MB89P945PF [FUJITSU]

8-bit Proprietary Microcontroller; 8位微控制器专有
MB89P945PF
型号: MB89P945PF
厂家: FUJITSU    FUJITSU
描述:

8-bit Proprietary Microcontroller
8位微控制器专有

微控制器 外围集成电路 可编程只读存储器 时钟
文件: 总40页 (文件大小:521K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
FUJITSU SEMICONDUCTOR  
DATA SHEET  
DS07-12536-2E  
8-bit Proprietary Microcontroller  
CMOS  
F2MC-8L MB89940 Series  
MB89943/P945/PV940  
OUTLINE  
The MB89940 series is specially designed for automotive instrumentation applications. It features a combination  
of two PWM pulse generators and four high-drive-current outputs for controlling a stepping motor. It also contains  
two analog inputs, two PWM pulse generators and 10-digit LCD controller/driver for various sensor/indicator  
devices. The MB89940 series is manufactured with high performance CMOS technologies and packaged in a  
48-pin QFP.  
FEATURES  
• 8-bit core CPU; 4 MHz system clock (8 MHz external, 500 ns instruction cycle)  
• 21-bit watchdog timer  
• Clock generator/controller  
• 16-bit interval timer  
Two PWM pulse generators with four high-drive-current outputs  
Two-channel 8-bit A/D converter  
• Three external interrupt  
• Low supply voltage reset  
• External voltage monitor interrupt  
Two more PWM pulse generators for controlling indicator devices  
• 4-common 17-segment LCD driver/controller  
• Package; 48-pin plastic QFP, 48-pin ceramic MQFP  
(Continued)  
PACKAGE  
48-pin Plastic QFP  
48-pin Ceramic MQFP  
(MQP-48C-P01)  
(FPT-48P-M16)  
MB89940 Series  
(Continued)  
• 5.0 V single power supply (VPP required for MB89P945)  
• 0.8 µm CMOS technology (MB89PV940 and MB89P945)  
• 0.5 µm CMOS technology (MB89943)  
• On-chip voltage regulator for internal 3.0 V power supply (MB89943)  
PRODUCT LINEUP  
Part number  
MB89943  
MB89P945  
MB89PV940  
Item  
Classification  
Mass-produced products  
(mask ROM products)  
One-time PROM  
Piggyback  
ROM size  
8 K × 8 bits  
(internal mask ROM)  
16 K × 8 bits  
(internal PROM)  
32 K × 8 bits  
(external on piggyback)  
RAM size  
512 × 8 bits  
The number of instructions: 136  
1 K × 8 bits  
CPU functions  
Instruction cycle:  
0.5 µs*1@8 MHz  
Interrupt response time:  
Multiply instruction time:  
Divide instruction time:  
4.0 µs*1@8 MHz  
19 instruction cycles  
21 instruction cycles  
Direct addressing memory-to/from-register data transfer:  
7 instruction cycles  
Ports  
Output:  
Input/Output:  
5-bit N-ch open-drain  
Two 8-bit CMOS schmitt I/Os and 8-bit CMOS I/Os  
Timebase timer  
8-bit/16-bit timer  
Watchdog Reset  
21 bits  
Interrupt interval: 1 ms, 4.1 ms, 32.8 ms or 524.3 ms  
Can be used as two 8-bit timers or one 16-bit timer  
Operation clock: 1 µs, 16 µs, 256 µs or external *1  
Reset interval: Approx. 524 ms to 1049 ms  
Stepping motor  
controller  
Two 8-bit PWM pulse generators  
Synchronized 4-channel high current output  
Operation clock: 250 ns, 500 ns, 1 µs or 4 µs*1  
8-bit PWM timers  
External interrupt  
A/D converter  
Two 8-bit PWM timers  
3 channels, selective positive edge or negative edge trigger  
8-bit resolution, two-channel input  
Conversion time: 44 instruction cycles for A/D conversion, 12 instruction cycles  
for sense mode operation  
LCD controller  
4-common and 17-segment outputs  
Number of outputs programmable  
Low supply voltage  
reset  
Autonomous reset when low supply voltage  
Reset voltage: 3.3 V, 3.6 V, 4.0 V  
External voltage  
monitor interrupt  
Interrupts when voltage at external pin is lower than the reference voltage  
Standby modes  
Stop mode and sleep mode  
3.5 V to 5.5 V  
Operating  
voltage*2  
(Continued)  
2
MB89940 Series  
(Continued)  
Part number  
MB89943  
MB89P945  
MB89PV940  
Item  
Process  
CMOS  
External EPROM  
MBM27C256A-20TVM  
*1: Execution times and clock cycle times are dependent on the use of MCU.  
*2: Varies with conditions such as the operating frequency. (See section “Electrical Characteristics.”) In the case  
of the MB89PV940, the voltage varies with the vestrictions of the EPROM for use.  
PACKAGE AND CORRESPONDING PRODUCTS  
MB89943  
MB89P945  
Package  
MB89PV940  
FPT-48P-M16  
MQP-48C-P01  
×
×
: Available  
× : Not available  
Note: For more information about each package, see section “Package Dimensions.”  
3
MB89940 Series  
DIFFERENCES AMONG PRODUCTS  
1. Memory Size  
Prior to evaluating/developing the software for the MB89940 series, please check the differences between the  
product types.  
• RAM/ROM configurations are dependent on the product type.  
• If the bottom address of the stack is set to the upper limit of the RAM address, it should be relocated when  
changing the product type.  
2. Power Dissipation  
• For the piggyback product, add the power dissipation of the EEPROM on the piggyback.  
• The power dissipation differs between the product types.  
3. Technology  
The mask ROM product is fabricated with a 0.5 µm CMOS technology whereas the other products with 0.8 µm  
CMOS technology.  
Also the mask ROM product contains the on-chip voltage regulator for the internal 3.0 power supply. For details,  
refer to MB89940 Series Hardware Manual.  
4. Mask Option  
Functions that can be selected as options and how to designate these options vary by the product.  
Before using options check section “Mask Options.”  
• No options are available for the piggyback product.  
• The power-on reset and reset output options are always activated with the mask ROM product.  
• Pull-up option must not be specified with the pins used as LCD outputs.  
4
MB89940 Series  
PIN ASSIGNMENT  
(Top view)  
AVCC  
RST  
P41/COM0  
P42/COM1  
X0  
1
2
3
4
5
6
7
8
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
DVCC  
P30/FUELO  
P00/SEG00  
P01/SEG01  
P02/SEG02  
P03/SEG03  
P04/SEG04  
P05/SEG05  
P06/SEG06  
P07/SEG07  
P10/SEG08  
P11/SEG09  
X1  
VCC  
P43/COM2  
P44/COM3  
P27/INT2  
P26/INT1  
P25/INT0  
9
10  
11  
12  
(FPT-48P-M16)  
5
MB89940 Series  
(Top view)  
AVCC  
1
2
3
4
5
6
7
8
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
DVCC  
RST  
P41/COM0  
P42/COM1  
X0  
P30/FUELO  
P00/SEG00  
P01/SEG01  
P02/SEG02  
P03/SEG03  
P04/SEG04  
P05/SEG05  
P06/SEG06  
P07/SEG07  
P10/SEG08  
P11/SEG09  
69  
70  
71  
72  
73  
74  
75  
76  
60  
59  
58  
57  
56  
55  
54  
53  
X1  
VCC  
P43/COM2  
P44/COM3  
P27/INT2  
P26/INT1  
P25/INT0  
9
10  
11  
12  
(MQP-48C-P01)  
• Pin assignment on package top (MB89PV940 only)  
Pin no.  
49  
Pin name  
A15  
A12  
A7  
Pin no.  
57  
Pin name  
N.C.  
A2  
Pin no.  
65  
Pin name  
Pin no.  
73  
Pin name  
OE  
O4  
O5  
50  
58  
66  
74  
N.C.  
A11  
A9  
51  
59  
A1  
67  
O6  
75  
52  
A6  
60  
A0  
68  
O7  
76  
53  
A5  
61  
O1  
69  
O8  
77  
A8  
54  
A4  
62  
O2  
70  
CE  
A10  
N.C.  
78  
A13  
A14  
VCC  
55  
A3  
63  
O3  
71  
79  
56  
N.C.  
64  
VSS  
72  
80  
N.C.: Internally connected. Do not use.  
6
MB89940 Series  
PIN DESCRIPTION  
Pin no.  
Circuit  
type  
Pin name  
Function  
QFP*1  
MQFP*2  
5
5
X0  
X1  
A
These pins are used for crystal oscillation.  
X0 and X1 can be directly connected to a crystal  
oscillator.  
When the oscillation clock is provided to X0  
externally, X1 should be left open.  
6
6
48  
48  
MODE  
RST  
B
C
The mode input is used for entering the MPU into the  
test mode.  
In user applications, MODE is connected to VSS.  
2
2
Applying a reset pulse to this pin forces the MPU to  
enter the initial state. RST is active low and drives  
low state when an internal reset occurs.  
Reset pulses of the duration less than the minimum  
pulse width may cause the MCU to enter undefined  
states.  
34 to 27  
34 to 27  
P00/SEG00 to  
P07/SEG07  
H
J
These pins have two functions.  
Their functions can be switched between Port 0 and  
LCD segment signal outputs by setting the internal  
registers of the LCD controller.  
26 to 20,  
18  
26 to 20,  
18  
P10/SEG08 to  
P17/SEG15  
These pins have two functions.  
Their functions can be switched between Port 1 and  
LCD segment signal outputs by setting the internal  
registers of the LCD controller.  
17  
16  
15  
17  
16  
15  
P20/SEG15  
P21/V0  
I
This pin can be used as the bit 0 of Port 2 or an LCD  
segment signal output by setting the internal register  
of the LCD controller.  
F
F
This pin is the bit 1 of Port 2.  
This pin can also be used for an external LCD bias  
voltage input.  
P22/EC/V1  
This pin can be used as the bit 2 of Port 2 or the  
external clock input for the interval timer.  
This pin can also be used for an external LCD bias  
voltage input.  
14  
14  
P23/TO/V2  
F
This pin can be used as the bit 3 of Port 2 or the  
output for the interval timer.  
Its function can be switched by setting the internal  
register of the interval timer.  
This pin can also be used for an external LCD bias  
voltage input.  
13  
12, 11, 10  
35  
13  
P24/V3  
F
E
D
This pin can be used as the bit 4 of Port 2 or an  
external LCD bias voltage input.  
12, 11, 10 P25/INT0 to  
P27/INT2  
These pins are used for Port 2.  
They can also be used for external interrupt inputs.  
35  
P30/FUELO  
This pin can be used for the bit 0 of Port 3 or the  
output from PWM3.  
The function of this pin can be switched by setting  
the internal register of PWM3.  
(Continued)  
*1: FPT-48P-M16  
*2: MQP-48C-P01  
7
MB89940 Series  
(Continued)  
Pin no.  
Circuit  
type  
Pin name  
Function  
QFP*1  
MQFP*2  
37  
37  
P31/TEMPO  
G
G
G
This pin can be used for the bit 1 of Port 3 or the  
output from PWM4.  
The function of this pin can be switched by setting  
the internal register of PWM4. This output has a high  
drive-current capability.  
38,  
39  
38,  
39  
P32/PWM1P,  
P33/PWM1M  
These pins are the pair of high-current driver outputs  
for one of two motor coils.  
They can be also used for the bits 2 and 3 of Port 3  
by setting the internal register of the stepper motor  
controller.  
40,  
41  
40,  
41  
P34/PWM2P,  
P35/PWM2M  
These pins are the pair of high-current driver outputs  
for one of two motor coils.  
They can be also used for the bits 4 and 5 of Port 3  
by setting the internal register of the stepper motor  
controller.  
44  
45  
46  
44  
45  
46  
P36/TEMPI  
P37/FUELI  
P40/PW  
M
M
L
This analog input is connected to channel 1 of the  
A/D converter.  
It can also be used for the bit 6 of Port 3 when this A/  
D input enable register bit is set to ‘0’.  
This analog input is connected to channel 0 of the  
A/D converter.  
It can also be used for the bit 7 of Port 3 when this A/  
D input enable register bit is set to ‘0’.  
This pin has two functions.  
When this pin is used as an open-drain output of  
Port 4, the external voltage monitor reset should be  
in the power down mode.  
When it is used as the PW input of external voltage  
monitor reset, the corresponding bit of the port data  
register should be set to ‘1’.  
3, 4  
8, 9  
3, 4  
8, 9  
P41/COM0 to  
P44/COM3  
K
These pins are the LCD common signal outputs.  
When LCD is not used, these pins can be also used  
for Port 4.  
47  
47  
VINT  
An external capacitor should be connected to this  
pin for stabilizing the internal 3.0 V power supply.  
For MB89PV940 and MB89P945, this pin should be  
left open.  
7
19  
1
7
19  
1
VCC  
VCC  
VSS  
VSS  
AVCC  
The power supply pin for the analog circuit  
The same voltage should be applied as VCC.  
The power supply pin for the analog circuit  
The same voltage should be applied as VSS.  
43  
36  
43  
36  
AVSS  
DVCC  
The dedicated power supply pin for the high-current  
driver output  
The same voltage should be applied as VCC.  
42  
42  
DVSS  
The dedicated power supply pin for the high-current  
driver output  
The same voltage should be applied as VSS.  
*1: FPT-48P-M16  
*2: MQP-48C-P01  
8
MB89940 Series  
• External EPROM pins (MB89PV940 only)  
Pin no.  
Pin name  
A15  
I/O  
Function  
49  
50  
51  
52  
53  
54  
55  
58  
59  
60  
O
Address output pins  
A12  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
61  
62  
63  
65  
66  
67  
68  
69  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
O8  
I
Data input pins  
70  
CE  
O
ROM chip enable pin  
Outputs “H” during standby.  
71  
73  
A10  
OE  
O
O
Address output pin  
ROM output enable pin  
Outputs “L” at all times.  
75  
76  
77  
78  
79  
A11  
A9  
A8  
A13  
A14  
O
Address output pin  
80  
64  
VCC  
VSS  
O
O
EPROM power supply pin  
Power supply (GND) pin  
Internally connected pins  
56  
57  
72  
74  
N.C.  
Be sure to leave them open.  
9
MB89940 Series  
I/O CIRCUIT TYPE  
Type  
Circuit  
Remarks  
A
• Oscillator I/O  
With feedback resistor of approx. 2 M.  
X1  
X0  
Standby control signal  
B
C
• Schmitt-trigger input  
(Pull-down resistance only for MB89943)  
R
• Open-drain output with pull-up resistor  
(Approx. 50 k).  
R
P-ch  
• Schmitt-trigger input  
• Hysteresis input  
N-ch  
D
• CMOS I/O  
P-ch  
N-ch  
E
• CMOS I/O (Schmitt trigger)  
• Pull-up resistor optional  
R
P-ch  
N-ch  
Mask Option  
(Continued)  
10  
MB89940 Series  
Type  
Circuit  
Remarks  
F
• CMOS I/O (Schmitt trigger)  
• External bias input  
R
P-ch  
• Pull-up resistor optional  
Mask Option  
N-ch  
P-ch  
N-ch  
G
• CMOS I/O (High output current)  
P-ch  
N-ch  
H
• CMOS I/O  
• LCD controller/driver output  
P-ch  
N-ch  
P-ch  
N-ch  
P-ch  
N-ch  
I
• CMOS I/O  
• LCD controller/driver output  
• Pull-up resistor optional  
• Hysteresis input  
R
P-ch  
N-ch  
P-ch  
N-ch  
P-ch  
N-ch  
(Continued)  
11  
MB89940 Series  
(Continued)  
Type  
Circuit  
Remarks  
J
• CMOS I/O  
• LCD controller/driver output  
• Pull-up resistor optional  
(Except P11/SEG09, P10/SEG08)  
R
P-ch  
Mask Option  
N-ch  
P-ch  
N-ch  
P-ch  
N-ch  
K
• N-ch open-drain output  
• LCD controller/driver output  
N-ch  
P-ch  
N-ch  
P-ch  
N-ch  
L
• N-ch open-drain output  
• Analog input  
N-ch  
M
• CMOS I/O  
• Analog input  
P-ch  
N-ch  
12  
MB89940 Series  
HANDLING DEVICES  
1. Preventing Latchup  
Latchup may occur on CMOS ICs if voltage higher than VCC or lower than VSS is applied to input and output pins  
other than medium- and high-voltage pins or if higher than the voltage which shows on “1. Absolute Maximum  
Ratings” in section “Electrical Characteristics” is applied between VCC and VSS.  
When latchup occurs, power supply current increases rapidly and might thermally damage elements. When  
using, take great care not to exceed the absolute maximum ratings.  
Also, take care to prevent the analog power supply (AVCC and AVR) and analog input from exceeding the digital  
power supply (VCC) when the analog system power supply is turned on and off.  
2. Treatment of Unused Input Pins  
Leaving unused input pins open could cause malfunctions. They should be connected to a pull-up or pull-down  
resistor.  
The VINT pin of MB89PV940 and MB89P945 is the only exception.  
3. Treatment of Power Supply Pins on Microcontrollers with A/D and D/A Converters  
Connect to be AVCC = DAVC = VCC and AVSS = AVR = VSS even if the A/D and D/A converters are not in use.  
4. Treatment of N.C. Pins  
Be sure to leave (internally connected) N.C. pins open.  
5. Power Supply Voltage Fluctuations  
Although VCC power supply voltage is assured to operate within the rated range, a rapid fluctuation of the voltage  
could cause malfunctions, even if it occurs within the rated range. Stabilizing voltage supplied to the IC is  
therefore important. As stabilization guidelines, it is recommended to control power so that VCC ripple fluctuations  
(P-P value) will be less than 10% of the standard VCC value at the commercial frequency (50 to 60 Hz) and the  
transient fluctuation rate will be less than 0.1 V/ms at the time of a momentary fluctuation such as when power  
is switched.  
13  
MB89940 Series  
PROGRAMMING TO THE EPROM ON THE MB89P945  
1. Programming MB89P945  
Using the EPROM adapter (provided by Fujitsu) and a standard EPROM programmer, user-defined data can  
be written into the OTPROM and option PROM. The EPROM programmer should be set to MB27C256A-20TVM  
andelectro-signaturemodeshouldnotbeused. Whenprogrammingthedata, theinternaladdressesaremapped  
as follows.  
2. Memory Space  
Address  
0000H  
Single chip  
EPROM mode  
(Corresponding addresses on the EPROM programmer)  
8000H  
C000H  
0000H  
3FF0H  
4000H  
Option PROM  
One Time PROM  
16 KB  
One Time PROM  
16 KB  
7FFFH  
FFFFH  
3. EPROM Programmer Socket Adapter  
Please contact Fujitsu for socket adapters for the MB89P945 and the EPROM on the MB89PV940.  
4. Screening MB89P945  
It is recommended that high-temperature aging is performed on the MB89P945 prior to the assembly.  
Program, verify  
Aging  
+150°C, 48 Hrs.  
Data verification  
Assembly  
14  
MB89940 Series  
5. Setting OTPROM Options  
For MB89P945, mask options are described in the internal option PROM area. The table below shows the bit  
map of the option PROM. The option data can be written by a standard EPROM programmer.  
• OTPROM option bit map  
PROM  
Address  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
3FF0H Unused  
Unused  
Unused  
Reserved Reset  
output  
Power-on  
reset  
1: Active  
Oscillation stabilization  
time  
11: 218 TOSC 10: 217 TOSC  
01: 214 TOSC  
1: Active  
0: Inactive 0: Inactive  
3FF1H P17  
Pull-up  
P16  
Pull-up  
P15  
Pull-up  
P14  
Pull-up  
P13  
Pull-up  
P12  
Pull-up  
Unused  
Unused  
1: Inactive 1: Inactive 1: Inactive 1: Inactive 1: Inactive 1: Inactive  
0: Active  
0: Active  
0: Active  
0: Active  
0: Active  
0: Active  
3FF2H P27  
P26  
Pull-up  
P25  
Pull-up  
P24  
Pull-up  
P23  
Pull-up  
P22  
Pull-up  
P21  
Pull-up  
P20  
Pull-up  
Pull-up  
1: Inactive 1: Inactive 1: Inactive 1: Inactive 1: Inactive 1: Inactive 1: Inactive 1: Inactive  
0: Active  
0: Active  
0: Active  
0: Active  
0: Active  
0: Active  
0: Active  
0: Active  
3FF3H Unused  
Unused  
Unused  
Low volt.  
PDX bit  
Low volt.  
S1 bit  
Low volt.  
S0 bit  
Low volt.  
LVE bit  
Low volt.  
1: Register  
active  
0: Option  
active  
3FF4H Unused  
3FF5H Unused  
3FF6H Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Notes: Default values are all ‘1’.  
TOSC: One oscillation clock cycle time  
When the bit 0 of “3FF3H” is “0”, it activates the option setting for the Low Voltage Reset Control register.  
When this option is activated, software setting in the register has no effect.  
15  
MB89940 Series  
PROGRAMMING TO THE EPROM WITH PIGGYBACK/EVALUATION DEVICE  
1. EPROM for Use  
MBM27C256A-20TVM  
2. Programming Socket Adapter  
Please consult Fujitsu.  
3. Memory Space  
The memory space of the piggyback EPROM is mapped onto the internal memory space as shown in the figure  
below.  
Address  
0000H  
Single chip  
Corresponding addresses on the EPROM programmer  
8000H  
0000H  
Piggy Back  
EPROM  
32 KB  
7FFFH  
FFFFH  
For EPROM devices suitable for MB89PV940, please consult Fujitsu.  
4. Programming to the EPROM  
(1) Set the EPROM programmer to the MBM27C256A-20TVM.  
(2) Load program data into the EPROM programmer at 0000H to 7FFFH.  
(3) Program to 0000H to 7FFFH with the EPROM programmer.  
16  
MB89940 Series  
BLOCK DIAGRAM  
X0  
X1  
Interrupt  
controller  
Oscillator  
Clock controller  
Timebase timer  
Reset circuit  
Low supply  
voltage reset  
RST  
Port 4  
4
P41/COM0 to  
P44/COM3  
External voltage  
monitor interrupt  
Port 0, 1 and 4  
P40/PW  
8
P10/SEG08 to  
P17/SEG15  
8
P00/SEG00 to  
P37/FUELI  
P36/TEMPI  
P07/SEG07  
LCD  
controller driver  
8-bit A/D  
converter  
P20/SEG16  
P21/V0  
DVCC  
DVSS  
High-drive-current  
P22/EC/V1  
P23/TO/V2  
P24/V3  
Stepper motor  
macro  
P32/PWM1P  
Interval timer  
P33/PWM1M  
P34/PWM2P  
P35/PWM2M  
PWM1  
PWM2  
3
P25/INT0 to  
P27/INT2  
MODE  
Port 2  
RAM  
P30/FUELO  
High-drive-current  
P31/TEMPO  
PWM3  
PWM4  
F2MC-8L  
core CPU  
ROM  
Port 3  
Other pins  
VCC, VSS  
AVCC, AVSS  
VINT  
17  
MB89940 Series  
CPU CORE  
1. Memory Space  
The MB89940 Series has a memory space of 64 Kbytes. All peripheral registers, RAM and ROM areas are  
mapped onto the 0000H to FFFFH range. The peripheral registers address below 007FH and the RAM addresses  
the range 0080H to 027FH (0080H to 047FH for MB89PV940). A part of this RAM area is also assigned as the  
general-purpose registers. The ROM addresses above E000H. The One-Time PROM addresses the range above  
C000H. The external ROM for the piggy sample addresses the range above 8000H. The reset vector, interrupt  
vectors and vectors for vector-call instructions are stored in the highest addresses of the memory space.  
Memory Space  
MB89943  
MB89P945  
MB89PV940  
0000H  
0000H  
0000H  
Peripheral  
registers  
Peripheral  
registers  
Peripheral  
registers  
007FH  
0100H  
007FH  
0100H  
007FH  
0100H  
General-  
General-  
General-  
purpose  
registers  
RAM  
purpose  
registers  
RAM  
purpose  
registers  
RAM  
017FH  
027FH  
017FH  
027FH  
017FH  
512 B  
512 B  
1 KB  
047FH  
8000H  
C000H  
External  
ROM  
E000H  
FFFFH  
One-time  
PROM  
ROM  
8 KB  
16 KB  
32 KB  
FFFFH  
FFFFH  
18  
MB89940 Series  
2. Registers  
The F2MC-8L family has two types of registers; dedicated registers in the CPU and general-purpose registers  
in the memory. The following dedicated registers are provided:  
Program counter (PC):  
Accumulator (A):  
A 16-bit register for indicating instruction storage positions  
A 16-bit temporary register for storing arithmetic operations, etc. When the  
instruction is an 8-bit data processing instruction, the lower byte is used.  
Temporary accumulator (T): A 16-bit register which performs arithmetic operations with the accumulator  
Whenthe instructionisan8-bitdataprocessinginstruction,thelowerbyteisused.  
Index register (IX):  
Extra pointer (EP):  
Stack pointer (SP):  
Program status (PS):  
A 16-bit register for index modification  
A 16-bit pointer for indicating a memory address  
A 16-bit register for indicating a stack area  
A 16-bit register for storing a register pointer, a condition code  
16 bits  
Initial value  
FFFDH  
PC  
A
: Program counter  
: Accumulator  
Indeterminate  
T
: Temporary accumulator Indeterminate  
IX  
: Index register  
: Extra pointer  
: Stack pointer  
: Program status  
Indeterminate  
Indeterminate  
Indeterminate  
EP  
SP  
PS  
I-flag = 0, IL1, 0 = 11  
The other bit values are indeterminate.  
The PS can further be divided into higher 8 bits for use as a register bank pointer (RP) and the lower 8 bits for  
use as a condition code register (CCR). (See the diagram below.)  
Structure of the Program Status Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
I
5
4
3
2
Z
1
0
PS  
RP  
Vacancy Vacancy Vacancy  
H
IL1, 0  
N
V
C
RP  
CCR  
19  
MB89940 Series  
The RP indicates the address of the register bank currently in use. The relationship between the pointer contents  
and the actual address is based on the conversion rule illustrated below.  
Rule for Conversion of Actual Addresses of the General-purpose Register Area  
Lower OP codes  
RP  
“0” “0” “0” “0” “0” “0” “0” “1” R4 R3 R2 R1 R0 b2 b1 b0  
Generated addresses A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0  
The CCR consists of bits indicating the results of arithmetic operations and the contents of transfer data and  
bits for control of CPU operations at the time of an interrupt.  
H-flag: Set to ‘1’ when a carry or a borrow from bit 3 to bit 4 occurs as a result of an arithmetic operation. Cleared  
otherwise. This flag is for decimal adjustment instructions.  
I-flag: Interrupt is enabled when this flag is set to ‘1’. Interrupt is disabled when the flag is cleared to ‘0’. Cleared  
to ‘0’ at the reset.  
IL1, 0: Indicates the level of the interrupt currently allowed. Processes an interrupt only if its request level is  
higher than the value indicated by this bit.  
IL1  
0
IL0  
0
Interrupt level  
High-low  
High  
1
0
1
1
0
2
3
1
1
Low  
N-flag: Set to ‘1’ if the MSB becomes ‘1’ as the result of an arithmetic operation. Cleared to ‘0’ otherwise.  
Z-flag: Set to ‘1’ when an arithmetic operation results in 0. Cleared to ‘0’ otherwise.  
V-flag: Set to ‘1’ if the complement on ‘2’ overflows as a result of an arithmetic operation. Cleared to ‘0’ if the  
overflow does not occur.  
C-flag: Set to ‘1’ when a carry or a borrow from bit 7 occurs as a result of an arithmetic operation. Cleared to  
‘0’ otherwise. Set to ‘1’ to the shift-out value in the case of a shift instruction.  
20  
MB89940 Series  
The following general-purpose registers are provided:  
General-purpose registers: An 8-bit register for storing data  
The general-purpose registers are 8 bits and located in the register banks of the memory. One bank contains  
eight registers and up to a total of 16 banks can be used on the MB89943 (RAM 512 × 8 bits). The bank currently  
in use is indicated by the register bank pointer (RP).  
Note: The number of register banks that can be used varies with the RAM size. Up to a total of 32 banks can  
be used on other than the MB89943.  
Register Bank Configuration  
This address = 0100H + 8 × (RP)  
R 0  
R 1  
R 2  
R 3  
R 4  
R 5  
R 6  
R 7  
16 banks  
Memory area  
21  
MB89940 Series  
I/O MAP  
Address  
00H  
Read/write  
(R/W)  
(W)  
Register name  
PDR0  
Register description  
Port 0 data register  
01H  
PDD0  
Port 0 data direction register  
Port 1 data register  
02H  
(R/W)  
(W)  
PDR1  
03H  
PDD1  
Port 1 data direction register  
Vacancy  
04H to 06H  
07H  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(W)  
SCC  
SMC  
System clock control register  
Standby mode control register  
Watchdog timer control register  
Timebase timer control register  
Low voltage reset control  
Port 2 data register  
08H  
09H  
WDTC  
TBTC  
LVRC  
PDR2  
PDD2  
PDR3  
PDD3  
PDR4  
ADE  
0AH  
0BH  
0CH  
0DH  
Port 2 data direction register  
Port 3 data register  
0EH  
(R/W)  
(W)  
0FH  
Port 3 data direction register  
Port 4 data register  
10H  
(R/W)  
(R/W)  
11H  
Port 3 A/D input enable register  
Vacancy  
12H to 17H  
18H  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
T2CR  
T1CR  
T2DR  
T1DR  
Timer 2 control register  
Timer 1 control register  
Timer 2 data register  
19H  
1AH  
1BH  
Timer 1 data register  
1CH to 1FH  
20H  
Vacancy  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(W)  
ADC1  
ADC2  
A/D converter control register 1  
A/D converter control register 2  
A/D converter data register  
PWM control register  
PWM1 compare register  
Vacancy  
21H  
22H  
ADCD  
CNTR  
COMP1  
23H  
24H  
25H  
26H  
(W)  
COMP2  
SELR1  
SELR2  
CNTR3  
COMP3  
CNTR4  
PWM2 compare register  
PWM1 select register  
PWM2 select register  
PWM3 control register  
PWM3 compare register  
PWM4 control register  
27H  
(R/W)  
(R/W)  
(R/W)  
(W)  
28H  
29H  
2AH  
2BH  
(R/W)  
(Continued)  
22  
MB89940 Series  
(Continued)  
Address  
Read/write  
(W)  
Register name  
COMP4  
SELT  
Register description  
2CH  
2DH  
PWM4 compare register  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
Selector test register  
2EH  
PFC  
Power fail control register  
External interrupt control 1 register  
External interrupt control 2 register  
Vacancy  
2FH  
EIR1  
30H  
EIR2  
31H to 5FH  
60H to 68H  
69H to 71H  
72H  
(R/W)  
VRAM  
Display data RAM  
Vacancy  
(R/W)  
(R/W)  
LCR1  
LCR2  
LCD controller/driver register  
LCD controller/driver 2 register  
Vacancy  
73H  
74H to 7BH  
7CH  
(W)  
(W)  
(W)  
ILR1  
ILR2  
ILR3  
Interrupt level setting register 1  
Interrupt level setting register 2  
Interrupt level setting register 3  
Vacancy  
7DH  
7EH  
7FH  
23  
MB89940 Series  
ELECTRICAL CHARACTERISTICS  
1. Absolute Maximum Ratings  
(VSS = 0.0 V)  
Value  
Symbol  
Unit  
Remarks  
Parameter  
Min.  
Max.  
VCC  
AVCC  
DVCC  
VI1  
VSS – 0.3  
VSS – 0.3  
VSS – 0.3  
VSS – 0.3  
VSS – 0.3  
VSS + 6.5  
VSS + 6.5  
VSS + 6.5  
VCC + 0.3  
DVCC + 0.3  
V
V
V
V
V
Power supply voltage  
Should not exceed VCC  
Should not exceed VCC  
Except P31 to P35 and P41 to P44  
P31 to P35  
VI2  
P41 to P44  
MB89PV940/945  
Input voltage  
VI3  
VI4  
VSS – 0.3  
VSS – 0.3  
VSS + 6.5  
VCC + 0.3  
V
V
P41 to P44  
MB89943  
VO1  
VO2  
VSS – 0.3  
VSS – 0.3  
VCC + 0.3  
V
V
Except P31 to P35 and P41 to P44  
P31 to P35  
DVCC + 0.3  
P41 to P44  
MB89PV940/945  
Output voltage  
VO3  
VO4  
VSS – 0.3  
VSS – 0.3  
VSS + 6.5  
VCC + 0.3  
V
V
P41 to P44  
MB89943  
–40  
–55  
20  
50  
mA Except P31 to P35  
mA P31 to P35  
mA Except P31 to P35  
mA P31 to P35  
mA Except P31 to P35  
mA P31 to P35  
mA Except P31 to P35  
mA P31 to P35  
mA Except P31 to P35  
mA P31 to P35  
mA Except P31 to P35  
mA P31 to P35  
mA Except P31 to P35  
mA P31 to P35  
mA Except P31 to P35  
mA P31 to P35  
mW  
“L” level maximum output  
current  
VOL  
4
“L” level average output  
current  
VOLAV  
40  
100  
200  
40  
“L” level total maximum  
output current  
VOLTOTALMAX  
VOLTOTALAV  
VOH  
“L” level total average  
output current  
100  
–20  
–50  
–4  
“H” level maximum output  
current  
“H” level average output  
current  
VOHAV  
–40  
–50  
–200  
–20  
–100  
300  
+85  
+150  
“H” level total maximum  
output current  
VOHTOTALMAX  
“H” level total average  
output current  
VOHTOTALAV  
Power consumption  
Operating temperature  
Storage temperature  
PD  
TA  
°C  
Tstg  
°C  
WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current,  
temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.  
24  
MB89940 Series  
2. Recommended Operating Conditions  
Parameter  
(AVCC = VCC = DVCC = 5.0 V, VSS = AVSS = DVSS = 0.0 V)  
Value  
Symbol  
Unit  
Remarks  
Min.  
Typ.  
Max.  
VCC  
AVCC  
DVCC  
Operating supply voltage range  
3.5  
5.5  
V
VCC  
AVCC  
DVCC  
RAM data retention supply voltage range  
Operating temperature range  
3.0  
5.5  
V
TA  
–40  
+85  
°C  
WARNING: Recommended operating conditions are normal operating ranges for the semiconductor device. All the  
device’s electrical characteristics are warranted when operated within these ranges.  
Always use semiconductor devices within the recommended operating conditions. Operation outside  
these ranges may adversely affect reliability and could result in device failure.  
No warranty is made with respect to uses, operating conditions, or combinations not represented on  
the data sheet. Users considering application outside the listed conditions are advised to contact their  
FUJITSU representative beforehand.  
3. DC Characteristics  
(AVCC = VCC = DVCC = 5.0 V, VSS = AVSS = DVSS = 0.0 V)  
Value  
Symbol  
Parameter  
Pin name  
Condition  
Unit Remarks  
Min.  
Typ.  
Max.  
P00 to P07, P10 to P17  
P30 to P37, P40 to P47  
VCC + 0.3  
VCC + 0.3  
0.3 VCC  
0.2 VCC  
VIH  
0.7 VCC  
0.8 VCC  
VSS 0.3  
VSS 0.3  
V
V
V
V
“H” level input voltage  
RST, MODE, P20 to P27  
VIHS  
VIL  
P00 to P07, P10 to P17  
P30 to P37, P40 to P47  
“L” level input voltage  
RST, MODE, P20 to P27  
VILS  
VSS 0.3  
VSS 0.3  
VCC + 0.3  
VSS + 5.5  
VCC + 0.3  
VD  
V
P40  
MB89PV940/  
945  
Open-drain output  
pin application voltage  
VD2  
VD3  
VOH  
VOH2  
V
P41 to P44  
P41 to P44  
VSS 0.3  
4.0  
V
V
V
MB89943  
P10 to P17, P20 to  
P27, P30, P36, P37  
IOH = –2.0 mA  
“H” level output  
voltage  
IOH = –30  
VCC = DVCC  
VCC 0.5  
P31 to P36  
P10 to P17, P20 to P27,  
P30, P36, P37,  
P40 to P44  
VOL  
IOL = 4.0 mA  
0.4  
0.5  
V
V
“L” level output  
voltage  
IOL = 30 mA  
VSS = DVSS  
VOL2  
P31 to P36  
(Continued)  
25  
MB89940 Series  
(Continued)  
(AVCC = VCC = DVCC = 5.0 V, VSS = AVSS = DVSS = 0.0 V)  
Value  
Symbol  
Parameter  
Input leakage current  
Pull-up resistance  
Pin name  
Condition  
Unit Remarks  
Min.  
Typ.  
Max.  
MODE, P10 to P17,  
P20 to P27, P30 to P37,  
P40 to P44  
0.0 V< VI < VCC,  
VCC = DVCC  
Without  
pull-up option  
IIL1  
–5  
+5  
µA  
RST, P12 to P17,  
P20 to P27  
With pull-up  
option  
RPULL  
25  
50  
50  
100  
12  
100  
200  
20  
kΩ  
kΩ  
LCD internal bias  
voltage resister  
V0-V1, V1-V2, V2-V3  
RLCD  
FC = 8 MHz,  
tinst* = 0.5 µs  
ICC = I(VCC)  
+ I(DVCC)  
MB89PV940  
mA  
mA  
ICC  
MB89943,  
MB89P945  
12  
20  
FC = 8 MHz  
tinst* = 0.5 µs  
ICCS = I(VCC)  
+ I(DVCC)  
ICCS  
VCC  
3
5
7
mA  
in Sleep mode  
Power supply current  
In Stop mode  
TA = 25°C  
ICCH = I(VCC)  
+ I(DVCC)  
ICCH  
10  
µA  
FC = 8 MHz  
IA = I(AVCC)  
A/D in operation  
IA  
6
5
8
mA  
AVCC  
FC = 8 MHz  
IAH = I(AVCC)  
A/D stopped  
IAH  
10  
µA  
Input capacitance  
CIN  
f = 1 MHz  
10  
pF  
External capacitor  
at VINT  
MB89943 only  
CVINT  
0.1  
µF  
* : For information on tinst, see “(4) Instruction Cycle” in “4. AC Characteristics.”  
4. AC Characteristics  
(1) Reset Timing  
(AVSS = VSS = DVSS, TA = –40°C to +85°C)  
Value  
Symbol  
Condition  
Unit  
Remarks  
Parameter  
Min.  
Max.  
RST “L” pulse width  
tZLZH  
16 tHCYL  
ns  
tHCYL: One oscillation clock cycle time  
26  
MB89940 Series  
tZLZH  
RST  
0.8 VCC  
0.2 VCC  
If power-on reset option is not activated, the external reset signal must be kept asserted until the oscillation is  
stabilized.  
(2) Power-on Profile  
(AVSS = VSS = DVSS, TA = –40°C to +85°C)  
Value  
Symbol  
tR  
Condition  
Unit  
Remarks  
Parameter  
Min.  
Max.  
MB89PV940,  
MB89P945  
Power supply voltage rising time  
50  
ms  
219 tHCYL  
Power supply voltage rising time  
Power-off minimum period  
tR  
1
ns  
MB89943  
tOFF  
ms  
tHCYL: One oscillation clock cycle time  
Note: Power supply voltage should reach the minimum operation voltage within the specified default duration of  
the oscillation stabilization time.  
tOFF  
tR  
3.5 V  
0.2 V  
0.2 V  
0.2 V  
V
CC  
(3) Clock Timing  
Parameter  
(AVSS = VSS = DVSS, TA = –40°C to +85°C)  
Value  
Symbol  
FC  
Condition  
Unit  
Remarks  
Min.  
1
Max.  
8
Clock frequency  
Clock cycle time  
MHz  
ns  
tCYC  
1000  
125  
tWH  
tWL  
Input clock pulse width  
20  
ns  
ns  
tCR  
tCF  
Input clock rising/falling time  
10  
27  
MB89940 Series  
X0 and X1 Timing and Conditions  
tCYC  
tWL  
tWL  
tCR  
tCF  
0.8 VCC  
0.8 VCC  
X0  
0.2 VCC  
0.2 VCC  
0.2 VCC  
Clock Conditions  
When a crystal  
or  
ceramic resonator is used  
When an external clock is used  
X0  
X1  
X0  
X1  
Open  
(4) Instruction Cycle  
Parameter  
Symbol  
Value (typical)  
Unit  
Remarks  
Instruction cycle  
(minimum execution time)  
(4/FC) tinst = 0.5 µs when operating at  
FC = 8 MHz  
tinst  
4/FC, 8/FC, 16/FC, 64/FC  
µs  
Note: When operating at 8 MHz, the cycle varies with the set execution time.  
(5) Peripheral Input Timing  
(AVSS = VSS= DVSS, TA = –40°C to +85°C)  
Value  
Symbol  
tWH  
Pin name  
Unit  
Remarks  
Parameter  
Min.  
Max.  
INT0, INT1,  
INT2, EC  
Peripheral input “H” pulse width  
Peripheral input “L” pulse width  
2 tinst*  
µs  
µs  
INT0, INT1,  
INT2, EC  
tWL  
2 tinst*  
* : For information on tinst, see “(4) Instruction Cycle.”  
28  
MB89940 Series  
tWL  
tWL  
0.8 VCC  
0.8 VCC  
INT0, INT1,  
INT2, EC  
0.2 VCC  
0.2 VCC  
5. A/D Converter Electrical Characteristics  
(AVSS = VSS = DVSS, TA = –40°C to +85°C)  
Value  
Typ.  
Pin  
name  
Symbol  
Condition  
Parameter  
Resolution  
Unit  
Remarks  
Min.  
Max.  
8
bit  
LSB  
LSB  
LSB  
V
Total error  
±1.5  
Linearlity error  
Differential linearlity error  
±1.0  
±0.9  
AVSS – 1.0 LSB  
AVSS + 5/8 LSB  
AVSS + 0.5 LSB  
AVSS + 2.0 LSB  
MB89PV940/P945  
MB89943  
Zero transition voltage  
VOT  
AVSS + 7/8 LSB AVSS + 11/8 LSB  
V
AVCC – 3.0 LSB AVCC – 1.5 LSB  
AVCC – 13/8 LSB AVCC – 9/8 LSB  
MB89PV940/P945  
MB89943  
AVCC  
AVCC – 7/8 LSB  
0.5  
V
Full-scale transition  
voltage  
VFST  
V
Interchannel disparity  
LSB  
µs  
MB89PV940/P945  
44 tinst*  
52 tinst*  
10  
A/D mode  
conversion time  
µs MB89943  
µA  
Analog input current IAIN  
Analog input voltage  
0
AVCC  
V
range  
* : For information on tinst, see “(4) Instruction Cycle” in “4. AC Characteristics.”  
6. A/D Converter Glossary  
• Resolution  
Analog changes that are identifiable with the A/D converter  
When the number of bits is 8, analog voltage can be divided into 28 = 256.  
• Linearity error (unit: LSB)  
The deviation of the straight line connecting the zero transition point (“0000 0000” “0000 0001”) with the  
full-scale transition point (“1111 1111” “1111 1110”) from actual conversion characteristics  
• Differential linearity error (unit: LSB)  
The deviation of input voltage needed to change the output code by 1 LSB from the theoretical value  
Total error (unit: LSB)  
The difference between theoretical and actual conversion values  
29  
MB89940 Series  
Digital output  
Theoretical conversion value  
1111 1111  
1111 1110  
Actual conversion value  
(1 LSB × N + VOT)  
AVR  
256  
1 LSB =  
VNT – (1 LSB × N + VOT)  
Linearity error =  
1 LSB  
V( N + 1 ) T – VNT  
– 1  
Differential linearity error =  
Total error =  
1 LSB  
Linearity error  
VNT – (1 LSB × N + 1 LSB)  
1 LSB  
0000 0010  
0000 0001  
0000 0000  
VOT  
VNT  
V(N + 1)T  
VFST  
Analog input  
7. Notes on Using A/D Converter  
• Input impedance of the analog input pins  
The A/D converter used for the MB89940 series contains a sample hold circuit as illustrated below to fetch  
analog input voltage into the sample hold capacitor for eight instruction cycles after activating A/D conversion.  
For this reason, if the output impedance of the external circuit for the analog input is high, analog input voltage  
might not stabilize within the analog input sampling period. Therefore, it is recommended to keep the output  
impedance of the external circuit low (below 10 k).  
Note that if the impedance cannot be kept low, it is recommended to connect an external capacitor of about  
0.1 µF for the analog input pin.  
Analog Input Equivalent Circuit  
Sample hold circuit  
.
C = 33 pF  
.
Analog input pin  
Comparator  
If the analog input  
impedance is higher  
than 10 k, it is  
recommended to  
connect an external  
capacitor of approx.  
0.1 µF.  
.
R = 6 kΩ  
.
Close for 8 instruction cycles after activating  
A/D conversion.  
Analog channel selector  
• Error  
The smaller the | AVCC – AVSS |, the greater the error would become relatively.  
30  
MB89940 Series  
8. Low Supply Voltage Reset Electrical Characteristics  
Value  
Symbol  
Unit  
Remarks  
Parameter  
Min.  
3.0  
Max.  
3.6  
VDL1  
VDL2  
VDL3  
V
V
V
When the voltage is  
dropping.  
Refer to the register  
definition.  
Reset voltage  
3.3  
3.9  
3.7  
4.3  
When the voltage is  
recovering.  
Hysteresis of reset voltage  
VHYS  
0.1  
V
Delay time to reset  
tD  
2.0  
0.1  
µs  
Supply voltage slew rate  
dV/dt  
V/µs  
9. External Voltage Monitor Interrupt Electrical Characteristics  
Value  
Symbol  
Unit  
Remarks  
Parameter  
Min.  
Max.  
Reference voltage  
VREF  
TD  
1.18  
1.38  
V
µs  
Refer to the register  
definition.  
Delay time to interrupt  
Input slew rate  
2.0  
0.1  
dV/dt  
V/µs  
31  
MB89940 Series  
INSTRUCTIONS (136 INSTRUCTIONS)  
Execution instructions can be divided into the following four groups:  
Transfer  
• Arithmetic operation  
• Branch  
• Others  
Table 1 lists symbols used for notation of instructions.  
Table 1 Instruction Symbols  
Symbol  
dir  
Meaning  
Direct address (8 bits)  
off  
Offset (8 bits)  
ext  
#vct  
#d8  
#d16  
dir: b  
rel  
Extended address (16 bits)  
Vector table number (3 bits)  
Immediate data (8 bits)  
Immediate data (16 bits)  
Bit direct address (8:3 bits)  
Branch relative address (8 bits)  
Register indirect (Example: @A, @IX, @EP)  
@
A
Accumulator A (Whether its length is 8 or 16 bits is determined by the instruction in use.)  
Upper 8 bits of accumulator A (8 bits)  
AH  
AL  
Lower 8 bits of accumulator A (8 bits)  
T
Temporary accumulator T (Whether its length is 8 or 16 bits is determined by the instruction in use.)  
Upper 8 bits of temporary accumulator T (8 bits)  
Lower 8 bits of temporary accumulator T (8 bits)  
Index register IX (16 bits)  
TH  
TL  
IX  
EP  
PC  
SP  
PS  
dr  
Extra pointer EP (16 bits)  
Program counter PC (16 bits)  
Stack pointer SP (16 bits)  
Program status PS (16 bits)  
Accumulator A or index register IX (16 bits)  
Condition code register CCR (8 bits)  
CCR  
RP  
Ri  
Register bank pointer RP (5 bits)  
General-purpose register Ri (8 bits, i = 0 to 7)  
Indicates that the very × is the immediate data.  
(Whether its length is 8 or 16 bits is determined by the instruction in use.)  
×
Indicates that the contents of × is the target of accessing.  
(Whether its length is 8 or 16 bits is determined by the instruction in use.)  
( × )  
(( × ))  
The address indicated by the contents of × is the target of accessing.  
(Whether its length is 8 or 16 bits is determined by the instruction in use.)  
32  
MB89940 Series  
Columns indicate the following:  
Mnemonic:  
~:  
Assembler notation of an instruction  
The number of instructions  
The number of bytes  
#:  
Operation:  
TL, TH, AH:  
Operation of an instruction  
A content change when each of the TL, TH, and AH instructions is executed. Symbols in  
the column indicate the following:  
indicates no change.  
• dH is the 8 upper bits of operation description data.  
• AL and AH must become the contents of AL and AH prior to the instruction executed.  
• 00 becomes 00.  
N, Z, V, C:  
OP code:  
An instruction of which the corresponding flag will change. If + is written in this column,  
the relevant instruction will change its corresponding flag.  
Code of an instruction. If an instruction is more than one code, it is written according to  
the following rule:  
Example: 48 to 4F This indicates 48, 49, ... 4F.  
33  
MB89940 Series  
Table 2 Transfer Instructions (48 instructions)  
Mnemonic  
MOV dir,A  
MOV @IX +off,A  
MOV ext,A  
MOV @EP,A  
MOV Ri,A  
MOV A,#d8  
MOV A,dir  
MOV A,@IX +off  
MOV A,ext  
MOV A,@A  
MOV A,@EP  
MOV A,Ri  
MOV dir,#d8  
MOV @IX +off,#d8  
MOV @EP,#d8  
MOV Ri,#d8  
MOVW dir,A  
MOVW @IX +off,A  
~
#
Operation  
TL  
TH AH NZVC OP code  
3
4
4
3
3
2
3
4
4
3
3
3
4
5
4
4
4
5
2
2
3
1
1
2
2
2
3
1
1
1
3
3
2
2
2
2
(dir) (A)  
AL  
AL  
AL  
AL  
AL  
AL  
AL  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
+ + – –  
+ + – –  
+ + – –  
+ + – –  
+ + – –  
+ + – –  
+ + – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
45  
46  
61  
( (IX) +off ) (A)  
(ext) (A)  
( (EP) ) (A)  
47  
(Ri) (A)  
(A) d8  
(A) (dir)  
48 to 4F  
04  
05  
06  
60  
92  
(A) ( (IX) +off)  
(A) (ext)  
(A) ( (A) )  
(A) ( (EP) )  
07  
(A) (Ri)  
(dir) d8  
08 to 0F  
85  
86  
87  
88 to 8F  
D5  
( (IX) +off ) d8  
( (EP) ) d8  
(Ri) d8  
(dir) (AH),(dir + 1) (AL)  
( (IX) +off) (AH),  
( (IX) +off + 1) (AL)  
(ext) (AH), (ext + 1) (AL)  
( (EP) ) (AH),( (EP) + 1) (AL)  
(EP) (A)  
D6  
MOVW ext,A  
MOVW @EP,A  
MOVW EP,A  
MOVW A,#d16  
MOVW A,dir  
MOVW A,@IX +off  
5
4
2
3
4
5
3
1
1
3
2
2
AL  
AL  
AL  
AH  
AH  
AH  
dH  
dH  
dH  
– – – –  
– – – –  
– – – –  
+ + – –  
+ + – –  
+ + – –  
D4  
D7  
E3  
E4  
C5  
C6  
(A) d16  
(AH) (dir), (AL) (dir + 1)  
(AH) ( (IX) +off),  
(AL) ( (IX) +off + 1)  
(AH) (ext), (AL) (ext + 1)  
(AH) ( (A) ), (AL) ( (A) ) + 1)  
MOVW A,ext  
MOVW A,@A  
MOVW A,@EP  
MOVW A,EP  
MOVW EP,#d16  
MOVW IX,A  
MOVW A,IX  
MOVW SP,A  
MOVW A,SP  
MOV @A,T  
MOVW @A,T  
MOVW IX,#d16  
MOVW A,PS  
MOVW PS,A  
MOVW SP,#d16  
SWAP  
5
4
4
2
3
2
2
2
2
3
4
3
2
2
3
2
4
4
2
3
3
3
3
2
3
1
1
1
3
1
1
1
1
1
1
3
1
1
3
1
2
2
1
1
1
1
1
1
AL  
AL  
AH  
AH  
AH  
dH  
dH  
dH  
dH  
dH  
dH  
dH  
AL  
dH  
dH  
dH  
dH  
dH  
+ + – –  
+ + – –  
+ + – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
+ + + +  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
C4  
93  
C7  
F3  
E7  
E2  
F2  
E1  
F1  
82  
83  
E6  
70  
71  
E5  
10  
(AH) ( (EP) ), (AL) ( (EP) + 1) AL  
(A) (EP)  
(EP) d16  
(IX) (A)  
AL  
AL  
(A) (IX)  
(SP) (A)  
(A) (SP)  
( (A) ) (T)  
( (A) ) (TH),( (A) + 1) (TL)  
(IX) d16  
(A) (PS)  
(PS) (A)  
(SP) d16  
(AH) (AL)  
(dir): b 1  
(dir): b 0  
(AL) (TL)  
(A) (T)  
SETB dir: b  
CLRB dir: b  
XCH A,T  
A8 to AF  
A0 to A7  
42  
AH  
XCHW A,T  
43  
F7  
F6  
F5  
XCHW A,EP  
XCHW A,IX  
XCHW A,SP  
MOVW A,PC  
(A) (EP)  
(A) (IX)  
(A) (SP)  
(A) (PC)  
F0  
Notes: During byte transfer to A, T A is restricted to low bytes.  
Operands in more than one operand instruction must be stored in the order in which their mnemonics  
are written. (Reverse arrangement of F2MC-8 family)  
34  
MB89940 Series  
Table 3 Arithmetic Operation Instructions (62 instructions)  
Mnemonic  
ADDC A,Ri  
ADDC A,#d8  
ADDC A,dir  
ADDC A,@IX +off  
ADDC A,@EP  
ADDCW A  
ADDC A  
SUBC A,Ri  
SUBC A,#d8  
SUBC A,dir  
SUBC A,@IX +off  
SUBC A,@EP  
SUBCW A  
SUBC A  
INC Ri  
INCW EP  
INCW IX  
INCW A  
DEC Ri  
DECW EP  
DECW IX  
DECW A  
MULU A  
DIVU A  
~
#
Operation  
(A) (A) + (Ri) + C  
TL  
TH AH NZVC OP code  
3
2
3
4
3
3
2
3
2
3
4
3
3
2
4
3
3
3
4
3
3
3
19  
21  
3
3
3
2
3
2
1
2
2
2
1
1
1
1
2
2
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
dL  
00  
dH  
dH  
dH  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + –  
– – – –  
– – – –  
+ + – –  
+ + + –  
– – – –  
– – – –  
+ + – –  
– – – –  
– – – –  
+ + R –  
+ + R –  
+ + R –  
+ + + +  
+ + + +  
+ + – +  
28 to 2F  
24  
(A) (A) + d8 + C  
(A) (A) + (dir) + C  
(A) (A) + ( (IX) +off) + C  
(A) (A) + ( (EP) ) + C  
(A) (A) + (T) + C  
(AL) (AL) + (TL) + C  
(A) (A) (Ri) C  
(A) (A) d8 C  
(A) (A) (dir) C  
(A) (A) ( (IX) +off) C  
(A) (A) ( (EP) ) C  
(A) (T) (A) C  
(AL) (TL) (AL) C  
(Ri) (Ri) + 1  
(EP) (EP) + 1  
(IX) (IX) + 1  
(A) (A) + 1  
(Ri) (Ri) 1  
(EP) (EP) 1  
(IX) (IX) 1  
(A) (A) 1  
25  
26  
27  
23  
22  
38 to 3F  
34  
35  
36  
37  
33  
32  
C8 to CF  
C3  
C2  
C0  
D8 to DF  
D3  
D2  
D0  
01  
11  
63  
73  
53  
12  
dH  
dH  
00  
dH  
dH  
dH  
(A) (AL) × (TL)  
(A) (T) / (AL),MOD (T)  
(A) (A) (T)  
(A) (A) (T)  
(A) (A) (T)  
ANDW A  
ORW A  
XORW A  
CMP A  
CMPW A  
RORC A  
(TL) (AL)  
(T) (A)  
13  
03  
C
A
C
A
ROLC A  
2
1
+ + – +  
02  
(A) d8  
(A) (dir)  
(A) ( (EP) )  
(A) ( (IX) +off)  
(A) (Ri)  
CMP A,#d8  
CMP A,dir  
CMP A,@EP  
CMP A,@IX +off  
CMP A,Ri  
DAA  
2
3
3
4
3
2
2
2
2
3
3
4
3
2
2
3
2
2
1
2
1
1
1
1
2
2
1
2
1
1
2
2
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
14  
15  
17  
16  
18 to 1F  
84  
Decimal adjust for addition  
Decimal adjust for subtraction  
(A) (AL) (TL)  
(A) (AL) d8  
(A) (AL) (dir)  
(A) (AL) ( (EP) )  
(A) (AL) ( (IX) +off)  
(A) (AL) (Ri)  
(A) (AL) (TL)  
(A) (AL) d8  
DAS  
XOR A  
94  
52  
54  
55  
57  
56  
XOR A,#d8  
XOR A,dir  
XOR A,@EP  
XOR A,@IX +off  
XOR A,Ri  
AND A  
58 to 5F  
62  
AND A,#d8  
AND A,dir  
64  
65  
(A) (AL) (dir)  
(Continued)  
35  
MB89940 Series  
(Continued)  
Mnemonic  
~
#
Operation  
TL  
TH AH NZVC OP code  
AND A,@EP  
AND A,@IX +off  
AND A,Ri  
OR A  
OR A,#d8  
3
4
3
2
2
3
3
4
3
5
4
5
4
3
3
1
2
1
1
2
2
1
2
1
3
2
3
2
1
1
(A) (AL) ( (EP) )  
(A) (AL) ( (IX) +off)  
(A) (AL) (Ri)  
(A) (AL) (TL)  
(A) (AL) d8  
(A) (AL) (dir)  
(A) (AL) ( (EP) )  
(A) (AL) ( (IX) +off)  
(A) (AL) (Ri)  
(dir) – d8  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
– – – –  
– – – –  
67  
66  
68 to 6F  
72  
74  
75  
77  
76  
OR A,dir  
OR A,@EP  
OR A,@IX +off  
OR A,Ri  
CMP dir,#d8  
CMP @EP,#d8  
CMP @IX +off,#d8  
CMP Ri,#d8  
INCW SP  
78 to 7F  
95  
97  
96  
98 to 9F  
C1  
( (EP) ) – d8  
( (IX) + off) – d8  
(Ri) – d8  
(SP) (SP) + 1  
(SP) (SP) – 1  
DECW SP  
D1  
Table 4 Branch Instructions (17 instructions)  
Mnemonic  
~
#
Operation  
TL  
TH AH NZVC OP code  
BZ/BEQ rel  
BNZ/BNE rel  
BC/BLO rel  
BNC/BHS rel  
BN rel  
BP rel  
BLT rel  
3
3
3
3
3
3
3
3
5
5
2
3
6
6
3
4
6
2
2
2
2
2
2
2
2
3
3
1
3
1
3
1
1
1
If Z = 1 then PC PC + rel  
If Z = 0 then PC PC + rel  
If C = 1 then PC PC + rel  
If C = 0 then PC PC + rel  
If N = 1 then PC PC + rel  
If N = 0 then PC PC + rel  
If V N = 1 then PC PC + rel  
If V N = 0 then PC PC + reI  
If (dir: b) = 0 then PC PC + rel  
If (dir: b) = 1 then PC PC + rel  
(PC) (A)  
(PC) ext  
Vector call  
Subroutine call  
(PC) (A),(A) (PC) + 1  
Return from subrountine  
Return form interrupt  
dH  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– + – –  
– + – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
Restore  
FD  
FC  
F9  
F8  
FB  
FA  
FF  
FE  
BGE rel  
BBC dir: b,rel  
BBS dir: b,rel  
JMP @A  
JMP ext  
CALLV #vct  
CALL ext  
XCHW A,PC  
RET  
B0 to B7  
B8 to BF  
E0  
21  
E8 to EF  
31  
F4  
20  
30  
RETI  
Table 5 Other Instructions (9 instructions)  
Mnemonic  
~
#
Operation  
TL  
TH AH NZVC OP code  
PUSHW A  
POPW A  
PUSHW IX  
POPW IX  
NOP  
CLRC  
SETC  
4
4
4
4
1
1
1
1
1
1
1
1
1
1
1
1
1
1
dH  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – R  
– – – S  
– – – –  
– – – –  
40  
50  
41  
51  
00  
81  
91  
80  
90  
CLRI  
SETI  
36  
H
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
L
PUSHW  
0
1
NOP  
SWAP RET  
RETI  
POPW MOV  
MOVW CLRI  
A,PS  
SETI  
CLRB  
BBC  
INCW  
DECW JMP MOVW  
A @A A,PC  
A
A
A,ext  
dir: 0 dir: 0,rel  
A
PUSHW  
IX  
MULU DIVU  
A
JMP  
CALL  
POPW MOV  
MOVW CLRC  
PS,A  
SETC  
MOV  
CLRB  
BBC  
INCW  
DECW MOVW MOVW  
SP SP,A A,SP  
A
A
addr16 addr16  
IX  
A
ext,A  
dir: 1 dir: 1,rel  
SP  
2
ROLC  
CMP  
ADDC SUBC  
XCH  
A, T  
XOR  
AND  
OR  
MOV  
@A,T  
CLRB  
BBC  
INCW  
DECW MOVW MOVW  
IX IX IX,A A,IX  
A
A
A
A
A
A
A,@A  
dir: 2 dir: 2,rel  
ADDCW SUBCW  
3
RORC CMPW  
XCHW XORW ANDW ORW  
MOVW MOVW CLRB  
@A,T A,@A dir: 3 dir: 3,rel  
BBC  
INCW  
EP  
DECW MOVW MOVW  
EP EP,A A,EP  
A
A
A
A
A, T  
A
A
4
MOV  
A,#d8  
CMP  
A,#d8  
ADDC SUBC  
XOR  
A,#d8  
AND  
A,#d8  
OR  
A,#d8  
DAA  
DAS  
CLRB  
BBC  
MOVW MOVW MOVW XCHW  
A,ext ext,A A,#d16 A,PC  
A,#d8  
A,#d8  
dir: 4 dir: 4,rel  
5
MOV  
A,dir  
CMP  
A,dir  
ADDC SUBC  
MOV  
XOR  
A,dir  
AND  
A,dir  
OR  
MOV  
CMP  
CLRB  
BBC  
MOVW MOVW MOVW XCHW  
A,dir dir,A SP,#d16 A,SP  
A,dir  
A,dir  
dir,A  
A,dir dir,#d8 dir,#d8  
dir: 5 dir: 5,rel  
MOV  
CMP  
ADDC  
SUBC  
MOV @IX XOR  
AND  
OR  
MOVW  
A,@IX +d @IX +d,A  
MOVW  
6
MOV  
CMP  
CLRB  
BBC  
MOVW XCHW  
IX,#d16 A,IX  
A,@IX +d A,@IX +d A,@IX +d A,@IX +d +d,A  
A,@IX +d A,@IX +d A,@IX +d  
@IX +d,#d8 @IX +d,#d8  
dir: 6 dir: 6,rel  
MOV  
CMP  
7
MOV  
CMP  
ADDC SUBC  
MOV  
XOR  
AND  
OR  
CLRB  
BBC  
MOVW MOVW MOVW XCHW  
A,EP  
@EP,#d8 @EP,#d8  
A,@EP A,@EP A,@EP A,@EP @EP,A A,@EP A,@EP A,@EP  
dir: 7 dir: 7,rel A,@EP @EP,A EP,#d16  
8
MOV  
A,R0  
CMP  
A,R0  
ADDC SUBC  
MOV  
R0,A  
XOR  
A,R0  
AND  
A,R0  
OR  
OR  
OR  
OR  
OR  
OR  
OR  
OR  
MOV  
CMP  
SETB  
BBS  
INC  
INC  
INC  
INC  
INC  
INC  
INC  
INC  
DEC  
DEC  
DEC  
DEC  
DEC  
DEC  
DEC  
DEC  
CALLV BNC  
A,R0  
A,R0  
A,R0 R0,#d8 R0,#d8  
dir: 0 dir: 0,rel  
R0  
R1  
R2  
R3  
R4  
R5  
R6  
R7  
R0  
R1  
R2  
R3  
R4  
R5  
R6  
R7  
#0  
rel  
rel  
rel  
rel  
rel  
rel  
rel  
rel  
9
MOV  
A,R1  
CMP  
A,R1  
ADDC SUBC  
MOV  
R1,A  
XOR  
A,R1  
AND  
A,R1  
MOV  
CMP  
SETB  
BBS  
CALLV BC  
#1  
A,R1  
A,R1  
A,R1 R1,#d8 R1,#d8  
dir: 1 dir: 1,rel  
A
B
C
D
E
F
MOV  
A,R2  
CMP  
A,R2  
ADDC SUBC  
MOV  
R2,A  
XOR  
A,R2  
AND  
A,R2  
MOV  
CMP  
SETB  
BBS  
CALLV BP  
#2  
A,R2  
A,R2  
A,R2 R2,#d8 R2,#d8  
dir: 2 dir: 2,rel  
MOV  
A,R3  
CMP  
A,R3  
ADDC SUBC  
MOV  
R3,A  
XOR  
A,R3  
AND  
A,R3  
MOV  
CMP  
SETB  
BBS  
CALLV BN  
#3  
A,R3  
A,R3  
A,R3 R3,#d8 R3,#d8  
dir: 3 dir: 3,rel  
MOV  
A,R4  
CMP  
A,R4  
ADDC SUBC  
MOV  
R4,A  
XOR  
A,R4  
AND  
A,R4  
MOV  
CMP  
SETB  
BBS  
CALLV BNZ  
#4  
A,R4  
A,R4  
A,R4 R4,#d8 R4,#d8  
dir: 4 dir: 4,rel  
MOV  
A,R5  
CMP  
A,R5  
ADDC SUBC  
MOV  
R5,A  
XOR  
A,R5  
AND  
A,R5  
MOV  
CMP  
SETB  
BBS  
CALLV BZ  
#5  
A,R5  
A,R5  
A,R5 R5,#d8 R5,#d8  
dir: 5 dir: 5,rel  
MOV  
A,R6  
CMP  
A,R6  
ADDC SUBC  
MOV  
R6,A  
XOR  
A,R6  
AND  
A,R6  
MOV  
CMP  
SETB  
BBS  
CALLV BGE  
#6  
A,R6  
A,R6  
A,R6 R6,#d8 R6,#d8  
dir: 6 dir: 6,rel  
MOV  
A,R7  
CMP  
A,R7  
ADDC SUBC  
MOV  
R7,A  
XOR  
A,R7  
AND  
A,R7  
MOV  
CMP  
SETB  
BBS  
CALLV BLT  
#7  
A,R7  
A,R7  
A,R7 R7,#d8 R7,#d8  
dir: 7 dir: 7,rel  
MB89940 Series  
MASK OPTIONS  
Part number  
MB89943  
MB89P945  
MB89PV940  
Specify when  
ordering  
No.  
Set with EPROM  
Programmer  
Setting not  
possible  
Specifying procedure  
masking  
Selectable per pin  
(P20 and P12 to  
P17 must be set to  
without pull-up  
resistor when they  
are used as LCD  
outputs.)  
Pull-up resistors  
Fixed to without  
pull-up resistor  
1
P12 to P17,  
P20 to P27  
Can be set per pin  
Power-on reset  
Fixed to with  
power-on reset  
Fixed to with  
power-on reset  
2
3
4
With power-on reset  
Without power-on reset  
Setting possible  
Setting possible  
Setting possible  
Main clock oscillation stabilization time  
selection (when operating at 8 MHz)  
Approx. 218/FC (Approx. 32.8 ms)  
Approx. 217/FC (Approx. 16.4 ms)  
Approx. 214/FC (Approx. 2.0 ms)  
Fixed to  
approx. 218/FC  
(Approx. 32.8 ms)  
Selectable  
Reset pin output  
With reset output  
Without reset output  
Fixed to with reset  
output  
Fixed to with reset  
output  
ORDERING INFORMATION  
Part number  
Package  
Remarks  
MB89943PF  
MB89P945PF  
48-pin Plastic QFP  
(FPT-40P-M16)  
48-pin Ceramic MQFP  
(MQP-48C-P01)  
MB89PV940CF  
38  
MB89940 Series  
PACKAGE DIMENSION  
48-pin Plastic QFP  
(FPT-48P-M16)  
17.20±0.40 SQ  
2.70(.106)MAX  
(Mounting height)  
(.677±.016)  
12.00 +00..1300 SQ  
0.05(.002)MIN  
(STAND OFF)  
.472 +..000142  
36  
25  
Details of "A" part  
0.15(.006)  
37  
24  
8.80  
(.346)  
REF  
13.60±0.40  
(.535±.016)  
0.20(.008)  
0.15(.006)MAX  
0.50(.020)MAX  
INDEX  
48  
13  
"A"  
Details of "B" part  
1
12  
LEAD No.  
0.15 +00..0015  
.006 +..0000024  
0.80(.0315)TYP  
0.30±0.06  
(.012±.002)  
M
0.16(.006)  
0~10°  
"B"  
1.80±0.30  
(.071±.012)  
0.15(.006)  
C
1994 FUJITSU LIMITED F48026S-1C-1  
Dimensions in mm (inches)  
48-pin Ceramic MQFP  
(MQP-48C-P01)  
17.20(.677)TYP  
15.00±0.25  
(.591±.010)  
1.50(.059)TYP  
1.00(.040)TYP  
8.80(.346)REF  
PIN No.1 INDEX  
14.82±0.35  
(.583±.014)  
0.80±0.22  
(.0315±.0087)  
PIN No.1 INDEX  
1.02±0.13  
(.040±.005)  
10.92 +00..013  
.430 +0.005  
8.71(.343)  
TYP  
7.14(.281)  
TYP  
PAD No.1 INDEX  
4.50(.177)TYP  
1.10 +00..2455  
.043 +..001108  
0.40±0.08  
(.016±.003)  
0.60(.024)TYP  
0.30(.012)TYP  
8.50(.335)MAX  
0.15±0.05  
(.006±.002)  
C
Dimensions in mm (inches)  
1994 FUJITSU LIMITED M48001SC-4-2  
39  
MB89940 Series  
FUJITSU LIMITED  
For further information please contact:  
Japan  
FUJITSU LIMITED  
Corporate Global Business Support Division  
Electronic Devices  
KAWASAKI PLANT, 4-1-1, Kamikodanaka  
Nakahara-ku, Kawasaki-shi  
Kanagawa 211-88, Japan  
Tel: (044) 754-3763  
All Rights Reserved.  
The contents of this document are subject to change without  
notice. Customers are advised to consult with FUJITSU sales  
representatives before ordering.  
Fax: (044) 754-3329  
The information and circuit diagrams in this document presented  
as examples of semiconductor device applications, and are not  
intended to be incorporated in devices for actual use. Also,  
FUJITSU is unable to assume responsibility for infringement of  
any patent rights or other rights of third parties arising from the  
use of this information or circuit diagrams.  
North and South America  
FUJITSU MICROELECTRONICS, INC.  
Semiconductor Division  
3545 North First Street  
San Jose, CA 95134-1804, U.S.A.  
Tel: (408) 922-9000  
FUJITSU semiconductor devices are intended for use in  
standard applications (computers, office automation and other  
office equipment, industrial, communications, and measurement  
equipment, personal or household devices, etc.).  
CAUTION:  
Customers considering the use of our products in special  
applications where failure or abnormal operation may directly  
affect human lives or cause physical injury or property damage,  
or where extremely high levels of reliability are demanded (such  
as aerospace systems, atomic energy controls, sea floor  
repeaters, vehicle operating controls, medical devices for life  
support, etc.) are requested to consult with FUJITSU sales  
representatives before such use. The company will not be  
responsible for damages arising from such use without prior  
approval.  
Fax: (408) 432-9044/9045  
Europe  
FUJITSU MIKROELEKTRONIK GmbH  
Am Siebenstein 6-10  
63303 Dreieich-Buchschlag  
Germany  
Tel: (06103) 690-0  
Fax: (06103) 690-122  
Asia Pacific  
FUJITSU MICROELECTRONICS ASIA PTE. LIMITED  
#05-08, 151 Lorong Chuan  
New Tech Park  
Singapore 556741  
Tel: (65) 281-0770  
Fax: (65) 281-0220  
Any semiconductor devices have inherently a certain rate of  
failure. You must protect against injury, damage or loss from  
such failures by incorporating safety design measures into your  
facility and equipment such as redundancy, fire protection, and  
prevention of over-current levels and other abnormal operating  
conditions.  
If any products described in this document represent goods or  
technologies subject to certain restrictions on export under the  
Foreign Exchange and Foreign Trade Control Law of Japan, the  
prior authorization by Japanese government should be required  
for export of those products from Japan.  
F9704  
FUJITSU LIMITED Printed in Japan  
41  

相关型号:

MB89P955

8-bit Proprietary Microcontroller
FUJITSU

MB89P955PFM

8-bit Proprietary Microcontroller
FUJITSU

MB89P965A

8-bit Proprietary Microcontroller
FUJITSU

MB89P965APF

Microcontroller, 8-Bit, OTPROM, F2MC-8L CPU, 10MHz, CMOS, PQFP48, 0.80 MM PITCH, PLASTIC, QFP-48
FUJITSU

MB89P965APFM

Microcontroller, 8-Bit, OTPROM, F2MC-8L CPU, 10MHz, CMOS, PQFP48, 0.80 MM PITCH, PLASTIC, QFP-48
FUJITSU

MB89P965APFV1

Microcontroller, 8-Bit, OTPROM, F2MC-8L CPU, 10MHz, CMOS, PQFP48, 0.50 MM PITCH, PLASTIC, LQFP-48
FUJITSU

MB89P965PFM

Microcontroller, 8-Bit, OTPROM, 10MHz, CMOS, PQFP48, 10 X 10 MM, 0.80 MM PITCH, PLASTIC, QFP-48
FUJITSU

MB89P980

8-bit Proprietary Microcontroller
FUJITSU

MB89P985

8-bit Proprietary Microcontroller
FUJITSU

MB89P985-PFM-101

8-bit Proprietary Microcontroller
FUJITSU

MB89P985-PFM-201

8-bit Proprietary Microcontroller
FUJITSU

MB89P985PFM-101

IC 8-BIT, OTPROM, 4.2 MHz, MICROCONTROLLER, PQFP64, 12 X 12 MM, 0.65 MM PITCH, PLASTIC, QFP-64, Microcontroller
FUJITSU