MB90F574APFV [FUJITSU]

16-bit Proprietary Microcontroller; 16位微控制器专有
MB90F574APFV
型号: MB90F574APFV
厂家: FUJITSU    FUJITSU
描述:

16-bit Proprietary Microcontroller
16位微控制器专有

微控制器和处理器 外围集成电路 时钟
文件: 总135页 (文件大小:2311K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
FUJITSU SEMICONDUCTOR  
DATA SHEET  
DS07-13701-7E  
16-bit Proprietary Microcontroller  
CMOS  
F2MC-16LX MB90570 Series  
MB90573/574/574C/F574/F574A/V570/V570A  
DESCRIPTION  
The MB90570 series is a general-purpose 16-bit microcontroller developed and designed by Fujitsu for process  
control applications in consumer products that require high-speed real time processing. It contains an I2C*2 bus  
interface that allows inter-equipment communication to be implemented readily. This product is well adapted to  
car audio equipment, VTR systems, and other equipment and systems.  
The instruction set of F2MC-16LX CPU core inherits AT architecture of F2MC*1 family with additional instruction  
sets for high-level languages, extended addressing mode, enhanced multiplication/division instructions, and  
enhanced bit manipulation instructions. The microcontroller has a 32-bit accumulator for processing long word  
data.  
The MB90570 series has peripheral resources of an 8/10-bit A/D converter, an 8-bit D/A converter, UART (SCI),  
an extended I/O serial interface, an 8/16-bit up/down counter/timer, an 8/16-bit PPG timer, I/O timer (a 16-bit  
free run timer, an input capture (ICU), an output compare (OCU)).  
*1: F2MC stands for FUJITSU Flexible Microcontroller.  
*2: Purchase of Fujitsu I2C components conveys a license under the Philips I2C Patent Rights to use these  
components in an I2C system, provided that the system conforms to the I2C Standard Specification as  
defined by Philips.  
PACKAGE  
120-pin plastic LQFP  
120-pin plastic QFP  
120-pin plastic LQFP  
(FPT-120P-M13)  
(FPT-120P-M21)  
(FPT-120P-M05)  
MB90570 Series  
FEATURES  
• Clock  
Embedded PLL clock multiplication circuit  
Operating clock (PLL clock) can be selected from 1/2 to 4× oscillation (at oscillation of 4 MHz, 4 MHz to 16 MHz).  
Minimum instruction execution time: 62.5 ns (at oscillation of 4 MHz, 4× PLL clock, operation at VCC of 5.0 V)  
• Maximum memory space  
16 Mbytes  
• Instruction set optimized for controller applications  
Rich data types (bit, byte, word, long word)  
Rich addressing mode (23 types)  
Enhanced signed multiplication/division instruction and RETI instruction functions  
Enhanced precision calculation realized by the 32-bit accumulator  
• Instruction set designed for high level language (C) and multi-task operations  
Adoption of system stack pointer  
Enhanced pointer indirect instructions  
Barrel shift instructions  
• Program patch function (for two address pointers)  
• Enhanced execution speed  
4-byte instruction queue  
• Enhanced interrupt function  
8 levels, 34 factors  
• Automatic data transmission function independent of CPU operation  
Extended intelligent I/O service function (EI2OS): Up to 16 channels  
• Embedded ROM size and types  
Mask ROM: 128 kbytes/256 kbytes  
Flash ROM: 256 kbytes  
Embedded RAM size: 6 kbytes/10 kbytes (mask ROM)  
10 kbytes (flash memory)  
10 kbytes (evaluation device)  
• Low-power consumption (standby) mode  
Sleep mode (mode in which CPU operating clock is stopped)  
Stop mode (mode in which oscillation is stopped)  
CPU intermittent operation mode  
Hardware standby mode  
• Process  
CMOS technology  
• I/O port  
General-purpose I/O ports (CMOS): 63 ports  
General-purpose I/O ports (with pull-up resistors): 24 ports  
General-purpose I/O ports (open-drain): 10 ports  
Total: 97 ports  
(Continued)  
2
MB90570 Series  
(Continued)  
• Timer  
Timebase timer/watchdog timer: 1 channel  
8/16-bit PPG timer: 8-bit × 2 channels or 16-bit × 1 channel  
• 8/16-bit up/down counter/timer: 1 channel (8-bit × 2 channels)  
• 16-bit I/O timer  
16-bit free run timer: 1 channel  
Input capture (ICU): Generates an interrupt request by latching a 16-bit free run timer counter value upon  
detection of an edge input to the pin.  
Output compare (OCU):Generates an interrupt request and reverse the output level upon detection of a match  
between the 16-bit free run timer counter value and the compare setting value.  
• Extended I/O serial interface: 3 channels  
• I2C interface (1 channel)  
Serial I/O port for supporting Inter IC BUS  
• UART0 (SCI), UART1 (SCI)  
With full-duplex double buffer  
Clock asynchronized or clock synchronized transmission can be selectively used.  
• DTP/external interrupt circuit (8 channels)  
A module for starting extended intelligent I/O service (EI2OS) and generating an external interrupt triggered  
by an external input.  
• Delayed interrupt generation module  
Generates an interrupt request for switching tasks.  
• 8/10-bit A/D converter (8 channels)  
8/10-bit resolution  
Starting by an external trigger input.  
Conversion time: 26.3 µs  
• 8-bit D/A converter (based on the R-2R system)  
8-bit resolution: 2 channels (independent)  
Setup time: 12.5 µs  
• Clock timer: 1 channel  
• Chip select output (8 channels)  
An active level can be set.  
• Clock output function  
3
MB90570 Series  
PRODUCT LINEUP  
Part number  
MB90573  
MB90574/C  
MB90F574/A  
MB90V570/A  
Item  
Classification  
ROM size  
RAM size  
Mask ROM products  
128 kbytes  
6 kbytes  
Flash ROM products Evaluation product  
256 kbytes None  
10 kbytes  
The number of instructions: 340  
Instruction bit length: 8 bits, 16 bits  
Instruction length: 1 byte to 7 bytes  
Data bit length: 1 bit, 8 bits, 16 bits  
CPU functions  
Minimum execution time: 62.5 ns (at machine clock of 16 MHz)  
Interrupt processing time: 1.5 µs (at machine clock of 16 MHz, minimum value)  
General-purpose I/O ports (CMOS output): 63  
General-purpose I/O ports (with pull-up resistor): 24  
General-purpose I/O ports (N-ch open-drain output): 10  
Total: 97  
Ports  
Clock synchronized transmission (62.5 kbps to 1 Mbps)  
Clock asynchronized transmission (1202 bps to 9615 bps)  
Transmission can be performed by bi-directional serial transmission or by  
master/slave connection.  
UART0 (SCI), UART1 (SCI)  
Resolution: 8/10-bit  
Number of inputs: 8  
One-shot conversion mode (converts selected channel only once)  
Scan conversion mode (converts two or more successive channels and can  
program up to 8 channels.)  
8/10-bit A/D converter  
8/16-bit PPG timer  
Continuous conversion mode (converts selected channel continuously)  
Stop conversion mode (converts selected channel and stop operation repeatedly)  
Number of channels: 1 (or 8-bit × 2 channels)  
PPG operation of 8-bit or 16-bit  
A pulse wave of given intervals and given duty ratios can be output.  
Pulse interval: 62.5 ns to 1 µs (at oscillation of 4 MHz, machine clock of 16 MHz)  
Number of channels: 1 (or 8-bit × 2 channels)  
Event input: 6 channels  
8-bit up/down counter/timer used: 2 channels  
8-bit re-load/compare function supported: 1 channel  
8/16-bit up/down counter/  
timer  
16-bit  
free run timer  
Number of channel: 1  
Overflow interrupts  
Output  
16-bit  
Number of channels: 4  
Pin input factor: A match signal of compare register  
compare  
I/O timer  
(OCU)  
Input capture  
(ICU)  
Number of channels: 2  
Rewriting a register value upon a pin input (rising, falling, or both edges)  
(Continued)  
4
MB90570 Series  
(Continued)  
Part number  
MB90573  
MB90574/C  
MB90F574/A  
MB90V570/A  
Item  
Number of inputs: 8  
Started by a rising edge, a falling edge, an “H” level input, or an “L” level input.  
External interrupt circuit or extended intelligent I/O service (EI2OS) can be used.  
DTP/external interrupt circuit  
Delayed interrupt generation  
module  
An interrupt generation module for switching tasks used in real time operating  
systems.  
Clock synchronized transmission (3125 bps to 1 Mbps)  
LSB first/MSB first  
Extended I/O serial interface  
I2C interface  
Serial I/O port for supporting Inter IC BUS  
18-bit counter  
Interrupt interval: 1.024 ms, 4.096 ms, 16.384 ms, 131.072 ms  
(at oscillation of 4 MHz)  
Timebase timer  
8-bit resolution  
Number of channels: 2 channels  
Based on the R-2R system  
8-bit D/A converter  
Watchdog timer  
Reset generation interval: 3.58 ms, 14.33 ms, 57.23 ms, 458.75 ms  
(at oscillation of 4 MHz, minimum value)  
Low-power consumption  
(standby) mode  
Sleep/stop/CPU intermittent operation/clock timer/hardware standby  
Process  
CMOS  
Power supply voltage for  
operation*  
4.5 V to 5.5 V  
* : Varies with conditions such as the operating frequency. (See section “Electrical Characteristics.”)  
Assurance for the MB90V570/A is given only for operation with a tool at a power voltage of 4.5 V to 5.5 V, an  
operating temperature of 0 to +25°C, and an operating frequency of 1 MHz to 16 MHz.  
PACKAGE AND CORRESPONDING PRODUCTS  
Package  
FPT-120P-M05  
MB90573  
MB90574  
MB90F574/A  
MB90574C  
×
FPT-120P-M13  
FPT-120P-M21  
×
×
: Available ×: Not available  
Note: For more information about each package, see section “Package Dimensions.”  
5
MB90570 Series  
DIFFERENCES AMONG PRODUCTS  
Memory Size  
In evaluation with an evaluation product, note the difference between the evaluation product and the product  
actually used. The following items must be taken into consideration.  
• The MB90V570/A does not have an internal ROM, however, operations equivalent to chips with an internal  
ROM can be evaluated by using a dedicated development tool, enabling selection of ROM size by settings of  
the development tool.  
• In the MB90V570/A, images from FF4000H to FFFFFFH are mapped to bank 00, and FE0000H to FF3FFFH to  
mapped to bank FE and FF only. (This setting can be changed by configuring the development tool.)  
• In the MB90F574/574/573/F574A/574C, images from FF4000H to FFFFFFH are mapped to bank 00, and  
FF0000H to FF3FFFH to bank FF only.  
• The products designated with /A or /C are different from those without /A or /C in that they are DTP/externally-  
interrupted types which return from standby mode at the ch.0 to ch.1 edge request.  
6
MB90570 Series  
PIN ASSIGNMENT  
(Top view)  
1
2
3
4
5
6
7
8
90  
89  
88  
87  
86  
85  
84  
83  
82  
81  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
P31/RD  
RST  
MD0  
MD1  
MD2  
HST  
PC3  
PC2  
PC1  
P32/WRL  
P33/WRH  
P34/HRQ  
P35/HAK  
P36/RDY  
P37/CLK  
VCC  
P40/SIN0  
P41/SOT0  
P42/SCK0  
P43/SIN1  
P44/SOT1  
P45/SCK1  
P46/PPG0  
P47/PPG1  
P50/SIN2  
P51/SOT2  
P52/SCK2  
P53/SIN3  
P54/SOT3  
P55/SCK3  
P56/IN0  
9
PC0  
PB7  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
PB6/ADTG  
PB5/IRQ5  
PB4/IRQ4  
PB3/IRQ3  
PB2/IRQ2  
PB1/IRQ1  
X0A  
X1A  
PB0/IRQ0  
PA7/SCL  
PA6/SDA  
PA5/ZIN1  
PA4/BIN1  
PA3/AIN1/IRQ7  
PA2/ZIN0  
PA1/BIN0  
PA0/AIN0/IRQ6  
VSS  
P57/IN1  
P60/SIN4  
P61/SOT4  
P62/SCK4  
P63/CKOT  
P64/OUT0  
P65/OUT1  
P97/CS7  
P96/CS6  
(FPT-120P-M05)  
(FPT-120P-M13)  
(FPT-120P-M21)  
7
MB90570 Series  
PIN DESCRIPTION  
Pin no.  
Pin name  
X0,X1  
Circuit type  
Function  
LQFP-120 *1  
QFP-120 *2  
High speed oscillator input pins  
Low speed oscillator input pins  
92,93  
74,73  
A
B
C
X0A,X1A  
These are input pins used to designate the operating mode. They should  
be connected directly to Vcc or Vss.  
89 to 87  
MD0 to MD2  
Reset input pin  
90  
86  
RST  
C
C
D
Hardware standby input pin  
HST  
In single chip mode, these are general purpose I/O pins. When set for  
input, they can be set by the pull-up resistance setting register (RDR0).  
When set for output, this setting will be invalid.  
95 to 102  
P00 to P07  
In external bus mode, these pins function as address low output/data low  
I/O pins.  
AD00 to AD07  
In single chip mode, these are general purpose I/O pins. When set for  
input, they can be set by the pull-up resistance setting register (RDR1).  
When set for output, the setting will be invalid.  
103 to 110 P10 to P17  
AD08 to AD15  
D
In external bus mode, these pins function as address middle output/data  
high I/O pins.  
In single chip mode this is a general-purpose I/O port.  
111 to 118 P20 to P27  
A16 to A23  
E
E
In external bus mode, these pins function as address high output pins.  
In single chip mode this is a general-purpose I/O port.  
120  
P30  
ALE  
In external bus mode, this pin functions as the address latch enable signal  
output pin.  
In single chip mode this is a general-purpose I/O port.  
1
P31  
RD  
E
E
E
E
E
E
In external bus mode, this pin functions as the read strobe signal output  
pin.  
In single chip mode this is a general-purpose I/O port.  
2
P32  
In external bus mode, this pin functions as the data bus lower 8-bit write  
strobe signal output pin.  
WRL  
In single chip mode this is a general-purpose I/O port.  
3
P33  
In external bus mode, this pin functions as the data bus upper 8-bit write  
strobe signal output pin.  
WRH  
In single chip mode this is a general-purpose I/O port.  
4
P34  
In external bus mode, this pin functions as the hold request signal input  
pin.  
HRQ  
In single chip mode this is a general-purpose I/O port.  
5
P35  
In external bus mode, this pin functions as the hold acknowledge signal  
output pin.  
HAK  
In single chip mode this is a general-purpose I/O port.  
6
P36  
In external bus mode, this pin functions as the ready signal input pin.  
RDY  
*1: FPT-120P-M05  
*2: FPT-120P-M13,FPT-120P-M21  
(Continued)  
8
MB90570 Series  
Pin no.  
Pin name Circuit type  
Function  
LQFP-120 *1  
QFP-120 *2  
In single chip mode this is a general-purpose I/O port.  
7
9
P37  
E
F
In external bus mode, this pin functions as the clock (CLK) signal output  
pin.  
CLK  
In single chip mode this is a general-purpose I/O port. It can be set to open  
drain by the ODR4 register.  
P40  
This is also the UART ch.0 serial data input pin. While UART ch.0 is in  
input operation, this input signal is in continuous use, and therefore the  
output function should only be used when needed. If shared by output  
from other functions, this pin should be output disabled during SIN  
operation.  
SIN0  
In single chip mode this is a general-purpose I/O port. It can be set to open  
drain by the ODR4 register.  
10  
11  
12  
P41  
F
F
F
This is also the UART ch.0 serial data output pin. This function is valid  
when UART ch.0 is enabled for data output.  
SOT0  
P42  
In single chip mode this is a general-purpose I/O port. It can be set to open  
drain by the ODR4 register.  
This is also the UART ch.0 serial clock I/O pin. This function is valid when  
UART ch.0 is enabled for clock output.  
SCK0  
P43  
In single chip mode this is a general-purpose I/O port. It can be set to  
open-drain by the ODR4 register.  
This is also the UART ch.1 serial data input pin. While UART ch.1 is in  
input operation, this input signal is in continuous use, and therefore the  
output function should only be used when needed. If shared by output  
from other functions, this pin should be output disabled during SIN  
operation.  
SIN1  
In single chip mode this is a general-purpose I/O port. It can be set to  
opendrain by the ODR4 register.  
13  
14  
P44  
F
F
F
E
This is also the UART ch.1 serial data output pin. This function is valid  
when UART ch.1 is enabled for data output.  
SOT1  
In single chip mode this is a general-purpose I/O port. It can be set to open  
drain by the ODR4 register.  
P45  
This is also the UART ch.1 serial clock I/O pin. This function is valid when  
UART ch.1 is enabled for clock output.  
SCK1  
In single chip mode this is a general-purpose I/O port. It can be set to open  
drain by the ODR4 register.  
15,16  
17  
P46,P47  
PPG0,PPG1  
These are also the PPG0, 1 output pins. This function is valid when PPG0,  
1 output is enabled.  
In single chip mode this is a general-purpose I/O port.  
P50  
This is also the I/O serial ch.0 data input pin. During serial data input, this  
input signal is in continuous use, and therefore the output function should  
only be used when needed.  
SIN2  
(Continued)  
*1: FPT-120P-M05  
*2: FPT-120P-M13,FPT-120P-M21  
9
MB90570 Series  
Pin no.  
Pin name  
P51  
Circuit type  
Function  
LQFP-120 *1  
QFP-120 *2  
In single chip mode this is a general-purpose I/O port.  
18  
19  
20  
E
This is also the I/O serial ch.0 data output pin. This function is valid when  
serial ch.0 is enabled for serial data output.  
SOT2  
In single chip mode this is a general-purpose I/O port.  
P52  
E
E
This is also the I/O serial ch.0 clock I/O pin. This function is valid when  
serial ch.0 is enabled for serial data output.  
SCK2  
In single chip mode this is a general-purpose I/O port.  
P53  
This is also the I/O serial ch.1 data input pin. During serial data input, this  
input signal is in continuous use, and therefore the output function should  
only be used when needed.  
SIN3  
In single chip mode this is a general-purpose I/O port.  
21  
22  
P54  
E
E
E
This is also the I/O serial ch.1 data output pin. This function is valid when  
serial ch.1 is enabled for serial data output.  
SOT3  
In single chip mode this is a general-purpose I/O port.  
P55  
This is also the I/O serial ch.1 clock I/O pin. This function is valid when  
serial ch.1 is enabled for serial data output.  
SCK3  
In single chip mode this is a general-purpose I/O port.  
23,24  
P56,P57  
IN0,IN1  
These are also the input capture ch.0/1 trigger input pins. During input  
capture signal input on ch.0/1 this function is in continuous use, and  
therefore the output function should only be used when needed.  
In single chip mode this is a general-purpose I/O port. When set for input  
it can be set by the pull-up resistance register (RDR6). When set for  
output this setting will be invalid.  
25  
P60  
SIN4  
P61  
F
This is also the I/O serial ch.2 data input pin. During serial data input this  
function is in continuous use, and therefore the output function should  
only be used when needed.  
In single chip mode this is a general-purpose I/O port. When set for input  
it can be set by the pull-up resistance register (RDR6). When set for  
output this setting will be invalid.  
26  
27  
28  
F
F
F
This is also the I/O serial ch.2 data output pin. This function is valid when  
serial ch.2 is enabled for serial data output.  
SOT4  
P62  
In single chip mode this is a general-purpose I/O port. When set for input  
it can be set by the pull-up resistance register (RDR6). When set for  
output this setting will be invalid.  
This is also the I/O serial ch.2 serial clock I/O pin. This function is valid  
when serial ch.2 is enabled for serial data output.  
SCK4  
P63  
In single chip mode this is a general-purpose I/O port. When set for input  
it can be set by the pull-up resistance register (RDR6). When set for  
output this setting will be invalid.  
This is also the clock monitor output pin. This function is valid when clock  
monitor output is enabled.  
CKOT  
(Continued)  
*1: FPT-120P-M05  
*2: FPT-120P-M13,FPT-120P-M21  
10  
MB90570 Series  
Pin no.  
LQFP-120 *1  
Pin name  
Circuit type  
Function  
QFP-120 *2  
In single chip mode these are general-purpose I/O ports. When set for  
input they can be set by the pull-up resistance register (RDR6). When set  
for output this setting will be invalid.  
29 to 32  
P64 to P67  
F
These are also the output compare ch.0 to ch.3 event output pins. This  
function is valid when the respective channel(s) are enabled for output.  
OUT0 to  
OUT3  
These are general purpose I/O ports.  
35 to 37  
40,41  
P70 to P72  
P73,P74  
E
I
These are general purpose I/O ports.  
These are also the D/A converter ch.0,1 analog signal output pins.  
These are general purpose I/O ports.  
DA0,DA1  
46 to 53  
55 to 62  
P80 to P87  
AN0 to AN7  
K
E
These are also A/D converter analog input pins. This function is valid  
when analog input is enabled.  
These are general purpose I/O ports.  
P90 to P97  
CS0 to CS7  
These are also chip select signal output pins. This function is valid when  
chip select signal output is enabled.  
This is the power supply stabilization capacitor pin. It should be  
connected externally to an 0.1 µF ceramic capacitor. Note that this is  
not required on the FLASH model (MB90F574/A) and MB90574C.  
34  
64  
C
G
E
This is a general purpose I/O port.  
PA0  
This pin is also used as count clock A input for 8/16-bit up-down counter  
ch.0.  
AIN0  
This pin can also be used as interrupt request input ch. 6.  
This is a general purpose I/O port.  
IRQ6  
PA1  
65  
66  
67  
E
E
E
This pin is also used as count clock B input for 8/16-bit up-down counter  
ch.0.  
BIN0  
This is a general purpose I/O port.  
PA2  
This pin is also used as count clock Z input for 8/16-bit up-down counter  
ch.0.  
ZIN0  
This is a general purpose I/O port.  
PA3  
This pin is also used as count clock A input for 8/16-bit up-down counter  
ch.1.  
AIN1  
This pin can also be used as interrupt request input ch.7.  
This is a general purpose I/O port.  
IRQ7  
PA4  
68  
69  
E
E
This pin is also used as count clock B input for 8/16-bit up-down counter  
ch.1.  
BIN1  
This is a general purpose I/O port.  
PA5  
This pin is also used as count clock Z input for 8/16-bit up-down counter  
ch.1.  
ZIN1  
*1: FPT-120P-M05  
*2: FPT-120P-M13,FPT-120P-M21  
(Continued)  
11  
MB90570 Series  
(Continued)  
Pin no.  
Pin name  
PA6  
Circuit type  
Function  
This is a general purpose I/O port.  
LQFP-120 *1  
QFP-120 *2  
70  
71  
L
This pin is also used as the data I/O pin for the I2C interface. This  
function is valid when the I2C interface is enabled for operation. While the  
I2C interface is operating, this port should be set to the input level  
(DDRA: bit6 = 0).  
SDA  
This is a general purpose I/O port.  
PA7  
SCL  
L
This pin is also used as the clock I/O pin for the I2C interface. This  
function is valid when the I2C interface is enabled for operation. While the  
I2C interface is operating, this port should be set to the input level  
(DDRA: bit7 = 0).  
These are general-purpose I/O ports.  
72,  
PB0,  
E
75 to 79  
PB1 to PB5  
These pins are also the external interrupt input pins. IRQ0, 1 are  
enabled for both rising and falling edge detection, and therefore cannot  
be used for recovery from STOP status for MB90V570, MB90F574,  
MB90573 and MB90574. However, IRQ0, 1 can be used for recovery  
from STOP status for MB90V570A, MB90F574A and MB90574C.  
IRQ0,  
IRQ1 to IRQ5  
This is a general purpose I/O port.  
80  
PB6  
E
This is also the A/D converter external trigger input pin. While the A/D  
converter is in input operation, this input signal is in continuous use, and  
therefore the output function should only be used when needed.  
ADTG  
This is a general purpose I/O port.  
These are general purpose I/O ports.  
These are power supply (5V) input pins.  
81  
PB7  
E
E
82 to 85  
8,54,94  
PC0 to PC3  
VCC  
Power  
supply  
These are power supply (0V) input pins.  
33,63,  
91,119  
VSS  
Power  
supply  
This is the analog macro (D/A, A/D etc.) Vcc power supply input pin.  
42  
43  
AVCC  
H
J
This is the A/D converter Vref+ input pin. The input voltage should not  
exceed Vcc.  
AVRH  
This is the A/D converter Vref-input pin. The input voltage should not  
less than Vss.  
44  
AVRL  
H
This is the analog macro (D/A, A/D etc.) Vss power supply input pin.  
45  
38  
AVSS  
DVCC  
H
H
This is the D/A converter Vref input pin. The input voltage should not  
exceed Vcc.  
This is the D/A converter GND power supply pin. It should be set to Vss  
equivalent potential.  
39  
DVSS  
H
*1: FPT-120P-M05  
*2: FPT-120P-M13,FPT-120P-M21  
12  
MB90570 Series  
I/O CIRCUIT TYPE  
Type  
Circuit  
Remarks  
A
• Oscillator circuit  
Oscillator recovery resistance for high  
X1  
speed = approx. 1 MΩ  
X0  
Standby control signal  
B
• Oscillator circuit  
Oscillator recovery resistance for low  
speed = approx. 1 MΩ  
X1A  
X0A  
Standby control signal  
C
• Hysteresis input pin  
Resistance value = approx. 50 k(typ.)  
R
Hysteresis input  
D
• CMOS hysteresis input pin with input pull-  
up control  
• CMOS level output.  
• CMOS hysteresis input  
(Includes input shut down standby control  
function)  
VCC  
Selective signal either  
with a pull-up resistor or  
without it.  
VCC  
P-ch  
P-ch  
N-ch  
• Pull-up resistance value =  
approx. 50 k(typ.)  
R
IOL = 4mA  
Hysteresis input  
Standby control for input interruption  
IOL = 4 mA  
(Continued)  
13  
MB90570 Series  
Type  
Circuit  
Remarks  
E
• CMOS hysteresis input/output pin.  
• CMOS level output  
VCC  
• CMOS hysteresis input  
(Includes input shut down standby control  
function)  
P-ch  
IOL = 4 mA  
N-ch  
R
Hysteresis input  
Standby control for input interruption  
IOL = 4 mA  
F
• CMOS hysteresis input/output pin.  
• CMOS level output  
VCC  
• CMOS hysteresis input  
(Includes input shut down standby control  
function)  
P-ch  
IOL = 10 mA (Large current port)  
N-ch  
R
Hysteresis input  
Standby control for input interruption  
IOL = 10 mA  
G
• C pin output  
VCC  
(capacitance connector pin).  
On the MB90F574 this pin is not  
connected (NC).  
P-ch  
N-ch  
H
• Analog power supply protector  
circuit.  
VCC  
P-ch  
AVP  
N-ch  
I
• CMOS hysteresis input/output  
• Analog output/CMOS output  
dual-function pin (CMOS output is not  
available during analog output.)  
(Analog output priority: DAE = 1)  
• Includes input shout down standby  
control function.  
VCC  
P-ch  
N-ch  
R
IOL = 4mA  
Hysteresis input  
Standby control for input interruption  
DAO  
IOL = 4 mA  
(Continued)  
14  
MB90570 Series  
Type  
Circuit  
Remarks  
J
• A/D converter ref+ power supply input  
pin(AVRH), with power supply  
protector circuit.  
VCC  
P-ch  
ANE  
AVR  
ANE  
P-ch  
N-ch  
N-ch  
K
CC  
• CMOS hysteresis input /analog input  
dual-function pin.  
V
P-ch  
• CMOS output  
• Includes input shut down function at input  
shut down standby.  
N-ch  
R
Hysteresis input  
Standby control for input interruption  
Analog input  
IOL = 4 mA  
VCC  
L
• Hysteresis input  
N-ch  
• N-ch open-drain output  
• Includes input shut down standby control  
function.  
IOL= 4mA  
N-ch  
R
Hysteresis input  
Standby control for input interruption  
IOL = 4 mA  
15  
MB90570 Series  
HANDLING DEVICES  
1. Preventing Latchup  
CMOS ICs may cause latchup in the following situations:  
• When a voltage higher than Vcc or lower than Vss is applied to input or output pins.  
• When a voltage exceeding the rating is applied between Vcc and Vss.  
• When AVcc power is supplied prior to the Vcc voltage.  
In turning on/turning off the analog power supply, make sure the analog power voltage (AVCC, AVRH, DVCC)and  
analog input voltages not exceed the digital voltage (VCC).  
2. Treatment of unused pins  
Leaving unused input pins open may result in misbehavior or latch up and possible permanent damage of the  
device. Therefor they must be tied to VCC or Ground through resistors. In this case those resistors should be  
more than 2 k<Symbol>W.  
Unused bidirectional pins should be set to the output state and can be left open, or the input state with the above  
described connection.  
3. Notes on Using External Clock  
In using the external clock, drive X0 pin only and leave X1 pin unconnected.  
• Using external clock  
MB90570 series  
X0  
X1  
Open  
4. Unused Sub Clock Mode  
If sub clock modes are not used, the oscillator should be connected to the X01A pin and X1A pin  
5. Power Supply Pins (VCC/VSS)  
In products with multiple VCC or VSS pins, the pins of a same potential are internally connected in the device to  
avoid abnormal operations including latch-up. However, connect the pins external power and ground lines to  
lower the electro-magnetic emission level, to prevent abnormal operation of strobe signals caused by the rise  
in the ground level, and to conform to the total current rating.  
Make sure to connect VCC and VSS pins via lowest impedance to power lines.  
16  
MB90570 Series  
It is recommended to provide a bypass capacitor of around 0.1 µF between VCC and VSS pin near the device.  
Using power supply pins  
VCC  
VSS  
VCC  
VSS  
VSS  
VCC  
MB90570 series  
VCC  
VSS  
VCC  
VSS  
6. Crystal Oscillator Circuit  
Noises around X0 or X1 pins may be possible causes of abnormal operations. Make sure to provide bypass  
capacitors via shortest distance from X0, X1 pins, crystal oscillator (or ceramic resonator) and ground lines, and  
make sure, to the utmost effort, that lines of oscillation circuit do not cross the lines of other circuits.  
It is highly recommended to provide a printed circuit board art work surrounding X0 and X1 pins with an grand  
area for stabilizing the operation.  
7. Turning-on Sequence of Power Supply to A/D Converter and Analog Inputs  
Make sure to turn on the A/D converter power supply, D/A converter power supply (AVCC, AVRH, AVRL,  
DVCC,DVSS) and analog inputs (AN0 to AN7) after turning-on the digital power supply (VCC).  
Turn-off the digital power after turning off the A/D converter supply and analog inputs. In this case, make sure  
that the voltage does not exceed AVRH or AVCC (turning on/off the analog and digital power supplies simulta-  
neously is acceptable).  
8. Connection of Unused Pins of A/D Converter  
Connect unused pins of A/D converter to AVCC = VCC, AVSS = AVRH = DVCC = VSS.  
9. N.C. Pins  
The N.C. (internally connected) pins must be opened for use.  
10. Notes on Energization  
To prevent the internal regulator circuit from malfunctioning, set the voltage rise time during energization at 50  
or more µs (0.2 V to 2.7 V).  
11. Indeterminate outputs from ports 0 and 1  
The outputs from ports 0 and 1 become indeterminate during oscillation setting time of step-down circuit (during  
a power-on reset) after the power is turned on. (MB90573, MB90574, MB90V570, MB90V570A)  
17  
MB90570 Series  
The series without built-in step-down circuit have no oscillation setting time of step-down circuit, so outputs  
should not become indeterminate. (MB90F574,MB90F574A,MB90574C)  
Timing chart of indeterminate outputs from ports 0 and 1  
Oscillation setting time *2  
Step-down circuit setting time *1  
VCC (power-supply pin)  
PONR (power-on reset) signal  
RST (external asynchronous reset) signal  
RST (internal reset) signal  
Oscillation clock signal  
KA (internal operating clock A) signal  
KB (internal operating clock B) signal  
Period of indeterminate  
PORT (port output) signal  
*1: Step-down circuit setting time 217/oscillation clock frequency (oscillation clock frequency of 16 MHz: 8.19 ms)  
*2: Oscillation setting time  
218/oscillation clock frequency (oscillation clock frequency of 16 MHz: 16.38 ms)  
12. Initialization  
In the device, there are internal registers which are initialized only by a power-on reset. Turn on the power again  
to initialize these registers.  
13. Return from standby state  
If the power-supply voltage goes below the standby RAM holding voltage in the standby state, the device may  
fail to return from the standby state. In this case, reset the device via the external reset pin to return to the normal  
state.  
14. Precautions for Use of ’DIV A, Ri,and ’DIVW A, Ri’ Instructions  
The signed multiplication-division instructions ’DIV A, Ri,and ’DIVW A, RWi’ should be used when the corre-  
sponding bank registers (DTB, ADB, USB, SSB) are set to value ’00h.If the corresponding bank registers (DTB,  
ADB, USB, SSB) are set to a value other than ’00h,then the remainder obtained after the execution of the  
instruction will not be placed in the instruction operand register.  
15. Precautions for Use of REALOS  
Extended intelligent I/O service (EI2OS) cannot be used, when REALOS is used.  
18  
MB90570 Series  
BLOCK DIAGRAM  
Interrupt controller  
F2MC–16LX  
CPU  
3
P70 to P72  
Port 7  
Main clock  
Sub clock  
2
P73/DA0  
P74/DA1  
X0, X1  
X0A, X1A  
RST  
8-bit  
Clock control  
block  
(including timebase  
timer)  
D/A  
converter  
× 2 ch.  
DVCC  
DVSS  
HST  
8
P00/AD00 to P07/AD07  
P10/AD08 to P17/AD15  
P20/A16 to P27/A23  
Port 0, 1, 2  
16  
Port 9  
8
8
8
8
Chip select  
output  
P90/CS0 to P97/CS7  
8
P30/ALE  
P31/RD  
Port A  
2
6
External bus  
interface  
PA1/BIN0  
P32/WRL  
P33/WRH  
P34/HRQ  
PA2/ZIN0  
PA3/AIN1/IRQ7  
PA4/BIN1  
6
8/16-bit up/down  
counter/timer  
P35/HAK  
P36/RDY  
P37/CLK  
PA5/ZIN1  
Port 3  
2
PA6/SDA  
PA7/SCL  
I2C bus  
P40/SIN0  
P41/SOT0  
P42/SCK0  
P43/SIN1  
P44/SOT1  
P45/SCK1  
P46/PPG0  
P47/PPG1  
Port 4  
PA0/AIN0/IRQ6  
DTP/  
external  
interrupt  
circuit  
2
2
UART0  
6
6
PB0/IRQ0 to  
PB5/IRQ5  
(SCI),  
UART1  
(SCI)  
× 8 ch.  
2
PB7  
Port B  
8/16-bit  
PPG timer  
ch.0  
PB6/ADTG  
AVRL  
AVRH  
AVCC  
AVSS  
P80/AN0 to  
P87/AN7  
P50/SIN2  
P51/SOT2  
P52/SCK2  
Port 5  
8/10-bit  
A/D converter  
× 8 ch.  
2
2
8
8
P53/SIN3  
P54/SOT3  
P55/SCK3  
SIO × 2 ch  
2
Port 8  
Port C  
P56/IN0  
P57/IN1  
4
2
PC0 to PC3  
Input capture  
(ICU)  
16-bit free run timer  
4
4
RAM  
ROM  
Output  
P64/OUT0 to P67/OUT3  
compare  
(OCU)  
P60/SIN4  
P61/SOT4  
P62/SCK4  
SIO × 1 ch.  
Port 6  
P63/CKOT  
Other pins  
Clock output  
P00 to P07 (8 ports): Provided with a register optional input pull-up resistor  
P10 to P17 (8 ports): Provided with a register optional input pull-up resistor  
P40 to P47 (8 ports): Heavy-current (IOL = 10 mA) port  
MD0 to MD2,  
C, VCC, VSS  
P60 to P67 (8 ports): Provided with a register optional input pull-up resistor  
19  
MB90570 Series  
MEMORY MAP  
Internal ROM  
external bus mode  
A mirror function  
is supported.  
Single chip mode  
A mirror function is  
supported.  
External ROM  
external bus mode  
FFFFFFH  
ROM area  
ROM area  
Address #1  
FC0000H  
010000H  
ROM area  
(image of  
bank FF)  
ROM area  
(image of  
bank FF)  
Address #2  
004000H  
Address #3  
Register  
RAM  
Register  
RAM  
Register  
RAM  
000100H  
0000C0H  
000000H  
Peripheral  
Peripheral  
Peripheral  
Part number  
MB90573  
Address #1*  
FE0000H  
Address #2*  
004000H  
Address #3*  
001800H  
MB90574/C  
MB90F574/A  
FC0000H  
004000H  
002900H  
FC0000H  
004000H  
002900H  
: Internal access memory  
: External access memory  
: Inhibited area  
*: Addresses #1, #2 and #3 are unique to the product type.  
Note: The ROM data of bank FF is reflected in the upper address of bank 00, realizing effective use of the C compiler  
small model. The lower 16-bit of bank FF and the lower 16-bit of bank 00 is assigned to the same address,  
enabling reference of the table on the ROM without stating “far”.  
For example, if an attempt has been made to access 00C000H, the contents of the ROM at FFC000H are  
accessed actually. Since the ROM area of the FF bank exceeds 48 kbytes, the whole area cannot be reflected  
in the image for the 00 bank. The ROM data at FF4000H to FFFFFFH looks, therefore, as if it were the image  
for 00400H to 00FFFFH. Thus, it is recommended that the ROM data table be stored in the area of FF4000H  
to FFFFFFH.  
20  
MB90570 Series  
F2MC-16LX CPU PROGRAMMING MODEL  
• Dedicated registers  
: Accumulator (A)  
AH  
AL  
Dual 16-bit register used for storing results of calculation etc. The two 16-bit  
registers can be combined to be used as a 32-bit register.  
: User stack pointer (USP)  
The 16-bit pointer indicating a user stack address.  
USP  
SSP  
PS  
: System stack pointer (SSP)  
The 16-bit pointer indicating the status of the system stack address.  
: Processor status (PS)  
The 16-bit register indicating the system status.  
: Program counter (PC)  
The 16-bit register indicating storing location of the current instruction code.  
PC  
: Direct page register (DPR)  
DPR  
The 8-bit register indicating bit 8 through 15 of the operand address in the short  
direct addressing mode.  
: Program bank register (PCB)  
The 8-bit register indicating the program space.  
PCB  
DTB  
USB  
SSB  
: Data bank register (DTB)  
The 8-bit register indicating the data space.  
: User stack bank register (USB)  
The 8-bit register indicating the user stack space.  
: System stack bank register (SSB)  
The 8-bit register indicating the system stack space.  
: Additional data bank register (ADB)  
The 8-bit register indicating the additional data space.  
ADB  
8-bit  
16-bit  
32-bit  
21  
MB90570 Series  
• General-purpose registers  
Maximum of 32 banks  
RW7  
R7  
R6  
RL3  
RL2  
RL1  
RL0  
RW6  
RW5  
RW4  
R5  
R3  
R4  
R2  
R1  
R0  
RW3  
RW2  
RW1  
RW0  
000180H + (RP × 10H)  
16-bit  
• Processor status (PS)  
ILM  
RP  
CCR  
bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9 bit 8 bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0  
PS  
ILM2 ILM1 ILM0 B4  
B3  
0
B2  
0
B1  
0
B0  
0
I
S
1
T
X
N
X
Z
X
V
X
C
Initial value  
0
0
0
0
0
X
—: Reserved  
X : Undefined  
22  
MB90570 Series  
I/O MAP  
Abbreviated  
Read/  
write  
Address  
register  
name  
Register name  
Port 0 data register  
Resource name  
Initial value  
000000H  
000001H  
000002H  
000003H  
000004H  
000005H  
000006H  
000007H  
000008H  
000009H  
00000AH  
00000BH  
00000CH  
PDR0  
PDR1  
PDR2  
PDR3  
PDR4  
PDR5  
PDR6  
PDR7  
PDR8  
PDR9  
PDRA  
PDRB  
PDRC  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Port 0  
Port 1  
Port 2  
Port 3  
Port 4  
Port 5  
Port 6  
Port 7  
Port 8  
Port 9  
Port A  
Port B  
Port C  
X X X X X X X X B  
X X X X X X X X B  
X X X X X X X X B  
X X X X X X X X B  
X X X X X X X X B  
X X X X X X X X B  
X X X X X X X X B  
X X X X X X X X B  
X X X X X X X X B  
X X X X X X X X B  
X X X X X X X X B  
X X X X X X X X B  
X X X X X X X X B  
Port 1 data register  
Port 2 data register  
Port 3 data register  
Port 4 data register  
Port 5 data register  
Port 6 data register  
Port 7 data register  
Port 8 data register  
Port 9 data register  
Port A data register  
Port B data register  
Port C data register  
00000DH  
to  
(Disabled)  
00000FH  
000010H  
000011H  
000012H  
000013H  
000014H  
000015H  
000016H  
000017H  
000018H  
000019H  
00001AH  
00001BH  
00001CH  
00001DH  
DDR0  
DDR1  
DDR2  
DDR3  
DDR4  
DDR5  
DDR6  
DDR7  
DDR8  
DDR9  
DDRA  
DDRB  
DDRC  
ODR4  
Port 0 direction register  
Port 1 direction register  
Port 2 direction register  
Port 3 direction register  
Port 4 direction register  
Port 5 direction register  
Port 6 direction register  
Port 7 direction register  
Port 8 direction register  
Port 9 direction register  
Port A direction register  
Port B direction register  
Port C direction register  
Port 4 output pin register  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Port 0  
Port 1  
Port 2  
Port 3  
Port 4  
Port 5  
Port 6  
Port 7  
Port 8  
Port 9  
Port A  
Port B  
Port C  
Port 4  
0 0 0 0 0 0 0 0 B  
0 0 0 0 0 0 0 0 B  
0 0 0 0 0 0 0 0 B  
0 0 0 0 0 0 0 0 B  
0 0 0 0 0 0 0 0 B  
0 0 0 0 0 0 0 0 B  
0 0 0 0 0 0 0 0 B  
– – – 0 0 0 0 0 B  
0 0 0 0 0 0 0 0 B  
0 0 0 0 0 0 0 0 B  
0 0 0 0 0 0 0 0 B  
0 0 0 0 0 0 0 0 B  
0 0 0 0 0 0 0 0 B  
0 0 0 0 0 0 0 0 B  
Port 8,  
8/10-bit  
00001EH  
ADER  
Analog input enable register  
R/W  
1 1 1 1 1 1 1 1 B  
A/D converter  
00001FH  
000020H  
000021H  
(Disabled)  
SMR0  
SCR0  
Serial mode register 0  
Serial control register 0  
R/W  
R/W  
0 0 0 0 0 0 0 0 B  
0 0 0 0 0 1 0 0 B  
UART0  
(SCI)  
(Continued)  
23  
MB90570 Series  
Abbreviated  
Read/  
write  
Resource  
name  
Address  
register  
name  
Register name  
Initial value  
SIDR0/  
SODR0  
Serial input data register 0/  
serial output data register 0  
000022H  
R/W  
X X X X X X X X B  
UART0  
(SCI)  
000023H  
000024H  
000025H  
SSR0  
SMR1  
SCR1  
Serial status register 0  
Serial mode register 1  
Serial control register 1  
R/W  
R/W  
R/W  
0 0 0 0 1 – 0 0 B  
0 0 0 0 0 0 0 0 B  
0 0 0 0 0 1 0 0 B  
UART1  
(SCI)  
SIDR1/  
SODR1  
Serial input data register 1/  
serial output data register 1  
000026H  
000027H  
R/W  
R/W  
X X X X X X X X B  
0 0 0 0 1 – 0 0 B  
SSR1  
Serial status register 1  
Communica-  
tions  
prescaler  
register 0  
Communications prescaler control  
register 0  
000028H  
000029H  
00002AH  
CDCR0  
R/W  
0 – – – 1 1 1 1 B  
(Disabled)  
Communica-  
tions  
prescaler  
register 0  
Communications prescaler control  
register 1  
CDCR1  
R/W  
0 – – – 1 1 1 1 B  
00002BH  
to  
(Disabled)  
00002FH  
000030H  
000031H  
000032H  
000033H  
000034H  
000035H  
ENIR  
EIRR  
DTP/interrupt enable register  
DTP/interrupt factor register  
R/W  
R/W  
0 0 0 0 0 0 0 0 B  
X X X X X X X X B  
0 0 0 0 0 0 0 0 B  
0 0 0 0 0 0 0 0 B  
DTP/external  
interrupt cir-  
cuit  
ELVR  
Request level setting register  
R/W  
(Disabled)  
A/D control status register lower  
digits  
000036H  
000037H  
ADCS1  
ADCS2  
R/W  
0 0 0 0 0 0 0 0 B  
0 0 0 0 0 0 0 0 B  
A/D control status register upper  
digits  
8/10-bit A/D  
converter  
R/W or W  
000038H  
000039H  
00003AH  
00003BH  
00003CH  
00003DH  
ADCR1  
ADCR2  
DADR0  
DADR1  
DACR0  
DACR1  
A/D data register lower digits  
A/D data register upper digits  
D/A converter data register ch.0  
D/A converter data register ch.1  
D/A control register 0  
R
X X X X X X X X B  
0 0 0 0 1 – X X B  
X X X X X X X X B  
X X X X X X X X B  
– – – – – – – 0 B  
– – – – – – – 0 B  
W
R/W  
R/W  
R/W  
R/W  
8-bit D/A  
converter  
D/A control register 1  
Clock monitor  
function  
00003EH  
CLKR  
Clock output enable register  
R/W  
– – – – 0 0 0 0 B  
00003FH  
000040H  
000041H  
(Disabled)  
PRLL0  
PRLH0  
PPG0 reload register L ch.0  
PPG0 reload register H ch.0  
R/W  
R/W  
X X X X X X X X B  
X X X X X X X X B  
(Continued)  
8/16-bit PPG  
timer 0  
24  
MB90570 Series  
Abbreviated  
register  
name  
Read/  
write  
Address  
Register name  
Resource name  
Initial value  
000042H  
000043H  
PRLL1  
PRLH1  
PPG1 reload register L ch.1  
PPG1 reload register H ch.1  
R/W  
R/W  
X X X X X X X X B  
X X X X X X X X B  
8/16-bit PPG  
timer 1  
PPG0 operating mode control  
register ch.0  
8/16-bit PPG  
timer 0  
000044H  
000045H  
PPGC0  
PPGC1  
PPGOE  
R/W  
R/W  
R/W  
0 X 0 0 0 X X 1 B  
0 X 0 0 0 0 0 1 B  
0 0 0 0 0 0 X X B  
PPG1 operating mode control  
register ch.1  
8/16-bit PPG  
timer 1  
PPG0 and 1 output control registers  
ch.0 and ch.1  
8/16-bit PPG  
timer 0, 1  
000046H  
000047H  
000048H  
(Disabled)  
Serial mode control lower status  
register 0  
SMCSL0  
R/W  
– – – – 0 0 0 0 B  
Extended I/O  
serial interface 0 0 0 0 0 0 0 1 0 B  
Serial mode control upper status  
register 0  
000049H  
SMCSH0  
SDR0  
R/W  
R/W  
00004AH  
00004BH  
Serial data register 0  
X X X X X X X X B  
(Disabled)  
Serial mode control lower status  
register 1  
00004CH  
00004DH  
SMCSL1  
R/W  
– – – – 0 0 0 0 B  
Extended I/O  
Serial mode control upper status  
register 1  
SMCSH1  
SDR1  
R/W  
R/W  
serial interface 1 0 0 0 0 0 0 1 0 B  
00004EH  
00004FH  
000050H  
000051H  
000052H  
000053H  
000054H  
000055H  
000056H  
000057H  
000058H  
000059H  
00005AH  
00005BH  
00005CH  
00005DH  
00005EH  
00005FH  
Serial data register 1  
X X X X X X X X B  
(Disabled)  
X X X X X X X X B  
IPCP0  
ICU data register ch.0  
R
X X X X X X X X B  
16-bit I/O timer  
(input capture  
(ICU) section)  
X X X X X X X X B  
X X X X X X X X B  
0 0 0 0 0 0 0 0 B  
IPCP1  
ICS01  
ICU data register ch.1  
R
ICU control status register  
R/W  
(Disabled)  
0 0 0 0 0 0 0 0 B  
0 0 0 0 0 0 0 0 B  
0 0 0 0 0 0 0 0 B  
16-bit I/O timer  
(16-bit free run  
timer section)  
TCDT  
TCCS  
Free run timer data register  
R/W  
R/W  
Free run timer control status register  
(Disabled)  
X X X X X X X X B  
X X X X X X X X B  
X X X X X X X X B  
X X X X X X X X B  
X X X X X X X X B  
X X X X X X X X B  
(Continued)  
OCCP0  
OCCP1  
OCCP2  
OCU compare register ch.0  
OCU compare register ch.1  
OCU compare register ch.2  
R/W  
R/W  
R/W  
16-bit I/O timer  
(output compare  
(OCU) section)  
25  
MB90570 Series  
Abbreviated  
Read/  
write  
Address  
register  
name  
Register name  
Resource name  
Initial value  
000060H  
000061H  
000062H  
000063H  
000064H  
000065H  
000066H  
000067H  
000068H  
000069H  
00006AH  
00006BH  
00006CH  
00006DH  
00006EH  
X X X X X X X X B  
X X X X X X X X B  
0 0 0 0 – – 0 0 B  
– – – 0 0 0 0 0 B  
0 0 0 0 – – 0 0 B  
– – – 0 0 0 0 0 B  
OCCP3  
OCU compare register ch.3  
R/W  
16-bit I/O timer  
(output compare  
(OCU) section)  
OCS0  
OCS1  
OCS2  
OCS3  
OCU control status register ch.0  
OCU control status register ch.1  
OCU control status register ch.2  
OCU control status register ch.3  
R/W  
R/W  
R/W  
R/W  
(Disabled)  
I2C bus status register  
I2C bus control register  
I2C bus clock control register  
I2C bus address register  
I2C bus data register  
IBSR  
IBCR  
ICCR  
IADR  
IDAR  
R
0 0 0 0 0 0 0 0 B  
0 0 0 0 0 0 0 0 B  
– – 0 X X X X X B  
– X X X X X X X B  
X X X X X X X X B  
R/W  
R/W  
R/W  
R/W  
I2C interface  
(Disabled)  
ROM mirroring  
function  
selection module  
ROM mirroring function selection  
register  
00006FH  
ROMM  
W
– – – – – – – 1 B  
000070H  
000071H  
000072H  
000073H  
000074H  
000075H  
000076H  
000077H  
000078H  
000079H  
00007AH  
00007BH  
UDCR0  
UDCR1  
RCR0  
Up/down count register 0  
Up/down count register 1  
Reload compare register 0  
Reload compare register 1  
Counter status register 0  
R
R
0 0 0 0 0 0 0 0 B  
0 0 0 0 0 0 0 0 B  
0 0 0 0 0 0 0 0 B  
0 0 0 0 0 0 0 0 B  
0 0 0 0 0 0 0 0 B  
8/16-bit up/down  
counter/timer  
W
RCR1  
W
CSR0  
R/W  
(Reserved area)*3  
CCRL0  
CCRH0  
CSR1  
– 0 0 0 0 0 0 0 B  
0 0 0 0 0 0 0 0 B  
0 0 0 0 0 0 0 0 B  
Counter control register 0  
Counter status register 1  
R/W  
8/16-bit up/down  
counter/timer  
R/W  
(Reserved area)*3  
CCRL1  
CCRH1  
– 0 0 0 0 0 0 0 B  
– 0 0 0 0 0 0 0 B  
8/16-bit up/down  
counter/timer  
Counter control register 1  
R/W  
Serial mode control lower status  
register 2  
00007CH  
00007DH  
SMCSL2  
R/W  
– – – – 0 0 0 0 B  
Extended I/O  
Serial mode control higher status  
register 2  
SMCSH2  
SDR2  
R/W  
R/W  
serial interface 2 0 0 0 0 0 0 1 0 B  
00007EH  
00007FH  
Serial data register 2  
X X X X X X X X B  
(Disabled)  
(Continued)  
26  
MB90570 Series  
Abbreviated  
register  
name  
Read/  
write  
Address  
Register name  
Resource name  
Initial value  
000080H  
000081H  
000082H  
000083H  
000084H  
000085H  
000086H  
CSCR0  
CSCR1  
CSCR2  
CSCR3  
CSCR4  
CSCR5  
CSCR6  
Chip selection control register 0  
Chip selection control register 1  
Chip selection control register 2  
Chip selection control register 3  
Chip selection control register 4  
Chip selection control register 5  
Chip selection control register 6  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
– – – – 0 0 0 0 B  
– – – – 0 0 0 0 B  
– – – – 0 0 0 0 B  
– – – – 0 0 0 0 B  
– – – – 0 0 0 0 B  
– – – – 0 0 0 0 B  
– – – – 0 0 0 0 B  
Chip select  
output  
000087H  
to  
(Disabled)  
00008BH  
Port 0 input pull-up resistor setup  
register  
00008CH  
00008DH  
00008EH  
RDR0  
RDR1  
RDR6  
R/W  
R/W  
R/W  
Port 0  
Port 1  
Port 6  
0 0 0 0 0 0 0 0 B  
0 0 0 0 0 0 0 0 B  
0 0 0 0 0 0 0 0 B  
Port 1 input pull-up resistor setup  
register  
Port 6 input pull-up resistor setup  
register  
00008FH  
to  
(Disabled)  
00009DH  
Address match  
detection  
Program address detection control  
status register  
00009EH  
00009FH  
PACSR  
DIRR  
R/W  
R/W  
0 0 0 0 0 0 0 0 B  
– – – – – – – 0 B  
function  
Delayed  
interrupt  
generation  
module  
Delayed interrupt factor generation/  
cancellation register  
Low-power consumption mode  
control register  
Low-power  
consumption  
(standby) mode  
0000A0H  
0000A1H  
LPMCR  
CKSCR  
R/W  
R/W  
0 0 0 1 1 0 0 0 B  
1 1 1 1 1 1 0 0 B  
Clock select register  
0000A2H  
to  
(Disabled)  
0000A4H  
Automatic ready function select  
register  
0000A5H  
ARSR  
W
0 0 1 1 – – 0 0 B  
External bus pin  
0000A6H  
0000A7H  
0000A8H  
0000A9H  
0000AAH  
HACR  
ECSR  
WDTC  
TBTC  
WTC  
Upper address control register  
Bus control signal select register  
Watchdog timer control register  
Timebase timer control register  
Clock timer control register  
W
0 0 0 0 0 0 0 0 B  
0 0 0 0 0 0 0 0 B  
W
R/W  
R/W  
R/W  
Watchdog timer X X X X X X X X B  
Timebase timer  
Clock timer  
1 – – 0 0 1 0 0 B  
1 X 0 0 0 0 0 0 B  
(Continued)  
27  
MB90570 Series  
(Continued)  
Abbreviated  
Read/  
write  
Address  
register  
name  
Register name  
Resource name  
Initial value  
0000ABH  
to  
(Disabled)  
0000ADH  
0000AEH  
0000AFH  
0000B0H  
0000B1H  
0000B2H  
0000B3H  
0000B4H  
0000B5H  
0000B6H  
0000B7H  
0000B8H  
0000B9H  
0000BAH  
0000BBH  
0000BCH  
0000BDH  
0000BEH  
0000BFH  
FMCS  
Flash control register  
R/W  
(Disabled)  
Flash interface  
0 0 0 X 0 X X 0 B  
ICR00  
ICR01  
ICR02  
ICR03  
ICR04  
ICR05  
ICR06  
ICR07  
ICR08  
ICR09  
ICR10  
ICR11  
ICR12  
ICR13  
ICR14  
ICR15  
Interrupt control register 00  
Interrupt control register 01  
Interrupt control register 02  
Interrupt control register 03  
Interrupt control register 04  
Interrupt control register 05  
Interrupt control register 06  
Interrupt control register 07  
Interrupt control register 08  
Interrupt control register 09  
Interrupt control register 10  
Interrupt control register 11  
Interrupt control register 12  
Interrupt control register 13  
Interrupt control register 14  
Interrupt control register 15  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0 0 0 0 0 1 1 1 B  
0 0 0 0 0 1 1 1 B  
0 0 0 0 0 1 1 1 B  
0 0 0 0 0 1 1 1 B  
0 0 0 0 0 1 1 1 B  
0 0 0 0 0 1 1 1 B  
0 0 0 0 0 1 1 1 B  
0 0 0 0 0 1 1 1 B  
0 0 0 0 0 1 1 1 B  
0 0 0 0 0 1 1 1 B  
0 0 0 0 0 1 1 1 B  
0 0 0 0 0 1 1 1 B  
0 0 0 0 0 1 1 1 B  
0 0 0 0 0 1 1 1 B  
0 0 0 0 0 1 1 1 B  
0 0 0 0 0 1 1 1 B  
Interrupt  
controller  
0000C0H  
to  
0000FFH  
(External area)*1  
(RAM area)*2  
000100H  
to  
000###H  
000###H  
to  
(Reserved area)*3  
001FEFH  
001FF0H  
001FF1H  
001FF2H  
001FF3H  
001FF4H  
001FF5H  
Program address detection register 0  
Program address detection register 1  
Program address detection register 2  
Program address detection register 3  
Program address detection register 4  
Program address detection register 5  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
X X X X X X X X B  
X X X X X X X X B  
X X X X X X X X B  
X X X X X X X X B  
X X X X X X X X B  
X X X X X X X X B  
PADR0  
PADR1  
Address match  
detection  
function  
001FF6H  
to  
(Reserved area)  
001FFFH  
28  
MB90570 Series  
Descriptions for read/write  
R/W: Readable and writable  
R: Read only  
W: Write only  
Descriptions for initial value  
0 : The initial value of this bit is “0”.  
1 : The initial value of this bit is “1”.  
X : The initial value of this bit is undefined.  
– : This bit is unused. The initial value is undefined.  
*1: This area is the only external access area having an address of 0000FFH or lower. An access operation to this  
area is handled as that to external I/O area.  
*2: For details of the RAM area, see “MEMORY MAP”.  
*3: The reserved area is disabled because it is used in the system.  
Notes: • For bits that is initialized by an reset operation, the initial value set by the reset operation is listed as an  
initial value. Note that the values are different from reading results.  
For LPMCR/CKSCR/WDTC, there are cases where initialization is performed or not performed, depending  
on the types of the reset. However initial value for resets that initializes the value are listed.  
• The addresses following 0000FFH are reserved. No external bus access signal is generated.  
• Boundary ####H between the RAM area and the reserved area varies with the product model.  
29  
MB90570 Series  
INTERRUPT FACTORS, INTERRUPT VECTORS, INTERRUPT CONTROL REGISTER  
Interrupt vector  
Number Address  
Interrupt control register  
EI2OS  
Interrupt source  
Priority  
support  
ICR  
Address  
Reset  
×
×
×
# 08  
# 09  
# 10  
# 11  
FFFFDCH  
FFFFD8H  
FFFFD4H  
FFFFD0H  
High  
INT9 instruction  
Exception  
8/10-bit A/D converter  
ICR00  
ICR01  
ICR02  
0000B0H  
0000B1H  
0000B2H  
Input capture 0 (ICU) include  
DTP0 (external interrupt 0)  
Input capture 1 (ICU) include  
Output compare 0 (OCU) match  
Output compare 1 (OCU) match  
Output compare 2 (OCU) match  
Output compare 3 (OCU) match  
Extended I/O serial interface 0  
16-bit free run timer  
# 12  
# 13  
# 14  
# 15  
# 16  
# 17  
# 18  
# 19  
# 20  
# 21  
# 22  
# 23  
# 24  
FFFFCCH  
FFFFC8H  
FFFFC4H  
FFFFC0H  
FFFFBCH  
FFFFB8H  
FFFFB4H  
FFFFB0H  
FFFFACH  
FFFFA8H  
FFFFA4H  
FFFFA0H  
FFFF9CH  
ICR03  
ICR04  
ICR05  
ICR06  
0000B3H  
0000B4H  
0000B5H  
0000B6H  
×
×
Extended I/O serial interface 1  
Clock timer  
Extended I/O serial interface 2  
DTP1 (external interrupt 1)  
DTP2/DTP3 (external interrupt 2/  
external interrupt 3)  
# 25  
# 26  
# 27  
# 28  
# 29  
# 30  
# 31  
# 32  
FFFF98H  
FFFF94H  
FFFF90H  
FFFF8CH  
FFFF88H  
FFFF84H  
FFFF80H  
FFFF7CH  
ICR07  
ICR08  
ICR09  
0000B7H  
0000B8H  
0000B9H  
8/16-bit PPG timer 0 counter  
borrow  
×
×
DTP4/DTP5 (external interrupt 4/  
external interrupt 5)  
8/16-bit PPG timer 1 counter  
borrow  
8/16-bit up/down counter/timer 0  
borrow/overflow/inversion  
8/16-bit up/down counter/timer 0  
compare match  
8/16-bit up/down counter/timer 1  
borrow/overflow/inversion  
0000BAH  
0000BAH  
ICR10  
ICR11  
8/16-bit up/down counter/timer 1  
compare match  
DTP6 (external interrupt 6)  
Timebase timer  
# 33  
# 34  
FFFF78H  
FFFF74H  
0000BBH  
×
Low  
(Continued)  
30  
MB90570 Series  
(Continued)  
Interrupt source  
Interrupt vector  
Number Address  
Interrupt control register  
Priority  
EI2OS  
support  
ICR  
Address  
DTP7 (external interrupt 7)  
I2C interface  
# 35  
# 36  
FFFF70H  
FFFF6CH  
ICR12  
0000BCH  
High  
×
UART1 (SCI) reception complete  
# 37  
# 38  
# 39  
FFFF68H  
FFFF64H  
FFFF60H  
ICR13  
0000BDH  
UART1 (SCI) transmission  
complete  
UART0 (SCI) reception complete  
ICR14  
ICR15  
0000BEH  
0000BFH  
UART0 (SCI) transmission  
complete  
# 40  
# 41  
# 42  
FFFF5CH  
FFFF58H  
FFFF54H  
Flash memory  
×
×
Low  
Delayed interrupt generation  
module  
: Can be used  
×
: Can not be used  
: Can be used. With EI2OS stop function.  
31  
MB90570 Series  
PERIPHERALS  
1. I/O Port  
(1) Input/output Port  
Port 0 through 4, 6, 8, A and B are general-purpose I/O ports having a combined function as an external bus  
pin and a resource input. Port 0 to Port 3 have a general-purpose I/O ports function only in the single-chip mode.  
• Operation as output port  
The pin is configured as an output port by setting the corresponding bit of the DDR register to “1”.  
Writing data to PDR register when the port is configured as output, the data is retained in the output latch in  
the PDR and directly output to the pin.  
The value of the pin (the same value retained in the output latch of PDR) can be read out by reading the PDR  
register.  
Note: When a read-modify-write instruction (e.g. bit set instruction) is performed to the port data register, the  
destination bit of the operation is set to the specified value, not affecting the bits configured by the DDR  
register for output, however, values of bits configured by the DDR register as inputs are changed because  
input values to the pins are written into the output latch. To avoid this situation, configure the pins by the  
DDR register as output after writing output data to the PDR register when configuring the bit used as  
input as outputs.  
• Operation as input port  
The pin is configured as an input by setting the corresponding bit of the DDR register to “0”.  
When the pin is configured as an input, the output buffer is turned-off and the pin is put into a high-impedance  
status.  
When a data is written into the PDR register, the data is retained in the output latch of the PDR, but pin outputs  
are unaffected.  
Reading the PDR register reads out the pin level (“0” or “1”).  
32  
MB90570 Series  
(2) Register Configuration  
• Port 0 data register (PDR0)  
. . . . . . . . . . . .  
Address bit 15  
000000H  
bit 8 bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
Initial value  
XXXXXXXX  
(PDR1)  
B
P07  
R/W  
P06  
R/W  
P05  
R/W  
P04  
R/W  
P03  
R/W  
P02  
R/W  
P01  
R/W  
P00  
R/W  
• Port 1 data register (PDR1)  
. . . . . . . . . . . .  
(PDR0)  
bit 15 bit 14 bit 13 bit 12 bit 11 bit 10  
bit 9  
bit 8 bit 7  
P10  
bit 0  
Initial value  
Address  
B
XXXXXXXX  
P17  
R/W  
P16  
R/W  
P15  
R/W  
P14  
R/W  
P13  
R/W  
P12  
R/W  
P11  
R/W  
000001H  
R/W  
• Port 2 data register (PDR2)  
. . . . . . . . . . . .  
Address bit 15  
000002H  
bit 8 bit 7  
P27  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
P22  
R/W  
bit 1  
P21  
R/W  
bit 0  
P20  
R/W  
Initial value  
XXXXXXXX  
(PDR3)  
P26  
R/W  
P25  
R/W  
P24  
R/W  
P23  
R/W  
B
R/W  
• Port 3 data register (PDR3)  
. . . . . . . . . . . .  
(PDR2)  
bit 15 bit 14 bit 13 bit 12 bit 11 bit 10  
bit 9  
bit 8 bit 7  
bit 0  
Initial value  
Address  
B
XXXXXXXX  
P37  
R/W  
P36  
R/W  
P35  
R/W  
P34  
R/W  
P33  
R/W  
P32  
R/W  
P31  
R/W  
P30  
R/W  
000003H  
• Port 4 data register (PDR4)  
. . . . . . . . . . . .  
Address bit 15  
000004H  
bit 8 bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
P40  
R/W  
Initial value  
XXXXXXXX  
B
(PDR5)  
P47  
R/W  
P46  
R/W  
P45  
R/W  
P44  
R/W  
P43  
R/W  
P42  
R/W  
P41  
R/W  
• Port 5 data register (PDR5)  
. . . . . . . . . . . .  
(PDR4)  
bit 15 bit 14 bit 13 bit 12 bit 11 bit 10  
bit 9  
bit 8 bit 7  
bit 0  
Initial value  
Address  
B
XXXXXXXX  
000005H  
P57  
R/W  
P56  
R/W  
P55  
R/W  
P54  
R/W  
P53  
R/W  
P52  
R/W  
P51  
R/W  
P50  
R/W  
• Port 6 data register (PDR6)  
. . . . . . . . . . . .  
Address bit 15  
000006H  
bit 8 bit 7  
P67  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
P62  
R/W  
bit 1  
P61  
R/W  
bit 0  
P60  
R/W  
Initial value  
XXXXXXXX  
(PDR7)  
P66  
R/W  
P65  
R/W  
P64  
R/W  
P63  
R/W  
B
R/W  
• Port 7 data register (PDR7)  
. . . . . . . . . . . .  
(PDR6)  
bit 15 bit 14 bit 13 bit 12 bit 11 bit 10  
bit 9  
bit 8 bit 7  
P70  
bit 0  
Initial value  
Address  
B
P74  
R/W  
P73  
R/W  
P72  
R/W  
P71  
R/W  
- - -XXXXX  
000007H  
R/W  
• Port 8 data register (PDR8)  
. . . . . . . . . . . .  
Address bit 15  
000008H  
bit 8 bit 7  
P87  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
P82  
R/W  
bit 1  
P81  
R/W  
bit 0  
P80  
R/W  
Initial value  
XXXXXXXX  
(PDR9)  
P86  
R/W  
P85  
R/W  
P84  
R/W  
P83  
R/W  
B
R/W  
(Continued)  
33  
MB90570 Series  
• Port 9 data register (PDR9)  
. . . . . . . . . . . .  
(PDR8)  
Address  
bit 15 bit 14 bit 13 bit 12 bit 11 bit 10  
bit 9  
bit 8 bit 7  
bit 0  
Initial value  
B
XXXXXXXX  
000009H  
P97  
R/W  
P96  
R/W  
P95  
R/W  
P94  
R/W  
P93  
R/W  
P92  
R/W  
P91  
R/W  
P90  
R/W  
• Port A data register (PDRA)  
. . . . . . . . . . . .  
Address bit 15  
00000AH  
bit 8 bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
PA0  
Initial value  
XXXXXXXX  
B
(PDRB)  
PA7  
R/W  
PA6  
R/W  
PA5  
R/W  
PA4  
R/W  
PA3  
R/W  
PA2  
R/W  
PA1  
R/W  
R/W  
• Port B data register (PDRB)  
. . . . . . . . . . . .  
Address bit 15  
00000BH  
bit 8 bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
Initial value  
XXXXXXXX  
(PDRA)  
B
PB7  
R/W  
PB6  
R/W  
PB5  
R/W  
PB4  
R/W  
PB3  
R/W  
PB2  
R/W  
PB1  
R/W  
PB0  
R/W  
• Port C data register (PDRC)  
. . . . . . . . . . . .  
Address bit 15  
00000CH  
bit 8 bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
Initial value  
XXXXXXXX  
(Disabled)  
B
PC3  
R/W  
PC2  
R/W  
PC1  
R/W  
PC0  
R/W  
• Port 0 direction register (DDR0)  
. . . . . . . . . . . .  
Address bit 15  
bit 8 bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
Initial value  
(DDR1)  
000010H  
B
D07  
R/W  
D06  
R/W  
D05  
R/W  
D04  
R/W  
D03  
R/W  
D02  
R/W  
D01  
R/W  
D00  
R/W  
00000000  
• Port 1 direction register (DDR1)  
. . . . . . . . . . . .  
(DDR0)  
Address  
bit 15 bit 14 bit 13 bit 12 bit 11 bit 10  
bit 9  
bit 8 bit 7  
bit 0  
Initial value  
B
00000000  
000011H  
D17  
R/W  
D16  
R/W  
D15  
R/W  
D14  
R/W  
D13  
R/W  
D12  
R/W  
D11  
R/W  
D10  
R/W  
• Port 2 direction register (DDR2)  
. . . . . . . . . . . .  
Address bit 15  
000012H  
bit 8 bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
D20  
R/W  
Initial value  
00000000  
(DDR3)  
B
D27  
R/W  
D26  
R/W  
D25  
R/W  
D24  
R/W  
D23  
R/W  
D22  
R/W  
D21  
R/W  
• Port 3 direction register (DDR3)  
. . . . . . . . . . . .  
(DDR2)  
Address bit 15 bit 14 bit 13 bit 12 bit 11 bit 10  
bit 9  
bit 8 bit 7  
bit 0  
Initial value  
B
00000000  
000013H  
D37  
R/W  
D36  
R/W  
D35  
R/W  
D34  
R/W  
D33  
R/W  
D32  
R/W  
D31  
R/W  
D30  
R/W  
• Port 4 direction register (DDR4)  
. . . . . . . . . . . .  
Address bit 15  
000014H  
bit 8 bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
D40  
R/W  
Initial value  
00000000  
(DDR5)  
B
D47  
R/W  
D46  
R/W  
D45  
R/W  
D44  
R/W  
D43  
R/W  
D42  
R/W  
D41  
R/W  
(Continued)  
34  
MB90570 Series  
• Port 5 direction register (DDR5)  
. . . . . . . . . . . .  
Address  
bit 15 bit 14 bit 13 bit 12 bit 11 bit 10  
bit 9  
D51  
R/W  
bit 8 bit 7  
D50  
bit 0  
Initial value  
B
00000000  
D57  
R/W  
D56  
R/W  
D55  
R/W  
D54  
R/W  
D53  
R/W  
D52  
R/W  
000015H  
(DDR4)  
R/W  
• Port 6 direction register (DDR6)  
. . . . . . . . . . . .  
Address bit 15  
000016H  
bit 8 bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
Initial value  
00000000  
B
(DDR7)  
D67  
R/W  
D66  
R/W  
D65  
R/W  
D64  
R/W  
D63  
R/W  
D62  
R/W  
D61  
R/W  
D60  
R/W  
• Port 7 direction register (DDR7)  
. . . . . . . . . . . .  
(DDR6)  
Address  
bit 15 bit 14 bit 13 bit 12 bit 11 bit 10  
bit 9  
bit 8 bit 7  
D70  
bit 0  
Initial value  
B
- - - 00000  
D74  
R/W  
D73  
R/W  
D72  
R/W  
D71  
R/W  
000017H  
R/W  
• Port 8 direction register (DDR8)  
. . . . . . . . . . . .  
Address bit 15  
000018H  
bit 8 bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
D80  
R/W  
Initial value  
00000000  
(DDR9)  
B
D87  
R/W  
D86  
R/W  
D85  
R/W  
D84  
R/W  
D83  
R/W  
D82  
R/W  
D81  
R/W  
• Port 9 direction register (DDR9)  
. . . . . . . . . . . .  
(DDR8)  
Address  
bit 15 bit 14 bit 13 bit 12 bit 11 bit 10  
bit 9  
bit 8 bit 7  
D90  
bit 0  
Initial value  
B
000019H  
00000000  
D97  
R/W  
D96  
R/W  
D95  
R/W  
D94  
R/W  
D93  
R/W  
D92  
R/W  
D91  
R/W  
R/W  
• Port A direction register (DDRA)  
. . . . . . . . . . . .  
Address bit 15  
00001AH  
bit 8 bit 7  
DA7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
DA2  
R/W  
bit 1  
DA1  
R/W  
bit 0  
DA0  
Initial value  
00000000  
(DDRB)  
DA6  
R/W  
DA5  
R/W  
DA4  
R/W  
DA3  
R/W  
B
R/W  
R/W  
• Port B direction register (DDRB)  
. . . . . . . . . . . .  
bit 15  
bit 8 bit 7  
DB7  
bit 6  
DB6  
R/W  
bit 5  
DB5  
R/W  
bit 4  
DB4  
R/W  
bit 3  
DB3  
R/W  
bit 2  
DB2  
R/W  
bit 1  
DB1  
R/W  
bit 0  
DB0  
R/W  
Address  
00001BH  
Initial value  
00000000  
(DDRA)  
B
R/W  
• Port C direction register (DDRC)  
. . . . . . . . . . . .  
Address bit 15  
00001CH  
bit 8 bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
Initial value  
(ODR4)  
B
DC3  
R/W  
DC2  
R/W  
DC1  
R/W  
DC0  
R/W  
00000000  
• Port 4 output pin register (ODR4)  
. . . . . . . . . . . .  
Address bit 15  
00001DH  
bit 8 bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
Initial value  
00000000  
(DDRC)  
B
OD47 OD46 OD45 OD44 OD43 OD42 OD41 OD40  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
• Port 0 input pull-up resistor setup register (RDR0)  
. . . . . . . . . . . .  
Address bit 15  
00008CH  
bit 8 bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
Initial value  
00000000  
(RDR1)  
B
RD07 RD06 RD05 RD04 RD03 RD02 RD01 RD00  
R/W R/W R/W R/W R/W R/W R/W R/W  
(Continued)  
35  
MB90570 Series  
(Continued)  
• Port 1 input pull-up resistor setup register (RDR1)  
. . . . . . . . . . . .  
(RDR0)  
Address  
bit 15 bit 14 bit 13 bit 12 bit 11 bit 10  
RD17 RD16 RD15 RD14 RD13 RD12 RD11 RD10  
R/W R/W R/W R/W R/W R/W R/W R/W  
bit 9  
bit 8 bit 7  
bit 0  
Initial value  
B
00000000  
00008DH  
• Port 6 input pull-up resistor setup register (RDR6)  
. . . . . . . . . . . .  
Address bit 15  
00008EH  
bit 8 bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
Initial value  
00000000  
(Disabled)  
B
RD67 RD66 RD65 RD64 RD63 RD62 RD61 RD60  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
• Analog input enable register (ADER)  
. . . . . . . . . . . .  
bit 15  
bit 8 bit 7  
bit 6  
ADE6  
R/W  
bit 5  
ADE5  
R/W  
bit 4  
bit 3  
bit 2  
ADE2  
R/W  
bit 1  
ADE1  
R/W  
bit 0  
Address  
Initial value  
ADE0  
B
(Disabled)  
11111111  
ADE4 ADE3  
R/W R/W  
00001EH  
ADE7  
R/W  
R/W  
R/W : Readable and writable  
— : Reserved  
X : Undefined  
36  
MB90570 Series  
(3) Block Diagram  
• Input/output port  
PDR (port data register)  
PDR read  
Output latch  
P-ch  
PDR write  
Pin  
DDR (port direction register)  
N-ch  
Direction latch  
DDR write  
Standby control (SPL=1)  
DDR read  
Standby control: Stop, timebase timer mode and SPL=1, or hardware standby mode  
• Output pin register (ODR)  
To resource input  
From resource output  
Resource output enable  
PDR (port data register)  
PDR read  
Output latch  
P-ch  
N-ch  
PDR write  
Pin  
DDR (port direction register)  
Direction latch  
DDR write  
Standby control  
(SPL=1)  
DDR read  
ODR (output pin register)  
ODR latch  
ODR write  
ODR read  
Standby control: Stop, timebase timer mode and SPL=1, or hardware standby mode  
37  
MB90570 Series  
• Input pull-up resistor setup register (RDR)  
To resource input  
PDR (port data register)  
Pull-up resistor  
About 5.0 kΩ  
(5.0 V)  
PDR read  
Output latch  
PDR write  
P-ch  
N-ch  
P-ch  
Pin  
DDR (port direction register)  
Direction latch  
DDR write  
Standby control  
(SPL=1)  
DDR read  
RDR latch  
RDR write  
RDR  
(input pull-up resistor setup register)  
RDR read  
Standby control: Stop, timebase timer mode and SPL=1  
• Analog input enable register (ADER)  
ADER (analog input enable register)  
ADER read  
ADER latch  
To analog input  
ADER write  
PDR (port data register)  
RMW  
(read-modify-write  
type instruction)  
PDR read  
Output latch  
PDR write  
P-ch  
N-ch  
Pin  
DDR (port direction register)  
Direction latch  
DDR write  
Standby control  
(SPL=1)  
DDR read  
Standby control: Stop, timebase timer mode and SPL=1  
38  
MB90570 Series  
2. Timebase Timer  
The timebase timer is a 18-bit free run counter (timebase counter) for counting up in synchronization to the  
internal count clock (divided-by-2 of oscillation) with an interval timer function for selecting an interval time from  
four types of 212/HCLK, 214/HCLK, 216/HCLK, and 219/HCLK.  
The timebase timer also has a function for supplying operating clocks for the timer output for the oscillation  
stabilization time or the watchdog timer etc.  
(1) Register Configuration  
• Timebase timer control register (TBTC)  
. . . . . . . . . . . .  
Address  
0000A9H  
bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9  
bit 8 bit 7  
TBIE TBOF TBR TBC1 TBC0  
R/W R/W R/W R/W  
bit 0  
Initial value  
1--00100B  
(WDTC)  
RESV  
W
R/W : Readable and writable  
W : Write only  
— : Unused  
RESV: Reserved bit  
(2) Block Diagram  
To watchdog timer  
To 8/16-bit PPG timer  
Timebase timer counter  
× 21 × 22 × 23  
× 28 × 29 × 210 × 211 × 212 × 213 × 214 × 215 × 216 × 217 × 218  
. . . . . .  
Divided-by-2  
of HCLK  
OF  
OF  
OF  
OF  
To oscillation stabilization  
time selector of clock control block  
Power-on reset  
Counter  
clear circuit  
Interval  
timer selector  
Start stop mode  
CKSCR: MCS = 10*1  
Set TBOF  
Clear TBOF  
Timebase timer control register  
(TBTC)  
RESV  
TBIE TBOF TBR TBC1 TBC0  
Timebase timer  
interrupt signal  
#34*2  
OF: Overflow  
HCLK: Oscillation clock  
*1: Switch machine clock from oscillation clock to PLL clock  
*2: Interrupt signal  
39  
MB90570 Series  
3. Watchdog Timer  
The watchdog timer is a 2-bit counter operating with an output of the timebase timer and resets the CPU when  
the counter is not cleared for a preset period of time.  
(1) Register Configuration  
• Watchdog timer control register (WDTC)  
. . . . . . . . . . . .  
(TBTC)  
Address bit 15  
0000A8H  
bit 8 bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
WT1  
W
bit 0  
WT0  
W
Initial value  
B
PONR STBR WRST ERST SRST WTE  
XXXXXXXX  
R
R
R
R
R
W
R : Read only  
W: Write only  
X : Indeterminate  
(2) Block Diagram  
Watchdog timer control register (WDTC)  
PONR STBR WRST ERST SRST WTE WT1 WT0  
2
Watchdog timer  
CLR and start  
Overflow  
CLR  
Start sleep mode  
Start hold status  
Start stop mode  
Watchdog timer  
reset generation  
circuit  
Counter clear  
control circuit  
Count clock  
selector  
2-bit  
counter  
To internal reset  
generation circuit  
CLR  
4
Clear  
(Timebase timer counter)  
Divided-by-2  
of HCLK  
× 29 × 210 × 211 × 212 × 213 × 214 × 215 × 216 × 217 × 218  
× 28  
× 21 × 22  
. . .  
HCLK: Oscillation clock  
40  
MB90570 Series  
4. 8/16-bit PPG Timer  
The 8/16-bit PPG timer is a 2-CH reload timer module for outputting pulse having given frequencies/duty ratios.  
The two modules performs the following operation by combining functions.  
• 8-bit PPG output 2-CH independent operation mode  
This is a mode for operating independent 2-CH 8-bit PPG timer, in which PPG0 and PPG1 pins correspond  
to outputs from PPG0 and PPG1 respectively.  
• 16-bit PPG timer output operation mode  
In this mode, PPG0 and PPG1 are combined to be operated as a 1-CH 8/16-bit PPG timer operating as a 16-  
bit timer. Because PPG0 and PPG1 outputs are reversed by an underflow from PPG1 outputting the same  
output pulses from PPG0 and PPG1 pins.  
• 8 + 8-bit PPG timer output operation mode  
In this mode, PPG0 is operated as an 8-bit communications prescaler, in which an underflow output of PPG0  
is used as a clock source for PPG1. A toggle output of PPG0 and PPG output of PPG1 are output from PPG0  
and PPG1 respectively.  
• PPG output operation  
A pulse wave with any period/duty ratio is output. The module can also be used as a D/A converter with an  
external add-on circuit.  
41  
MB90570 Series  
(1) Register Configuration  
• PPG0 operating mode control register ch.0 (PPGC0)  
. . . . . . . . . . . .  
Address bit 15  
000044H  
bit 8 bit 7  
PEN0  
bit 6  
bit 5  
PE00 PIE0 PUF0  
R/W R/W R/W  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
RESV  
Initial value  
0X000XX1  
(PPGC1)  
B
R/W  
• PPG1 operating mode control register ch.1 (PPGC1)  
. . . . . . . . . . . .  
(PPGC0)  
bit 15 bit 14 bit 13 bit 12 bit 11 bit 10  
bit 9  
MD0 RESV  
R/W R/W  
bit 8 bit 7  
bit 0  
Address  
000045H  
Initial value  
B
0X000001  
PEN1  
R/W  
PEI0  
R/W  
PIE1 PUF1 MD1  
R/W R/W R/W  
R/W  
• PPG0, 1 output control register ch.0, ch.1(PPGOE)  
. . . . . . . . . . . .  
Address bit 15  
000046H  
bit 8 bit 7  
PCS2 PCS1 PCS0 PCM2 PCM1 PCM0  
R/W R/W R/W R/W R/W R/W  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
Initial value  
000000XX  
(Disabled)  
B
• PPG0 reload register H ch.0 (PRLH0)  
. . . . . . . . . . . .  
(PRLL0)  
Address bit 15 bit 14 bit 13 bit 12 bit 11 bit 10  
bit 9  
bit 8 bit 7  
R/W  
bit 0  
bit 0  
Initial value  
B
XXXXXXXX  
000041H  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
• PPG1 reload register H ch.1 (PRLH1)  
. . . . . . . . . . . .  
(PRLL1)  
Address  
bit 15 bit 14 bit 13 bit 12 bit 11 bit 10  
bit 9  
R/W  
bit 8 bit 7  
R/W  
Initial value  
B
000043H  
XXXXXXXX  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
• PPG0 reload register L ch.0 (PRLL0)  
Address  
. . . . . . . . . . . .  
(PRLH0)  
bit 15  
bit 8 bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
Initial value  
000040H  
B
XXXXXXXX  
Initial value  
R/W  
R/W  
bit 6  
R/W  
bit 5  
R/W  
bit 4  
R/W  
bit 3  
R/W  
bit 2  
R/W  
bit 1  
R/W  
• PPG1 reload register L ch.1 (PRLL1)  
Address  
. . . . . . . . . . . .  
bit 15  
bit 8 bit 7  
bit 0  
R/W  
000042H  
B
XXXXXXXX  
(PRLH1)  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W : Readable and writable  
— : Reserved  
X
: Undefined  
RESV: Reserved bit  
42  
MB90570 Series  
(2) Block Diagram  
• Block diagram of 8/16-bit PPG timer (ch.0)  
Data bus for “H” digits  
Data bus for “L” digits  
PPG0 output  
control register  
ch.0 (PPGOE0)  
PPG0 reload  
register  
PPG0 operating mode  
control register ch.0 (PPGC0)  
PEN0  
PE00 PIE0 PUF0  
RESV PCM2 PCM1 PCM0  
PRLH0  
PRLL0  
R
Temporary buffer  
(PRLBH0)  
Interrupt request  
#26*  
S
Q
2
Mode control signal  
Select signal  
Reload register  
(L/H selector)  
PPG1 underflow  
PPG0 underflow  
(to PPG1)  
Count value  
Re-load  
Clear  
Pulse selector  
Underflow  
Down counter  
(PCNT0)  
CLK  
PPG0  
output latch  
Pin  
Reverse  
P46/PPG0  
PPG output  
control circuit  
Timebase timer output (512/HCLK)  
Peripheral clock (16/φ)  
Peripheral clock (8/φ)  
Count  
clock  
selector  
Peripheral clock (4/φ)  
3
Peripheral clock (2/φ)  
Peripheral clock (1/φ)  
Select signal  
*
: Interrupt number  
HCLK: Oscillation clock  
: Machine clock frequency  
φ
43  
MB90570 Series  
• Block diagram of 8/16-bit PPG timer (ch.1)  
Data bus for “H” digits  
Data bus for “L” digits  
PPG1 output control  
register ch.1 (PPGOE1)  
PPG1 reload  
register  
PPG1 operating mode  
control register ch.1 (PPGC1)  
PCS1 PCS0  
PCS2  
RESV  
PEI0 PIE1 PUF1 MD1 MD0  
PEN1  
PRLL1  
PRLH1  
Operating mode  
control signal  
2
Temporary buffer  
(PRLBH1)  
R
Interrupt request  
#28*  
Q
S
Reload selector  
(L/H selector)  
Select signal  
Count value  
Re-load  
Clear  
Underflow  
PPG1  
output latch  
Down counter  
(PCNT1)  
Pin  
Reverse  
P47/PPG1  
CLK  
PPG1 underflow  
(to PPG0)  
PPG output control circuit  
MD0  
PPG0 underflow  
Timebase timer output (512/HCLK)  
Peripheral clock (16/φ)  
Peripheral clock (8/φ)  
Peripheral clock (4/φ)  
Peripheral clock (2/φ)  
Peripheral clock (1/φ)  
Count clock selector  
Select signal  
*
: Interrupt number  
HCLK: Oscillation clock  
: Machine clock frequency  
φ
44  
MB90570 Series  
5. 16-bit I/O timer  
The 16-bit I/O timer module consists of one 16-bit free run timer, two input capture circuits, and four output  
comparators. This module allows two independent waveforms to be output on the basis of the 16-bit free run  
timer. Input pulse width and external clock periods can, therefore, be measured.  
• Block Diagram  
Internal data bus  
16-bit  
free run timer  
Dedicated  
bus  
Dedicated  
bus  
Input capture  
Output compare  
45  
MB90570 Series  
(1) 16-bit free run Timer  
The 16-bit free run timer consists of a 16-bit up counter, a control register, and a communications prescaler  
register. The value output from the timer counter is used as basic timer (base timer) for input capture (ICU) and  
output compare (OCU).  
• A counter operation clock can be selected from four internal clocks (φ/4, φ/16, φ/32 and φ/64).  
• An interrupt can be generated by overflow of counter value or compare match with OCU compare register 0.  
(Compare match requires mode setup.)  
• The counter value can be initialized to “0000H” by a reset, software clear or compare match with OCU compare  
register 0.  
• Register Configuration  
• free run timer data register (TCDT)  
Address  
bit 15bit 14bit 13bit 12bit 11bit 10 bit 9 bit 8 bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0  
Initial value  
00000000B  
000056H  
000057H  
T15 T14 T13 T12 T11 T10 T9 T8 T7 T6 T5 T4 T3 T2 T1 T0  
R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W  
• free run timer control status register (TCCS)  
. . . . . . . . . . . . .  
bit 15  
bit 8 bit 7  
RESV  
bit 6  
IVF  
bit 5  
IVFE STOP MODE CLR CLK1 CLK0  
R/W R/W R/W R/W R/W R/W  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
Initial value  
00000000B  
Address  
000058H  
(Disabled)  
R/W  
R/W  
R/W : Readable and writable  
RESV: Reserved bit  
• Block Diagram  
Count value output  
to ICO and OCU  
free run timer data register (TCDT)  
16-bit counter  
OF  
CLK  
STOP  
CLR  
Communications  
prescaler register  
φ
OCU compare register ch.0  
match signal  
2
free run timer  
control status register  
(TCCS)  
RESV IVF IVFE STOP MODE CLR CLK1 CLK0  
16-bit free run timer  
interrupt request  
#20*  
* : Interrupt number  
φ : Machine clock frequency  
OF: Overflow  
46  
MB90570 Series  
(2) Input Capture (ICU)  
The input capture (ICU) generates an interrupt request to the CPU simultaneously with a storing operation of  
current counter value of the 16-bit free run timer to the ICU data register (IPCP) upon an input of a trigger edge  
to the external pin.  
There are four sets (four channels) of the input capture external pins and ICU data registers, enabling  
measurements of maximum of four events.  
• The input capture has two sets of external input pins (IN0, IN1) and ICU registers (IPCP), enabling  
measurements of maximum of four events.  
• A trigger edge direction can be selected from rising/falling/both edges.  
• The input capture can be set to generate an interrupt request at the storage timing of the counter value of the  
16-bit free run timer to the ICU data register (IPCP).  
• The input compare conforms to the extended intelligent I/O service (EI2OS).  
• The input capture (ICU) function is suited for measurements of intervals (frequencies) and pulse widths.  
• Register Configuration  
• ICU data register ch.0, ch.1 (IPCP0, IPCP1)  
. . . . . . . . . . . . .  
Address  
bit 15 bit 14 bit 13 bit 12 bit 11 bit 10  
bit 9  
bit 8 bit 7  
bit 0  
Initial value  
IPCP0(high): 000051H  
IPCP1(high): 000053H  
(IPCP0 low, IPCP1 low)  
CP15 CP14 CP13 CP12 CP11 CP10 CP09 CP08  
XXXXXXXXB  
R
R
R
R
R
R
R
R
. . . . . . . . . . . .  
Address  
IPCP0(low): 000050H  
IPCP1(low): 000052H  
bit 15  
bit 8 bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
Initial value  
(IPCP0 high, IPCP1 high)  
CP07 CP06 CP05 CP04 CP03 CP02 CP01 CP00  
XXXXXXXXB  
R
R
R
R
R
R
R
R
Note: This register holds a 16-bit free run timer value when the valid edge of the corresponding external pin input waveform is  
detected. (You can word-access this register, but you cannot program it.)  
• ICU control status register (ICS01)  
. . . . . . . . . . . .  
Address  
bit 15  
bit 8 bit 7  
ICP1 ICP0  
R/W R/W  
bit 6  
bit 5  
ICE1 ICE0 EG11 EG10 EG01 EG00  
R/W R/W R/W R/W R/W R/W  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
Initial value  
00000000B  
(Disabled)  
000054H  
R/W : Readable and writable  
R
X
: Read only  
: Undefined  
47  
MB90570 Series  
• Block Diagram  
Internal data bus  
Latch  
signal  
Output latch  
ICU data register (IPCP)  
16  
Edge detection circuit  
P56/IN0  
Pin  
Data latch signal  
2
IPCP0H  
IPCP1H  
IPCP0L  
16-bit free run  
timer  
P57/IN1  
Pin  
16  
IPCP1L  
2
ICU control status register (ICS01)  
ICP1 ICP0 ICE1 ICE0 EG11 EG10 EG01 EG00  
Interrupt request  
#12*  
Interrupt request  
#14*  
* : Interrupt number  
48  
MB90570 Series  
(3) Output Compare (OCU)  
The output compare (OCU) is two sets of compare units consisting of four-channel OCU compare registers, a  
comparator and a control register.  
An interrupt request can be generated for each channel upon a match detection by performing time-division  
comparison between the OCU compare data register setting value and the counter value of the 16-bit free run  
timer.  
The OUT pin can be used as a waveform output pin for reversing output upon a match detection or a general-  
purpose output port for directly outputting the setting value of the CMOD bit.  
• Register Configuration  
• OCU control status register ch.1, ch.3 (OCS1, OCS3)  
. . . . . . . . . . . . .  
Address  
bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9  
bit 8 bit 7  
bit 0  
Initial value  
000063H  
000065H  
B
CMOD OTE1 OTE0 OTD1 OTD0  
R/W R/W R/W R/W R/W  
(OCS0, OCS2)  
- - -00000  
• OCU control status register ch.0, ch.2 (OCS0, OCS2)  
. . . . . . . . . . . .  
bit 15  
Initial value  
bit 8 bit 7  
ICP1  
bit 6  
ICP0 ICE1  
R/W R/W  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
Address  
000062H  
000064H  
B
(OCS1, OCS3)  
ICE0  
R/W  
CST1 CST0  
0000- -00  
R/W  
R/W  
R/W  
• OCU compare register ch.0 to ch.3 (OCCP0 to OCCP3)  
bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9  
bit 8  
Initial value  
Address  
OCCP0 (high order address): 00005BH  
OCCP1 (high order address): 00005DH  
OCCP2 (high order address): 00005FH  
OCCP3 (high order address): 000061H  
C15  
R/W  
C14  
R/W  
C13  
R/W  
C12  
R/W  
C11  
R/W  
C10  
R/W  
C09  
R/W  
C08  
R/W  
B
XXXXXXXX  
Address  
OCCP0 (low order address): 00005AH  
OCCP1 (low order address): 00005CH  
OCCP2 (low order address): 00005EH  
OCCP3 (low order address): 000060H  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
C00  
R/W  
Initial value  
B
XXXXXXXX  
C07  
R/W  
C06  
R/W  
C05  
R/W  
C04  
R/W  
C03  
R/W  
C02  
R/W  
C01  
R/W  
R/W : Readable and writable  
— : Reserved  
X : Undefined  
49  
MB90570 Series  
• Block diagram  
#16*  
#15*  
Output compare  
interrupt request  
OCU control  
status register ch.0, ch.1 (OCS0, OCS1)  
CMOD OTE1 OTE0 OTD1 OTD0 ICP1 ICP0 ICE1 ICE0  
CST1 CST0  
2
2
16-bit free run timer  
Compare control circuit 3  
OCU compare register ch.3  
Compare control circuit 2  
OCU compare register ch.2  
Compare control circuit 1  
OCCP3  
OCCP2  
P67/OUT3  
Pin  
Output  
control circuit 3  
P66/OUT2  
Pin  
Output  
control circuit 2  
P65/OUT1  
Pin  
Output  
OCCP1  
OCCP0  
control circuit 1  
OCU compare register ch.1  
Compare control circuit 0  
P64/OUT0  
Pin  
Output  
control circuit 0  
OCU compare register ch.0  
2
2
OCU control status register  
ch.2, ch.3 (OCS2, OCS3)  
CMOD OTE1 OTE0 OTD1 OTD0 ICP1 ICP0 ICE1 ICE0  
CST1 CST0  
#18*  
#17*  
Output compare  
interrupt request  
* : Interrupt number  
50  
MB90570 Series  
6. 8/16-bit up/down counter/timer  
The 8/16-bit up/down counter/timer consists of six event input pins, two 8-bit up/down counters, two 8-bit  
reload compare registers, and their controllers.  
(1) Register configuration  
• Up/down count register 0 (UDCR0)  
. . . . . . . . . . . .  
bit 15  
bit 8 bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
Address  
Initial value  
00000000  
B
000070H  
(UDCR1)  
D07  
R
D06  
R
D05  
R
D04  
R
D03  
R
D02  
R
D01  
R
D00  
R
• Up/down count register 1 (UDCR1)  
. . . . . . . . . . . . .  
(UDCR0)  
bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9  
bit 8 bit 7  
bit 0  
Initial value  
00000000  
Address  
D17  
D16  
D15  
D14  
R
D13  
R
D12  
R
D11  
R
D10  
R
000071H  
B
R
R
R
• Reload compare register 0 (RCR0)  
. . . . . . . . . . . .  
bit 15  
bit 8 bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
D02  
W
bit 1  
D01  
W
bit 0  
D00  
Address  
Initial value  
00000000  
D07  
W
D06  
W
D05  
W
D04  
W
D03  
W
(RCR1)  
B
000072H  
W
• Reload compare register 1 (RCR1)  
. . . . . . . . . . . . .  
(RCR0)  
bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9  
bit 8 bit 7  
D10  
bit 0  
Initial value  
00000000  
Address  
D17  
D16  
D15  
D14  
D13  
W
D12  
W
D11  
W
000073H  
B
B
B
W
W
W
W
W
• Counter status register 0, 1 (CSR0, CSR1)  
. . . . . . . . . . . .  
bit 15  
bit 8 bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
Address  
Initial value  
00000000  
000074H  
000078H  
(Reserved area)  
CSTR CITE UDIE CMPF OVFF UDFF UDF1 UDF0  
R/W  
R/W  
R/W  
bit 5  
R/W  
bit 4  
R/W  
bit 3  
R/W  
bit 2  
R
R
• Counter control register 0, 1 (CCRL0, CCRL1)  
. . . . . . . . . . . .  
bit 15  
bit 8 bit 7  
bit 6  
bit 1  
bit 0  
Address  
Initial value  
- 0000000  
000076H  
00007AH  
(CCRH0, CCRH1)  
CTUT UCRE RLDE UDCC CGSC CGE1 CGE0  
R/W R/W R/W R/W R/W R/W R/W  
• Counter control register 0 (CCRH0)  
. . . . . . . . . . . . .  
(CCRL0)  
bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9  
bit 8 bit 7  
bit 0  
bit 0  
Initial value  
00000000  
Address  
000077H  
B
M16E CDCF CFIE CLKS CMS1 CMS0 CES1 CES0  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
• Counter control register 1 (CCRH1)  
. . . . . . . . . . . . .  
(CCRL1)  
bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9  
bit 8 bit 7  
Initial value  
- 0000000  
Address  
CDCF CFIE CLKS CMS1 CMS0 CES1 CES0  
R/W R/W R/W R/W R/W R/W R/W  
00007BH  
B
R/W : Readable and writable  
R
: Read only  
W : Write only  
— : Undefined  
51  
MB90570 Series  
(2) Block Diagram  
• Block diagram of 8/16-bit up/down counter/timer 0  
Internal data bus  
RCR0  
Reload compare register 0  
Re-load  
control  
circuit  
UDCR0  
CARRY/  
BORRW  
(to channel 1)  
Up/down count register 0  
Counter control  
register 0 (CCRL0)  
UCRE RLDE UDCC CGSC CGE1 CGE0  
CTUT  
Compare  
control circuit  
Counter clear  
circuit  
PA2/ZIN0  
Pin  
Edge/level  
detection circuit  
Count clock  
Counter status  
register 0 (CSR0)  
φ
Prescaler  
UP/down count  
clock selector  
PA0/AIN0/IRQ6  
CSTR CITE UDIE CMPF OVFF UDFF UDF1 UDF0  
Pin  
Pin  
PA1/BIN0  
Interrupt request  
#29*  
Interrupt request  
#30*  
CDCF CFIE CLKS CMS1 CMS0 CES1 CES0  
M16E  
Counter control register 0 (CCRH0)  
M16E  
(to channel 1)  
* : Interrupt number  
φ: Machine clock frequency  
52  
MB90570 Series  
• Block diagram of 8/16-bit up/down counter/timer 1  
Internal data bus  
RCR1  
Reload compare register 1  
Re-load  
control  
circuit  
UDCR1  
Up/down count register 1  
Counter control  
register 1 (CCRL1)  
CTUT UCRE RLDE UDCC CGSC CGE1 CGE0  
Compare  
control circuit  
PA5/ZIN1  
Counter clear  
circuit  
Edge/level  
detection circuit  
Pin  
CARRY/BORRW  
(from channel 0)  
Count clock  
Counter status  
register 1 (CSR1)  
φ
Prescaler  
PA3/AIN1/IRQ7  
UP/down count  
clock selector  
CSTR CITE UDIE CMPF OVFF UDFF UDF1 UDF0  
Pin  
Pin  
PA4/BIN1  
Interrupt request  
#31*  
M16E  
(from channel 1)  
Interrupt request  
#32*  
CDCF CFIE CLKS CMS1 CMS0 CES1 CES0  
Counter control register 1 (CCRH1)  
* : Interrupt number  
φ: Machine clock frequency  
53  
MB90570 Series  
7. Extended I/O serial interface  
The extended I/O serial interface transfers data using a clock synchronization system having an 8-bit x 1 channel  
configuration.  
For data transfer, you can select LSB first/MSB first.  
(1) Register Configuration  
• Serial mode control upper status register 0 to 2 (SMCSH0 to SMCSH2)  
. . . . . . . . . . . . .  
(SMCSL)  
bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9  
bit 8 bit 7  
BUSY STOP STRT  
R/W R/W  
bit 0  
Initial value  
00000010  
Address  
SMCSH0: 000049H  
SMCSH1: 00004DH  
SMCSH2: 00007DH  
B
SMD2 SMD1 SMD0 SIE  
R/W R/W R/W R/W  
SIR  
R/W  
R
• Serial mode control lower status register 0 to 2 (SMCSL0 to SMCSL2)  
. . . . . . . . . . . .  
bit 15  
bit 8 bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
Address  
SMCSL0: 000048H  
SMCSL1: 00004CH  
SMCSL2: 00007CH  
Initial value  
- - - - 0000  
(SMCSH)  
MODE BDS  
SOE SCOE  
B
R/W  
R/W  
R/W  
R/W  
• Serial data register 0 .to. . 2. . .(.S.D. .R. .0 to SDR2)  
bit 15  
bit 8 bit 7  
D7  
bit 6  
D6  
bit 5  
D5  
bit 4  
D4  
bit 3  
D3  
bit 2  
D2  
bit 1  
D1  
bit 0  
D0  
Address  
SDR0: 00004AH  
SDR1: 00004EH  
SDR2: 00007EH  
Initial value  
XXXXXXXX  
(Disabled)  
B
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W : Readable and writable  
: Read only  
— : Reserved  
: Undefined  
R
X
54  
MB90570 Series  
(2) Block Diagram  
Internal data bus  
D7 to D0 (LSB first)  
(MSB first) D0 to D7  
Pin  
P40/SIN0  
Transfer direction selection  
Pin  
Read  
Write  
Serial data register  
(SDR)  
P43/SIN1  
Pin  
P41/SOT0  
Pin  
Pin  
P50/SIN2  
P44/SOT1  
Pin  
P51/SOT2  
Pin  
P45/SCK1  
Control circuit  
Shift clock counter  
Pin  
P52/SCK2  
Pin  
Internal clock  
P42/SCK0  
2
1
0
MODE  
SCOE  
SMD2 SMD1 SMD0  
BUSY STOP STRT  
SIE SIR  
BDS SOE  
Serial mode control  
status register (SMCS)  
Interrupt request  
#19 (SMCS0)*  
#21 (SMCS1)*  
#23 (SMCS2)*  
*: Interrupt number  
55  
MB90570 Series  
8. I2C Interface  
The I2C interface is a serial I/O port supporting Inter IC BUS operating as master/slave devices on I2C bus.  
The MB90570/A series contains one channel of an I2C interface, having the following features.  
• Master/slave transmission/reception  
• Arbitration function  
• Clock synchronization function  
• Slave address/general call address detection function  
Transmission direction detection function  
• Repeated generation function start condition and detection function  
• Bus error detection function  
(1) Register Configuration  
• I2C bus status register (IBSR)  
. . . . . . . . . . . .  
Address bit 15  
000068H  
Initial value  
00000000B  
bit 8 bit 7  
BB  
bit 6  
bit 5  
AL  
bit 4  
LRB  
bit 3  
TRX  
bit 2  
AAS  
bit 1  
bit 0  
(IBCR)  
RSC  
GCA FBT  
R
R
R
R
R
R
R
R
• I2C bus control register (IBCR)  
. . . . . . . . . . . .  
Address  
000069H  
bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9  
bit 8 bit 7  
INT  
bit 0  
Initial value  
00000000B  
(IBSR)  
BER BEIE SCC  
R/W R/W R/W  
MSS  
R/W  
ACK GCAA INTE  
R/W R/W R/W  
R/W  
• I2C bus clock control register (ICCR)  
. . . . . . . . . . . .  
Address bit 15  
00006AH  
bit 8 bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
CS2  
R/W  
bit 1  
CS1  
R/W  
bit 0  
CS0  
R/W  
Initial value  
--0XXXXXB  
(IADR)  
EN  
CS4  
R/W  
CS3  
R/W  
R/W  
• I2C bus address register (IADR)  
. . . . . . . . . . . .  
Address  
00006BH  
bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9  
bit 8 bit 7  
A0  
bit 0  
Initial value  
-XXXXXXXB  
(ICCR)  
A6  
A5  
A4  
A3  
A2  
A1  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
• I2C bus data register (IDAR)  
. . . . . . . . . . . .  
Address bit 15  
00006CH  
bit 8 bit 7  
D7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
D2  
bit 1  
D1  
bit 0  
D0  
R/W  
Initial value  
(Disabled)  
D6  
D5  
D4  
D3  
XXXXXXXXB  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W : Readable and writable  
R
X
: Read only  
: Reserved  
: Indeterminate  
56  
MB90570 Series  
(2) Block Diagram  
Internal data bus  
I2C bus status register  
I2C bus control register  
(IBCR)  
(IBSR)  
BER BEIE SCC MSS ACK GCAA INTE INT  
BB RSC AL LRB TRX AAS GCA FBT  
Number of  
interrupt  
Start stop condition  
generation circuit  
Start stop condition  
detection circuit  
request  
generated  
Interrupt request signal  
#36*  
SDA line  
SCL line  
Pin  
PA6/SDA  
I2C enable  
Pin  
PA7/SCL  
IDAR register  
Arbitration lost  
detection circuit  
Slave address  
comparison circuit  
IADR register  
Clock control block  
Sync  
Clock  
4
Count  
clock  
selector 1  
8
Count  
clock  
selector 2  
Shift clock  
generation  
circuit  
divider1  
(1/5 to  
1/8)  
Clock  
divider 2  
φ
I2C enable  
EN CS4 CS3 CS2 CS1 CS0  
I2C bus clock control register  
(ICCR)  
φ: Machine clock frequency  
* : Interrupt number  
57  
MB90570 Series  
9. UART0 (SCI), UART1 (SCI)  
UART0 (SCI) and UART1 (SCI) are general-purpose serial data communication interfaces for performing  
synchronous or asynchronous communication (start-stop synchronization system).  
• Data buffer: Full-duplex double buffer  
Transfer mode: Clock synchronized (with start and stop bit)  
Clock asynchronized (start-stop synchronization system)  
• Baud rate: Embedded dedicated baud rate generator  
External clock input possible  
Internal clock (a clock supplied from 16-bit reload timer 0 can be used.)  
Internal machine clock  
For 6 MHz, 8 MHz, 10 MHz  
12 MHz and 16 MHz  
• Data length: 7 bit to 9 bit selective (without a parity bit)  
6 bit to 8 bit selective (with a parity bit)  
Asynchronization 9615 bps/31250 bps/4808 bps/2404 bps/1202 bps  
CLK synchronization 1 Mbps/500 kbps/250 kbps/125 kbps/62.5 kbps  
}
• Signal format: NRZ (Non Return to Zero) system  
• Reception error detection: Framing error  
Overrun error  
Parity error (multi-processor mode is supported, enabling setup of any baud rate  
by an external clock.)  
• Interrupt request: Receive interrupt (receive complete, receive error detection)  
Transmit interrupt (transmission complete)  
Transmit/receive conforms to extended intelligent I/O service (EI2OS)  
58  
MB90570 Series  
(1) Register Configuration  
• Serial control register 0,1 (SCR0, SCR1)  
. . . . . . . . . . . . .  
bit 0  
bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9  
bit 8 bit 7  
TXE  
Address  
000021H  
000025H  
Initial value  
B
PEN  
R/W  
P
SBL  
R/W  
CL  
A/D  
REC  
W
RXE  
R/W  
00000100  
(SMR0, SMR1)  
R/W  
R/W  
R/W  
R/W  
• Serial mode register 0, 1 (SMR0, SMR1)  
. . . . . . . . . . . .  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
bit 15  
bit 8  
Address  
000020H  
000024H  
Initial value  
B
(SCR0, SCR1)  
MD1  
R/W  
MD0  
R/W  
CS2  
R/W  
CS1  
R/W  
CS0 RESV SCKE SOE  
R/W R/W R/W R/W  
00000000  
• Serial status register 0,1 (SSR0, SSR1)  
. . . . . . . . . . . . .  
bit 0  
bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9  
bit 8 bit 7  
Address  
000023H  
000027H  
Initial value  
B
00001 - 00  
PE  
R
ORE  
R
FRE RDRF TRDE  
RIE  
TIE  
(SIDR0, SIDR1/SODR0,SODR1)  
R
R
R
R/W  
R/W  
• Serial input data register 0,1 (SIDR0, SIDR1)  
. . . . . . . . . . . .  
bit 15  
bit 7  
D7  
R
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
D2  
R
bit 1  
D1  
R
bit 0  
D0  
R
bit 8  
Address  
000022H  
000026H  
Initial value  
B
XXXXXXXX  
(SSR0, SSR1)  
D6  
R
D5  
R
D4  
R
D3  
R
• Serial output data register 0,1 (SODR0, SODR1)  
. . . . . . . . . . . .  
bit 7  
D7  
W
bit 6  
D6  
W
bit 5  
D5  
W
bit 4  
D4  
W
bit 3  
D3  
W
bit 2  
D2  
W
bit 1  
D1  
W
bit 0  
D0  
W
Address  
000022H  
000026H  
bit 15  
bit 8  
Initial value  
B
XXXXXXXX  
(SSR0, SSR1)  
• Communications prescaler control register 0,1 (CDCR0, CDCR1)  
. . . . . . . . . . . .  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
bit 15  
bit 8  
Address  
000028H  
00002AH  
Initial value  
B
0 - - - 1111  
(Disabled)  
MD  
DIV3 DIV2  
R/W R/W  
DIV1 DIV0  
R/W R/W  
R/W  
R/W: Readable and writable  
R : Read only  
W : Write only  
— : Reserved  
X : Undefined  
RESV: Reserved bit  
59  
MB90570 Series  
(2) Block Diagram  
• UART0 (SCI)  
Control bus  
Receive  
interrupt signal  
#39*  
Dedicated baud  
rate generator  
Transmit  
clock  
Transmit  
interrupt signal  
#40*  
Clock  
8/16-bit PPG  
timer 1 (upper)  
External clock  
selector  
Receive  
clock  
Receive  
control circuit  
Transmit  
control circuit  
Pin  
P42/SCK0  
Start bit  
detection circuit  
Transmit start  
circuit  
Receive bit  
counter  
Transmit bit  
counter  
Receive parity  
counter  
Transmit parity  
counter  
Pin  
P41/SOT0  
Shift register for  
transmission  
Shift register for  
reception  
Pin  
P40/SIN0  
Reception  
complete  
Start transmission  
SIDR0  
SODR0  
Receive condition  
decision circuit  
To I2C reception  
error generation  
signal (to CPU)  
Internal data bus  
PE  
ORE  
FRE  
RDRF  
TDRE  
PEN  
P
SBL  
CL  
A/D  
REC  
RXE  
TXE  
MD1  
MD0  
CS2  
CS1  
CS0  
SMR0  
register  
SCR0  
register  
SSR0  
register  
RIE  
TIE  
SCKE  
SOE  
* : Interrupt number  
60  
MB90570 Series  
• UART1 (SCI)  
Control bus  
Receive  
interrupt signal  
#37*  
Dedicated baud  
Transmit  
clock  
rate generator  
Transmit  
interrupt signal  
#38*  
Clock  
selector  
8/16-bit PPG  
timer 1 (upper)  
Receive  
clock  
Receive  
control circuit  
Transmit  
control circuit  
Pin  
P45/SCK1  
Start bit  
detection circuit  
Transmit start  
circuit  
Receive bit  
counter  
Transmit bit  
counter  
Receive parity  
counter  
Transmit parity  
counter  
Pin  
P44/SOT1  
Shift register for  
transmission  
Shift register for  
reception  
Pin  
P43/SIN1  
Reception  
complete  
Start transmission  
SIDR1  
SODR1  
Receive condition  
decision circuit  
To EI2OS reception  
error generation  
signal (to CPU)  
Internal data bus  
PE  
ORE  
FRE  
RDRF  
TDRE  
PEN  
P
SBL  
CL  
A/D  
REC  
RXE  
TXE  
MD1  
MD0  
CS2  
CS1  
CS0  
SMR1  
register  
SCR1  
register  
SSR1  
register  
RIE  
TIE  
SCKE  
SOE  
* : Interrupt number  
61  
MB90570 Series  
10. DTP/External Interrupt Circuit  
DTP (Data Transfer Peripheral), which is located between the peripheral circuit outside the device and the  
F2MC-16LX CPU, receives an interrupt request or DMA request generated by the external peripheral circuit*  
fortransmissiontotheF2MC-16LXCPU. DTPisusedtoactivatetheintelligentI/Oserviceorinterruptprocessing.  
As request levels for IRQ2 to IRQ7, two types of “H” and “L” can be selected for the intelligent I/O service. Rising  
and falling edges as well as “H” and “L” can be selected for an external interrupt request. For IRQ0 and IRQ1,  
a request by a level cannot be entered, but both edges can be entered.  
* : The external peripheral circuit is connected outside the MB90570/A series device.  
Note: IRQ0 and IRQ1 cannot be used for the intelligent I/O service and return from an interrupt.  
(1) Register Configuration  
• DTP/interrupt factor register (EIRR)  
. . . . . . . . . . . .  
(ENIR)  
Address bit 15 bit 14 bit 13 bit 12 bit 11 bit 10  
bit 9  
ER1  
R/W  
bit 8 bit 7  
ER0  
bit 0  
Initial value  
ER7  
R/W  
ER6  
R/W  
ER5  
R/W  
ER4  
R/W  
ER3  
R/W  
ER2  
R/W  
000031H  
B
XXXXXXXX  
R/W  
• DTP/interrupt enable register (ENIR)  
. . . . . . . . . . . .  
Address bit 15  
000030H  
bit 8 bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
EN2  
R/W  
bit 1  
EN1  
R/W  
bit 0  
EN0  
Initial value  
B
(EIRR)  
EN7  
R/W  
EN6  
R/W  
EN5  
R/W  
EN4  
R/W  
EN3  
R/W  
00000000  
R/W  
• Request level setting register (ELVR)  
. . . . . . . . . . . .  
Address bit 15  
Low order address 000032H  
bit 8 bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
Initial value  
B
(ELVR upper)  
LB3  
R/W  
LA3  
R/W  
LB2  
R/W  
LA2  
R/W  
LB1  
R/W  
LA1  
R/W  
LB0  
R/W  
LA0  
R/W  
00000000  
. . . . . . . . . . . .  
(ELVR lower)  
Address bit 15 bit 14 bit 13 bit 12 bit 11 bit 10  
bit 9  
bit 8 bit 7  
LA4  
bit 0  
Initial value  
LB7  
R/W  
LA7  
R/W  
LB6  
R/W  
LA6  
R/W  
LB5  
R/W  
LA5  
R/W  
LB4  
R/W  
High order address 000033H  
B
00000000  
R/W  
R/W: Readable and writable  
X : Undefined  
62  
MB90570 Series  
(2) Block Diagram  
Internal data bus  
63  
MB90570 Series  
11. Delayed Interrupt Generation Module  
The delayed interrupt generation module generates interrupts for switching tasks for development on a real-  
timeoperatingsystem(REALOSseries). Themodulecanbeusedtogeneratesoftwarewisegenerateshardware  
interrupt requests to the CPU and cancel the interrupts.  
This module does not conform to the extended intelligent I/O service (EI2OS).  
(1) Register Configuration  
• Delayed interrupt factor generation/cancellation register (DIRR)  
. . . . . . . . . . . .  
(PACSR)  
Address bit 15 bit 14 bit 13 bit 12 bit 11 bit 10  
bit 9  
bit 8 bit 7  
R0  
bit 0  
Initial value  
00009FH  
B
- - - - - - - 0  
R/W  
Note: Upon a reset, an interrupt is canceled.  
R/W: Readable and writable  
— : Reserved  
The DIRR is the register used to control delay interrupt request generation/cancellation. Programming this  
register with “1” generates a delay interrupt request. Programming this register with “0” cancels a delay interrupt  
request. Upon a reset, an interrupt is canceled. The reserved bit area can be programmed with either “0” or “1”.  
For future extension, however, it is recommended that bit set and clear instructions be used to access this  
register.  
(2) Block Diagram  
Internal data bus  
R0  
S factor  
R latch  
Interrupt request signal  
#42*  
Delayed interrupt factor generation/  
cancellation register (DIRR)  
*: Interrupt number  
64  
MB90570 Series  
12. 8/10-bit A/D Converter  
The 8/10-bit A/D converter has a function of converting analog voltage input to the analog input pins (input  
voltage) to digital values (A/D conversion) and has the following features.  
• Minimum conversion time: 26.3 µs (at machine clock of 16 MHz, including sampling time)  
• Minimum sampling time: 4 µs/256 µs (at machine clock of 16 MHz)  
• Compare time: 176/352 machine cycles per channel (176 machine cycles are used for a machine clock below  
8 MHz.)  
• Conversion method: RC successive approximation method with a sample and hold circuit.  
• 8-bit or 10-bit resolution  
• Analog input pins: Selectable from eight channels by software  
Single conversion mode: Selects and converts one channel.  
Scan conversion mode:Converts two or more successive channels. Up to eight channels can be programmed.  
Continuous conversion mode: Repeatedly converts specified channels.  
Stop conversion mode:Stops conversion after completing a conversion for one channel and wait for the next  
activation (conversion can be started synchronously.)  
• Interrupt requests can be generated and the extended intelligent I/O service (EI2OS) can be started after the  
end of A/D conversion. Furthermore, A/D conversion result data can be transferred to the memory, enabling  
efficient continuous processing.  
• When interrupts are enabled, there is no loss of data even in continuous operations because the conversion  
data protection function is in effect.  
• Starting factors for conversion: Selected from software activation, and external trigger (falling edge).  
65  
MB90570 Series  
(1) Register Configuration  
• A/D control status register upper digits (ADCS2)  
. . . . . . . . . . . .  
(ADCS1)  
Address bit 15 bit 14 bit 13 bit 12 bit 11 bit 10  
bit 9  
bit 8 bit 7  
bit 0  
Initial value  
000037H  
B
BUSY INT  
R/W R/W  
INTE PAUS STS1 STS0 STRT RESV  
R/W R/W R/W R/W R/W  
00000000  
W
• A/D control status register lower digits (ADCS1)  
. . . . . . . . . . . .  
Address bit 15  
bit 8 bit 7  
bit 6  
MD0 ANS2 ANS1 ANS0 ANE2 ANE1 ANE0  
R/W R/W R/W R/W R/W R/W R/W  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
Initial value  
000036H  
(ADCS2)  
MD1  
B
00000000  
R/W  
• A/D data register upper digits (ADCR2)  
. . . . . . . . . . . .  
(ADCR1)  
Address bit 15 bit 14 bit 13 bit 12 bit 11 bit 10  
bit 9  
bit 8 bit 7  
bit 0  
Initial value  
B
00001 -XX  
000039H  
DSEL ST1  
ST0  
W
CT1 XCT0  
D9  
D8  
W
W
W
W
• A/D data register lower digits (ADCR1)  
. . . . . . . . . . . .  
Address bit 15  
bit 8 bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
D2  
R
bit 1  
D1  
R
bit 0  
D0  
Initial value  
B
XXXXXXXX  
000038H  
(ADCR2)  
D7  
R
D6  
R
D5  
R
D4  
R
D3  
R
R
R/W: Readable and writable  
R : Read only  
W : Write only  
— : Reserved  
X : Undefined  
RESV: Reserved bit  
66  
MB90570 Series  
(2) Block Diagram  
A/D control status  
register (ADCS)  
Interrupt request #11*  
BUSY  
ANS2 ANS1 ANS0 ANE2 ANE1 ANE0  
INT INTE PAUS STS1 STS0 STRT  
DA MD1 MD0  
6
2
PB6/ADTG  
TO  
Clock selector  
Decoder  
φ
Comparator  
P87/AN7  
Sample hold  
circuit  
P86/AN6  
P85/AN5  
P84/AN4  
P83/AN3  
P82/AN2  
P81/AN1  
P80/AN0  
Control circuit  
Analog  
channel  
selector  
AVRH, AVRL  
AVCC  
8-bit D/A converter  
AVSS  
A/D data register  
(ADCR)  
RESV  
ST1 ST0 CT1 CT0  
D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
φ
: Machine clock frequency  
TO : 8/16-bit PPG timer channel 1 output  
: Interrupt number  
*
67  
MB90570 Series  
13. 8-bit D/A Converter  
The 8-bit D/A converter, which is based on the R-2R system, supports 8-bit resolution mode. It contains two  
channels each of which can be controlled in terms of output by the D/A control register.  
(1) Register Configuration  
• D/A converter data register ch.0 (DADR0)  
. . . . . . . . . . . .  
Address  
bit 15  
bit 8 bit 7  
DA07 DA06 DA05 DA04 DA03 DA02 DA01 DA00  
R/W R/W R/W R/W R/W R/W R/W R/W  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
Initial value  
00003AH  
(DADR1)  
B
XXXXXXXX  
• D/A converter data register ch.1 (DADR1)  
. . . . . . . . . . . .  
(DADR0)  
bit 15 bit 14 bit 13 bit 12 bit 11 bit 10  
DA17 DA16 DA15 DA14 DA13 DA12 DA11 DA10  
R/W R/W R/W R/W R/W R/W R/W R/W  
bit 9  
bit 8 bit 7  
bit 0  
Address  
Initial value  
00003BH  
B
XXXXXXXX  
• D/A control register 0 (DACR0)  
. . . . . . . . . . . .  
Address  
00003CH  
bit 15  
bit 8 bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
DAE0  
R/W  
Initial value  
B
- - - - - - - 0  
(DACR1)  
• D/A control register 1 (DACR1)  
. . . . . . . . . . . .  
(DACR0)  
Address  
bit 15 bit 14 bit 13 bit 12 bit 11 bit 10  
bit 9  
bit 8 bit 7  
DAE1  
bit 0  
Initial value  
B
- - - - - - - 0  
00003DH  
R/W  
R/W: Readable and writable  
— : Reserved  
X : Undefined  
68  
MB90570 Series  
(2) Block Diagram  
Internal data bus  
D/A converter data register ch.1 (DADR1)  
DA17 DA16 DA15 DA14 DA13 DA12 DA11 DA10  
D/A converter data register ch.0 (DADR0)  
DA07 DA06 DA05 DA04 DA03 DA02 DA01 DA00  
D/A converter 1  
D/A converter 0  
DVRH  
DVRL  
DA17  
DA07  
Pin  
P74/DA1  
Pin  
2R  
2R  
P73/DA0  
R
R
R
R
R
R
DA16  
DA06  
DA05  
DA04  
DA03  
DA02  
DA01  
DA00  
2R  
2R  
2R  
2R  
2R  
R
DA15  
2R  
R
DA14  
2R  
R
DA13  
2R  
R
DA12  
2R  
2R  
2R  
2R  
R
R
R
DA11  
2R  
R
DA10  
2R  
2R  
2R  
DVSS  
DVSS  
Standby control  
Standby control  
D/A control register 1 (DACR1)  
D/A control register 0 (DACR0)  
DAE1  
DAE0  
Internal data bus  
69  
MB90570 Series  
14. Clock Timer  
The clock timer control register (WTC) controls operation of the clock timer, and time for an interval interrupt.  
(1) Register Configuration  
• Clock timer control register (WTC)  
. . . . . . . . . . . .  
bit 15  
bit 8 bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
Address  
0000AAH  
Initial value  
B
(Disabled)  
WDCS SCE WTIE WTOF WTR WTC2 WTC1 WTC0  
R/W R/W R/W R/W R/W R/W  
1X000000  
R
R
R/W: Readable and writable  
R : Read only  
X : Undefined  
(2) Block Diagram  
To watchdog timer  
Clock counter  
× 21 × 22 × 23 × 24 × 25 × 26 × 27 × 28 × 29 × 210 × 211 × 212 × 213 × 214 × 215  
LCLK  
OF  
OF  
OF  
OF  
OF  
OF  
OF  
Power-on reset  
Counter  
Shift to a hardware standby  
Shift to stop mode  
To sub-clock oscillation stabilization  
time controller  
clear circuit  
Interval  
timer selector  
Clock timer interrupt request  
#22*  
WDCS SCE WTIE WTOF WTR WTC2 WTC1 WTC0  
Clock timer control register (WTC)  
*
: Interrupt number  
OF : Overflow  
LCLK : Oscillation sub-clock frequency  
70  
MB90570 Series  
15. Chip Select Output  
This module generates a chip select signal for facilitating a memory and I/O unit, and is provided with eight chip  
select output pins. When access to an address is detected with a hardware-set area set for each pin register,  
a select signal is output from the pin.  
(1) Register Configuration  
• Chip selection control register 1, 3, 5, 7 (CSCR1, CSCR3, CSCR5, CSCR7)  
. . . . . . . . . . . .  
Address  
CSCR1: 000081H  
CSCR3: 000083H  
CSCR5: 000085H  
CSCR7: 000087H  
bit 15 bit 14 bit 13 bit 12 bit 11 bit 10  
bit 9  
ACTL OPEL CSA1 CSA0  
R/W R/W R/W R/W  
bit 8 bit 7  
bit 0  
Initial value  
(CSCR0, CSCR2, CSCR4, CSCR6)  
B
- - - - 0000  
• Chip selection control register 0, 2, 4, 6 (CSCR0, CSCR2, CSCR4, CSCR6)  
. . . . . . . . . . . .  
Address bit 15  
bit 8 bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
ACTL OPEL CSA1 CSA0  
R/W R/W R/W R/W  
bit 2  
bit 1  
bit 0  
Initial value  
CSCR0: 000080H  
CSCR2: 000082H  
CSCR4: 000084H  
CSCR6: 000086H  
(CSCR1, CSCR3, CSCR5, CSCR7)  
B
- - - - 0000  
R/W: Readable and writable  
— : Reserved  
71  
MB90570 Series  
(2) Block Diagram  
From address (CPU)  
A23  
A22  
A17  
A16  
A15  
A14  
A01  
A00  
Address decoder  
Address decoder  
Decode signal  
Program area  
Decode  
P90/CS0  
(Program ROM area application)  
2
Select and set  
Select and set  
Select and set  
Chip selection control register 0 (CSCR0)  
Chip selection control register 1 (CSCR1)  
Chip selection control register 2 (CSCR2)  
Selector  
Selector  
Selector  
P91/CS1  
P92/CS2  
P93/CS3  
P94/CS4  
P95/CS5  
P96/CS6  
P97/CS7  
Select and set  
Select and set  
Select and set  
Select and set  
Select and set  
Chip selection control register 3 (CSCR3)  
Chip selection control register 4 (CSCR4)  
Selector  
Selector  
Selector  
Selector  
Selector  
Chip selection control register 5 (CSCR5)  
Chip selection control register 6 (CSCR6)  
Chip selection control register 7 (CSCR7)  
72  
MB90570 Series  
(3) Decode Address Spaces  
CSA  
Pin  
Number of  
area bytes  
Decode space  
Remarks  
name  
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
F00000H to FFFFFFH  
1 Mbyte  
512 kbyte  
128 kbyte  
Disabled  
1 Mbyte  
Becomes active when the program ROM  
area or the program vector is fetched.  
F80000H to FFFFFFH  
CS0  
FE0000H to FFFFFFH  
E00000H to EFFFFFH  
Adapted to the data ROM and RAM areas,  
and external circuit connection  
applications.  
F00000H to F7FFFFH  
512 kbyte  
128 kbyte  
128 byte  
4 kbyte  
CS1  
CS2  
CS3  
CS4  
CS5  
FC0000H to FDFFFFH  
68FF80H to 68FFFFH  
003000H to 003FFFH  
Adapted to the data ROM and RAM areas,  
and external circuit connection  
applications.  
FA0000H to FBFFFFH  
128 kbyte  
128 byte  
128 byte  
128 kbyte  
128 byte  
128 byte  
Disabled  
2 kbyte  
68FF80H to 68FFFFH  
68FF00H to 68FF7FH  
F80000H to F9FFFFH  
Adapted to the data ROM and RAM areas,  
and external circuit connection  
applications.  
68FF00H to 68FF7FH  
68FE80H to 68FEFFH  
002800H to 002FFFH  
Adapted to the data ROM and RAM areas,  
and external circuit connection  
applications.  
68FE80H to 68FEFFH  
128 byte  
Disabled  
Disabled  
128 byte  
Disabled  
Disabled  
Disabled  
128 byte  
Disabled  
Disabled  
Disabled  
Disabled  
68FF80H to 68FFFFH  
Adapted to the data ROM and RAM areas,  
and external circuit connection  
applications.  
68FF00H to 68FF7FH  
Adapted to the data ROM and RAM areas,  
and external circuit connection  
applications.  
CS6  
CS7  
Disabled  
73  
MB90570 Series  
16. Communications Prescaler Register  
This register controls machine clock division.  
Output from the communications prescaler register is used for UART0 (SCI), UART1 (SCI), and extended I/O  
serial interface.  
The communications prescaler register is so designed that a constant baud rate may be acquired for various  
machine clocks.  
(1) Register Configuration  
• Communications prescaler control register 0,1 (CDCR0, CDCR1)  
. . . . . . . . . . . .  
(Disabled)  
Address  
bit 15  
bit 8 bit 7  
MD  
bit 6  
bit 5  
bit 4  
bit 3  
DIV3 DIV2 DIV1 DIV0  
R/W R/W R/W R/W  
bit 2  
bit 1  
bit 0  
Initial value  
000028H  
00002AH  
B
0 - - - 1111  
R/W  
R/W: Readable and writable  
— : Reserved  
74  
MB90570 Series  
17. Address Match Detection Function  
When the address is equal to a value set in the address detection register, the instruction code loaded into the  
CPU is replaced forcibly with the INT9 instruction code (01H). As a result, when the CPU executes a set  
instruction, the INT9 instruction is executed. Processing by the INT#9 interrupt routine allows the program  
patching function to be implemented.  
Two address detection registers are supported. An interrupt enable bit is prepared for each register. If the value  
set in the address detection register matches an address and if the interrupt enable bit is set at “1”, the instruction  
code loaded into the CPU is replaced forcibly with the INT9 instruction code.  
(1) Register Configuration  
• Program address detection register 0 to 2 (PADR0)  
Address  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
Initial value  
B
XXXXXXXX  
PADR0 (Low order address): 001FF0H  
R/W  
bit 7  
R/W  
bit 6  
R/W  
bit 5  
R/W  
bit 4  
R/W  
bit 3  
R/W  
bit 2  
R/W  
bit 1  
R/W  
bit 0  
Address  
Initial value  
B
XXXXXXXX  
PADR0 (Middle order address): 001FF1H  
R/W  
bit 7  
R/W  
bit 6  
R/W  
bit 5  
R/W  
bit 4  
R/W  
bit 3  
R/W  
bit 2  
R/W  
bit 1  
R/W  
bit 0  
Address  
Initial value  
B
XXXXXXXX  
PADR0 (High order address): 001FF2H  
R/W  
R/W  
R/W  
R/W  
bit 4  
R/W  
bit 3  
R/W  
bit 2  
R/W  
bit 1  
R/W  
bit 0  
• Program address detection register 3 to 5 (PADR1)  
Address  
bit 7  
bit 6  
bit 5  
Initial value  
B
XXXXXXXX  
PADR1 (Low order address): 001FF3H  
R/W  
bit 7  
R/W  
bit 6  
R/W  
bit 5  
R/W  
bit 4  
R/W  
bit 3  
R/W  
bit 2  
R/W  
bit 1  
R/W  
bit 0  
Address  
Initial value  
B
XXXXXXXX  
PADR1 (Middle order address): 001FF4H  
R/W  
bit 7  
R/W  
bit 6  
R/W  
bit 5  
R/W  
bit 4  
R/W  
bit 3  
R/W  
bit 2  
R/W  
bit 1  
R/W  
bit 0  
Address  
Initial value  
B
XXXXXXXX  
PADR1 (High order address): 001FF5H  
R/W  
R/W  
R/W  
R/W  
R/W  
bit 3  
R/W  
bit 2  
R/W  
bit 1  
R/W  
bit 0  
• Program address detection control status register (PACSR)  
Address  
bit 7  
bit 6  
bit 5  
bit 4  
Initial value  
B
00000000  
RESV RESV RESV RESV AD1E RESV AD0E RESV  
R/W R/W R/W R/W R/W R/W R/W R/W  
00009EH  
R/W: Readable and writable  
X : Undefined  
RESV: Reserved bit  
75  
MB90570 Series  
(2) Block Diagram  
Address latch  
Address detection  
register  
INT9  
instruction  
F2MC-16LX  
CPU core  
Enable bit  
76  
MB90570 Series  
18. ROM Mirroring Function Selection Module  
The ROM mirroring function selection module can select what the FF bank allocated the ROM sees through the  
00 bank according to register settings.  
(1) Register Configuration  
• ROM mirroring function selection register (ROMM)  
. . . . . . . . . . . .  
(Disabled)  
Address  
00006FH  
bit 15 bit 14 bit 13 bit 12 bit 11 bit 10  
bit 9  
bit 8 bit 7  
bit 0  
Initial value  
MI  
W
B
- - - - - - - 1  
W : Write only  
— : Reserved  
Note: Do not access this register during operation at addresses 004000H to 00FFFFH.  
(2) Block Diagram  
ROM mirroring function selection  
register (ROMM)  
Address area  
Address  
FF bank  
00 bank  
Data  
ROM  
77  
MB90570 Series  
19. Low-power Consumption (Standby) Mode  
The F2MC-16LX has the following CPU operating mode configured by selection of an operating clock and clock  
operation control.  
• Clock mode  
PLL clock mode: A mode in which the CPU and peripheral equipment are driven by PLL-multiplied oscillation  
clock (HCLK).  
Main clock mode: A mode in which the CPU and peripheral equipment are driven by divided-by-2 of the  
oscillation clock (HCLK).  
The PLL multiplication circuits stops in the main clock mode.  
• CPU intermittent operation mode  
The CPU intermittent operation mode is a mode for reducing power consumption by operating the CPU  
intermittently while external bus and peripheral functions are operated at a high-speed.  
• Hardware standby mode  
The hardware standby mode is a mode for reducing power consumption by stopping clock supply to the CPU  
by the low-power consumption control circuit, stopping clock supplies to the CPU and peripheral functions  
(timebase timer mode), and stopping oscillation clock (stop mode, hardware standby mode). Of these modes,  
modes other than the PLL clock mode are power consumption modes.  
(1) Register Configuration  
• Clock select register (CKSCR)  
. . . . . . . . . . . .  
(LPMCR)  
Address  
bit 15 bit 14 bit 13 bit 12 bit 11 bit 10  
bit 9  
CS1  
R/W  
bit 8 bit 7  
CS0  
bit 0  
Initial value  
0000A1H  
SCM MCM WS1 WS0  
R/W R/W  
SCS  
R/W  
MCS  
R/W  
B
11111100  
R
R
R/W  
• Low-power consumption mode control register (LPMCR)  
. . . . . . . . . . . .  
Address bit 15  
bit 8 bit 7  
bit 6  
SLP  
W
bit 5  
SPL  
R/W  
bit 4  
bit 3  
bit 2  
CG1  
W
bit 1  
CG0  
R/W  
bit 0  
SSR  
R/W  
Initial value  
0000A0H  
B
(CKSCR)  
STP  
RST  
W
TMD  
R/W  
00011000  
W
R/W: Readable and writable  
R : Read only  
W : Write only  
78  
MB90570 Series  
(2) Block Diagram  
Standby control circuit  
Low-power consumption mode control register  
(LPMCR)  
CPU intermittent  
operation cycle  
selector  
CPU clock  
control circuit  
CPU operation  
clock  
STP SLP SPL RST TMD CG1 CG0 SSR  
2
Clock mode  
Sleep signal  
Stop signal  
Peripheral function  
operation clock  
Peripheral clock  
control circuit  
Hardware  
standby  
S
R
Q
Q
S
R
Q
Q
Machine clock  
S
R
S
R
Reset  
Interrupt  
Clock selector  
Oscillation  
stabilization  
time selector  
2
2
PLL multiplication  
circuit  
SCM MCM WS1 WS0 SCS MCS CS1 CS0  
Clock select register (CKSCR)  
X0 Pin  
1/2  
1/2048  
1/4  
1/8  
1/4  
Oscillation  
clock  
Main  
clock  
X1  
Pin  
Clock oscillator  
Timebase timer  
To watchdog timer  
X0A Pin  
1/2  
1/8  
1/2  
1/1024  
Clock timer  
Oscillation  
sub-clock  
X1A  
Pin  
Sub-clock oscillator  
S: Set  
R: Reset  
Q: Output  
79  
MB90570 Series  
ELECTRICAL CHARACTERISTICS  
1. Absolute Maximum Ratings  
(AVSS = VSS = 0.0 V)  
Value  
Symbol  
Unit  
Remarks  
Parameter  
Min.  
Max.  
VCC  
VSS – 0.3  
VSS – 0.3  
VSS + 6.0  
VSS + 6.0  
V
V
AVCC  
*1  
*1  
Power supply voltage  
AVRH,  
AVRL  
VSS – 0.3  
VSS + 6.0  
V
DVRH  
VI  
VSS – 0.3  
VSS – 0.3  
VSS – 0.3  
VSS + 6.0  
VSS + 6.0  
VSS + 6.0  
15  
V
*1  
*2  
*2  
*3  
*4  
Input voltage  
V
Output voltage  
VO  
V
“L” level maximum output current  
“L” level average output current  
IOL  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
IOLAV  
4
“L” level total maximum output current ΣIOL  
100  
“L” level total average output current  
“H” level maximum output current  
“H” level average output current  
ΣIOLAV  
50  
*5  
*3  
*4  
IOH  
–15  
IOHAV  
–4  
“H” level total maximum output current ΣIOH  
–100  
–50  
“H” level total average output current  
Power consumption  
ΣIOHAV  
*5  
MB90573/4  
MB90V570/A  
300  
mW  
PD  
500  
800  
mW  
mW  
°C  
MB90574C  
MB90F574/A  
Operating temperature  
Storage temperature  
TA  
–40  
–55  
+85  
Tstg  
+150  
°C  
*1: AVCC, AVRH, AVRL, and DVRH shall never exceed VCC. AVRL shall never exceed AVRH.  
*2: VI and VO shall never exceed VCC + 0.3 V.  
*3: The maximum output current is a peak value for a corresponding pin.  
*4: Average output current is an average current value observed for a 100 ms period for a corresponding pin.  
*5: Total average current is an average current value observed for a 100 ms period for all corresponding pins.  
Note: Average output current = operating × operating efficiency  
WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current,  
temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.  
80  
MB90570 Series  
2. Recommended Operating Conditions  
(AVSS = VSS = 0.0 V)  
Value  
Symbol  
Unit  
Remarks  
Parameter  
Min.  
3.0  
Max.  
5.5  
VCC  
VCC  
V
V
Normal operation (MB90574/C)  
Normal operation (MB90F574/A)  
4.5  
5.5  
Power supply voltage  
Smoothing capacitor  
Retains status at the time of  
operation stop  
VCC  
CS  
3.0  
5.5  
V
0.1  
1.0  
µF  
°C  
*
Operating temperature TA  
–40  
+85  
* : Use a ceramic capacitor or a capacitor with equivalent frequency characteristics. The smoothing capacitor to be  
connected to the VCC pin must have a capacitance value higher than CS.  
WARNING: The recommended operating conditions are required in order to ensure the normal operation of the  
semiconductor device. All of the device’s electrical characteristics are warranted when the device is  
operated within these ranges.  
Always use semiconductor devices within their recommended operating condition ranges. Operation  
outside these ranges may adversely affect reliability and could result in device failure.  
No warranty is made with respect to uses, operating conditions, or combinations not represented on  
the data sheet. Users considering application outside the listed conditions are advised to contact their  
FUJITSU representatives beforehand.  
• C pin connection circuit  
C
CS  
81  
MB90570 Series  
3. DC Characteristics  
(AVCC = VCC = 5.0 V ± 10%, AVSS = VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Parameter Symbol  
Pin name  
CMOS  
hysteresis input  
pin  
Condition  
Unit Remarks  
Min.  
Typ.  
Max.  
VCC + 0.3  
VCC + 0.3  
0.2 VCC  
VSS + 0.3  
“H” level  
VIHS  
0.8 VCC  
V
V
V
V
V
input  
VCC = 3.0 V to 5.5 V  
(MB90573)  
(MB90574)  
VCC = 4.5 V to 5.5 V  
(MB90F574)  
voltage  
VIHM  
MD pin input  
VCC – 0.3  
VSS – 0.3  
VSS – 0.3  
VCC – 0.5  
CMOS  
hysteresis input  
pin  
“L” level  
VILS  
input  
voltage  
VILM  
MD pin input  
“H” level  
output  
Other than PA6 VCC = 4.5 V  
and PA7  
VOH  
IOH = –2.0 mA  
voltage  
“L” level  
output  
voltage  
VCC = 4.5 V  
IOL = 2.0 mA  
VOL  
All output pins  
–5  
0.1  
0.4  
5
V
Open-drain  
output  
leakage  
current  
Ileak  
PA6, PA7  
µA  
µA  
Input  
leakage  
current  
Other than PA6 VCC = 5.5 V  
IIL  
5
and PA7  
VSS < VI < VCC  
P00 to P07,  
P10 to P17,  
P60 to P67,  
RST, MD0,  
MD1  
Pull-up  
resistance  
RUP  
15  
15  
30  
30  
100  
100  
kΩ  
kΩ  
Pull-down  
resistance  
RDOWN  
MD0 to MD2  
MB90574  
ICC  
ICC  
ICC  
ICC  
ICC  
VCC  
VCC  
VCC  
VCC  
VCC  
Internal operation  
at 16 MHz  
VCC at 5.0 V  
30  
85  
50  
35  
90  
40  
130  
80  
mA  
mA  
mA  
mA  
MB90F574/A  
MB90574C  
MB90574  
Normal operation  
Internal operation  
at 16 MHz  
VCC at 5.0 V  
A/D converter  
operation  
45  
140  
mA MB90F574/A  
Power  
supply  
current*  
MB90574C  
ICC  
VCC  
55  
85  
mA  
ICC  
ICC  
VCC  
VCC  
Internal operation  
at 16 MHz  
VCC at 5.0 V  
D/A converter  
operation  
40  
95  
50  
mA MB90574  
145  
mA MB90F574/A  
MB90574C  
mA  
ICC  
VCC  
65  
85  
(Continued)  
82  
MB90570 Series  
(Continued)  
(AVCC = VCC = 5.0 V ± 10%, AVSS = VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Parameter Symbol  
Pin name  
Condition  
Unit Remarks  
Min.  
Typ.  
Max.  
When data written  
in flash mode  
programming of  
erasing  
ICC  
VCC  
95  
140  
mA MB90F574/A  
ICCS  
ICCS  
ICCS  
ICCL  
ICCL  
VCC  
VCC  
VCC  
VCC  
VCC  
Internal operation  
at 16 MHz  
VCC = 5.0 V  
7
5
12  
10  
20  
1.0  
7
mA MB90574  
mA MB90F574/A  
mA MB90574C  
mA MB90574  
15  
0.1  
4
In sleep mode  
Internal operation  
at 8 kHz  
VCC = 5.0 V  
TA = +25°C  
Subsystem  
operation  
mA MB90F574/A  
ICCL  
VCC  
0.03  
1
mA MB90574C  
Power  
supply  
current*  
ICCLS  
ICCLS  
VCC  
VCC  
Internal operation  
at 8 kHz  
VCC = 5.0 V  
30  
50  
1
mA MB90574  
0.1  
mA MB90F574/A  
TA = +25°C  
In subsleep mode  
ICCLS  
VCC  
10  
50  
µA MB90574C  
ICCT  
ICCT  
VCC  
VCC  
Internal operation  
at 8 kHz  
VCC = 5.0 V  
TA = +25°C  
15  
30  
30  
50  
µA MB90574  
µA MB90F574/A  
ICCT  
ICCH  
ICCH  
VCC  
VCC  
VCC  
1.0  
5
30  
20  
10  
µA MB90574C  
µA MB90574  
In clock mode  
TA = +25°C  
In stop mode  
MB90F574/A  
µA  
0.1  
MB90574C  
Input  
capacitance  
Other than AVCC,  
AVSS, VCC, VSS  
CIN  
10  
80  
pF  
* : Thecurrentvalueispreliminaryvalueandmaybesubjecttochangeforenhancedcharacteristicswithoutprevious  
notice.  
83  
MB90570 Series  
4. AC Characteristics  
(1) Reset, Hardware Standby Input Timing  
(AVCC = VCC = 5.0 V ±10%, AVSS = VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Max.  
Symbol Pin name Condition  
Unit  
Remarks  
Parameter  
Min.  
4 tCP*  
4 tCP*  
Reset input time  
tRSTL  
RST  
HST  
ns  
ns  
Hardware standby input time tHSTL  
* : For tCP (internal operating clock cycle time), refer to “(3) Clock Timings.”  
tRSTL, tHSTL  
RST  
HST  
0.2 VCC  
0.2 VCC  
• Measurement conditions for AC characteristics  
Pin  
CL  
CL is a load capacitance connected to a pin under test.  
Capacitors of CL = 30 pF must be connected to CLK and ALE pins, while CL of 80 pF must  
be connected to address data bus (AD15 to AD00), RD, WRL, and WRH pins.  
84  
MB90570 Series  
(2) Specification for Power-on Reset  
(AVSS = VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Symbol Pin name Condition  
Unit  
ms  
Remarks  
Parameter  
Min.  
Max.  
Power supply rising time  
Power supply cut-off time  
tR  
VCC  
VCC  
0.05  
30  
*
Due to repeated  
operations  
tOFF  
4
ms  
* : VCC must be kept lower than 0.2 V before power-on.  
Notes: • The above ratings are values for causing a power-on reset.  
• There are internal registers which can be initialized only by a power-on reset.  
Apply power according to this rating to ensure initialization of the registers.  
tR  
2.7 V  
0.2 V  
VCC  
0.2 V  
tOFF  
0.2 V  
Sudden changes in the power supply voltage may cause a power-on reset.  
To change the power supply voltage while the device is in operation, it is recommended to raise the voltage  
smoothly to suppress fluctuations as shown below.  
In this case, change the supply voltage with the PLL clock not used. If the voltage drop is 1 mV or fewer per  
second, however, you can use the PLL clock.  
VCC  
It is recommended to keep the rising  
speed of the supply voltage at 50 mV/ms  
or slower.  
3.0 V  
VSS  
85  
MB90570 Series  
(3) Clock Timings  
(AVCC = VCC = 5.0 V ±10%, AVSS = VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Symbol Pin name Condition  
Unit  
Remarks  
Parameter  
Clock frequency  
Min.  
3
Typ. Max.  
FC  
X0, X1  
32.768  
16  
MHz  
kHz  
ns  
FCL  
X0A, X1A  
X0, X1  
tHCYL  
tLCYL  
62.5  
333  
Clock cycle time  
X0A, X1A  
30.5  
µs  
Recommend  
ns duty ratio of  
30% to 70%  
PWH,  
PWL  
X0  
10  
Input clock pulse width  
PWLH,  
PWLL  
X0A  
X0, X0A  
15.2  
5
µs  
tCR,  
tCF  
External clock  
operation  
Input clock rising/falling time  
ns  
Main clock  
MHz  
fCP  
fLCP  
tCP  
tLCP  
f  
1.5  
16  
333  
5
operation  
Internal operating clock  
frequency  
Subclock  
kHz  
8.192  
operation  
External clock  
operation  
62.5  
ns  
Internal operating clock cycle  
time  
Subclock  
µs  
122.1  
operation  
Frequency fluctuation rate  
locked  
%
*
* : The frequency fluctuation rate is the maximum deviation rate of the preset center frequency when the multiplied  
PLL signal is locked.  
+
+ α  
| α |  
fO  
f =  
× 100 (%)  
Center frequency fO  
α  
The PLL frequency deviation changes periodically from the preset frequency “(about CLK × (1CYC to 50 CYC)”,  
thus minimizing the chance of worst values to be repeated (errors are minimal and negligible for pulses with  
long intervals).  
86  
MB90570 Series  
• X0, X1 clock timing  
tHCYL  
0.8 VCC  
0.8 VCC  
0.8 VCC  
0.2 VCC  
0.2 VCC  
X0  
PWH  
PWL  
tCF  
tCR  
• X0A, X1A clock timing  
tLCYL  
0.8 VCC  
0.2 VCC  
0.8 VCC  
0.8 VCC  
0.2 VCC  
X0A  
PWLH  
PWLL  
tCF  
tCR  
• PLL operation guarantee range  
Relationship between internal operating clock  
frequency and power supply voltage  
Operation guarantee range (MB90F574/A)  
Operation guarantee range MB90574C  
(V)  
5.5  
4.5  
PLL operation  
guarantee range  
Operation guarantee range  
MB90V570/A  
3.3  
3.0  
Operation guarantee range  
MB90573/4  
(MHz)  
1.5  
3
8
12  
16  
Internal clock fCP  
Relationship between oscillating frequency, internal  
operating clock frequency, and power supply voltage  
(MHz)  
Multiplied-  
by-4  
Multiplied-  
by-3  
Multiplied-by-2  
16  
Multiplied-by-1  
12  
9
8
Not multiplied  
6
4
3
2
1.5  
(MHz)  
3
4
6
8
12  
16  
Oscillation clock FC  
87  
MB90570 Series  
The AC ratings are measured for the following measurement reference voltages.  
• Input signal waveform  
• Output signal waveform  
Hystheresis input pin  
0.8 VCC  
Hystheresis input pin  
2.4 VCC  
0.2 VCC  
0.8 VCC  
Pins other than hystheresis input/MD input  
0.7 VCC  
0.3 VCC  
(4) Recommended Resonator Manufacturers  
• Sample application of ceramic resonator  
X0  
X1  
R
*
C1  
C2  
• Mask ROM product (MB90574)  
Resonator  
Resonator  
Frequency (MHz)  
C1 (pF)  
C1 (pF)  
R
manufacturer*  
CSA2.00MG040  
CSA4.00MG040  
2.00  
4.00  
100  
100  
30  
15  
5
100  
100  
30  
No required  
No required  
No required  
No required  
No required  
Murata Mfg. Co., Ltd. CSA8.00MTZ  
CSA16.00MXZ040  
8.00  
16.00  
32.00  
15  
5
CSA32.00MXZ040  
CCR3.52MC3 to  
CCR6.96MC3  
3.52 to 6.96  
7.00 to 12.00  
20.00 to 32.00  
Built-in  
Built-in  
Built-in  
Built-in  
Built-in  
Built-in  
No required  
No required  
CCR7.0MC5 to  
CCR12.0MC5  
TDK Corporation  
CCR20.0MSC6 to  
CCR32.0MSC6  
No required  
(Continued)  
88  
MB90570 Series  
(Continued)  
• Flash product (MB90F574)  
Resonator  
manufacturer*  
Resonator  
Frequency (MHz)  
C1 (pF)  
C2 (pF)  
R
CSA2.00MG040  
CSA4.00MG040  
2.00  
4.00  
100  
100  
30  
15  
5
100  
100  
30  
No required  
No required  
No required  
No required  
No required  
Murata Mfg. Co., Ltd. CSA8.00MTZ  
CSA16.00MXZ040  
8.00  
16.00  
32.00  
15  
5
CSA32.00MXZ040  
CCR3.52MC3 to  
CCR6.96MC3  
3.52 to 6.96  
7.00 to 12.00  
20.00 to 32.00  
Built-in  
Built-in  
Built-in  
Built-in  
Built-in  
Built-in  
No required  
No required  
No required  
CCR7.0MC5 to  
CCR12.0MC5  
TDK Corporation  
CCR20.0MSC6 to  
CCR32.0MSC6  
Inquiry: Murata Mfg. Co., Ltd.  
• Murata Electronics North America, Inc.: TEL 1-404-436-1300  
• Murata Europe Management GmbH: TEL 49-911-66870  
• Murata Electronics Singapore (Pte.): TEL 65-758-4233  
TDK Corporation  
• TDK Corporation of America  
Chicago Regional Office: TEL 1-708-803-6100  
• TDK Electronics Europe GmbH  
Components Division: TEL 49-2102-9450  
• TDK Singapore (PTE) Ltd.: TEL 65-273-5022  
• TDK Hongkong Co., Ltd.: TEL: 852-736-2238  
• Korea Branch, TDK Corporation: TEL 82-2-554-6636  
(5) Clock Output Timing  
(AVCC = VCC = 5.0 V ±10%, AVSS = VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Symbol  
Pin name  
Condition  
Unit Remarks  
Parameter  
Cycle time  
CLK ↑ → CLK ↓  
Min.  
62.5  
20  
Max.  
tCYC  
CLK  
ns  
ns  
tCHCL  
CLK  
tCYC  
tCHCL  
2.4 V  
2.4 V  
0.8 V  
CLK  
89  
MB90570 Series  
(6) Bus Read Timing  
(AVCC = VCC = 5.0 V ±10%, AVSS = VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Unit  
Remarks  
Symbol  
Pin name  
Condition  
Parameter  
Min.  
Max.  
ALE pulse width  
tLHLL  
ALE  
1 tCP*/2 – 20  
ns  
ALE,  
A23 to A16,  
AD15 to AD00  
Effective address →  
ALE time  
tAVLL  
tLLAX  
tAVRL  
1 tCP*/2 – 20  
1 tCP*/2 – 15  
1 tCP* – 15  
ns  
ns  
ns  
ALE ↓ → address  
effective time  
ALE,  
AD15 to AD00  
RD,  
A23 to A16,  
AD15 to AD00  
Effective address →  
RD time  
Effective address →  
valid data input  
A23 to A16,  
AD15 to AD00  
tAVDV  
3 tCP*/2 – 20  
5 tCP*/2 – 60 ns  
ns  
RD pulse width  
tRLRH  
RD  
RD,  
AD15 to AD00  
RD ↓ → valid data input tRLDV  
RD ↑ → data hold time tRHDX  
3 tCP*/2 – 60 ns  
RD,  
AD15 to AD00  
0
ns  
ns  
ns  
RD ↑ → ALE time  
tRHLH  
ALE, RD  
1 tCP*/2 – 15  
1 tCP*/2 – 10  
RD ↑ → address  
effective time  
ALE,  
A23 to A16  
tRHAX  
CLK,  
A23 to A16,  
AD15 to AD00  
Effective address →  
CLK time  
tAVCH  
1 tCP*/2 – 20  
ns  
RD ↓ → CLK time  
ALE ↓ → RD time  
tRLCH  
tALRL  
CLK, RD  
ALE, RD  
1 tCP*/2 – 20  
1 tCP*/2 – 15  
ns  
ns  
* : For tCP (internal operating clock cycle time), refer to “(3) Clock Timings.”  
90  
MB90570 Series  
tAVCH  
tRLCH  
2.4 V  
2.4 V  
CLK  
tRHLH  
2.4 V  
0.8 V  
2.4 V  
2.4 V  
tLHLL  
tAVLL  
ALE  
RD  
tLLAX  
tRLRH  
2.4 V  
0.8 V  
tRHAX  
tAVRL  
tRLDV  
2.4 V  
0.8 V  
2.4 V  
0.8 V  
AD23 to AD16  
AD15 to AD00  
tAVDV  
tRHDX  
2.4 V  
0.8 V  
2.4 V  
0.8 V  
0.8 VCC  
0.2 VCC  
0.8 VCC  
Address  
Read data  
0.2 VCC  
91  
MB90570 Series  
(7) Bus Write Timing  
(AVCC = VCC = 5.0 V ±10%, AVSS = VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Unit  
Symbol  
Pin name  
Condition  
Remarks  
Parameter  
Min.  
Max.  
WRL, WRH,  
A23 to A16,  
AD15 to AD00  
Effective address →  
WR time  
tAVWL  
1 tCP – 15  
ns  
WR pulse width  
tWLWH  
WRL, WRH  
3 tCP*/2 – 20  
3 tCP*/2 – 20  
ns  
ns  
WRL, WRH,  
AD15 to AD00  
Write data WR time tDVWH  
WR ↑ → data hold time tWHDX  
WRL, WRH,  
AD15 to AD00  
20  
ns  
ns  
WR ↑ → address  
tWHAX  
WRL, WRH,  
A23 to A16  
1 tCP*/2 – 10  
effective time  
WR ↑ → ALE time  
WR ↓ → CLK time  
tWHLH  
tWLCH  
ALE, WRL  
CLK, WRH  
1 tCP*/2 – 15  
1 tCP*/2 – 20  
ns  
ns  
* : For tCP (internal operating clock cycle time), refer to “(3) Clock Timings.”  
tWLCH  
2.4 V  
CLK  
tWHLH  
2.4 V  
ALE  
tAVWL  
tWLWH  
WRL, WRH  
2.4 V  
0.8 V  
tWHAX  
2.4 V  
0.8 V  
2.4 V  
0.8 V  
A23 to A16  
tDVWH  
tWHDX  
2.4 V  
0.8 V  
2.4 V  
0.8 V  
2.4 V  
0.8 V  
AD15 to AD00  
Address  
Write data  
92  
MB90570 Series  
(8) Ready Input Timing  
(AVCC = VCC = 5.0 V ±10%, AVSS = VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Symbol  
tRYHS  
tRYHH  
Pin name  
RDY  
RDY  
Condition  
Unit Remarks  
Parameter  
Min.  
45  
0
Max.  
RDY setup time  
RDY hold time  
ns  
ns  
Note: Use the automatic ready function when the setup time for the rising edge of the RDY signal is not sufficient.  
2.4 V  
2.4 V  
CLK  
ALE  
RD/WRL, RD/WRH  
tRYHS  
0.2 VCC  
tRYHS  
RDY  
(wait inserted)  
0.2 VCC  
RDY  
(wait not inserted)  
0.8 VCC  
0.8 VCC  
tRYHH  
(9) Hold Timing  
Parameter  
(AVCC = VCC = 5.0 V ±10%, AVSS = VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Symbol  
Pin name  
Condition  
Unit Remarks  
Min.  
30  
Max.  
1 tCP*  
2 tCP*  
Pins in floating status →  
HAK time  
tXHAL  
HAK  
HAK  
* : For tCP (internal operating clock cycle time), refer to “(3) Clock Timings.”  
ns  
ns  
HAK ↑ → pin valid time tHAHV  
1 tCP*  
Note: More than 1 machine cycle is needed before HAK changes after HRQ pin is fetched.  
HAK  
2.4 V  
0.8 V  
tXHAL  
2.4 V  
0.8 V  
tHAHV  
2.4 V  
0.8 V  
Pins  
High impedance  
93  
MB90570 Series  
(10) UART0 (SCI), UART1 (SCI) Timing  
(AVCC = VCC = 5.0 V ±10%, AVSS = VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Symbol  
tSCYC  
Pin name  
Condition  
Unit Remarks  
Parameter  
Min.  
Max.  
Serial clock cycle time  
SCK0 to SCK4  
8 tCP*  
ns  
ns  
SCK ↓ → SOT delay  
SCK0 to SCK4,  
SOT0 to SOT4  
Internal shift clock  
mode  
CL = 80 pF  
+ 1 TTL for an  
output pin  
tSLOV  
– 80  
100  
60  
80  
time  
SCK0 to SCK4,  
SIN0 to SIN4  
Valid SIN SCK ↑  
tIVSH  
tSHIX  
tSHSL  
tSLSH  
tSLOV  
tIVSH  
tSHIX  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCK ↑ → valid SIN  
hold time  
SCK0 to SCK4,  
SIN0 to SIN4  
Serial clock “H” pulse  
width  
SCK0 to SCK4  
SCK0 to SCK4  
4 tCP*  
4 tCP*  
Serial clock “L” pulse  
width  
External shift  
clock mode  
CL = 80 pF  
+ 1 TTL for an  
output pin  
SCK ↓ → SOT delay  
SCK0 to SCK4,  
SOT0 to SOT4  
150  
time  
SCK0 to SCK4,  
SIN0 to SIN4  
Valid SIN SCK ↑  
60  
SCK ↑ → valid SIN  
hold time  
SCK0 to SCK4,  
SIN0 to SIN4  
60  
* : For tCP (internal operating clock cycle time), refer to “(3) Clock Timings.”  
Notes: • These are AC ratings in the CLK synchronous mode.  
• CL is the load capacitance value connected to pins while testing.  
94  
MB90570 Series  
• Internal shift clock mode  
tSCYC  
SCK0 to SCK4  
2.4 V  
0.8 V  
tSLOV  
0.8 V  
2.4 V  
0.2 V  
SOT0 to SOT4  
tIVSH  
tSHIX  
0.8 VCC  
0.2 VCC  
0.8 VCC  
0.2 VCC  
SIN0 to SIN4  
• External shift clock mode  
SCK0 to SCK4  
tSLSH  
tSHSL  
0.8 VCC  
0.8 VCC  
0.2 VCC  
0.2 VCC  
tSLOV  
2.4 V  
0.8 V  
SOT0 to SOT4  
SIN0 to SIN4  
tIVSH  
tSHIX  
0.8 VCC  
0.2 VCC  
0.8 VCC  
0.2 VCC  
95  
MB90570 Series  
(11) Timer Input Timing  
(AVCC = VCC = 5.0 V ±10%, AVSS = VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Symbol  
Pin name  
IN0, IN1  
Condition  
Unit Remarks  
Parameter  
Min.  
Max.  
tTIWH,  
tTIWL  
Input pulse width  
4 tCP*  
ns  
* : For tCP (internal operating clock cycle time), refer to “(3) Clock Timings.”  
0.8 VCC  
0.8 VCC  
0.2 VCC  
0.2 VCC  
IN0, IN1  
tTIWH  
tTIWL  
(12) Timer Output Timing  
(AVCC = VCC = 5.0 V ±10%, AVSS = VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Symbol  
Pin name  
Condition  
Unit Remarks  
Parameter  
CLK ↑ → TOUT  
Min.  
Max.  
OUT0 to OUT3,  
PPG0, PPG1  
tTO  
30  
ns  
transition time  
2.4 V  
CLK  
TOUT  
tTO  
2.4 V  
0.8 V  
96  
MB90570 Series  
(13) Trigger Input Timing  
(AVCC = VCC = 5.0 V ±10%, AVSS = VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Symbol  
Pin name  
Condition  
Unit Remarks  
Parameter  
Min.  
Max.  
IRQ0 to IRQ5,  
ADTG, IN0, IN1  
Input pulse width  
tTRGL  
5 tCP*  
ns  
* : For tCP (internal operating clock cycle time), refer to “(3) Clock Timings.”  
0.8 VCC  
0.8 VCC  
0.2 VCC  
0.2 VCC  
IRQ0 to IRQ5  
ADTG, IN0, IN1  
tTRGH  
tTRGL  
97  
MB90570 Series  
(14) Chip Select Output Timing  
(AVCC = VCC = 5.0 V ±10%, AVSS = VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Unit  
Symbol  
Pin name  
Condition  
Remarks  
Parameter  
Min.  
Max.  
Valid chip select output  
Valid data input time  
CS0 to CS7,  
AD15 to AD00  
tSVDV  
tRHSV  
tWHSV  
tSVCH  
5 tCP*/2 – 60 ns  
RD ↑ → chip select  
output effective time  
RD,  
CS0 to CS7  
1 tCP*/2 – 10  
1 tCP*/2 – 10  
1 tCP*/2 – 20  
ns  
ns  
ns  
WR ↑ → chip select  
output effective time  
CS0 to CS7,  
WRL, WRH  
Valid chip select output  
CLK time  
CLK,  
CS0 to CS7  
* : For tCP (internal operating clock cycle time), refer to “(3) Clock Timings.”  
tSVCH  
CLK  
2.4 V  
RD  
2.4 V  
tRHSV  
A23 to A16  
CS0 to CS7  
2.4 V  
0.8 V  
tSVDV  
2.4 V  
0.8 V  
AD15 to AD00  
Read data  
tWHSV  
2.4 V  
WRL, WRH  
AD15 to AD00  
Write data  
98  
MB90570 Series  
(15) I2C Timing  
Parameter  
(AVCC = VCC = 2.7 V to 5.5 V, AVSS = VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Symbol Pin name Condition  
Unit  
Remarks  
Min.  
Max.  
Internal clock cycle time tCP  
62.5  
666  
ns All products  
Start condition output  
Stop condition output  
tSTAO  
tCP×m×n/2-20 tCP×m×n/2+20 ns  
Only as master  
Only as slave  
tCP(m×n/  
tCP(m×n/  
2+4)+20  
tSTOO  
ns  
ns  
ns  
2+4)-20  
SDA,SCL  
Start condition detection tSTAI  
Stop condition detection tSTOI  
3tCP+40  
3tCP+40  
SCL output “L” width  
SCL output “H” width  
SDA output delay time  
tLOWO  
tHIGHO  
tDOO  
tCP×m×n/2-20 tCP×m×n/2+20 ns  
SCL  
Only as master  
tCP(m×n/  
tCP(m×n/  
2+4)+20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
2+4)-20  
2tCP-20  
4tCP-20  
3tCP+40  
tCP+40  
40  
2tCP+20  
SDA,SCL  
SCL  
Setup after SDA output  
interrupt period  
tDOSUO  
tLOWI  
tHIGHI  
tSUI  
SCL input “L” width  
SCL input “H” width  
SDA input setup time  
SDA input hold time  
SDA,SCL  
tHOI  
0
Notes: • “m” and “n” in the above table represent the values of shift clock frequency setting bits (CS4-CS0) in the  
clock control register “ICCR”. For details, refer to the register description in the hardware manual.  
• tDOSUO represents the minimum value when the interrupt period is equal to or greater than the SCL “L” width.  
• The SDA and SCL output values indicate that rise time is 0 ns.  
99  
MB90570 Series  
• I2C interface [data transmitter (master/slave)]  
tLOWO  
tHIGHO  
0.8 VCC  
0.8 VCC  
0.8 VCC  
0.8 VCC 0.8 VCC  
SCL  
SDA  
0.2 VCC  
tDOO  
0.2 VCC  
1
8
9
tSTAO  
tDOO  
tSUI  
tHOI  
tDOSUO  
ACK  
• I2C interface [data receiver (master/slave)]  
tHIGHI  
tLOWI  
0.8 VCC  
tSUI  
0.8 VCC  
0.8 VCC  
SCL  
SDA  
0.2 VCC  
tHOI  
0.2 VCC  
8
0.2 VCC  
0.2 VCC  
6
7
9
tSTOI  
tDOO  
tDOO  
tDOSUO  
ACK  
100  
MB90570 Series  
(16) Pulse Width on External Interrupt Pin at Return from STOP Mode  
(AVCC = VCC = 2.7 V to 5.5 V, AVSS = VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Parameter  
Symbol  
Pin name  
Condition  
Unit  
Remarks  
Min.  
Max.  
tIRQWH  
tIRQWL  
Input pulse width  
IRQ2 to IRQ7  
6tCP  
ns  
* : For tCP (internal operating clock cycle time), refer to “(3) Clock Timings.”  
0.8VCC
0.2VCC
0.8VCC
0.2VCC
IRQ2IRQ7
tIRQWH
tIRQWL
101  
MB90570 Series  
5. A/D Converter Electrical Characteristics  
(AVCC = VCC = 2.7 V to 5.5 V, AVSS = VSS = 0.0 V, 2.7 V AVRH – AVRL, TA = –40°C to +85°C)  
Value  
Symbol Pin name  
Condition  
Unit  
Parameter  
Resolution  
Min.  
Typ.  
8/10  
Max.  
bit  
Total error  
±5.0  
±2.5  
LSB  
LSB  
Non-linear error  
Differential  
linearity error  
±1.9  
LSB  
Zero transition  
voltage  
AN0 to  
AN7  
VOT  
VFST  
–3.5 LSB +0.5 LSB +4.5 LSB mV  
Full-scale  
transition  
voltage  
AN0 to  
AN7  
AVRH  
AVRH  
AVRH  
mV  
–6.5 LSB –1.5 LSB +1.5 LSB  
VCC = 5.0 V ±10%  
at machine clock of 16 MHz  
Conversion time  
Sampling period  
352tCP  
64tCP  
µs  
µs  
µA  
V
VCC = 5.0 V ±10% at  
machine clock of 6 MHz  
Analog port  
input current  
AN0 to  
AN7  
IAIN  
10  
Analog input  
voltage  
AN0 to  
AN7  
VAIN  
AVRL  
AVRH  
AVCC  
AVRL  
+2.7  
AVRH  
V
Reference  
voltage  
AVRH  
–2.7  
AVRL  
0
5
V
IA  
AVCC  
mA  
CPU stopped and 8/10-bit  
A/D converter not in  
operation  
Power supply  
current  
IAH  
IR  
AVCC  
400  
5
µA  
µA  
µA  
(VCC = AVCC = AVRH = 5.0 V)  
AVRH  
AVRH  
5
Reference  
voltage supply  
current  
CPU stopped and 8/10-bit  
A/D converter not in  
operation  
IRH  
(VCC = AVCC = AVRH = 5.0 V)  
Offset between  
channels  
AN0 to  
AN7  
4
LSB  
102  
MB90570 Series  
6. A/D Converter Glossary  
Resolution: Analog changes that are identifiable with the A/D converter  
Linearity error: The deviation of the straight line connecting the zero transition point (“00 0000 0000” “00 0000  
0001”) with the full-scale transition point (“11 1111 1110” “11 1111 1111”) from actual  
conversion characteristics  
Differential linearity error: The deviation of input voltage needed to change the output code by 1 LSB from the  
theoretical value  
Total error: The total error is defined as a difference between the actual value and the theoretical value, which  
includes zero-transition error/full-scale transition error and linearity error.  
Total error  
3FF  
0.5 LSB  
3FE  
3FD  
Actual conversion  
value  
{1 LSB × (N – 1) + 0.5 LSB}  
004  
003  
002  
001  
VNT  
(measured value)  
Actual conversion  
characteristics  
Theoretical  
characteristics  
0.5 LSB  
Analog input  
AVRL  
AVRH  
AVRH – AVRL  
1024  
VNT – {1 LSB × (N – 1) + 0.5 LSB}  
1 LSB = (Theoretical value)  
[V]  
Total error for digital output N  
[LSB]  
=
1 LSB  
VNT: Voltage at a transition of digital output from (N – 1) to N  
VOT (Theoretical value) = AVRL + 0.5 LSB[V]  
VFST (Theoretical value) = AVRH – 1.5 LSB[V]  
(Continued)  
103  
MB90570 Series  
(Continued)  
Linearity error  
Differential linearity error  
Theoretical characteristics  
3FF  
Actual conversion  
3FE  
3FD  
value  
N + 1  
N
Actual conversion value  
{1 LSB × (N – 1)+ VOT}  
VFST  
(measured value)  
VNT  
N – 1  
N – 2  
004  
003  
002  
001  
V(N + 1)T  
(measured value)  
Actual conversion  
characteristics  
VNT (measured  
Theoretical  
Actual conversion  
value  
characteristics  
VOT (measured value)  
Analog input  
AVRL  
AVRH  
AVRL  
Analog input  
AVRH  
Linearity error of  
digital output N  
VNT – {1 LSB × (N – 1) + VOT}  
[LSB]  
=
1 LSB  
V(N + 1)T – VNT  
1 LSB  
Differential linearity error  
of digital N  
– 1 LSB [LSB]  
=
VFST – VOT  
1 LSB  
[V]  
=
1022  
VOT: Voltage at transition of digital output from “000H” to “001H”  
VFST: Voltage at transition of digital output from “3FEH” to “3FFH”  
7. Notes on Using A/D Converter  
Select the output impedance value for the external circuit of analog input according to the following conditions.  
Output impedance values of the external circuit of 7 kor lower are recommended.  
Whencapacitorsareconnectedtoexternalpins, thecapacitanceofseveralthousandtimestheinternalcapacitor  
value is recommended to minimized the effect of voltage distribution between the external capacitor and internal  
capacitor.  
When the output impedance of the external circuit is too high, the sampling period for analog voltages may not  
be sufficient (sampling period = 4.00 µs @machine clock of 16 MHz).  
• Equipment of analog input circuit model  
C0  
Analog input  
Comparator  
C1  
MB90573/4, MB90V570/A  
MB90F574/A  
MB90574C  
R
R
1.5 k, C 30 pF  
3.0 k, C 65 pF  
Note: Listed values must be considered as standards.  
• Error  
The smaller the | AVRH – AVRL |, the greater the error would become relatively.  
104  
MB90570 Series  
8. D/A Converter Electrical Characteristics  
(AVCC = VCC = DVCC = 5.0 V ±10%, AVSS = VSS = DVSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Unit  
Symbol  
Pin name  
Remarks  
Parameter  
Resolution  
Min.  
Typ.  
Max.  
8
bit  
Differential linearity  
error  
±0.9  
LSB  
Absolute accuracy  
Linearity error  
10  
±1.2  
±1.5  
20  
%
LSB  
Conversion time  
µs Load capacitance: 20 pF  
Analog reference  
voltage  
DVCC  
VSS + 3.0  
AVCC  
V
Conversion under  
no load  
IDVR  
IDVRS  
DVCC  
DVCC  
120  
300  
10  
µA  
Reference voltage  
supply current  
µA In sleep mode  
Analog output  
impedance  
20  
kΩ  
105  
MB90570 Series  
EXAMPLE CHARACTERISTICS  
(1) Power Supply Current (MB90574)  
ICC - VCC  
ICCS - VCC  
ICC (mA)  
35  
ICCS (mA)  
10  
TA = +25°C  
TA = +25°C  
9
8
7
6
5
4
3
2
1
30  
25  
20  
15  
10  
5
Fc = 16 MHz  
Fc = 16 MHz  
Fc = 12.5 MHz  
Fc = 12.5 MHz  
Fc = 10 MHz  
Fc = 8 MHz  
Fc = 10 MHz  
Fc = 8 MHz  
Fc = 5 MHz  
Fc = 4 MHz  
Fc = 5 MHz  
Fc = 4 MHz  
Fc = 2 MHz  
Fc = 2 MHz  
3.0  
4.0  
5.0  
6.0  
VCC (V)  
3.0  
4.0  
5.0  
6.0  
VCC (V)  
ICC - TA  
ICCS - TA  
ICC (mA)  
35  
ICCS (mA)  
10  
VCC = 5.0 V  
VCC = 5.0 V  
9
8
7
6
5
4
3
2
1
30  
25  
20  
15  
10  
5
Fc = 16 MHz  
Fc = 16 MHz  
Fc = 12.5 MHz  
Fc = 12.5 MHz  
Fc = 10 MHz  
Fc = 8 MHz  
Fc = 10 MHz  
Fc = 8 MHz  
Fc = 5 MHz  
Fc = 4 MHz  
Fc = 2 MHz  
Fc = 5 MHz  
Fc = 4 MHz  
Fc = 2 MHz  
–20  
+10 +40  
+70 +100  
TA (°C)  
–20  
+10  
+40  
+70  
+100  
TA (°C)  
ICCLS - VCC  
ICCLS (mA)  
70  
ICCL - VCC  
ICCL (µA)  
TA = +25°C  
160  
TA = +25°C  
60  
50  
40  
30  
20  
10  
140  
120  
100  
80  
Fc = 8 kHz  
Fc = 8 kHz  
60  
40  
20  
3.0  
4.0  
5.0  
6.0  
VCC (V)  
3.0  
4.0  
5.0  
6.0  
VCC (V)  
106  
MB90570 Series  
ICC - Fc  
ICCS - Fc  
ICC (mA)  
35  
ICCS (mA)  
10  
VCC = 6.0 V  
VCC = 6.0 V  
VCC = 5.5 V  
VCC = 5.0 V  
VCC = 4.5 V  
VCC = 4.0 V  
VCC = 3.5 V  
TA = +25°C  
9
8
7
6
5
4
3
2
1
TA = +25°C  
VCC = 5.5 V  
VCC = 5.0 V  
VCC = 4.5 V  
VCC = 4.0 V  
VCC = 3.5 V  
30  
25  
20  
15  
10  
5
VCC = 3.0 V  
VCC = 3.0 V  
VCC = 2.5 V  
VCC = 2.5 V  
4.0  
6.0  
8.0  
12.0 16.0  
Fc (MHz)  
4.0  
6.0  
8.0  
12.0 16.0  
Fc (MHz)  
ICCH - VCC  
ICCT - VCC  
ICCH (µA)  
ICCT (µA)  
10  
20  
TA = +25°C  
TA = +25°C  
9
8
7
6
5
4
3
2
1
18  
16  
14  
12  
10  
8
Fc = 8 kHz  
6
4
2
3.0  
4.0  
5.0  
6.0  
VCC (V)  
3.0  
4.0  
5.0  
6.0  
VCC (V)  
ICCT - TA  
ICCLH - TA  
ICCT (µA)  
ICCLH (µA)  
10  
10  
VCC = 6.0 V  
VCC = 5.5 V  
VCC = 5.0 V  
VCC = 4.5 V  
9
8
7
6
5
4
3
2
1
9
8
7
6
5
4
3
2
1
VCC = 6.0 V  
VCC = 5.5 V  
VCC = 5.0 V  
VCC = 4.0 V  
VCC = 3.5 V  
VCC = 3.0 V  
VCC = 2.5 V  
VCC = 4.5 V  
VCC = 4.0 V  
VCC = 3.5 V  
VCC = 3.0 V  
VCC = 2.5 V  
–20  
+10 +40  
+70  
+100  
TA (°C)  
–20  
+10 +40  
+70  
+100  
TA (°C)  
107  
MB90570 Series  
ICCL - TA  
ICCLS - TA  
ICCL (µA)  
ICCLS (µA)  
20  
18  
16  
14  
12  
10  
8
14  
VCC = 6.0 V  
VCC = 5.5 V  
VCC = 5.0 V  
VCC = 6.0 V  
VCC = 5.5 V  
VCC = 5.0 V  
VCC = 4.5 V  
VCC = 4.0 V  
VCC = 3.5 V  
VCC = 3.0 V  
VCC = 2.5 V  
12  
10  
8
VCC = 4.5 V  
VCC = 4.0 V  
VCC = 3.5 V  
VCC = 3.0 V  
VCC = 2.5 V  
6
6
4
4
2
2
–20  
+10 +40  
+70  
+100  
TA (°C)  
–20  
+10 +40  
+70  
+100  
TA (°C)  
(2) Power Supply Current (MB90F574)  
ICCS - VCC  
ICC - VCC  
ICCS (mA)  
40  
ICC (mA)  
140  
TA = +25°C  
TA = +25°C  
Fc = 16 MHz  
120  
100  
80  
35  
30  
25  
20  
15  
10  
5
Fc = 12.5 MHz  
Fc = 16 MHz  
Fc = 10 MHz  
Fc = 8 MHz  
Fc = 12.5 MHz  
Fc = 10 MHz  
Fc = 8 MHz  
Fc = 5 MHz  
Fc = 4 MHz  
60  
Fc = 5 MHz  
Fc = 4 MHz  
Fc = 2 MHz  
Fc = 2 MHz  
40  
20  
3.0  
4.0  
5.0  
6.0  
VCC (V)  
3.0  
4.0  
5.0  
6.0  
VCC (V)  
ICC - TA  
ICCS - TA  
ICC (mA)  
120  
ICCS (mA)  
40  
VCC = 5.0 V  
VCC = 5.0 V  
35  
30  
25  
20  
15  
10  
5
100  
80  
Fc = 16 MHz  
Fc = 12.5 MHz  
Fc = 16 MHz  
Fc = 10 MHz  
Fc = 8 MHz  
60  
Fc = 12.5 MHz  
Fc = 10 MHz  
Fc = 5 MHz  
Fc = 4 MHz  
40  
20  
Fc = 8 MHz  
Fc = 5 MHz  
Fc = 4 MHz  
Fc = 2 MHz  
Fc = 2 MHz  
–20  
+10 +40  
+70  
+100  
TA (°C)  
–20  
+10 +40  
+70  
+100  
TA (°C)  
108  
MB90570 Series  
ICCLS - VCC  
ICCLS (µA)  
200  
TA = +25°C  
180  
160  
FC = 8 kHz  
140  
120  
100  
80  
60  
40  
20  
3.0  
4.0  
5.0  
6.0  
VCC (V)  
ICCS - FC  
ICC - FC  
ICCS (mA)  
40  
ICC (mA)  
120  
VCC = 6.0 V  
TA = +25°C  
TA = +25°C  
35  
30  
100  
80  
VCC = 5.5 V  
VCC = 5.0 V  
VCC = 6.0 V  
VCC = 5.5 V  
VCC = 5.0 V  
25  
20  
15  
10  
VCC = 4.5 V  
VCC = 4.0 V  
60  
40  
20  
VCC = 4.5 V  
VCC = 4.0 V  
VCC = 3.5 V  
VCC = 3.5 V  
VCC = 3.0 V  
VCC = 3.0 V  
VCC = 2.5 V  
5
VCC = 2.5 V  
4.0  
8.0  
12.0  
16.0  
FC (MHZ)  
4.0  
8.0  
12.0  
16.0  
FC (MHZ)  
ICCT - VCC  
ICCH -VCC  
ICCH (µA)  
ICCT (µA)  
50  
10  
9
TA = +25°C  
TA = +25°C  
40  
30  
20  
8
7
6
5
4
3
FC = 8 kHZ  
10  
2
1
6.0  
VCC (V)  
3.0  
4.0  
5.0  
3
5
4
6
VCC (V)  
109  
MB90570 Series  
ICCT - TA  
ICCH - TA  
ICCT (µA)  
ICCH (µA)  
10  
10  
9
8
9
8
7
6
7
6
5
4
3
2
1
5
4
3
2
1
VCC = 6.0 V  
VCC = 5.5 V  
VCC = 5.0 V  
VCC = 4.5 V  
VCC = 4.0 V  
VCC = 3.5 V  
VCC = 3.0 V  
VCC = 2.5 V  
VCC = 6.0 V  
VCC = 5.5 V  
VCC = 5.0 V  
VCC = 4.5 V  
VCC = 4.0 V  
VCC = 3.5 V  
VCC = 3.0 V  
VCC = 2.5 V  
+10  
+40 +70  
+100  
TA (°C)  
+40 +70  
+100  
TA (°C)  
-20  
+10  
-20  
ICCLS - TA  
ICCLS (µA)  
20  
18  
16  
VCC = 6.0 V  
VCC = 5.5 V  
VCC = 5.0 V  
14  
12  
VCC = 4.5 V  
VCC = 4.0 V  
10  
8
VCC = 3.5 V  
VCC = 3.0 V  
6
VCC = 2.5 V  
4
2
+40 +70  
+100  
TA (°C)  
+10  
-20  
110  
MB90570 Series  
(3)Power Supply Current (MB90574C)  
ICC (mA)  
50  
ICC (mA)  
ICC TA  
VCC = 5.0 V  
ICC VCC  
TA = +25 °C  
70  
60  
50  
40  
30  
20  
10  
0
FC = 16 MHz  
45  
40  
35  
30  
25  
20  
15  
10  
FC = 16 MHz  
FC = 12 MHz  
FC = 10 MHz  
FC = 8 MHz  
FC = 12 MHz  
FC = 10 MHz  
FC = 8 MHz  
FC = 5 MHz  
FC = 4 MHz  
FC = 2 MHz  
FC = 5 MHz  
FC = 4 MHz  
FC = 2 MHz  
5
0
50  
20  
10  
40  
70  
100  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
TA (°C)  
VCC (V)  
ICCS (mA)  
18  
ICC (mA)  
70  
ICCS VCC  
TA = +25 °C  
ICC FC  
TA = +25 °C  
FC = 16 MHz  
16  
14  
60  
50  
40  
30  
20  
10  
VCC = 6.0 V  
VCC = 5.5 V  
VCC = 5.0 V  
FC = 12 MHz  
FC = 10 MHz  
FC = 8 MHz  
12  
10  
8
VCC = 4.5 V  
VCC = 4.0 V  
VCC = 3.5 V  
VCC = 3.0 V  
FC = 5 MHz  
FC = 4 MHz  
6
4
2
0
FC = 2 MHz  
0
2
3.000 3.500 4.000  
5.000  
6.000  
5.500  
4
6
10 12  
16  
14  
4.500  
8
VCC (V)  
FC (MHz)  
ICCS (mA)  
18  
ICCS (mA)  
ICCS TA  
VCC = 5 V  
ICCS FC  
TA = +25 °C  
18  
16  
14  
12  
10  
8
VCC = 6.0 V  
16  
14  
12  
10  
8
VCC = 5.5 V  
FC = 16 MHz  
VCC = 5.0 V  
VCC = 4.5 V  
FC = 12 MHz  
FC = 10 MHz  
FC = 8 MHz  
FC = 4 MHz  
FC = 2 MHz  
VCC = 4.0 V  
VCC = 3.5 V  
VCC = 3.0 V  
6
6
4
2
4
2
0
50  
0
2
20  
10  
40  
70  
100  
4
6
8
10 12 14  
16  
TA (°C)  
FC (MHz)  
111  
MB90570 Series  
ICCH (µA)  
ICCH (µA)  
ICCH VCC  
TA = +25 °C  
ICCH TA  
10  
9
8
7
6
5
4
3
2
1
0
10  
9
8
7
6
5
4
3
2
1
VCC = 6.0 V  
VCC = 5.5 V  
VCC = 5.0 V  
VCC = 4.5 V  
VCC = 4.0 V  
VCC = 3.5 V  
VCC = 3.0 V  
0
50  
3.000 3.500 4.000 4.500 5.000 5.500 6.000  
VCC (V)  
20  
10  
40  
70  
100  
TA (°C)  
ICCT (µA)  
ICCT (µA)  
ICCT TA  
ICCT VCC  
TA = +25 °C  
10  
9
8
7
6
5
4
3
2
1
0
10  
9
8
7
6
5
4
3
2
1
0
VCC = 6.0 V  
VCC = 5.5 V  
VCC = 5.0 V  
VCC = 4.5 V  
VCC = 4.0 V  
VCC = 3.5 V  
VCC = 3.0 V  
FC = 8 kHz  
50  
20  
10  
40  
70  
100  
TA (°C)  
3.000 3.500 4.000 4.500 5.000 5.500 6.000  
VCC (V)  
ICCL (µA)  
70  
ICCL (µA)  
70  
ICCL VCC  
TA = +25 °C  
ICCL TA  
60  
50  
40  
30  
20  
10  
0
60  
50  
40  
30  
20  
10  
0
VCC = 6.0 V  
VCC = 5.5 V  
VCC = 5.0 V  
VCC = 4.5 V  
VCC = 4.0 V  
VCC = 3.5 V  
VCC = 3.0 V  
FC = 8 kHz  
50 20  
10  
40  
70  
100  
TA (°C)  
3.000 3.500 4.000 4.500 5.000 5.500 6.000  
VCC (V)  
112  
MB90570 Series  
ICCLS (µA)  
25  
ICCLS (µA)  
25  
ICCLS VCC  
TA = +25 °C  
ICCLS TA  
20  
15  
10  
5
20  
15  
10  
5
VCC = 6.0 V  
VCC = 5.5 V  
VCC = 5.0 V  
VCC = 4.5 V  
VCC = 4.0 V  
VCC = 3.5 V  
VCC = 3.0 V  
FC = 8 kHz  
0
0
50 20  
10  
40  
70  
100  
TA (°C)  
3.000 3.500 4.000 4.500 5.000 5.500 6.000  
VCC (V)  
113  
MB90570 Series  
INSTRUCTIONS (351 INSTRUCTIONS)  
Table 1 Explanation of Items in Tables of Instructions  
Meaning  
Mnemonic Upper-case letters and symbols: Represented as they appear in assembler.  
Item  
Lower-case letters: Replaced when described in assembler.  
Numbers after lower-case letters:Indicate the bit width within the instruction code.  
#
~
Indicates the number of bytes.  
Indicates the number of cycles.  
m: When branching  
n : When not branching  
See Table 4 for details about meanings of other letters in items.  
RG  
B
Indicates the number of accesses to the register during execution of the instruction.  
It is used calculate a correction value for intermittent operation of CPU.  
Indicates the correction value for calculating the number of actual cycles during execution of the  
instruction. (Table 5)  
The number of actual cycles during execution of the instruction is the correction value summed  
with the value in the “~” column.  
Operation  
LH  
Indicates the operation of instruction.  
Indicates special operations involving the upper 8 bits of the lower 16 bits of the accumulator.  
Z : Transfers “0”.  
X : Extends with a sign before transferring.  
– : Transfers nothing.  
AH  
Indicates special operations involving the upper 16 bits in the accumulator.  
* : Transfers from AL to AH.  
– : No transfer.  
Z : Transfers 00H to AH.  
X : Transfers 00H or FFH to AH by signing and extending AL.  
I
Indicates the status of each of the following flags: I (interrupt enable), S (stack), T (sticky bit),  
N (negative), Z (zero), V (overflow), and C (carry).  
* : Changes due to execution of instruction.  
– : No change.  
S
T
N
Z
S : Set by execution of instruction.  
R : Reset by execution of instruction.  
V
C
RMW  
Indicates whether the instruction is a read-modify-write instruction. (a single instruction that  
reads data from memory, etc., processes the data, and then writes the result to memory.)  
* : Instruction is a read-modify-write instruction.  
– : Instruction is not a read-modify-write instruction.  
Note: A read-modify-write instruction cannot be used on addresses that have different  
meanings depending on whether they are read or written.  
• Number of execution cycles  
The number of cycles required for instruction execution is acquired by adding the number of cycles for each  
instruction, a corrective value depending on the condition, and the number of cycles required for program fetch.  
Whenever the instruction being executed exceeds the two-byte (word) boundary, a program on an internal  
ROM connected to a 16-bit bus is fetched. If data access is interfered with, therefore, the number of execution  
cycles is increased.  
For each byte of the instruction being executed, a program on a memory connected to an 8-bit external data  
bus is fetched. If data access in interfered with, therefore, the number of execution cycles is increased.  
When a general-purpose register, an internal ROM, an internal RAM, an internal I/O device, or an external  
bus is accessed during intermittent CPU operation, the CPU clock is suspended by the number of cycles  
specified by the CG1/0 bit of the low-power consumption mode control register. When determining the number  
of cycles required for instruction execution during intermittent CPU operation, therefore, add the value of the  
number of times access is done × the number of cycles suspended as the corrective value to the number of  
ordinary execution cycles.  
114  
MB90570 Series  
Table 2 Explanation of Symbols in Tables of Instructions  
Meaning  
Symbol  
A
32-bit accumulator  
The bit length varies according to the instruction.  
Byte : Lower 8 bits of AL  
Word : 16 bits of AL  
Long : 32 bits of AL and AH  
AH  
AL  
Upper 16 bits of A  
Lower 16 bits of A  
SP  
PC  
Stack pointer (USP or SSP)  
Program counter  
PCB  
DTB  
ADB  
SSB  
USB  
SPB  
DPR  
brg1  
brg2  
Ri  
Program bank register  
Data bank register  
Additional data bank register  
System stack bank register  
User stack bank register  
Current stack bank register (SSB or USB)  
Direct page register  
DTB, ADB, SSB, USB, DPR, PCB, SPB  
DTB, ADB, SSB, USB, DPR, SPB  
R0, R1, R2, R3, R4, R5, R6, R7  
RW0, RW1, RW2, RW3, RW4, RW5, RW6, RW7  
RW0, RW1, RW2, RW3  
RWi  
RWj  
RLi  
RL0, RL1, RL2, RL3  
dir  
Compact direct addressing  
addr16  
addr24  
ad24 0 to 15  
ad24 16 to 23  
Direct addressing  
Physical direct addressing  
Bit 0 to bit 15 of addr24  
Bit 16 to bit 23 of addr24  
io  
I/O area (000000H to 0000FFH)  
imm4  
imm8  
4-bit immediate data  
8-bit immediate data  
imm16  
imm32  
ext (imm8)  
16-bit immediate data  
32-bit immediate data  
16-bit data signed and extended from 8-bit immediate data  
disp8  
disp16  
8-bit displacement  
16-bit displacement  
bp  
Bit offset  
vct4  
vct8  
Vector number (0 to 15)  
Vector number (0 to 255)  
( )b  
rel  
Bit address  
PC relative addressing  
ear  
eam  
Effective addressing (codes 00 to 07)  
Effective addressing (codes 08 to 1F)  
rlst  
Register list  
115  
MB90570 Series  
Table 3 Effective Address Fields  
Address format  
Number of bytes in address  
extension *  
Code  
Notation  
00  
01  
02  
03  
04  
05  
06  
07  
R0  
R1  
R2  
R3  
R4  
R5  
R6  
R7  
RW0  
RW1  
RW2  
RW3  
RW4  
RW5  
RW6  
RW7  
RL0 Register direct  
(RL0)  
RL1 “ea” corresponds to byte, word, and  
(RL1) long-word types, starting from the left  
RL2  
(RL2)  
RL3  
(RL3)  
08  
09  
0A  
0B  
@RW0  
Register indirect  
@RW1  
@RW2  
@RW3  
0
0
0C  
0D  
0E  
0F  
@RW0 +  
@RW1 +  
@RW2 +  
@RW3 +  
Register indirect with post-increment  
10  
11  
12  
13  
14  
15  
16  
17  
@RW0 + disp8  
@RW1 + disp8  
@RW2 + disp8  
@RW3 + disp8  
@RW4 + disp8  
@RW5 + disp8  
@RW6 + disp8  
@RW7 + disp8  
Register indirect with 8-bit  
displacement  
1
2
18  
19  
1A  
1B  
@RW0 + disp16  
@RW1 + disp16  
@RW2 + disp16  
@RW3 + disp16  
Register indirect with 16-bit  
displacement  
1C  
1D  
1E  
1F  
@RW0 + RW7  
@RW1 + RW7  
@PC + disp16  
addr16  
Register indirect with index  
Register indirect with index  
PC indirect with 16-bit displacement  
Direct address  
0
0
2
2
Note : The number of bytes in the address extension is indicated by the “+” symbol in the “#” (number of bytes)  
column in the tables of instructions.  
116  
MB90570 Series  
Table 4 Number of Execution Cycles for Each Type of Addressing  
(a)  
Number of register accesses  
for each type of addressing  
Code  
Operand  
Number of execution cycles  
for each type of addressing  
Ri  
RWi  
RLi  
00 to 07  
Listed in tables of instructions Listed in tables of instructions  
08 to 0B  
0C to 0F  
10 to 17  
18 to 1B  
@RWj  
2
4
2
2
1
2
1
1
@RWj +  
@RWi + disp8  
@RWj + disp16  
1C  
1D  
1E  
1F  
@RW0 + RW7  
@RW1 + RW7  
@PC + disp16  
addr16  
4
4
2
1
2
2
0
0
Note : “(a)” is used in the “~” (number of states) column and column B (correction value) in the tables of instructions.  
Table 5 Compensation Values for Number of Cycles Used to Calculate Number of Actual Cycles  
(b) byte  
(c) word  
(d) long  
Operand  
Cycles  
Access  
Cycles  
Access  
Cycles  
Access  
Internal register  
+0  
1
+0  
1
+0  
2
Internal memory even address  
Internal memory odd address  
+0  
+0  
1
1
+0  
+2  
1
2
+0  
+4  
2
4
Even address on external data bus (16 bits)  
Odd address on external data bus (16 bits)  
+1  
+1  
1
1
+1  
+4  
1
2
+2  
+8  
2
4
External data bus (8 bits)  
+1  
1
+4  
2
+8  
4
Notes: “(b)”, “(c)”, and “(d)” are used in the “~” (number of states) column and column B (correction value)  
in the tables of instructions.  
When the external data bus is used, it is necessary to add in the number of wait cycles used for ready  
input and automatic ready.  
Table 6 Correction Values for Number of Cycles Used to Calculate Number of Program Fetch Cycles  
Instruction  
Internal memory  
Byte boundary  
Word boundary  
+3  
+2  
+3  
External data bus (16 bits)  
External data bus (8 bits)  
Notes: When the external data bus is used, it is necessary to add in the number of wait cycles used for ready  
input and automatic ready.  
Because instruction execution is not slowed down by all program fetches in actuality, these correction  
values should be used for “worst case” calculations.  
117  
MB90570 Series  
Table 7 Transfer Instructions (Byte) [41 Instructions]  
RG  
LH AH  
I
S
T
N
Z
V
C
RMW  
Mnemonic  
#
~
B
Operation  
MOV  
MOV  
MOV  
MOV  
MOV  
MOV  
MOV  
MOV  
MOV  
A, dir  
A, addr16  
A, Ri  
A, ear  
A, eam  
A, io  
A, #imm8  
A, @A  
A, @RLi+disp8  
2
3
1
2
3
4
2
2
0
0
1
1
0
0
0
0
2
0
(b) byte (A) (dir)  
(b) byte (A) (addr16)  
Z
Z
Z
Z
Z
Z
Z
Z
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
0
0
byte (A) (Ri)  
byte (A) (ear)  
2+ 3+ (a)  
(b) byte (A) (eam)  
(b) byte (A) (io)  
2
2
2
3
1
3
2
3
10  
1
0
byte (A) imm8  
(b) byte (A) ((A))  
(b) byte (A) ((RLi)+disp8) Z  
MOVN A, #imm4  
0
byte (A) imm4  
Z
– R  
MOVX A, dir  
MOVX A, addr16  
MOVX A, Ri  
MOVX A, ear  
MOVX A, eam  
MOVX A, io  
MOVX A, #imm8  
MOVX A, @A  
MOVX A,@RWi+disp8  
MOVX A, @RLi+disp8  
2
3
2
2
3
4
2
2
0
0
1
1
0
0
0
0
1
2
(b) byte (A) (dir)  
(b) byte (A) (addr16)  
X
X
X
X
X
X
X
X
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
0
0
byte (A) (Ri)  
byte (A) (ear)  
2+ 3+ (a)  
(b) byte (A) (eam)  
(b) byte (A) (io)  
2
2
2
2
3
3
2
3
5
10  
0
byte (A) imm8  
(b) byte (A) ((A))  
(b) byte (A) ((RWi)+disp8) X  
(b) byte (A) ((RLi)+disp8) X  
MOV  
MOV  
MOV  
MOV  
MOV  
MOV  
MOV  
MOV  
MOV  
MOV  
MOV  
MOV  
MOV  
MOV  
MOV  
MOV  
MOV  
dir, A  
addr16, A  
Ri, A  
ear, A  
eam, A  
io, A  
@RLi+disp8, A  
Ri, ear  
Ri, eam  
ear, Ri  
eam, Ri  
Ri, #imm8  
io, #imm8  
dir, #imm8  
ear, #imm8  
eam, #imm8  
@AL, AH  
2
3
1
2
3
4
2
2
0
0
1
1
0
0
2
2
1
2
1
1
0
0
1
0
(b) byte (dir) (A)  
(b) byte (addr16) (A)  
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
0
0
byte (Ri) (A)  
byte (ear) (A)  
2+ 3+ (a)  
(b) byte (eam) (A)  
(b) byte (io) (A)  
(b) byte ((RLi) +disp8) (A) –  
2
3
2
3
10  
3
0
byte (Ri) (ear)  
(b) byte (Ri) (eam)  
byte (ear) (Ri)  
(b) byte (eam) (Ri)  
byte (Ri) imm8  
2+ 4+ (a)  
2
2+ 5+ (a)  
2
3
3
3
4
0
2
5
5
2
0
(b) byte (io) imm8  
(b) byte (dir) imm8  
0
byte (ear) imm8  
3+ 4+ (a)  
(b) byte (eam) imm8  
/MOV @A, T  
2
2
3
0
(b) byte ((A)) (AH)  
*
*
XCH  
XCH  
XCH  
XCH  
A, ear  
4
2
0
4
2
0
byte (A) (ear)  
2× (b) byte (A) (eam)  
byte (Ri) (ear)  
2× (b) byte (Ri) (eam)  
Z
Z
A, eam  
Ri, ear  
Ri, eam  
2+ 5+ (a)  
2
2+ 9+ (a)  
7
0
Note : For an explanation of “(a)” to “(d)”, refer to Table 4, “Number of Execution Cycles for Each Type of Addressing,”  
and Table 5, “Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles.”  
118  
MB90570 Series  
Table 8 Transfer Instructions (Word/Long Word) [38 Instructions]  
RG  
LH AH  
I
S
T
N
Z
V
C
RMW  
Mnemonic  
MOVW A, dir  
MOVW A, addr16  
MOVW A, SP  
MOVW A, RWi  
MOVW A, ear  
MOVW A, eam  
MOVW A, io  
MOVW A, @A  
#
~
B
Operation  
2
3
1
1
2
3
4
1
2
2
0
0
0
1
1
0
0
0
0
1
2
(c) word (A) (dir)  
(c) word (A) (addr16)  
0
0
0
(c) word (A) (eam)  
(c) word (A) (io)  
(c) word (A) ((A))  
0
(c)  
(c)  
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
word (A) (SP)  
word (A) (RWi)  
word (A) (ear)  
2+ 3+ (a)  
2
2
3
2
3
3
3
2
5
10  
MOVW A, #imm16  
MOVW A,@RWi+disp8  
MOVW A, @RLi+disp8  
word (A) imm16  
word (A) ((RWi) +disp8)  
word (A) ((RLi) +disp8)  
MOVW dir, A  
MOVW addr16, A  
MOVW SP, A  
MOVW RWi, A  
MOVW ear, A  
MOVW eam, A  
MOVW io, A  
MOVW @RWi+disp8,A  
MOVW @RLi+disp8, A  
MOVW RWi, ear  
MOVW RWi, eam  
MOVW ear, RWi  
MOVW eam, RWi  
MOVW RWi, #imm16  
MOVW io, #imm16  
MOVW ear, #imm16  
MOVW eam, #imm16  
MOVW @AL, AH  
/MOVW@A, T  
2
3
1
1
2
3
4
1
2
2
0
0
0
1
1
0
0
1
2
2
1
2
1
1
0
1
0
(c) word (dir) (A)  
(c) word (addr16) (A)  
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
0
0
0
word (SP) (A)  
word (RWi) (A)  
word (ear) (A)  
2+ 3+ (a)  
(c) word (eam) (A)  
(c) word (io) (A)  
2
2
3
2
3
5
10  
3
word ((RWi) +disp8) (A)  
word ((RLi) +disp8) (A)  
(c)  
(c)  
(0) word (RWi) (ear)  
(c) word (RWi) (eam)  
2+ 4+ (a)  
2
2+ 5+ (a)  
3
4
4
4
0
word (ear) (RWi)  
(c) word (eam) (RWi)  
word (RWi) imm16  
(c) word (io) imm16  
word (ear) imm16  
2
5
2
0
0
4+ 4+ (a)  
(c) word (eam) imm16  
2
3
4
0
(c) word ((A)) (AH)  
*
*
XCHW A, ear  
2
2
0
4
2
0
word (A) (ear)  
2× (c) word (A) (eam)  
word (RWi) (ear)  
2× (c) word (RWi) (eam)  
XCHW A, eam  
XCHW RWi, ear  
XCHW RWi, eam  
2+ 5+ (a)  
2
2+ 9+ (a)  
7
0
MOVL A, ear  
MOVL A, eam  
MOVL A, #imm32  
2
4
2
0
0
0
long (A) (ear)  
*
*
*
*
*
*
2+ 5+ (a)  
5
(d) long (A) (eam)  
0
3
long (A) imm32  
long (ear) (A)  
MOVL ear, A  
MOVL eam, A  
2
4
2
0
0
*
*
*
*
2+ 5+ (a)  
(d) long (eam) (A)  
Note : For an explanation of “(a)” to “(d)”, refer to Table 4, “Number of Execution Cycles for Each Type of Addressing,”  
and Table 5, “Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles.”  
119  
MB90570 Series  
Table 9 Addition and Subtraction Instructions (Byte/Word/Long Word) [42 Instructions]  
RG  
LH AH  
I
S
T
N
Z
V
C
RMW  
Mnemonic  
ADD A,#imm8  
#
~
B
Operation  
2
2
2
2
5
3
0
0
1
0
2
0
0
1
0
0
0
0
1
0
2
0
0
1
0
0
0
byte (A) (A) +imm8  
Z
Z
Z
Z
Z
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
ADD  
ADD  
ADD  
ADD  
ADD  
ADDC  
A, dir  
A, ear  
A, eam  
ear, A  
eam, A  
A
(b) byte (A) (A) +(dir)  
byte (A) (A) +(ear)  
(b) byte (A) (A) +(eam)  
byte (ear) (ear) + (A)  
2× (b) byte (eam) (eam) + (A)  
0
2+ 4+ (a)  
2
2+ 5+ (a)  
1
2
3
0
2
3
0
0
byte (A) (AH) + (AL) + (C) Z  
byte (A) (A) + (ear) + (C)  
ADDC A, ear  
ADDC A, eam  
ADDDC A  
Z
2+ 4+ (a)  
(b) byte (A) (A) + (eam) + (C) Z  
byte (A) (AH) + (AL) + (C) (decimal)  
1
2
2
2
3
2
5
3
0
0
Z
Z
Z
Z
Z
SUB  
SUB  
SUB  
SUB  
SUB  
SUB  
SUBC  
A, #imm8  
A, dir  
A, ear  
A, eam  
ear, A  
eam, A  
A
byte (A) (A) –imm8  
(b) byte (A) (A) – (dir)  
byte (A) (A) – (ear)  
(b) byte (A) (A) – (eam)  
byte (ear) (ear) – (A)  
2× (b) byte (eam) (eam) – (A)  
0
2+ 4+ (a)  
2
2+ 5+ (a)  
1
2
2+ 4+ (a)  
1
3
0
2
3
0
0
byte (A) (AH) – (AL) – (C) Z  
byte (A) (A) – (ear) – (C)  
SUBC A, ear  
SUBC A, eam  
SUBDC A  
Z
(b) byte (A) (A) – (eam) – (C) Z  
byte (A) (AH) – (AL) – (C) (decimal)  
3
0
Z
ADDW A  
1
2
2
3
0
1
0
0
2
0
1
0
0
1
0
0
2
0
1
0
0
0
word (A) (AH) + (AL)  
word (A) (A) +(ear)  
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
ADDW A, ear  
ADDW A, eam  
ADDW A, #imm16  
ADDW ear, A  
ADDW eam, A  
ADDCWA, ear  
ADDCWA, eam  
SUBW A  
SUBW A, ear  
SUBW A, eam  
SUBW A, #imm16  
SUBW ear, A  
SUBW eam, A  
SUBCW A, ear  
SUBCW A, eam  
2+ 4+ (a)  
3
2
2+ 5+ (a)  
2
2+ 4+ (a)  
1
2
2+ 4+ (a)  
3
2
(c) word (A) (A) +(eam)  
0
0
2
3
word (A) (A) +imm16  
word (ear) (ear) + (A)  
2× (c) word (eam) (eam) + (A)  
word (A) (A) + (ear) + (C)  
3
0
(c) word (A) (A) + (eam) + (C) –  
0
0
(c) word (A) (A) – (eam)  
0
0
2
3
word (A) (AH) – (AL)  
word (A) (A) – (ear)  
2
3
word (A) (A) –imm16  
word (ear) (ear) – (A)  
2+ 5+ (a)  
2
2+ 4+ (a)  
2× (c) word (eam) (eam) – (A)  
word (A) (A) – (ear) – (C)  
3
0
(c) word (A) (A) – (eam) – (C) –  
ADDL A, ear  
2
6
2
0
0
2
0
0
0
long (A) (A) + (ear)  
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
ADDL A, eam  
ADDL A, #imm32  
SUBL A, ear  
SUBL A, eam  
SUBL A, #imm32  
2+ 7+ (a)  
5
2
2+ 7+ (a)  
5
(d) long (A) (A) + (eam)  
0
0
4
6
long (A) (A) +imm32  
long (A) (A) – (ear)  
(d) long (A) (A) – (eam)  
long (A) (A) –imm32  
4
0
Note : For an explanation of “(a)” to “(d)”, refer to Table 4, “Number of Execution Cycles for Each Type of Addressing,”  
and Table 5, “Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles.”  
120  
MB90570 Series  
Table 10 Increment and Decrement Instructions (Byte/Word/Long Word) [12 Instructions]  
RG  
LH AH  
I
S
T
N
Z
V
C
RMW  
Mnemonic  
#
~
B
Operation  
INC  
INC  
ear  
eam  
2
2
2
0
0
byte (ear) (ear) +1  
*
*
*
*
*
*
*
2+ 5+ (a)  
2× (b) byte (eam) (eam) +1  
DEC  
DEC  
ear  
eam  
2
3
2
0
0
byte (ear) (ear) –1  
*
*
*
*
*
*
*
2+ 5+ (a)  
2× (b) byte (eam) (eam) –1  
INCW ear  
INCW eam  
2
3
2
0
0
word (ear) (ear) +1  
*
*
*
*
*
*
*
2+ 5+ (a)  
2× (c) word (eam) (eam) +1  
DECW ear  
DECW eam  
2
3
2
0
0
word (ear) (ear) –1  
*
*
*
*
*
*
*
2+ 5+ (a)  
2× (c) word (eam) (eam) –1  
INCL ear  
INCL eam  
2
7
4
0
0
long (ear) (ear) +1  
*
*
*
*
*
*
*
2+ 9+ (a)  
2× (d) long (eam) (eam) +1  
DECL ear  
DECL eam  
2
7
4
0
0
long (ear) (ear) –1  
*
*
*
*
*
*
*
2+ 9+ (a)  
2× (d) long (eam) (eam) –1  
Note : For an explanation of “(a)” to “(d)”, refer to Table 4, “Number of Execution Cycles for Each Type of Addressing,”  
and Table 5, “Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles.”  
Table 11 Compare Instructions (Byte/Word/Long Word) [11 Instructions]  
RG  
LH AH  
I
S
T
N
Z
V
C
RMW  
Mnemonic  
#
~
B
Operation  
CMP  
A
1
2
1
2
0
1
0
0
0
0
byte (AH) – (AL)  
byte (A) (ear)  
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
CMP  
CMP  
CMP  
A, ear  
A, eam  
A, #imm8  
2+ 3+ (a)  
2
(b) byte (A) (eam)  
0
2
byte (A) imm8  
CMPW A  
1
2
1
2
0
1
0
0
0
0
word (AH) – (AL)  
word (A) (ear)  
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
CMPW A, ear  
CMPW A, eam  
CMPW A, #imm16  
2+ 3+ (a)  
3
(c) word (A) (eam)  
0
2
word (A) imm16  
CMPL A, ear  
CMPL A, eam  
CMPL A, #imm32  
2
6
2
0
0
0
word (A) (ear)  
*
*
*
*
*
*
*
*
*
*
*
*
2+ 7+ (a)  
5
(d) word (A) (eam)  
word (A) imm32  
3
0
Note:Foranexplanationof(a)to(d)”, refertoTable4, “NumberofExecutionCyclesforEachTypeofAddressing,”  
and Table 5, “Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles.”  
121  
MB90570 Series  
Table 12 Multiplication and Division Instructions (Byte/Word/Long Word) [11 Instructions]  
LH AH  
I
S
T
N
Z
V
C
RMW  
RG  
Mnemonic  
#
~
B
Operation  
1
DIVU  
A
1
0
0 word (AH) /byte (AL)  
*
*
*
Quotient byte (AL) Remainder byte (AH)  
2
DIVU  
DIVU  
A, ear  
2
1
0
1
0
0 word (A)/byte (ear)  
*
*
*
*
*
*
*
*
*
Quotient byte (A) Remainder byte (ear)  
6
3
A, eam 2+  
word (A)/byte (eam)  
Quotient byte (A) Remainder byte (eam)  
*
*
4
DIVUW A, ear  
2
long (A)/word (ear)  
Quotient word (A) Remainder word (ear)  
0
*
7
5
DIVUW A, eam 2+  
long (A)/word (eam)  
Quotient word (A) Remainder word (eam)  
*
*
8
MULU  
MULU A, ear  
MULU A, eam 2+  
A
1
2
0
1
0
byte (AH) *byte (AL) word (A)  
byte (A) *byte (ear) word (A)  
byte (A) *byte (eam) word (A)  
0
0
(b)  
*
9
*
10  
*
MULUW A  
MULUW A, ear  
MULUW A, eam 2+  
1
2
11  
12  
13  
0
1
0
word (AH) *word (AL) long (A)  
word (A) *word (ear) long (A)  
word (A) *word (eam) long (A)  
0
0
(c)  
*
*
*
*1: 3 when the result is zero, 7 when an overflow occurs, and 15 normally.  
*2: 4 when the result is zero, 8 when an overflow occurs, and 16 normally.  
*3: 6 + (a) when the result is zero, 9 + (a) when an overflow occurs, and 19 + (a) normally.  
*4: 4 when the result is zero, 7 when an overflow occurs, and 22 normally.  
*5: 6 + (a) when the result is zero, 8 + (a) when an overflow occurs, and 26 + (a) normally.  
*6: (b) when the result is zero or when an overflow occurs, and 2 × (b) normally.  
*7: (c) when the result is zero or when an overflow occurs, and 2 × (c) normally.  
*8: 3 when byte (AH) is zero, and 7 when byte (AH) is not zero.  
*9: 4 when byte (ear) is zero, and 8 when byte (ear) is not zero.  
*10: 5 + (a) when byte (eam) is zero, and 9 + (a) when byte (eam) is not 0.  
*11: 3 when word (AH) is zero, and 11 when word (AH) is not zero.  
*12: 4 when word (ear) is zero, and 12 when word (ear) is not zero.  
*13: 5 + (a) when word (eam) is zero, and 13 + (a) when word (eam) is not zero.  
Note : For an explanation of “(a)” to “(d)”, refer to Table 4, “Number of Execution Cycles for Each Type of Addressing,”  
and Table 5, “Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles.”  
122  
MB90570 Series  
Table 13 Signed Multiplication and Division Instructions (Byte/Word/Long Word) [11 Instructions]  
RG  
LH AH  
I
S
T
N
Z
V
C
RMW  
Mnemonic  
#
~
B
Operation  
DIV  
A
2
*1  
0
0
word (AH) /byte (AL)  
Quotient byte (AL)  
Remainder byte (AH)  
word (A)/byte (ear)  
Z
Z
Z
*
*
DIV  
A, ear  
2
*2  
1
0
1
0
0
*
*
*
*
*
*
*
*
Quotient byte (A)  
Remainder byte (ear)  
DIV  
A, eam 2 + *3  
*6 word (A)/byte (eam)  
Quotient byte (A)  
Remainder byte (eam)  
long (A)/word (ear)  
DIVW  
DIVW  
A, ear  
2
*4  
0
Quotient word (A)  
Remainder word (ear)  
A, eam 2+ *5  
*7 long (A)/word (eam)  
Quotient word (A)  
Remainder word (eam)  
MULU  
MULU  
MULU  
MULUW A  
MULUW A, ear  
A
A, ear  
A, eam 2 + *10  
2
2
*8  
*9  
0
1
0
0
1
0
0
0
byte (AH) *byte (AL) word (A)  
byte (A) *byte (ear) word (A)  
(b) byte (A) *byte (eam) word (A)  
0
0
2
2
*11  
*12  
word (AH) *word (AL) long (A)  
word (A) *word (ear) long (A)  
MULUW A, eam 2 + *13  
(c) word (A) *word (eam) long (A)  
*1: Set to 3 when the division-by-0, 8 or 18 for an overflow, and 18 for normal operation.  
*2: Set to 3 when the division-by-0, 10 or 21 for an overflow, and 22 for normal operation.  
*3: Set to 4 + (a) when the division-by-0, 11 + (a) or 22 + (a) for an overflow, and 23 + (a) for normal operation.  
*4: Positive dividend: Set to 4 when the division-by-0, 10 or 29 for an overflow, and 30 for normal operation.  
Negative dividend: Set to 4 when the division-by-0, 11 or 30 for an overflow and 31 for normal operation.  
*5: Positive dividend:Set to 4 + (a) when the division-by-0, 11 + (a) or 30 + (a) for an overflow, and 31 + (a) for  
normal operation.  
Negative dividend:Set to 4 + (a) when the division-by-0, 12 + (a) or 31 + (a) for an overflow, and 32 + (a) for  
normal operation.  
*6: When the division-by-0, (b) for an overflow, and 2 × (b) for normal operation.  
*7: When the division-by-0, (c) for an overflow, and 2 × (c) for normal operation.  
*8: Set to 3 when byte (AH) is zero, 12 when the result is positive, and 13 when the result is negative.  
*9: Set to 3 when byte (ear) is zero, 12 when the result is positive, and 13 when the result is negative.  
*10: Setto4+(a)whenbyte(eam)iszero, 13+(a)whentheresultispositive, and14+(a)whentheresultisnegative.  
*11: Set to 3 when word (AH) is zero, 12 when the result is positive, and 13 when the result is negative.  
*12: Set to 3 when word (ear) is zero, 16 when the result is positive, and 19 when the result is negative.  
*13: Set to 4 + (a) when word (eam) is zero, 17 + (a) when the result is positive, and 20 + (a) when the result is  
negative.  
Notes: • When overflow occurs during DIV or DIVW instruction execution, the number of execution cycles takes  
two values because of detection before and after an operation.  
• When overflow occurs during DIV or DIVW instruction execution, the contents of AL are destroyed.  
• For (a) to (d), refer to “Table 4 Number of Execution Cycles for Effective Address in Addressing Modes”  
and “Table 5 Correction Values for Number of Cycles for Calculating Actual Number of Cycles.”  
123  
MB90570 Series  
Table 14 Logical 1 Instructions (Byte/Word) [39 Instructions]  
RG  
LH AH  
I
S
T
N
Z
V
C
RMW  
Mnemonic  
AND A, #imm8  
#
~
B
Operation  
2
2
2
3
0
1
0
2
0
0
0
byte (A) (A) and imm8  
byte (A) (A) and (ear)  
*
*
*
*
*
*
*
*
*
*
R
R
R
R
R
*
AND  
AND  
AND  
AND  
A, ear  
A, eam  
ear, A  
2+ 4+ (a)  
2
2+ 5+ (a)  
(b) byte (A) (A) and (eam)  
byte (ear) (ear) and (A)  
3
0
eam, A  
2× (b) byte (eam) (eam) and (A) –  
OR  
OR  
OR  
OR  
OR  
A, #imm8  
A, ear  
A, eam  
ear, A  
2
2
2
3
0
1
0
2
0
0
0
byte (A) (A) or imm8  
byte (A) (A) or (ear)  
*
*
*
*
*
*
*
*
*
*
R
R
R
R
R
*
2+ 4+ (a)  
2
2+ 5+ (a)  
(b) byte (A) (A) or (eam)  
byte (ear) (ear) or (A)  
2× (b) byte (eam) (eam) or (A)  
3
0
eam, A  
XOR A, #imm8  
XOR A, ear  
XOR A, eam  
XOR ear, A  
XOR eam, A  
2
2
2
3
0
1
0
2
0
0
0
byte (A) (A) xor imm8  
byte (A) (A) xor (ear)  
*
*
*
*
*
*
*
*
*
*
R
R
R
R
R
*
2+ 4+ (a)  
2
2+ 5+ (a)  
(b) byte (A) (A) xor (eam)  
byte (ear) (ear) xor (A)  
3
0
2× (b) byte (eam) (eam) xor (A) –  
NOT  
NOT  
NOT  
A
ear  
eam  
1
2
2
3
0
2
0
0
0
byte (A) not (A)  
byte (ear) not (ear)  
*
*
*
*
*
*
R
R
R
*
2+ 5+ (a)  
2× (b) byte (eam) not (eam)  
ANDW A  
1
3
2
2
2
3
0
0
1
0
2
0
0
0
0
word (A) (AH) and (A)  
word (A) (A) and imm16  
word (A) (A) and (ear)  
*
*
*
*
*
*
*
*
*
*
*
*
R
R
R
R
R
R
*
ANDW A, #imm16  
ANDW A, ear  
ANDW A, eam  
ANDW ear, A  
ANDW eam, A  
2+ 4+ (a)  
2
2+ 5+ (a)  
(c) word (A) (A) and (eam)  
word (ear) (ear) and (A)  
2× (c) word (eam) (eam) and (A)  
3
0
ORW  
A
1
3
2
2
2
3
0
0
1
0
2
0
0
0
0
word (A) (AH) or (A)  
word (A) (A) or imm16  
word (A) (A) or (ear)  
*
*
*
*
*
*
*
*
*
*
*
*
R
R
R
R
R
R
*
ORW A, #imm16  
ORW A, ear  
ORW A, eam  
ORW ear, A  
2+ 4+ (a)  
2
2+ 5+ (a)  
(c) word (A) (A) or (eam)  
word (ear) (ear) or (A)  
2× (c) word (eam) (eam) or (A)  
3
0
ORW eam, A  
XORW A  
1
3
2
2
2
3
0
0
1
0
2
0
0
0
0
word (A) (AH) xor (A)  
word (A) (A) xor imm16  
word (A) (A) xor (ear)  
*
*
*
*
*
*
*
*
*
*
*
*
R
R
R
R
R
R
*
XORW A, #imm16  
XORW A, ear  
XORW A, eam  
XORW ear, A  
XORW eam, A  
2+ 4+ (a)  
2
2+ 5+ (a)  
(c) word (A) (A) xor (eam)  
word (ear) (ear) xor (A)  
2× (c) word (eam) (eam) xor (A)  
3
0
NOTW A  
NOTW ear  
NOTW eam  
1
2
2
3
0
2
0
0
0
word (A) not (A)  
word (ear) not (ear)  
*
*
*
*
*
*
R
R
R
*
2+ 5+ (a)  
2× (c) word (eam) not (eam)  
Note : For an explanation of “(a)” to “(d)”, refer to Table 4, “Number of Execution Cycles for Each Type of Addressing,”  
and Table 5, “Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles.”  
124  
MB90570 Series  
Table 15 Logical 2 Instructions (Long Word) [6 Instructions]  
RG  
LH AH  
I
S
T
N
Z
V
C
RMW  
Mnemonic  
#
~
B
Operation  
ANDL A, ear  
ANDL A, eam  
2
6
2
0
0
long (A) (A) and (ear)  
*
*
*
*
R
R
2+ 7+ (a)  
(d) long (A) (A) and (eam)  
ORL  
ORL  
A, ear  
A, eam  
2
6
2
0
0
long (A) (A) or (ear)  
*
*
*
*
R
R
2+ 7+ (a)  
(d) long (A) (A) or (eam)  
XORL A, ea  
XORL A, eam  
2
6
2
0
0
long (A) (A) xor (ear)  
*
*
*
*
R
R
2+ 7+ (a)  
(d) long (A) (A) xor (eam)  
Note : For an explanation of “(a)” to “(d)”, refer to Table 4, “Number of Execution Cycles for Each Type of Addressing,”  
and Table 5, “Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles.”  
Table 16 Sign Inversion Instructions (Byte/Word) [6 Instructions]  
RG  
LH AH  
I
S
T
N
Z
V
C
RMW  
Mnemonic  
#
~
B
Operation  
NEG  
A
1
2
0
0
byte (A) 0 – (A)  
X
*
*
*
*
NEG ear  
NEG eam  
2
3
2
0
0
byte (ear) 0 – (ear)  
*
*
*
*
*
*
*
*
*
2+ 5+ (a)  
2× (b) byte (eam) 0 – (eam)  
NEGW A  
1
2
0
0
word (A) 0 – (A)  
*
*
*
*
NEGW ear  
NEGW eam  
2
3
2
0
0
word (ear) 0 – (ear)  
*
*
*
*
*
*
*
*
*
2+ 5+ (a)  
2× (c) word (eam) 0 – (eam)  
Note : For an explanation of “(a)” to “(d)”, refer to Table 4, “Number of Execution Cycles for Each Type of Addressing,”  
and Table 5, “Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles.”  
Table 17 Normalize Instruction (Long Word) [1 Instruction]  
LH AH  
I
S
T
N
Z
V
C
RMW  
Mnemonic  
#
~
RG  
B
Operation  
1
NRML A, R0  
2
1
0
long (A) Shift until first digit is “1” –  
byte (R0) Current shift count  
*
*
*1: 4 when the contents of the accumulator are all zeroes, 6 + (R0) in all other cases (shift count).  
Note : For an explanation of “(a)” to “(d)”, refer to Table 4, “Number of Execution Cycles for Each Type of Addressing,”  
and Table 5, “Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles.”  
125  
MB90570 Series  
Table 18 Shift Instructions (Byte/Word/Long Word) [18 Instructions]  
RG  
LH AH  
I
S
T
N
Z
V
C
RMW  
Mnemonic  
RORC A  
#
~
B
Operation  
byte (A) Right rotation with carry  
byte (A) Left rotation with carry  
2
2
2
2
0
0
0
0
*
*
*
*
*
*
ROLC A  
RORC ear  
RORC eam  
ROLC ear  
ROLC eam  
byte (ear) Right rotation with carry  
byte (eam) Right rotation with carry  
byte (ear) Left rotation with carry  
byte (eam) Left rotation with carry  
2
2+  
2
3
2
0
*
*
*
*
*
*
*
*
*
*
*
*
*
*
5+ (a)  
0 2× (b)  
2
0 2× (b)  
0
3
2+  
5+ (a)  
byte (A) Arithmetic right barrel shift (A, R0)  
byte (A) Logical right barrel shift (A, R0)  
byte (A) Logical left barrel shift (A, R0)  
ASR A, R0  
LSR A, R0  
LSL A, R0  
1
2
2
2
1
1
1
0
0
0
*
*
*
*
*
*
*
*
*
*
*
*
1
*
1
*
word (A) Arithmetic right shift (A, 1 bit)  
word (A) Logical right shift (A, 1 bit)  
word (A) Logical left shift (A, 1 bit)  
ASRW A  
LSRW A/SHRW A  
LSLW A/SHLW A  
1
1
1
2
2
2
0
0
0
0
0
0
*
*
*
R
*
*
*
*
*
*
*
1
word (A) Arithmetic right barrel shift (A,  
R0)  
ASRW A, R0  
LSRW A, R0  
LSLW A, R0  
2
2
2
1
1
1
0
0
0
*
*
*
*
*
*
*
*
*
*
*
*
1
*
1
word (A) Logical right barrel shift (A, R0)  
word (A) Logical left barrel shift (A, R0)  
*
2
ASRL A, R0  
LSRL A, R0  
LSLL A, R0  
long (A) Arithmetic right shift (A, R0)  
long (A) Logical right barrel shift (A, R0)  
long (A) Logical left barrel shift (A, R0)  
2
2
2
1
1
1
0
0
0
*
*
*
*
*
*
*
*
*
*
*
*
2
*
2
*
*1: 6 when R0 is 0, 5 + (R0) in all other cases.  
*2: 6 when R0 is 0, 6 + (R0) in all other cases.  
Note : For an explanation of “(a)” to “(d)”, refer to Table 4, “Number of Execution Cycles for Each Type of Addressing,”  
and Table 5, “Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles.”  
126  
MB90570 Series  
Table 19 Branch 1 Instructions [31 Instructions]  
RG  
LH AH  
I
S
T
N
Z
V
C
RMW  
Mnemonic  
#
~
B
Operation  
1
BZ/BEQ  
BNZ/BNE rel  
BC/BLO  
BNC/BHS rel  
rel  
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Branch when (Z) = 1  
Branch when (Z) = 0  
Branch when (C) = 1  
Branch when (C) = 0  
Branch when (N) = 1  
Branch when (N) = 0  
Branch when (V) = 1  
Branch when (V) = 0  
Branch when (T) = 1  
Branch when (T) = 0  
Branch when (V) xor (N) = 1  
Branch when (V) xor (N) = 0  
Branch when ((V) xor (N)) or (Z) = 1  
Branch when ((V) xor (N)) or (Z) = 0  
Branch when (C) or (Z) = 1  
Branch when (C) or (Z) = 0  
Branch unconditionally  
1
1
rel  
1
1
BN  
BP  
BV  
BNV  
BT  
BNT  
BLT  
BGE  
BLE  
BGT  
BLS  
BHI  
BRA  
rel  
rel  
rel  
rel  
rel  
rel  
rel  
rel  
rel  
rel  
rel  
rel  
rel  
1
1
1
1
1
1
1
1
1
1
1
1
*
JMP  
JMP  
JMP  
JMP  
@A  
1
3
2
2
3
3
0
0
1
0
2
0
0
0
0
0
word (PC) (A)  
word (PC) addr16  
word (PC) (ear)  
addr16  
@ear  
@eam  
2+ 4+ (a)  
2
2+ 6+ (a)  
4
(c) word (PC) (eam)  
0
(d)  
0
JMPP @ear *3  
JMPP @eam *3  
JMPP addr24  
word (PC) (ear), (PCB) (ear +2)  
5
word (PC) (eam), (PCB) (eam +2)  
4
word (PC) ad24 0 to 15,  
(PCB) ad24 16 to 23  
CALL @ear *4  
CALL @eam *4  
CALL addr16 *5  
CALLV #vct4 *5  
CALLP @ear *6  
2
6
1
0
0
0
2
(c) word (PC) (ear)  
2+ 7+ (a)  
2× (c) word (PC) (eam)  
(c) word (PC) addr16  
2× (c) Vector call instruction  
2× (c) word (PC) (ear) 0 to 15,  
3
1
2
6
7
10  
(PCB) (ear) 16 to 23  
2
CALLP @eam *6  
CALLP addr24 *7  
2+ 11+ (a)  
10  
0
0
word (PC) (eam) 0 to 15,  
(PCB) (eam) 16 to 23  
word (PC) addr0 to 15,  
(PCB) addr16 to 23  
*
4
2× (c)  
*1: 4 when branching, 3 when not branching.  
*2: (b) + 3 × (c)  
*3: Read (word) branch address.  
*4: W: Save (word) to stack; R: read (word) branch address.  
*5: Save (word) to stack.  
*6: W: Save (long word) to W stack; R: read (long word) R branch address.  
*7: Save (long word) to stack.  
Note:Foranexplanationof(a)to(d)”, refertoTable4, “NumberofExecutionCyclesforEachTypeofAddressing,”  
and Table 5, “Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles.”  
127  
MB90570 Series  
Table 20 Branch 2 Instructions [19 Instructions]  
RG  
LH AH  
I
S
T
N
Z
V
C
RMW  
Mnemonic  
#
~
B
Operation  
1
Branch when byte (A) imm8  
Branch when word (A) imm16  
CBNE A, #imm8, rel  
CWBNE A, #imm16, rel  
3
4
0
0
0
0
– – – – *  
– – – – *  
*
*
*
*
*
*
*
*
1
2
Branch when byte (ear) imm8  
Branch when byte (eam) imm8  
Branch when word (ear) imm16  
Branch when word (eam) imm16  
CBNE ear, #imm8, rel  
4
4+  
5
*
*
*
*
1
0
1
0
0
(b)  
0
– – – – *  
– – – – *  
– – – – *  
– – – – *  
*
*
*
*
*
*
*
*
*
*
*
*
CBNE  
eam, #imm8, rel*10  
3
4
CWBNE ear, #imm16, rel  
CWBNE eam, #imm16, rel*10  
3
5+  
(c)  
5
DBNZ ear, rel  
DBNZ eam, rel  
3
2
2
0
Branch when byte (ear) =  
(ear) – 1, and (ear) 0  
– – – – *  
– – – – *  
*
*
* –  
* –  
*
*
6
*
3+  
2× (b) Branch when byte (eam) =  
(eam) – 1, and (eam) 0  
5
DWBNZ ear, rel  
DWBNZ eam, rel  
3
*
2
2
0
Branch when word (ear) =  
(ear) – 1, and (ear) 0  
– – – – *  
– – – – *  
*
*
* –  
* –  
*
6
3+  
2× (c) Branch when word (eam) =  
(eam) – 1, and (eam) 0  
*
INT  
INT  
INTP  
INT9  
RETI  
#vct8  
addr16  
addr24  
8× (c)  
6× (c)  
6× (c)  
8× (c)  
2
3
4
1
1
0
0
0
0
0
Software interrupt  
Software interrupt  
Software interrupt  
Software interrupt  
Return from interrupt  
– R S – – – – –  
– R S – – – – –  
– R S – – – – –  
– R S – – – – –  
20  
16  
17  
20  
15  
7
*
*
*
*
*
*
*
*
LINK  
#imm8  
(c)  
(c)  
2
0
At constant entry, save old  
frame pointer to stack, set  
new frame pointer, and  
allocate local pointer area  
At constant entry, retrieve old  
frame pointer from stack.  
– – – – – – – –  
6
UNLINK  
1
0
– – – – – – – –  
5
RET *8  
(c)  
(d)  
1
1
0
0
Return from subroutine  
Return from subroutine  
– – – – – – – –  
– – – – – – – –  
4
6
RETP *9  
*1: 5 when branching, 4 when not branching  
*2: 13 when branching, 12 when not branching  
*3: 7 + (a) when branching, 6 + (a) when not branching  
*4: 8 when branching, 7 when not branching  
*5: 7 when branching, 6 when not branching  
*6: 8 + (a) when branching, 7 + (a) when not branching  
*7: Set to 3 × (b) + 2 × (c) when an interrupt request occurs, and 6 × (c) for return.  
*8: Retrieve (word) from stack  
*9: Retrieve (long word) from stack  
*10: In the CBNE/CWBNE instruction, do not use the RWj+ addressing mode.  
Note : For an explanation of “(a)” to “(d)”, refer to Table 4, “Number of Execution Cycles for Each Type of Addressing,”  
and Table 5, “Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles.”  
128  
MB90570 Series  
Table 21 Other Control Instructions (Byte/Word/Long Word) [28 Instructions]  
RG  
LH AH  
I
S
T
N
Z
V
C
RMW  
Mnemonic  
PUSHW A  
PUSHW AH  
PUSHW PS  
PUSHW rlst  
#
~
B
Operation  
word (SP) (SP) –2, ((SP)) (A)  
word (SP) (SP) –2, ((SP)) (AH)  
word (SP) (SP) –2, ((SP)) (PS)  
(SP) (SP) –2n, ((SP)) (rlst)  
1
1
1
2
4
4
4
0
0
0
(c)  
(c)  
(c)  
– – – – – – –  
– – – – – – –  
– – – – – – –  
– – – – – – –  
3
5
4
*
*
*
word (A) ((SP)), (SP) ← (SP) +2  
word (AH) ((SP)), (SP) ← (SP) +2  
word (PS) ((SP)), (SP) ← (SP) +2  
(rlst) ((SP)), (SP) (SP) +2n  
POPW A  
1
1
1
2
*
– – – – – – –  
– – – – – – –  
3
3
4
0
0
0
(c)  
(c)  
(c)  
POPW AH  
POPW PS  
POPW rlst  
*
*
*
*
*
*
*
2
5
4
– – – – – – –  
*
*
*
JCTX @A  
1
Context switch instruction  
*
*
*
*
*
*
*
14  
0
6× (c)  
AND CCR, #imm8  
OR CCR, #imm8  
2
2
byte (CCR) (CCR) and imm8 –  
*
*
*
*
*
*
*
*
*
*
*
*
*
*
3
3
0
0
0
0
byte (CCR) (CCR) or imm8  
MOV RP, #imm8  
MOV ILM, #imm8  
2
2
byte (RP) imm8  
byte (ILM) imm8  
– – – – – – –  
– – – – – – –  
2
2
0
0
0
0
MOVEA RWi, ear  
MOVEA RWi, eam 2+  
MOVEA A, ear  
MOVEA A, eam  
2
word (RWi) ear  
word (RWi) eam  
word(A) ear  
*
– – – – – – –  
– – – – – – –  
– – – – – – –  
– – – – – – –  
3
1
1
0
0
0
0
0
0
2+ (a)  
1
1+ (a)  
2
2+  
word (A) eam  
*
ADDSP #imm8  
ADDSP #imm16  
2
3
word (SP) (SP) +ext (imm8)  
word (SP) (SP) +imm16  
– – – – – – –  
– – – – – – –  
3
3
0
0
0
0
1
MOV  
MOV  
A, brgl  
brg2, A  
2
2
byte (A) (brgl)  
byte (brg2) (A)  
Z
*
– – –  
– – –  
*
*
*
*
– –  
– –  
0
0
0
0
*
1
NOP  
ADB  
DTB  
PCB  
SPB  
NCC  
CMR  
1
1
1
1
1
1
1
No operation  
– – – – – – –  
– – – – – – –  
– – – – – – –  
– – – – – – –  
– – – – – – –  
– – – – – – –  
– – – – – – –  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
Prefix code for accessing AD space  
Prefix code for accessing DT space  
Prefix code for accessing PC space  
Prefix code for accessing SP space  
Prefix code for no flag change  
Prefix code for common register bank  
*1: PCB, ADB, SSB, USB, and SPB : 1 state  
DTB, DPR : 2 states  
*2: 7 + 3 × (pop count) + 2 × (last register number to be popped), 7 when rlst = 0 (no transfer register)  
*3: 29 +3 × (push count) – 3 × (last register number to be pushed), 8 when rlst = 0 (no transfer register)  
*4: Pop count × (c), or push count × (c)  
*5: Pop count or push count.  
Note : For an explanation of “(a)” to “(d)”, refer to Table 4, “Number of Execution Cycles for Each Type of Addressing,”  
and Table 5, “Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles.”  
129  
MB90570 Series  
Table 22 Bit Manipulation Instructions [21 Instructions]  
RG  
LH AH  
I
S
T
N
Z
V
C
RMW  
Mnemonic  
#
~
B
Operation  
MOVB A, dir:bp  
MOVB A, addr16:bp  
MOVB A, io:bp  
3
4
3
5
5
4
0
0
0
(b) byte (A) (dir:bp) b  
(b) byte (A) (addr16:bp) b  
(b) byte (A) (io:bp) b  
Z
Z
Z
*
*
*
*
*
*
*
*
*
MOVB dir:bp, A  
MOVB addr16:bp, A  
MOVB io:bp, A  
3
4
3
7
7
6
0
0
0
2× (b) bit (dir:bp) b (A)  
2× (b) bit (addr16:bp) b (A)  
2× (b) bit (io:bp) b (A)  
*
*
*
*
*
*
*
*
*
SETB dir:bp  
SETB addr16:bp  
SETB io:bp  
3
4
3
7
7
7
0
0
0
2× (b) bit (dir:bp) b 1  
2× (b) bit (addr16:bp) b 1  
2× (b) bit (io:bp) b 1  
*
*
*
CLRB dir:bp  
CLRB addr16:bp  
CLRB io:bp  
3
4
3
7
7
7
0
0
0
2× (b) bit (dir:bp) b 0  
2× (b) bit (addr16:bp) b 0  
2× (b) bit (io:bp) b 0  
*
*
*
1
BBC dir:bp, rel  
BBC addr16:bp, rel  
BBC io:bp, rel  
4
5
4
0
0
0
(b) Branch when (dir:bp) b = 0  
(b) Branch when (addr16:bp) b = 0  
(b) Branch when (io:bp) b = 0  
*
*
*
*
*
*
1
2
1
BBS dir:bp, rel  
BBS addr16:bp, rel  
BBS io:bp, rel  
4
5
4
0
0
0
(b) Branch when (dir:bp) b = 1  
(b) Branch when (addr16:bp) b = 1  
(b) Branch when (io:bp) b = 1  
*
*
*
*
*
*
1
2
3
Branch when (addr16:bp) b = 1, bit = 1  
SBBS addr16:bp, rel  
WBTS io:bp  
5
3
3
0
0
0
2× (b)  
*
*
*
5
4
Wait until (io:bp) b = 1  
Wait until (io:bp) b = 0  
*
*
*
4
5
WBTC io:bp  
*
*1: 8 when branching, 7 when not branching  
*2: 7 when branching, 6 when not branching  
*3: 10 when condition is satisfied, 9 when not satisfied  
*4: Undefined count  
*5: Until condition is satisfied  
Note : For an explanation of “(a)” to “(d)”, refer to Table 4, “Number of Execution Cycles for Each Type of Addressing,”  
and Table 5, “Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles.”  
Table 23 Accumulator Manipulation Instructions (Byte/Word) [6 Instructions]  
RG  
LH AH  
I
S
T
N
Z
V
C
RMW  
Mnemonic  
SWAP  
SWAPW/XCHW A,T  
EXT  
EXTW  
ZEXT  
#
~
B
Operation  
1
1
1
1
1
1
3
2
1
2
1
1
0
0
0
0
0
0
0 byte (A) 0 to 7 (A) 8 to 15  
0 word (AH) (AL)  
0 byte sign extension  
0 word sign extension  
0 byte zero extension  
0 word zero extension  
X
Z
*
X
Z
*
*
R
R
*
*
*
ZEXTW  
*
Note: For an explanation of “(a)” to “(d)”, refer to Table 4, “Number of Execution Cycles for Each Type of Addressing,”  
and Table 5, “Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles.”  
130  
MB90570 Series  
Table 24 String Instructions [10 Instructions]  
RG  
LH AH  
I
S
T
N
Z
V
C
RMW  
Mnemonic  
#
~
B
Operation  
2
5
3
Byte transfer @AH+ @AL+, counter = RW0  
Byte transfer @AH– @AL–, counter = RW0  
MOVS/MOVSI  
MOVSD  
2
2
*
*
*
*
2
5
3
*
*
1
5
4
Byte retrieval (@AH+) – AL, counter = RW0  
Byte retrieval (@AH–) – AL, counter = RW0  
SCEQ/SCEQI  
SCEQD  
2
2
*
*
*
*
*
*
*
*
*
*
*
*
1
5
4
*
*
5
3
Byte filling @AH+ AL, counter = RW0  
FISL/FILSI  
2
*
*
6m +6  
*
*
2
8
6
Word transfer @AH+ @AL+, counter = RW0  
Word transfer @AH– @AL–, counter = RW0  
MOVSW/MOVSWI 2  
*
*
*
*
2
8
6
MOVSWD  
2
*
*
1
8
7
Word retrieval (@AH+) – AL, counter = RW0  
Word retrieval (@AH–) – AL, counter = RW0  
SCWEQ/SCWEQI  
SCWEQD  
2
2
*
*
*
*
*
*
*
*
*
*
*
*
1
8
7
*
*
8
6
Word filling @AH+ AL, counter = RW0  
FILSW/FILSWI  
2
*
*
6m +6  
*
*
m: RW0 value (counter value)  
n: Loop count  
*1: 5 when RW0 is 0, 4 + 7 × (RW0) for count out, and 7 × n + 5 when match occurs  
*2: 5 when RW0 is 0, 4 + 8 × (RW0) in any other case  
*3: (b) × (RW0) + (b) × (RW0) when accessing different areas for the source and destination, calculate (b) sepa-  
rately for each.  
*4: (b) × n  
*5: 2 × (RW0)  
*6: (c) × (RW0) + (c) × (RW0) when accessing different areas for the source and destination, calculate (c)  
separately for each.  
*7: (c) × n  
*8: 2 × (RW0)  
Note : For an explanation of “(a)” to “(d)”, refer to Table 4, “Number of Execution Cycles for Each Type of Addressing,”  
and Table 5, “Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles.”  
131  
MB90570 Series  
ORDERING INFORMATION  
Part number  
Package  
Remarks  
MB90573PFF  
MB90574PFF  
MB90F574PFF  
MB90F574APFF  
120-pin Plastic LQFP  
(FPT-120P-M05)  
MB90573PFV  
MB90574PFV  
MB90574CPFV  
MB90F574PFV  
MB90F574APFV  
120-pin Plastic QFP  
(FPT-120P-M13)  
MB90574CPMT  
MB90F574APMT  
120-pin Plastic LQFP  
(FPT-120P-M21)  
132  
MB90570 Series  
PACKAGE DIMENSIONS  
120-pin plastic LQFP  
(FPT-120P-M05)  
16.00±0.20(.630±.008)SQ  
14.00±0.10(.551±.004)SQ  
90  
61  
91  
60  
0.08(.003)  
Details of "A" part  
1.50 +00..1200  
(Mounting height)  
.059 +..000048  
INDEX  
120  
31  
"A"  
0~8°  
1
30  
LEAD No.  
0.10±0.10  
(.004±.004)  
(Stand off)  
0.16±0.03  
(.006±.001)  
0.145±0.055  
(.006±.002)  
0.50±0.20  
(.020±.008)  
M
0.07(.003)  
0.40(.016)  
0.45/0.75  
(.018/.030)  
0.25(.010)  
C
Dimensions in mm (inches)  
1998 FUJITSU LIMITED F120006S-3C-4  
120-pin plastic QFP  
(FPT-120P-M13)  
22.60±0.20(.890±.008)SQ  
20.00±0.10(.787±.004)SQ  
3.85(.152)MAX  
(Mounting height)  
0.05(.002)MIN  
(STAND OFF)  
90  
61  
91  
60  
Details of "A" part  
0.15(.006)  
14.50  
(.571)  
REF  
21.60  
(.850)  
NOM  
0.15(.006)  
INDEX  
0.15(.006)MAX  
0.40(.016)MAX  
"A"  
120  
31  
M
Details of "B" part  
1
30  
LEAD No.  
0.50(.0197)  
0.20±0.10  
(.008±.004)  
0.125±0.05  
(.005±.002)  
0.08(.003)  
0
10°  
0.50±0.20(.020±.008)  
"B"  
0.10(.004)  
Dimensions in mm (inches)  
C
2000 FUJITSU LIMITED F120013S-2C-4  
133  
MB90570 Series  
120-pin plastic LQFP  
(FPT-120P-M21)  
18.00±0.20(.709±.008)SQ  
16.00±0.10(.630±.004)SQ  
90  
61  
91  
60  
0.08(.003)  
Details of "A" part  
1.50 +00..1200  
(Mounting height)  
.059 +..000048  
INDEX  
0~8°  
"A"  
120  
31  
0.10±0.05  
(.004±.002)  
(Stand off)  
1
30  
LEAD No.  
0.145 +00..0035  
.006 +..000012  
0.45/0.75  
(.018/.030)  
0.22±0.05  
(.009±.002)  
M
0.50(.020)  
0.08(.003)  
0.25(.010)  
Dimensions in mm (inches)  
C
1998 FUJITSU LIMITED F120033S-2C-2  
134  
MB90570 Series  
FUJITSU LIMITED  
For further information please contact:  
Japan  
All Rights Reserved.  
FUJITSU LIMITED  
Corporate Global Business Support Division  
Electronic Devices  
The contents of this document are subject to change without notice.  
Customers are advised to consult with FUJITSU sales  
representatives before ordering.  
Shinjuku Dai-Ichi Seimei Bldg. 7-1,  
Nishishinjuku 2-chome, Shinjuku-ku,  
Tokyo 163-0721, Japan  
Tel: +81-3-5322-3347  
Fax: +81-3-5322-3386  
The information and circuit diagrams in this document are  
presented as examples of semiconductor device applications, and  
are not intended to be incorporated in devices for actual use. Also,  
FUJITSU is unable to assume responsibility for infringement of  
any patent rights or other rights of third parties arising from the use  
of this information or circuit diagrams.  
http://edevice.fujitsu.com/  
North and South America  
FUJITSU MICROELECTRONICS, INC.  
3545 North First Street,  
San Jose, CA 95134-1804, U.S.A.  
Tel: +1-408-922-9000  
Fax: +1-408-922-9179  
The contents of this document may not be reproduced or copied  
without the permission of FUJITSU LIMITED.  
Customer Response Center  
Mon. - Fri.: 7 am - 5 pm (PST)  
Tel: +1-800-866-8608  
FUJITSU semiconductor devices are intended for use in standard  
applications (computers, office automation and other office  
equipments, industrial, communications, and measurement  
equipments, personal or household devices, etc.).  
Fax: +1-408-922-9179  
http://www.fujitsumicro.com/  
CAUTION:  
Europe  
Customers considering the use of our products in special  
applications where failure or abnormal operation may directly  
affect human lives or cause physical injury or property damage, or  
where extremely high levels of reliability are demanded (such as  
aerospace systems, atomic energy controls, sea floor repeaters,  
vehicle operating controls, medical devices for life support, etc.)  
are requested to consult with FUJITSU sales representatives before  
such use. The company will not be responsible for damages arising  
from such use without prior approval.  
FUJITSU MICROELECTRONICS EUROPE GmbH  
Am Siebenstein 6-10,  
D-63303 Dreieich-Buchschlag,  
Germany  
Tel: +49-6103-690-0  
Fax: +49-6103-690-122  
http://www.fujitsu-fme.com/  
Asia Pacific  
FUJITSU MICROELECTRONICS ASIA PTE. LTD.  
#05-08, 151 Lorong Chuan,  
New Tech Park,  
Any semiconductor devices have inherently a certain rate of failure.  
You must protect against injury, damage or loss from such failures  
by incorporating safety design measures into your facility and  
equipment such as redundancy, fire protection, and prevention of  
over-current levels and other abnormal operating conditions.  
Singapore 556741  
Tel: +65-281-0770  
Fax: +65-281-0220  
http://www.fmap.com.sg/  
If any products described in this document represent goods or  
technologies subject to certain restrictions on export under the  
Foreign Exchange and Foreign Trade Control Law of Japan, the  
prior authorization by Japanese government should be required for  
export of those products from Japan.  
Korea  
FUJITSU MICROELECTRONICS KOREA LTD.  
1702 KOSMO TOWER, 1002 Daechi-Dong,  
Kangnam-Gu,Seoul 135-280  
Korea  
Tel: +82-2-3484-7100  
Fax: +82-2-3484-7111  
F0101  
FUJITSU LIMITED Printed in Japan  

相关型号:

MB90F574APMC1

16-bit Proprietary Microcontroller
FUJITSU

MB90F574APMT

16-bit Proprietary Microcontroller
FUJITSU

MB90F574PFF

16-bit Proprietary Microcontroller
FUJITSU

MB90F574PFV

16-bit Proprietary Microcontroller
FUJITSU

MB90F574PMT

Microcontroller, 16-Bit, FLASH, 16MHz, CMOS, PQFP120, PLASTIC, LQFP-120
CYPRESS

MB90F583B

16-bit Proprietary Microcontroller
FUJITSU

MB90F583BPF

16-bit Proprietary Microcontroller
FUJITSU

MB90F583BPFF

Microcontroller
FUJITSU

MB90F583BPFV

16-bit Proprietary Microcontroller
FUJITSU

MB90F583C

16-bit Proprietary Microcontroller
FUJITSU

MB90F583CA

16-bit Proprietary Microcontroller
FUJITSU

MB90F583CAPF

16-bit Proprietary Microcontroller
FUJITSU