The company will not be responsible for damages arising  
from such use without prior approval.  
FUJITSU MICROELECTRONICS EUROPE GmbH  
Am Siebenstein 6-10,  
D-63303 Dreieich-Buchschlag,  
Germany  
Tel: +49-6103-690-0  
Fax: +49-6103-690-122  
http://www.fujitsu-fme.com/  
Asia Pacific  
FUJITSU MICROELECTRONICS ASIA PTE. LTD.  
#05-08, 151 Lorong Chuan,  
New Tech Park,  
Any semiconductor devices have inherently a certain rate of failure.  
You must protect against injury, damage or loss from such failures  
by incorporating safety design measures into your facility and  
equipment such as redundancy, fire protection, and prevention of  
over-current levels and other abnormal operating conditions.  
Singapore 556741  
Tel: +65-281-0770  
Fax: +65-281-0220  
http://www.fmap.com.sg/  
If any products described in this document represent goods or  
technologies subject to certain restrictions on export under the  
Foreign Exchange and Foreign Trade Control Law of Japan, the  
prior authorization by Japanese government should be required for  
export of those products from Japan.  
Korea  
FUJITSU MICROELECTRONICS KOREA LTD.  
1702 KOSMO TOWER, 1002 Daechi-Dong,  
Kangnam-Gu,Seoul 135-280  
Korea  
Tel: +82-2-3484-7100  
Fax: +82-2-3484-7111  
F0008  
FUJITSU LIMITED Printed in Japan  

相关型号:

MB89123A

8-bit Proprietary Microcontroller
FUJITSU

MB89123APFM

8-bit Proprietary Microcontroller
FUJITSU

MB89125

8-bit Proprietary Microcontroller
FUJITSU

MB89125A

8-bit Proprietary Microcontroller
FUJITSU

MB89125APFM

8-bit Proprietary Microcontroller
FUJITSU

MB89125APFM

Microcontroller, 8-Bit, MROM, 4.2MHz, CMOS, PQFP48, 10 X 10 MM, 2.35 MM HEIGHT, 0.80 MM PITCH, PLASTIC, QFP-48
SPANSION

MB89130

8-bit Proprietary Microcontroller
FUJITSU

MB89130A

8-bit Proprietary Microcontroller
FUJITSU

MB89130_01

8-bit Proprietary Microcontroller
FUJITSU

MB89131

8-bit Proprietary Microcontroller
FUJITSU

MB89131PFM

8-bit Proprietary Microcontroller
FUJITSU

MB89133

8-bit Proprietary Microcontroller
FUJITSU