MB91305PMC [FUJITSU]

32-bit Microcontroller; 32位微控制器
MB91305PMC
型号: MB91305PMC
厂家: FUJITSU    FUJITSU
描述:

32-bit Microcontroller
32位微控制器

微控制器和处理器 外围集成电路 时钟
文件: 总90页 (文件大小:860K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
FUJITSU SEMICONDUCTOR  
DATA SHEET  
DS07-16703-1E  
32-bit Microcontroller  
CMOS  
FR60 MB91305  
MB91305  
DESCRIPTION  
MB91305 is a single-chip microcontroller that has a 32-bit high-performance RISC CPU as well as built-in I/O  
resources for embedded controllers requiring high-performance and high-speed CPU processing.  
The FR family is the most suitable for embedded applications, for example, DVD player, printer, TV, and PDP  
control, that require a high level of CPU processing power.  
MB91305 is an FR60 model that is based on the FR30/40 of CPUs. It has enhanced bus access and is optimized  
for high-speed use.  
FEATURES  
1. FR CPU  
• 32-bit RISC, load/store architecture, 5 stages pipeline  
• With USB function (MOD = 0000B) : operating frequency of 64 MHz [original oscillation at 48 MHz] 48 MHz /  
3-divided × 4 multiplication  
(Continued)  
PACKAGE  
176-pin plastic LQFP  
(FPT-176P-M07)  
Copyright©2006 FUJITSU LIMITED All rights reserved  
MB91305  
(Continued)  
• With no USB function (MOD = 0010B) : operating frequency of 64 MHz [original oscillation at 16 MHz]  
16 MHz × 4 multiplication  
• 16-bit fixed-length instructions (basic instructions) , one instruction per cycle  
• Memory-to-memory transfer, bit processing, instructions including barrel shift, etc. : instructions appropriate  
for embedded applications  
• Function entry and exit instructions, multi load/store instructions of register contents : instructions compatible  
with high-level languages  
• Register interlock function to facilitate assembly-language coding  
• Built-in multiplier/instruction-level support  
- Signed 32-bit multiplication : 5 cycles  
- Signed 16-bit multiplication : 3 cycles  
• Interrupts (saving of PC and PS) : 6 cycles, 16 priority levels  
• Harvard architecture enabling simultaneous execution of both program access and data access  
• 4-word queues in the CPU provided to add an instruction prefetch function  
• Instructions compatible with the FR family  
2. Bus Interface  
This bus interface is used for external bus and internal macro USB function.  
• Maximum operating frequency of 32 MHz  
• 16-bit data input-output  
Totally independent 8-area chip select outputs that can be defined in the minimum units of 64K bytes. The  
CS2 and CS3 areas are reserved as shown below. CS0, CS1, and CS4 to CS7 can be used only.  
- CS2 area : USB function  
- CS3 area : Unused  
• Basic bus cycle (2 cycles)  
• Automatic wait cycle generator that can be programmed for each area and can insert waits because CS2 and  
CS3 are reserved, the setting is fixed.  
• 24-bit address can be fully outputted  
• 8- and 16-bit data I/O  
• Prefetch buffer installed  
• Unused data and address pins can be used as general-purpose I/O and resource function.  
• Support of interfaces for various memory modules  
Asynchronous SRAM, asynchronous ROM/Flash memory  
Page-mode ROM/Flash memory (a page-size of 1, 2, 4, or 8 can be selected)  
Burst-mode ROM/Flash memory (MBM29BL160D/161D/162D etc.)  
SDRAM (or FCRAM type, CAS Latency1 to Latency8, 2/4 bank product)  
Address/data multiplexed bus (8-bit/16-bit width only)  
• Basic bus cycle : 2 cycles  
• Automatic wait cycle generator (Max 15 cycles) that can be programmed for each area  
• External wait cycles due to RDY input  
• Endian setting of byte ordering (big/little)  
Note : CS0 area is only big endian.  
• Write disable setting (read only area)  
• Enable/disable set of capturing to the built-in cache  
• Enable/disable set of prefetch function  
• External bus arbitration using BRQ and BGRNT is enabled  
3. Built-in Memory  
64K bytes RAM of built-in F-bus  
2
MB91305  
4. Instruction Cache Memory  
•Instruction cache : 4K bytes  
•2 way set associative  
•128 block/way, 4 entry (4 words) /block  
•Lock function allows specific program codes to stay resident in cache.  
•Instruction RAM function : A part of the instruction cache not in use can be used as RAM for instruction execution  
5. DMAC (DMA Controller)  
•5 channels (channels 1 and 2 are connected to the USB function.)  
•3 transfer sources (internal peripherals, software)  
•Addressing mode with 32-bit full address specifications (increase, decrease, fixed)  
Transfer modes (demand transfer, burst transfer, step transfer, block transfer)  
Transfer data size that can be selected from 8, 16, and 32 bits  
6. Bit Search Module (Used by REALOS)  
Searches for the position of the first bit varying between 1 and 0 in the MSB of a word  
7. 16-bit Reload Timer (Including One Channel for REALOS)  
•16-bit timer; 3 channels  
•Internal clock that can be selected from those resulting from frequency divided by 2, 8, and 32  
8. UART  
•Full-duplex double buffer  
•5 channels  
•Parity or no parity can be selected.  
•Either asynchronous (start-stop synchronization) or CLK synchronous communication can be selected.  
•Built-in timer for dedicated baud rates  
•An external clock can be used as the transfer clock.  
•Plentiful error detection functions (parity, frame, overrun)  
9. I2C Interface*  
•4 channels (bridge function and pin function for 5 channels)  
•Master/slave transmission and reception  
•Clock synchronization function  
Transfer direction detection function  
•Bus error detection function  
•Supports standard mode (Max 100 Kbps) and high-speed mode (Max 400 Kbps) .  
•Built-in FIFO function : each 16-byte sending/receiving  
•Arbitration function  
•Slave address/general call address detection function  
•Start condition repetitious occurrence and detection function  
•10-bit/7-bit slave address  
10.Interrupt Controller  
Totalof17externalinterrupts(oneunmaskableinterruptpin(NMI) and16regularinterruptpins(INT15toINT0) )  
•Interrupts from internal peripherals  
•Priority level can be defined as programmable (16 levels) except for the unmaskable interrupt pin.  
•Can be used for wake-up during stop.  
11.10-bit A/D Converter  
•10-bit resolution, 10 channels  
•Sequential comparison and conversion type (conversion time : about 8.18 µs)  
•Conversion modes (single conversion mode and scan conversion mode)  
•Causes of startup (software and external triggers)  
3
MB91305  
12. PPG  
• 4 channels  
• 16-bit data register with 16-bit down counter and cycle setting buffer  
• Internal clock : Frequency-divide-by number selectable from 1, 4, 16, and 64  
13. PWC  
• 1 channel (1 input)  
• 16-bit up counter  
• Simple Low-pass digital filter  
14. 16-bit Free-run Timer  
• 16-bit 1channel  
• Input capture 4 channels  
15. USB Function (Enabling/Disabling Function Can Be Selected by Mode Pin)  
• USB2.0 full-speed, double buffer  
• Configuration of FIFO for End point  
CONTROL IN/OUT, BULK IN/OUT, and INTERRUPT IN  
16. Other Interval Timers  
Watchdog timer  
17. I/O Ports  
Maximum of 98 ports  
18. Other Features  
• Has a built-in oscillation circuit as a clock source.  
• INIT is provided as a reset pin.  
• Additionally, a watchdog timer reset and software resets are provided.  
• Stop mode and sleep mode supported as low-power consumption modes  
• Gear function  
• Built-in timebase timer  
• Package : LQFP-176, 0.5 mm pitch, and 24 mm × 24 mm  
• CMOS technology : 0.18 µm  
• Power supply voltage : two sources (0.18 µm) of 3.3 V (0.3 V to +0.3 V) and 1.8 V (0.15 V to +0.15 V)  
* : LICENSE  
Purchase of Fujitsu I2C components conveys a license under the Philips I2C Patent Rights to use, these com-  
ponents in an I2C system provided that the system conforms to the I2C Standard Specification as defined by  
Philips.  
4
MB91305  
PIN ASSIGNMENT  
(TOP VIEW)  
VDDE  
VSS  
VDDI  
D24  
D25  
D26  
D27  
D28  
D29  
D30  
D31  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
132 PA4/INT4  
131 PA3/INT3  
130 PA2/INT2  
129 PA1/INT1  
128 PA0/INT0  
127  
NMI  
126 VDDI  
125 VSS  
124 VDDE  
123  
122 P96/SCL4  
121  
P97/SDA4  
VDDE  
VSS  
VDDI  
P95/SDA3  
120 P94/SCL3  
119  
118  
P93/SDA2  
P92/SCL2  
RD 15  
16  
17  
18  
19  
117 P91/SDA1  
P90/SCL1  
WR0/DQMUU  
WR1/DQMUL/P30  
CS0/P31  
116  
115 P84/SDA0  
P83/SCL0  
114  
113  
CS1/P32  
CS4/P33 20  
P82/SCK4  
21  
22  
23  
24  
112 P81/SOUT4  
CS5/P34  
CS6/P35  
CS7/P36  
RDY/P37  
P80/SIN4  
P75/SCK3  
P74/SOUT3  
P73/SIN3  
111  
110  
109  
108  
107  
P40/BGRNT 25  
P41/BRQ 26  
P72/SCK2  
SYSCLK/P42 27  
106 P71/SOUT2  
MCLKE/P43  
P70/SIN2  
P65/SCK1  
103 P64/SOUT1  
28  
105  
104  
29  
30  
31  
32  
MCLK/P44  
P45/SRAS/LBA/AS  
P46/SCAS/BAA  
P47/SWE/WR  
P63/SIN1  
P62/SCK0  
102  
101  
VDDE 33  
VSS 34  
VDDI 35  
A0 36  
100 P61/SOUT0  
P60/SIN0  
99  
98  
97  
96  
95  
94  
93  
VDDI  
VSS  
VDDE  
TRST  
ICLK  
A1 37  
A2  
A3  
38  
39  
IBREAK  
A4 40  
A5 41  
A6 42  
92 ICD3  
91 ICD2  
90 ICD1  
89 ICD0  
43  
44  
A7  
A8  
(FPT-176P-M07)  
5
MB91305  
PIN DESCRIPTION  
Function pins  
I/O  
Type*  
Pin no.  
Pin name  
Function  
D16 to D23  
P20 to P27  
External data bus bit16 to bit23. It is available in the external bus mode.  
Can be used as ports in 8-bit external bus mode.  
169 to 176  
C
External data bus bit24 to bit31.  
It is available in the external bus mode.  
4 to 11  
15  
D24 to D31  
RD  
C
H
External bus read strobe output. This pin is enabled at external bus mode.  
External bus write strobe output. This pin is enabled at external bus mode.  
When WR is used as the write strobe, this becomes the byte-enable pin  
(DQMUU) .  
WR0  
/DQMUU  
16  
H
External bus write strobe output. The pin is enabled when WR1 output is  
enabled in the external bus mode. When WR is used as the write strobe, this  
becomes the byte-enable pin (DQMUL) .  
WR1  
/DQMUL  
17  
D
General-purpose input/output port. The pin is enabled when the external bus  
write-enable output is disabled.  
P30  
CS0  
P31  
Chip select 0 output. This pin is enabled at external bus mode.  
18  
19  
D
D
General-purpose input/output port. This pin is enabled in the single-chip  
mode.  
Chip select 1 output. This function is enabled when chip select 1 output is  
enabled.  
CS1  
P32  
CS4  
P33  
CS5  
P34  
CS6  
P35  
CS7  
P36  
General-purpose input/output port. This function is enabled when chip select  
1 output is disabled.  
Chip select 4 output. This function is enabled when chip select 4 output is  
enabled.  
20  
21  
22  
23  
D
D
D
D
General-purpose input/output port. This function is enabled when chip select  
4 output is disabled.  
Chip select 5 output. This function is enabled when chip select 5 output is  
enabled.  
General-purpose input/output port. This function is enabled when chip select  
5 output is disabled.  
Chip select 6 output. This function is enabled when chip select 6 output is  
enabled.  
General-purpose input/output port. This function is enabled when chip select  
6 output is disabled.  
Chip select 7 output. This function is enabled when chip select 7 output is  
enabled.  
General-purpose input/output port. This function is enabled when chip select  
7 output is disabled.  
(Continued)  
6
MB91305  
I/O  
Type*  
Pin no.  
Pin name  
RDY  
Function  
External ready input. This function is enabled when external ready input is  
enabled.  
24  
D
D
D
General-purpose input/output port. This function is enabled when external  
ready input is disabled.  
P37  
Acceptance output for external bus release.  
Outputs “L” when the external bus is released. This function is enabled when  
output is enabled.  
BGRNT  
25  
26  
General-purpose input/output port. This function is enabled when external bus  
release acceptance is disabled.  
P40  
BRQ  
P41  
External bus release request input. Input "1" to request release of the external  
bus. The function is enabled when input is enabled.  
General-purpose input/output port. This function is enabled when the external  
bus release request is disabled.  
System clock output. This function is enabled when system clock output is  
enabled. This outputs the same clock as the external bus operating frequency.  
(Output halts in stop mode.)  
SYSCLK  
27  
28  
29  
D
D
D
General-purpose input/output port. This function is enabled when system clock  
output is disabled.  
P42  
MCLKE  
P43  
Clock enable signal for SDRAM.  
General-purpose input/output port. This function is enabled when memory  
clock output is disabled.  
Memory clock output. This function is enabled when memory clock output is  
enabled. This outputs the same clock as the external bus operating frequency.  
(Output halts in sleep mode.)  
MCLK  
General-purpose input/output port. This function is enabled when memory  
clock output is disabled.  
P44  
AS  
Address strobe output. This function is enabled when address strobe output is  
enabled.  
Address load output for burst flash memory. This function is enabled when  
address load output is enabled.  
LBA  
SRAS  
P45  
30  
31  
D
D
RAS strobe single for SDRAM.  
General-purpose input/output port. This function is enabled when address load  
output is disabled.  
Address advance output for burst flash memory. This function is enabled when  
address advance output is enabled.  
BAA  
SCAS  
P46  
CAS strobe signal for SDRAM.  
General-purpose input/output port. This function is enabled when address  
advance output is disabled.  
(Continued)  
7
MB91305  
I/O  
Type*  
Pin no.  
Pin name  
Function  
Memory write strobe output. This function is enabled when write strobe out-  
put is enabled.  
WR  
SWE  
P47  
32  
D
Write output for SDRAM.  
General-purpose input/output port. This function is enabled when write  
strobe output is disabled.  
36 to 51  
55 to 62  
A0 to A15  
A16 to A23  
P50 to P57  
X0  
H
D
External address bus bit0 to bit15.  
External address bus bit16 to bit23.  
Can be used as ports when external address bus is not used.  
Clock (oscillation) input.  
64  
66  
68  
A
X1  
Clock (oscillation) output.  
INIT  
B
I
External reset input (Reset to initialize settings)  
MD0 to  
MD2  
69 to 71  
These pins set the basic operating mode. Connect VCC or VSS.  
72  
MD3  
J
These pins set the basic operating mode. Connect VCC or VSS.  
Analog input pin.  
76, 77  
AN0, AN1  
M
AN2 to  
AN9  
Analog input pin.  
78 to 85  
F
PF0 to PF7  
Can be used as ports when analog input pin is not used.  
Status output pin for development tool.  
ICS0 to  
ICS2  
86 to 88  
89 to 92  
C
L
ICD0 to  
ICD3  
Data input/output pin for development tool.  
93  
94  
95  
IBREAK  
ICLK  
J
D
B
Break pin for development tool.  
Clock pin for development tool.  
Reset pin for development tool.  
TRST  
UART0 data input pin. This input is used continuously when UART0 is  
performing input. In this case, do not output to this port unless doing so  
intentionally.  
SIN0  
99  
D
P60  
SOUT0  
P61  
General-purpose input/output port.  
UART0 data output pin. This function is enabled when UART0 data output is  
enabled.  
100  
101  
D
D
General-purpose input/output port.  
UART0 clock input/output pin. This function is enabled when UART0 clock  
output is enabled.  
SCK0  
P62  
General-purpose input/output port.  
(Continued)  
8
MB91305  
I/O  
Type*  
Pin no.  
Pin name  
Function  
UART1 data input pin. This input is used continuously when UART1 is  
performing input. In this case, do not output to this port unless doing so  
intentionally.  
SIN1  
102  
D
P63  
SOUT1  
P64  
General-purpose input/output port.  
UART1 data output pin. This function is enabled when UART1 data output is  
enabled.  
103  
104  
D
D
General-purpose input/output port.  
UART1 clock input/output pin. This function is enabled when UART1 clock  
output is enabled.  
SCK1  
P65  
General-purpose input/output port.  
UART2 data input pin. This input is used continuously when UART2 is  
performing input. In this case, do not output to this port unless doing so  
intentionally.  
SIN2  
105  
D
P70  
SOUT2  
P71  
General-purpose input/output port.  
UART2 data output pin. This function is enabled when UART2 data output is  
enabled.  
106  
107  
D
D
General-purpose input/output port.  
UART2 clock input/output pin. This function is enabled when UART2 clock  
output is enabled.  
SCK2  
P72  
General-purpose input/output port.  
UART3 data input pin. This input is used continuously when UART3 is  
performing input. In this case, do not output to this port unless doing so  
intentionally.  
SIN3  
108  
D
P73  
SOUT3  
P74  
General-purpose input/output port.  
UART3 data output pin. This function is enabled when UART3 data output is  
enabled.  
109  
110  
D
D
General-purpose input/output port.  
UART3 clock input/output pin. This function is enabled when UART3 clock  
output is enabled.  
SCK3  
P75  
General-purpose input/output port.  
UART4 data input pin. This input is used continuously when UART4 is  
performing input. In this case, do not output to this port unless doing so  
intentionally.  
SIN4  
111  
112  
D
D
P80  
SOUT4  
P81  
General-purpose input/output port.  
UART4 data output pin. This function is enabled when UART4 data output is  
enabled.  
General-purpose input/output port.  
(Continued)  
9
MB91305  
I/O  
Type*  
Pin no.  
Pin name  
Function  
UART4 clock input/output pin. This function is enabled when UART4 clock  
output is enabled.  
SCK4  
P82  
113  
D
D
General-purpose input/output port.  
Clock I/O pin for I2C bus. This function is enabled when typical operation of  
I2C is enabled. The port output must remain off unless intentionally turned on.  
(pseudo open drain output)  
SCL0  
P83  
114  
115  
116  
117  
118  
119  
120  
121  
122  
General-purpose input/output port.  
Data I/O pin for I2C bus. This function is enabled when typical operation of  
I2C is enabled. The port output must remain off unless intentionally turned on.  
(pseudo open drain output)  
SDA0  
P84  
D
D
D
K
K
K
K
K
General-purpose input/output port.  
Clock I/O pin for I2C bus. This function is enabled when typical operation of  
I2C is enabled. The port output must remain off unless intentionally turned on.  
(pseudo open drain output)  
SCL1  
P90  
General-purpose input/output port.  
Data I/O pin for I2C bus. This function is enabled when typical operation of  
I2C is enabled. The port output must remain off unless intentionally turned on.  
(pseudo open drain output)  
SDA1  
P91  
General-purpose input/output port.  
Clock I/O pin for I2C bus. This function is enabled when typical operation of  
I2C is enabled. The port output must remain off unless intentionally turned on.  
(pseudo open drain output)  
SCL2  
P92  
General-purpose input/output port.  
Data I/O pin for I2C bus. This function is enabled when typical operation of  
I2C is enabled. The port output must remain off unless intentionally turned on.  
(pseudo open drain output)  
SDA2  
P93  
General-purpose input/output port.  
Clock I/O pin for I2C bus. This function is enabled when typical operation of  
I2C is enabled. The port output must remain off unless intentionally turned on.  
(pseudo open drain output)  
SCL3  
P94  
General-purpose input/output port.  
Data I/O pin for I2C bus. This function is enabled when typical operation of  
I2C is enabled. The port output must remain off unless intentionally turned on.  
(pseudo open drain output)  
SDA3  
P95  
General-purpose input/output port.  
Clock I/O pin for I2C bus. This function is enabled when typical operation of  
I2C is enabled. The port output must remain off unless intentionally turned on.  
(pseudo open drain output)  
SCL4  
P96  
General-purpose input/output port.  
(Continued)  
10  
MB91305  
I/O  
Type*  
Pin no.  
Pin name  
Function  
Data I/O pin for I2C bus. This function is enabled when typical operation of I2C  
is enabled. The port output must remain off unless intentionally turned on.  
(pseudo open drain output)  
SDA4  
123  
127  
K
B
G
P97  
NMI  
General-purpose input/output port.  
NMI (Non Maskable Interrupt) input  
External interrupt inputs. These inputs are used continuously when the  
corresponding external interrupt is enabled. In this case, do not output to  
these ports unless doing so intentionally.  
INT0 to  
INT3  
128 to 131  
PA0 to PA3  
General-purpose input/output port.  
External interrupt input. These inputs are used continuously when the  
corresponding external interrupt is enabled. In this case, do not output to  
these ports unless doing so intentionally. When USB function is enabled  
(MD3, MD2, MD1, MD0 = 0000B) , INT4 function is used only for the USB  
interrupt. Therefore, it is not possible to use it as an external interrupt pin.  
INT4  
132  
G
PA4  
General-purpose input/output port.  
External interrupt input. These inputs are used continuously when the  
corresponding external interrupt is enabled. In this case, do not output to  
these ports unless doing so intentionally.  
INT5 to  
INT7  
133 to 135  
136  
G
G
G
PA5 to PA7  
INT8  
General-purpose input/output port.  
External interrupt input. These inputs are used continuously when the  
corresponding external interrupt is enabled. In this case, do not output to  
these ports unless doing so intentionally.  
PB0  
General-purpose input/output port.  
External interrupt input. These inputs are used continuously when the  
corresponding external interrupt is enabled. In this case, do not output to  
these ports unless doing so intentionally.  
INT9  
137  
PB1  
General-purpose input/output port.  
External interrupt input. These inputs are used continuously when the  
corresponding external interrupt is enabled. In this case, do not output to  
these ports unless doing so intentionally.  
INT10  
138  
139  
G
G
A/D converter external trigger input. These inputs are used continuously  
when using as A/D start trigger. In this case, do not output to these ports  
unless doing so intentionally.  
ATRG  
PB2  
General-purpose input/output port.  
External interrupt input. These inputs are used continuously when the  
corresponding external interrupt is enabled. In this case, do not output to  
these ports unless doing so intentionally.  
INT11  
External clock input pin of free-run timer. These inputs are used continuously  
when using as external clock input pin of free-run timer. In this case, do not  
output to these ports unless doing so intentionally.  
FRCK  
PB3  
General-purpose input/output port.  
(Continued)  
11  
MB91305  
I/O  
Type*  
Pin no.  
Pin name  
Function  
External interrupt input. These inputs are used continuously when the  
corresponding external interrupt is enabled. In this case, do not output to  
these ports unless doing so intentionally.  
INT12 to  
INT15  
Input capture input pins. These inputs are used continuously when selected  
as input capture inputs. In this case, do not output to these ports unless doing  
so intentionally.  
140 to 143  
ICU0 to  
ICU3  
G
PB4 to  
PB7  
General-purpose input/output port.  
145  
146  
UDP  
UDM  
+ pin of USB.  
pin of USB.  
USB  
D
PPG0 to  
PPG3  
PPG ch.0 to PPG ch.3 timer output.  
General-purpose input/output port.  
149 to 152  
PC0 to  
PC3  
Data output of reload timer 0. This function is enabled when data output of  
reload timer 0 is enabled using port function register.  
TOUT0  
External trigger input for PPG0 timer. This input is used continuously when  
the corresponding timer input is enabled. In this case, do not output to this  
port unless doing so intentionally.  
153  
D
TRG0  
PC4  
TOUT1  
PC5  
General-purpose input/output port.  
Data output of reload timer 1. This function is enabled when data output of  
reload timer 1 is enabled using port function register.  
154  
155  
D
D
General-purpose input/output port.  
Data output of reload timer 2. This function is enabled when data output of  
reload timer 2 is enabled using port function register.  
TOUT2  
Write strobe output for DMA fly-by transfer. This function is enabled when  
outputting a write strobe for DMA fly-by transfer is enabled.  
IOWR  
PC6  
General-purpose input/output port.  
PWC input. These inputs are used continuously when the corresponding  
external interrupt is enabled. In this case, do not output to these ports unless  
doing so intentionally.  
RIN  
156  
157  
D
D
Read strobe output for DMA fly-by transfer. This function is enabled when  
outputting a read strobe for DMA fly-by transfer is enabled.  
IORD  
PC7  
General-purpose input/output port.  
External input for DMA transfer requests. This input is used continuously  
when the corresponding external input for DMA transfer requests are  
enabled. In this case, do not output to this port unless doing so intentionally.  
DREQ0  
PD0  
General-purpose input/output port.  
(Continued)  
12  
MB91305  
I/O  
Type*  
Pin no.  
Pin name  
Function  
DMA external transfer request acceptance output. This function is enabled  
when DMA external transfer request acceptance output is enabled.  
DACK0  
PD1  
158  
D
D
General-purpose input/output port.  
Completion output for DMA external transfer. This function is enabled when  
completion output for DMA external transfer is enabled.  
DEOP0  
PD2  
159  
160  
General-purpose input/output port.  
External input for DMA transfer requests. This input is used continuously  
when external input for DMA transfer request is enabled. In this case, do not  
output to this port unless doing so intentionally. When using USB, this  
function (DMAC ch.1) cannot be used because it is used as USB data  
transfer. DREQ2 input is disabled.  
DREQ1  
D
Reload timer input. This input is used continuously when the corresponding  
timer input is enabled. In this case, do not output to this port unless doing so  
intentionally.  
TIN0  
PD3  
General-purpose input/output port.  
DMA external transfer request acceptance output. This function is enabled  
when DMA transfer request acceptance output is enabled.  
When using USB, this function (DMAC ch.1) cannot be used because it is  
used as USB data transfer. External transfer ACK output of DMA should be  
disabled.  
DACK1  
161  
162  
163  
D
D
D
Reload timer input. This input is used continuously when the corresponding  
timer input is enabled. In this case, do not output to this port unless doing so  
intentionally.  
TIN1  
PD4  
General-purpose input/output port.  
Completion output for DMA external transfer. This function is enabled when  
completion output for DMA external transfer is enabled. When using USB, this  
function (DMAC ch.1) cannot be used because it is used as USB data  
transfer. External transfer EOP output of DMA should be disabled.  
DEOP1  
Reload timer input. This input is used continuously when the corresponding  
timer input is enabled. In this case, do not output to this port unless doing so  
intentionally.  
TIN2  
PD5  
General-purpose input/output port.  
External input for DMA transfer requests. This input is used continuously  
when external input for DMA transfer request is enabled. In this case, do not  
output to this port unless doing so intentionally.  
When using USB, this function (DMAC ch.2) cannot be used because it is  
used as USB data transfer. DREQ2 input is disabled.  
DREQ2  
External trigger input for PPG1 timer. This input is used continuously when  
the corresponding timer input is enabled. In this case, do not output to this  
port unless doing so intentionally.  
TRG1  
PE0  
General-purpose input/output port.  
(Continued)  
13  
MB91305  
(Continued)  
I/O  
Type*  
Pin no.  
Pin name  
Function  
DMA external transfer request acceptance output. This function is enabled  
when DMA transfer request acceptance output is enabled.  
When using USB, this function (DMAC ch.2) cannot be used because it is  
used as USB data transfer. External transfer ACK output of DMA should be  
disabled.  
DACK2  
164  
D
External trigger input for PPG2 timer. This input is used continuously when the  
corresponding timer input is enabled. In this case, do not output to this port  
unless doing so intentionally.  
TRG2  
PE1  
General-purpose input/output port.  
Completion output for DMA external transfer. This function is enabled when  
completion output for DMA external transfer is enabled.  
When using USB, this function (DMAC ch.2) cannot be used because it is  
used as USB data transfer. External transfer EOP output of DMA should be  
disabled.  
DEOP2  
165  
D
External trigger input for PPG3 timer. This input is used continuously when the  
corresponding timer input is enabled. In this case, do not output to this port  
unless doing so intentionally.  
TRG3  
PE2  
General-purpose input/output port.  
* : For I/O circuit type, refer to “I/O CIRCUIT TYPES”.  
Power supply and GND pins  
Pin no.  
Pin name  
Function  
2, 13, 34, 53, 65, 97,  
125, 147, 167  
GND pins.  
Connect all pins at the same potential.  
VSS  
3, 14, 35, 54, 67, 98,  
126, 148, 168  
1.8 V power supply pins.  
Connect all pins at the same potential.  
VDDI  
1, 12, 33, 52, 63, 96,  
124, 144, 166  
3.3 V power supply pins.  
Connect all pins at the same potential.  
VDDE  
73  
74  
75  
AVCC  
AVRH  
AVSS  
Analog power supply pin for A/D converter  
Reference power supply pin for A/D converter  
Analog GND pin for the A/D converter  
14  
MB91305  
I/O CIRCUIT TYPES  
Type  
Circuit  
Remarks  
Oscillation feedback resistance  
approx. 1MΩ  
X1  
Clock input  
A
X0  
Standby control  
P-ch  
• With pull-up resistor  
• CMOS level hysteresis input  
P-ch  
N-ch  
B
Digital input  
• CMOS level I/O  
• With standby control  
• IOL = 4 mA  
P-ch  
N-ch  
Digital output  
Digital output  
C
Digital input  
Standby control  
(Continued)  
15  
MB91305  
Type  
Circuit  
Remarks  
• CMOS level output  
• CMOS level hysteresis input  
• With standby control  
• IOL = 4 mA  
P-ch  
Digital output  
Digital output  
D
N-ch  
Digital input  
Standby control  
• CMOS level input  
• No standby control  
P-ch  
N-ch  
E
Digital input  
• CMOS level output  
• CMOS level hysteresis input  
• With standby control  
• With analog input  
• IOL = 4 mA  
P-ch  
Digital output  
Digital output  
N-ch  
F
Analog input  
Digital input  
Standby control  
(Continued)  
16  
MB91305  
Type  
Circuit  
Remarks  
• With pull-up control  
• CMOS level output  
• CMOS level hysteresis input  
• No standby control  
• IOL = 4 mA  
Pull-up control  
Digital output  
P-ch  
P-ch  
G
Digital output  
Digital input  
N-ch  
CMOS level output  
P-ch  
Digital output  
Digital output  
H
N-ch  
P-ch  
• CMOS level hysteresis input  
• No standby control  
I
N-ch  
Digital input  
(Continued)  
17  
MB91305  
Type  
Circuit  
Remarks  
• CMOS level hysteresis input  
• With pull-down resistor  
P-ch  
J
N-ch  
N-ch  
Digital input  
• 3 ports for I2C  
• CMOS level hysteresis input  
• CMOS level output  
• With stop control  
P-ch  
N-ch  
Open-drain control  
Digital output  
Digital input  
Control  
Digital input  
Control  
Open-drain control  
K
P-ch  
N-ch  
Digital output  
Digital input  
P-ch  
Open-drain control  
Digital output  
N-ch  
(Continued)  
18  
MB91305  
(Continued)  
Type  
Circuit  
Remarks  
• CMOS I/O  
• With pull-down control  
Pull-down control  
Digital output  
P-ch  
L
Digital output  
N-ch  
N-ch  
P-ch  
N-ch  
Digital input  
Analog pin  
M
Analog input  
19  
MB91305  
HANDLING DEVICES  
Preventing a Latch-up  
A latch-up can occur on a CMOS IC under following conditions. A latch-up, if it occurs, significantly increases  
the power supply current and may cause thermal destruction of an element. When you use a CMOS IC, be very  
careful not to exceed the maximum rating.  
- When a voltage higher than VDDE or VDDI or a voltage lower than VSS is applied to an input or output pin.  
- When a voltage higher than the rating is applied between VDDE or VDDI and VSS.  
Handling of Unused Input Pins  
Do not leave an unused input pin open since it may cause a malfunction. Handle by, for example, using a pull-  
up or pull-down resistor.  
Power Supply Pins  
If more than one VDDE or VDDI or VSS pin exists, those that must be kept at the same potential are designed  
to be connected to one other inside the device to prevent malfunctions such as latch-up. Be sure to connect the  
pins to a power supply and ground external to the deviceto minimize undesired electromagnetic radiation, prevent  
strobe signal malfunctions due to an increase in ground level, and conform to the total output current rating.  
Given consideration to connecting the current supply source to VDDE or VDDI and VSS pin of the device at the  
lowest impedance possible.  
It is also recommended that a ceramic capacitor of around 0.1 µF be connected between VDDE or VDDI and  
VSS pin at circuit points close to the device as a bypass capacitor.  
Quartz Oscillation Circuit  
Noise near the X0 or X1 pin may cause the device to malfunction. Design printed circuit boards so that X0, X1,  
the quartz oscillator (or ceramic oscillator), and the bypass capacitor to ground are located as near to one another  
as possible.  
It is strongly recommended that printed circuit board artwork that surrounds the X0 and X1 pins with ground be  
used to increase the expectation of stable operation.  
Please ask the Oscillation maker to evaluate the oscillational characteristics of the crystal and this device.  
Mode Pins (MD0 to MD3)  
In order to prevent mistakes due to noise, and sending them into test mode, connect these pins as close to  
VDDE and VSS pins, and at as low an impedance as possible.  
Tool Reset Pins (TRST)  
Be sure to input the same signal as the INIT when this pin is not used for the tool. The same processing is  
executed for the mass product.  
Power-on  
Immediately after power-on, be sure to apply setting initialization reset (INIT) with INIT pin.  
Also immediately after power-on, keep the INIT pin at the “L” level until the oscillator has reached the required  
oscillation stabilization wait time. (For initialization by INIT from the INIT pin, the oscillation stabilization wait time  
is set to the minimum value.)  
Source Oscillation Input at Power-on  
At power-on, be sure to input a source clock until the oscillation stabilization wait time is reached.  
20  
MB91305  
Precautions at Power-On/Power-Off  
• Precautions when turning on and off VDDI pin and VDDE pin  
To ensure the reliability of LSI devices, do not continuously apply only VDDE pin for about a minute when VDDI  
is off.  
When VDDE pin is changed from off to on, the power noise may make it impossible to retain the internal state  
of the circuit.  
Power-on : Supply voltage of VDDI pin analog Supply voltage of VDDE pin signal  
Power-off : Signal Supply voltage of VDDE pin analog Supply voltage of VDDI pin  
• Indeterminate Output when the Power is Turned On  
When turning on the power, the output pin may remain indeterminate until internal power supply becomes stable.  
Clocks  
• Notes on using external clock  
When the external clock is used, in principle, supply a clock signal to the X0 pin and an opposite-phase clock  
signal to the X1 pin at the same time. However, in this case the STOP mode (oscillation stop mode) must not  
be used (This is because, in the STOP mode, the X1 pin stops at “H” output).  
Example of using an external clock is illustrated in the following figure.  
Example of using external clock (normal)  
X0  
X1  
MB91305  
The STOP mode (oscillation stop mode) cannot be used.  
Limitations  
• Clock controller  
Secure the stabilization wait time while “L” is input to INIT pin.  
• Bit search module  
Only word access is permitted for data register for detection 0 (BSD0), data register for detection 1 (BSD1), and  
data register for change point detection (BSDC) .  
• I/O port  
Only byte access is permitted for ports.  
21  
MB91305  
• Low-power Consumption Mode  
To switch to standby mode, use synchronous standby mode (set by the SYNCS bit, that is bit8 of the TBCR,  
timebase counter control register) and be sure to use the following sequence :  
(LD1 #value_of_stanby, R0)  
(LD1 #_STCR, R12)  
STB  
R0, @R12 : Writing into the standby control register (STCR)  
LDUB @R12, R0 : STCR read for synchronous standby  
LDUB @R12, R0 : Dummy re-read of STCR  
NOP  
NOP  
NOP  
NOP  
NOP  
: NOP × 5 for timing adjustment  
• When using the monitor debugger, do not :  
- Set a break point within the above sequence of instructions.  
- Step of the instructions within the above sequence of instructions.  
• Prefetch  
When allowing prefetch in the little endian area, only word access (32-bit) should be used to access the area.  
Byte access and halfword access are not working properly.  
• Notes on using PS register  
PS register is processed by some instructions in advance so that exception operations as stated below may  
cause breaks during interruption handling routine when using debugger and may cause updates to the display  
contents of PS flags.  
In either case, this device is designed to carry out reprocessing properly after returning from such EIT events.  
The operations before and after EIT events are performed as prescribed in the specification.  
1. The following operations may be performed when the instruction immediately followed by a DIVOV/DIVOS  
instruction is acceptance of a user interrupt/NMI, single-stepped, or breaks in response to an emulator menu.  
(1) D0 and D1 flags are updated in advance.  
(2) EIT handling routine (user interrupt/NMI, or emulator) is executed.  
(3) After returning from the EIT, a DIVOU/DIVOS instruction is executed and the D0 and D1 flags are  
updated to the same values as in (1) .  
2. The following operations are performed if each instruction from ORCCR, STILM, MOV Ri, and PS is executed  
to allow an interruption while user interrupt/NMI trigger exists.  
(1) PS register is updated in advance.  
(2) EIT handling routine (user interrupt/NMI) is executed.  
(3) After returning from the EIT, the above instructions are executed and the PS register is updated to  
the same value as in (1) .  
22  
MB91305  
• Watchdog Timer Function  
The watchdog timer equipped in this model operates to monitor programs to ensure that they execute reset  
defer function within a certain period of time, and to reset the CPU if the reset defer function is not executed  
due to the program runaway. For that reason, once the watchdog timer function is enabled, it keeps its operation  
until it is reset.  
By way of exception, the watchdog timer automatically defers a reset under the condition where the CPU  
program executions are stopped. For more detail, refer to the description section of the watchdog timer function  
in “Hardware Manual”.  
If the system gets out of control and the situation becomes as mentioned above, watchdog reset may not be  
generated. In that case, please reset (INIT) from the external INIT pin.  
• Note on using A/D  
The MB91305 has a built-in A/D converter. Do not supply a voltage higher than VDDE to the AVCC.  
• Software reset in synchronous mode  
When software reset in the synchronous mode is used, the following two conditions must be satisfied before  
setting the SRST bit of the STCR (standby control register) to 0.  
- Set the interrupt enable flag (I-Flag) to the interrupt disabled (I-Flag = 0).  
- Do not use NMI.  
• Simultaneous occurrences of software break and user interrupt/NMI  
If software break and user interrupt/NMI occur together, emulator debugger may:  
- Stop at a point other than the programmed break points.  
- Not reexecute properly after halting.  
If such failures occur, use hardware break instead of software break. When using monitor debugger, do not set  
any break points within the corresponding instructions.  
• Stepping of the RETI Instruction  
In the environment where interruptions occur frequently during stepping, the RETI is executed repeatedly for  
the corresponding interrupt process routines after the stepping. As the result of it, the main routine and low  
interrupt- level programs are not executed. To avoid this situation, do not step the RETI instruction. Otherwise,  
perform debugging by disabling the interruptions when the debug on the corresponding interrupt routines  
becomes unnecessary.  
• Operand Break  
Do not set the access to the areas containing the address of stack pointer as a target of data event break.  
• Sample Batch File for Configuration  
When a program is downloaded to internal RAM to execute debug, be sure to execute the following batch file  
after reset.  
#-----------------------------------------------------------------------------------------------------------------------------------  
# Set MODR (0x7fd) = Enable In memory + 16-bit External Bus  
set mem/byte 0x7fd = 0x5  
#-----------------------------------------------------------------------------------------------------------------------------------  
23  
MB91305  
BLOCK DIAGRAM  
FR CPU Core  
32  
Instruction  
cache 4KB  
32  
Bit search  
Module  
RAM 64KB  
Bus converter  
DMAC  
5 channels  
32 16  
adapter  
USB  
function  
External bus  
interface  
SDRAM  
interface  
Clock  
control  
Interrupt  
controller  
I2C  
interface  
4 channels  
10-bit  
16-bit  
UART  
5 channels  
A/D converter  
10channels  
Free-run timer  
1 channel  
External  
interrupt  
16-bit  
Reload timer  
3 channels  
16-bit  
Input capture  
4 channels  
PWC  
PPG  
Port  
1 channel 4 channels  
24  
MB91305  
CPU AND CONTROL UNIT  
Internal Architecture  
The FR family is a high-performance core based on RISC architecture and advanced instructions for embedded  
applications.  
1. Features  
• RISC architecture used  
Basic instruction : One instruction per cycle  
• 32-bit architecture  
General-purpose register : 32 bits × 16  
• 4G bytes linear memory space  
• Multiplier installed  
32-bit by 32-bit multiplication : 5 cycles  
16-bit by 16-bit multiplication : 3 cycles  
• Enhanced interrupt processing function  
Quick response speed : 6 cycles  
Support of multiple interrupts  
Level mask function : 16 levels  
• Enhanced instructions for I/O operations  
Memory-to-memory transfer instruction  
Bit-processing instructions  
• Efficient code  
Basic instruction word length : 16 bits  
• Low-power consumption  
Sleep and stop modes  
• Gear function  
25  
MB91305  
2. Internal Architecture  
The FR family CPU uses the Harvard architecture, which has separate buses for instructions and data. A 32-  
bit16-bit bus converter is connected to the 32-bit bus (F-bus) , providing an interface between the CPU and  
peripheral resources. A HarvardPrinceton bus converter is connected to both the I-bus and D-bus, providing  
an interface between the CUP and bus controllers.  
FRex CPU  
D-bus  
I-bus  
32  
32  
External  
I address  
I data  
address  
Harvard  
24  
External date  
Princeton  
bus  
16  
32  
32  
D address  
D data  
converter  
address  
data  
32  
32  
32-bit  
16-bit  
Bus converter  
16  
F-bus  
R-bus  
Peripheral resources  
Internal I/O  
Bus controller  
F-bus RAM  
26  
MB91305  
3. Programming Model  
Programming Model  
32 bits  
Initial value  
R0  
R1  
XXXX XXXXH  
General-purpose  
register  
R12  
R13  
R14  
R15  
AC  
XXXX XXXXH  
0000 0000H  
FP  
SP  
PC  
Program counter  
Program status  
ILM  
CCR  
PS  
SCR  
TBR  
RP  
Table base register  
Return pointer  
SSP  
USP  
System stack pointer  
User stack pointer  
Multiply and  
divide registers  
MDH  
MDL  
27  
MB91305  
4. Registers  
General-purpose Registers  
32 bits  
Initial value  
XXXX XXXXH  
R0  
R1  
R12  
R13  
R14  
R15  
AC  
FP  
SP  
XXXX XXXXH  
0000 0000H  
Registers R0 to R15 are general-purpose registers. These registers are used as an accumulator in an operation  
or a pointer in a memory access.  
Of these 16 registers, the following are intended for special applications and therefore enhanced instructions  
are provided for them :  
• R13 :  
Virtual accumulator (AC)  
• R14 :  
Frame pointer (FP)  
• R15 :  
Stack pointer (SP)  
The initial value upon reset is undefined for R0 through R14 and is “00000000H” (SSP value) for R15.  
• PS (Program Status)  
The program status register (PS : Program Status) holds the program status. The PS register consists of three  
parts : ILM, SCR, and CCR. All undefined bits are reserved. During reading, “0” is always read. Writing is  
disabled.  
bit31  
bit20  
bit16  
bit10bit8 bit7  
bit0  
ILM  
SCR  
CCR  
28  
MB91305  
CCR (Condition Code Register)  
bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0  
Initial value  
--00XXXXB  
S
I
N
Z
V
C
S : Stack flag  
• This bit is cleared to “0” by a reset.  
• Set this bit to “0” when the RETI instruction is executed.  
I : Interrupt enable flag  
This bit is cleared to “0” by a reset.  
N : Negative flag  
The initial state of this bit upon reset is undefined.  
Z : Zero flag  
The initial state of this bit upon reset is undefined.  
V : Overflow flag  
The initial state of this bit upon reset is undefined.  
C : Carry flag  
The initial state of this bit upon reset is undefined.  
SCR (System Condition code Register)  
bit10 bit9 bit8  
Initial value  
XX0B  
D1  
D0  
T
D1, D0 : Step division flag  
These bits hold the intermediate data obtained when step division is executed.  
T : Step trace trap flag  
This bit specifies whether the step trace trap is to be enabled.  
The step trace trap function is used by an emulator. When an emulator is used, this function cannot be used in  
a user program.  
ILM (Interrupt Level Mask Register)  
bit18  
bit16  
Initial value  
01111B  
bit17  
bit19  
bit20  
ILM4 ILM3 ILM2 ILM1 ILM0  
The interrupt level mask (ILM) register holds an interrupt level mask value. The value held in ILM register is  
used as a level mask.  
This register is initialized to 15 (01111B) by a reset.  
29  
MB91305  
PC (Program Counter)  
Initial value  
bit31  
bit0  
XXXXXXXXH  
The program counter indicates the address of the instruction being executed.  
The initial value upon reset is undefined.  
TBR (Table Base Register)  
Initial value  
000FFC00H  
bit0  
bit31  
The table base register holds the first address of the vector table to be used during EIT processing.  
The initial value upon reset is “000FFC00H”.  
RP (Return Pointer)  
Initial value  
bit0  
bit31  
XXXXXXXXH  
The return pointer holds the return address from a subroutine.  
When the CALL instruction is executed, the value of the PC is transferred to the RP.  
When the RET instruction is executed, the contents of the RP are transferred to the PC.  
The initial value upon reset is undefined.  
SSP (System Stack Pointer)  
Initial value  
00000000H  
bit0  
bit31  
The SSP is the system stack pointer.  
This register is used as an R15 general-purpose register if the S flag of the condition code register (CCR) is “0”.  
The SSP can also be specified explicitly.  
This register is also used as a stack pointer that specifies a stack on which the contents of the PS and PC are  
to be saved if an EIT occurs.  
The initial value upon reset is “00000000H”.  
30  
MB91305  
USP (User Stack Pointer)  
Initial value  
bit31  
bit0  
XXXXXXXXH  
The USP is the user stack pointer.  
This register is used as an R15 general-purpose register if the S flag of the condition code register (CCR) is “1”.  
The USP can also be specified explicitly.  
The initial value upon reset is undefined.  
This register cannot be used by the RETI instruction.  
MDH/MDL (Multiply & Divide register)  
Initial value  
bit31  
bit0  
MDH  
MDL  
XXXXXXXXH  
XXXXXXXXH  
MDH and MDL are the multiply and divide registers. Each register is 32 bits long.  
The initial value upon reset is undefined.  
31  
MB91305  
MODE SETTINGS  
For the FR family, set the operating mode using the mode pins (MD3, MD2, MD1 and MD0) and the mode  
register (MODR) .  
1. Mode pins  
Use the four mode pins (MD3, MD2, MD1, and MD0) to specify mode vector fetch.  
shows the specification related to the mode vector fetch.  
Mode pin  
Reset vector access  
Mode name  
Remarks  
area  
MD3 MD2 MD1 MD0  
External ROM  
mode vector  
With USB.  
Used at 48 MHz source oscillation.  
0
0
0
0
0
1
0
0
External  
External ROM  
mode vector  
Without USB.  
Used at 16 MHz source oscillation.  
External  
Note : The setting other than that shown is prohibited. The single-chip mode is not supported.  
2. Mode Register (MODR)  
• Detailed explanation of the register  
MODR  
Initial value  
XXXXXXXXB  
bit23  
0
bit22  
0
bit21  
0
bit20  
0
bit19  
0
bit18  
bit17  
bit16  
Address  
07FDH  
ROMA WTH1 WTH0  
Operation mode setting bit  
Mode data is data written to the mode register by a mode vector fetch.  
After setting to the mode register (MODR) is completed, perform with the operation mode according to this  
register.  
The mode register is set by all reset sources. Accordingly, user program cannot write data to the mode register.  
• Detailed explanation of the mode data.  
• In the save way of the reset vector, set the mode vector in the vector area.  
• Details of the mode data which sets to the mode vector is shown below.  
Initial value  
bit31  
0
bit30  
0
bit29  
0
bit28  
0
bit27  
0
bit26  
bit25  
bit24  
Address  
FFFF8H  
XXXXXXXXB  
ROMA WTH1 WTH0  
Operation mode setting bit  
[bit31 to bit27] Reserved bits  
Be sure to set “00000B” to these bits.  
Operation when value other than “00000B” is set cannot guarantee.  
[bit26] ROMA (Internal ROM enable bit)  
This bit sets whether to enable internal ROM areas.  
32  
MB91305  
ROMA  
Function  
Remarks  
0
External ROM mode * Internal F-bus region (40000H to 100000H) becomes an external region.  
Internal F-bus region (40000H to 100000H) becomes access prohibited  
1
Internal ROM mode  
(setting disabled) .  
* : MB91305 does not contain internal ROM. Use as external ROM mode (setting ROMA = 0) .  
[bit25, bit24] WTH1, WTH0 (Bus width specification bit)  
Set the bus width specification in external bus mode.  
This value is set by DBW1 and DBW0 bits of ACR0 (CS0 area) in the external bus mode.  
WTH1  
WTH0  
Function  
8-bit bus width  
Remarks  
0
0
1
1
0
1
0
1
External bus mode  
External bus mode  
16-bit bus width  
32-bit bus width  
Single-chip mode *  
External bus mode (setting disabled)  
Single-chip mode (setting disabled)  
* : not supported.  
Note : Mode data set in mode vector must be allocated to “0x000FFFF8H” as a byte data. In the FR family, since  
big endian is used as byte endian, the data must be allocated to the most significant byte in bit31 to bit24  
as shown below.  
bit31  
bit24 bit23  
XXXXXXXX  
Reset Vector  
bit16 bit15  
bit8 bit7  
bit0  
Address  
0x000FFFF8H  
XXXXXXXX  
Mode Data  
XXXXXXXX  
0x000FFFFCH  
33  
MB91305  
MEMORY SPACE  
1. Memory Space  
The FR family has a logical address space of 4G bytes (232 addresses) , which the CPU accesses linearly.  
Direct addressing area  
The areas in the address space listed below are used for input-output.  
These areas are called the direct addressing area. The address of an operand can be directly specified in an  
instruction.  
The size of the direct addressing area varies according to the size of data to be accessed :  
Byte data access  
: 000H to 0FFH  
Halfword data access : 000H to 1FFH  
Word data access  
: 000H to 3FFH  
2. Memory Map  
External ROM External bus mode  
0000 0000H  
Direct  
addressing area  
I/O  
I/O  
0000 0400H  
See "3. I/O MAP"  
0001 0000H  
0003 0000H  
Access  
disallowed  
Built-in RAM  
0004 0000H  
0005 0000H  
Access  
disallowed  
External  
area  
USB  
function  
0006 0000H  
0007 0000H  
Fixed in the CS2 area  
External  
area  
FFFF FFFFH  
Note : Internal RAM area of the MB91305 is “0003 0000H” to “0003 FFFFH”.  
34  
MB91305  
I/O MAP  
Shows the correspondence between the memory space area and the peripheral resource registers.  
Reading the table  
Register  
Address  
Block  
+0  
PDR0 [R/W] PDR1 [R/W] PDR2 [R/W] PDR3 [R/W]  
XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX  
+1  
+2  
+3  
T-unit  
Port Data Register  
000000H  
Read/write attribute  
Initial value of register after reset  
Register name (column 1 of the register is at address 4n,  
column 2 is at address 4n + 2...)  
Leftmost register address (For word-length access,  
column 1 of the register becomes the MSB of the data.)  
Note : The initial value of bits in a register are indicated as follows :  
“1” : Initial value “1”  
“0” : Initial value “0”  
“X” : Initial value “X”  
“-” : A physical register does not exist at the location.  
35  
MB91305  
Register  
Address  
Block  
+0  
+1  
+2  
+3  
000000H  
to  
00000FH  
Reserved  
PDR0[R/W]  
XXXXXXXX  
PDR1[R/W]  
XXXXXXXX  
PDR2[R/W]  
XXXXXXXX  
PDR3[R/W]  
XXXXXXXX  
000010H  
000014H  
000018H  
00001CH  
000020H  
000024H  
000028H  
00002CH  
000030H  
000034H  
PDR4[R/W]  
XXXXXXXX  
PDR5[R/W]  
XXXXXXXX  
PDR6[R/W]  
--XXXXXX  
PDR7[R/W]  
--XXXXXX  
R-bus  
Port Data  
Register  
PDR8[R/W]  
XXXXXXXX  
PDR9[R/W]  
XXXXXXXX  
PDRA[R/W]  
-----XXX  
PDRB[R/W]  
XXXXXXXX  
PDRC[R/W]  
XXXXXXXX  
PDRD[R/W]  
--XXXXXX  
PDRE[R/W]  
-----XXX  
PDRF[R/W]  
XXXXXXXX  
ADCTH[R/W]  
XXXXXX00  
ADCTL[R/W]  
00000X00  
ADCH[R/W]  
00000000 00000000  
ADAT0[R]  
XXXXXX00 00000000  
ADAT1[R]  
XXXXXX00 00000000  
ADAT2[R]  
XXXXXX00 00000000  
ADAT3[R]  
XXXXXX00 00000000  
ADAT4[R]  
XXXXXX00 00000000  
ADAT5[R]  
XXXXXX00 00000000  
10-bit A/D  
converter  
ADAT6[R]  
XXXXXX00 00000000  
ADAT7[R]  
XXXXXX00 00000000  
ADAT8[R]  
XXXXXX00 00000000  
ADAT9[R]  
XXXXXX00 00000000  
TEST [R/W]  
00000000  
000038H  
00003CH  
000040H  
Reserved  
HEIRR0 [R/W]  
00000000  
ENIR0 [R/W]  
00000000  
ELVR0 [R/W]  
00000000  
External interrupt  
DICR [R/W]  
-------0  
HRCL [R/W]  
0--11111  
000044H  
000048H  
00004CH  
000050H  
000054H  
DLYI/I-unit  
TMRLR0 [W]  
XXXXXXXX XXXXXXXX  
TMR0 [R]  
XXXXXXXX XXXXXXXX  
16-bit  
Reload Timer 0  
TMCSR0 [R/W]  
----0000 00000000  
TMRLR1 [W]  
XXXXXXXX XXXXXXXX  
TMR1 [R]  
XXXXXXXX XXXXXXXX  
16-bit  
Reload Timer 1  
TMCSR1 [R/W]  
----0000 00000000  
(Continued)  
36  
MB91305  
Register  
Address  
Block  
+0  
+1  
+2  
+3  
TMRLR2 [W]  
XXXXXXXX XXXXXXXX  
TMR2 [R]  
XXXXXXXX XXXXXXXX  
000058H  
00005CH  
16-bit  
Reload Timer 2  
TMCSR2 [R/W]  
----0000 00000000  
SIDR0 [R]/  
SODR0 [W]  
XXXXXXXX  
SSR0 [R/W]  
00001000  
SCR0 [R/W]  
00000100  
SMR0 [R/W]  
00--0-0-  
000060H  
000064H  
000068H  
00006CH  
000070H  
000074H  
000078H  
00007CH  
000080H  
000084H  
UART0  
U-TIMER 0  
UART1  
UTIM0 [R] (UTIMR0 [W])  
00000000 00000000  
DRCL0 [W]  
--------  
UTIMC0 [R/W]  
0--00001  
SIDR1 [R]/  
SODR1 [W]  
XXXXXXXX  
SSR1 [R/W]  
00001000  
SCR1 [R/W]  
00000100  
SMR1 [R/W]  
00--0-0-  
UTIM1 [R] (UTIMR1 [W])  
00000000 00000000  
DRCL1 [W]  
--------  
UTIMC1 [R/W]  
0--00001  
U-TIMER 1  
UART2  
SIDR2 [R]/  
SODR2 [W]  
XXXXXXXX  
SSR2 [R/W]  
00001000  
SCR2 [R/W]  
00000100  
SMR2 [R/W]  
00--0-0-  
UTIM2 [R] (UTIMR2 [W])  
00000000 00000000  
DRCL2 [W]  
--------  
UTIMC2 [R/W]  
0--00001  
U-TIMER 2  
UART3  
SIDR3 [R]/  
SODR3 [W]  
XXXXXXXX  
SSR3 [R/W]  
00001000  
SCR3 [R/W]  
00000100  
SMR3 [R/W]  
00--0-0-  
UTIM3 [R] (UTIMR3 [W])  
00000000 00000000  
DRCL3 [W]  
--------  
UTIMC3 [R/W]  
0--00001  
U-TIMER 3  
UART4  
SIDR4 [R]/  
SODR4 [W]  
XXXXXXXX  
SSR4 [R/W]  
00001000  
SCR4 [R/W]  
00000100  
SMR4 [R/W]  
00--0-0-  
UTIM4 [R] (UTIMR4 [W])  
00000000 00000000  
DRCL4 [W]  
--------  
UTIMC4 [R/W]  
0--00001  
U-TIMER 4  
Reserved  
000088H  
00008CH  
PWCCL[R/W]  
0000--00  
PWCCH[R/W]  
00-00000  
000090H  
000094H  
000098H  
00009CH  
PWCD[R]  
XXXXXXXX XXXXXXXX  
PWC  
PWCC2[R/W]  
000-----  
Reserved  
PWCUD[R]  
XXXXXXXX XXXXXXXX  
(Continued)  
37  
MB91305  
Register  
Address  
Block  
+0  
+1  
+2  
+3  
0000A0H  
0000A4H  
0000A8H  
0000ACH  
Reserved  
IFN0 [R]  
00000000  
IFRN0 [R/W]  
00000000  
IFCR0 [R/W]  
00-00000  
IFDR0 [R/W]  
00000000  
0000B0H  
0000B4H  
0000B8H  
0000BCH  
0000C0H  
0000C4H  
0000C8H  
0000CCH  
0000D0H  
0000D4H  
0000D8H  
0000DCH  
0000E0H  
0000E4H  
0000E8H  
IBCR0 [R/W]  
00000000  
IBSR0 [R]  
00000000  
ITBA0 [R, R/W]  
00000000 00000000  
I2C interface ch.0  
I2C interface ch.1  
I2C interface ch.2  
ITMK0 [R/W]  
00111111 11111111  
ISMK0 [R/W]  
01111111  
ISBA0 [R/W]  
00000000  
IDAR0 [R/W]  
00000000  
ICCR0 [R/W]  
00011111  
IFN1 [R]  
00000000  
IFRN1 [R/W]  
00000000  
IFCR1 [R/W]  
00-00000  
IFDR1 [R/W]  
00000000  
IBCR1 [R/W]  
00000000  
IBSR1 [R]  
00000000  
ITBA1 [R, R/W]  
00000000 00000000  
ITMK1 [R/W]  
00111111 11111111  
ISMK1 [R/W]  
01111111  
ISBA1 [R/W]  
00000000  
IDAR1 [R/W]  
00000000  
ICCR1 [R/W]  
00011111  
IFN2 [R]  
00000000  
IFRN2 [R/W]  
00000000  
IFCR2 [R/W]  
00-00000  
IFDR2 [R/W]  
00000000  
IBCR2 [R/W]  
00000000  
IBSR2 [R]  
00000000  
ITBA2 [R, R/W]  
00000000 00000000  
ITMK2 [R/W]  
00111111 11111111  
ISMK2 [R/W]  
01111111  
ISBA2 [R/W]  
00000000  
IDA2R [R/W]  
00000000  
ICCR2 [R/W]  
00011111  
IFN3 [R]  
00000000  
IFRN3 [R/W]  
00000000  
IFCR3 [R/W]  
00-00000  
IFDR3 [R/W]  
00000000  
IBCR3 [R/W]  
00000000  
IBSR3 [R]  
00000000  
ITBA3 [R, R/W]  
00000000 00000000  
I2C interface ch.3  
ITMK3 [R/W]  
00111111 11111111  
ISMK3 [R/W]  
01111111  
ISBA3 [R/W]  
00000000  
IDAR3 [R/W]  
00000000  
ICCR3 [R/W]  
00011111  
0000ECH  
0000F0H  
0000F4H  
Reserved  
TCDT [R/W]  
00000000 00000000  
TCCS [R/W]  
00000000  
16-bit free-run  
timer  
(Continued)  
38  
MB91305  
Register  
Address  
Block  
+0  
+1  
+2  
+3  
IPCP1 [R]  
XXXXXXXX XXXXXXXX  
IPCP0 [R]  
XXXXXXXX XXXXXXXX  
0000F8H  
0000FCH  
000100H  
IPCP3 [R]  
XXXXXXXX XXXXXXXX  
IPCP2 [R]  
XXXXXXXX XXXXXXXX  
16-bit input  
capture  
ICS23 [R/W]  
00000000  
ICS01 [R/W]  
00000000  
000104H  
000108H  
00010CH  
Reserved  
EIRR1 [R/W]  
00000000  
ENIR1 [R/W]  
00000000  
ELVR1 [R/W]  
00000000 00000000  
000110H  
External interrupt  
Reserved  
000114H  
to  
00011FH  
PTMR0 [R]  
11111111 11111111  
PCSR0 [W]  
XXXXXXXX XXXXXXXX  
000120H  
000124H  
000128H  
00012CH  
000130H  
00134H  
PPG0  
PPG1  
PPG2  
PDUT0 [W]  
XXXXXXXX XXXXXXXX  
PCNH0 [R/W]  
00000000  
PCNL0 [R/W]  
00000000  
PTMR1 [R]  
11111111 11111111  
PCSR1 [W]  
XXXXXXXX XXXXXXXX  
PDUT1 [W]  
XXXXXXXX XXXXXXXX  
PCNH1 [R/W]  
00000000  
PCNL1 [R/W]  
00000000  
PTMR2 [R]  
11111111 11111111  
PCSR2 [W]  
XXXXXXXX XXXXXXXX  
PDUT2 [W]  
XXXXXXXX XXXXXXXX  
PCNH2 [R/W]  
00000000  
PCNL2 [R/W]  
00000000  
PTMR3 [R]  
11111111 11111111  
PCSR3[W]  
XXXXXXXX XXXXXXXX  
000138H  
00013CH  
PPG3  
PDUT3 [W]  
XXXXXXXX XXXXXXXX  
PCNH3 [R/W]  
00000000  
PCNL3 [R/W]  
00000000  
000140H  
to  
0001FCH  
Reserved  
DMACA0 [R/W]  
00000000 0000XXXX XXXXXXXX XXXXXXXX  
000200H  
000204H  
DMAC  
DMACB0 [R/W]  
00000000 00000000 00000000 00000000  
(Continued)  
39  
MB91305  
Register  
Address  
Block  
+0  
+1  
+2  
+3  
DMACA1 [R/W]  
00000000 0000XXXX XXXXXXXX XXXXXXXX  
000208H  
00020CH  
000210H  
000214H  
000218H  
00021CH  
000220H  
DMACB1 [R/W]  
00000000 00000000 00000000 00000000  
DMACA2 [R/W]  
00000000 0000XXXX XXXXXXXX XXXXXXXX  
DMACB2 [R/W]  
00000000 00000000 00000000 00000000  
DMACA3 [R/W]  
00000000 0000XXXX XXXXXXXX XXXXXXXX  
DMACB3 [R/W]  
00000000 00000000 00000000 00000000  
DMAC  
DMACA4 [R/W]  
00000000 0000XXXX XXXXXXXX XXXXXXXX  
DMACB4 [R/W]  
00000000 00000000 00000000 00000000  
000224H  
000228H  
00022CH  
to  
00023CH  
DMACR [R/W]  
0XX00000 XXXXXXXX XXXXXXXX XXXXXXXX  
000240H  
000244H  
to  
0002FCH  
Reserved  
I-Cache  
ISIZE[R/W]  
------10  
000304H  
000308H  
to  
0003E0H  
Reserved  
I-Cache  
ICHCR[R/W]  
0-000000  
0003E4H  
0003E8H  
to  
0003ECH  
Reserved  
(Continued)  
40  
MB91305  
Register  
Address  
Block  
+0  
+1  
+2  
+3  
BSD0 [W]  
0003F0H  
0003F4H  
0003F8H  
0003FCH  
000400H  
000404H  
000408H  
XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX  
BSD1 [R/W]  
XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX  
Bit Search  
Module  
BSDC [W]  
XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX  
BSRR [R]  
XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX  
DDR2 [R/W]  
00000000  
DDR3 [R/W]  
----0000  
DDR4 [R/W]  
00000000  
DDR5 [R/W]  
00000000  
DDR6 [R/W]  
--000000  
DDR7 [R/W]  
--000000  
R-bus  
Port Direction  
Register  
DDR8 [R/W]  
---00000  
DDR9 [R/W]  
00000000  
DDRA [R/W]  
00000000  
DDRB [R/W]  
00000000  
DDRC [R/W]  
00000000  
DDRD [R/W]  
--000000  
DDRE [R/W]  
------00  
DDRF [R/W]  
00000000  
00040CH  
000410H  
PFR0 [R/W]  
0--00000  
PFR1 [R/W]  
00000000  
PFR2 [R/W]  
000---00  
PFR3 [R/W]  
----0000  
PFR4 [R/W]  
-----000  
PFR5 [R/W]  
11111111  
PFR6 [R/W]  
00000000  
PFR7 [R/W]  
-----000  
000414H  
000418H  
00041CH  
R-bus  
Port Function  
Register  
PFR9 [R/W]  
11111111  
PFRB [R/W]  
00011-0-  
PFRC [R/W]  
1111--11  
PFRD [R/W]  
---101--  
PCRA [R/W]  
00000000  
PCRB [R/W]  
00000000  
000420H  
to  
00043CH  
Reserved  
ICR00 [R/W]  
---11111  
ICR01 [R/W]  
---11111  
ICR02[R/W]  
---11111  
ICR03 [R/W]  
---11111  
000440H  
000444H  
000448H  
00044CH  
000450H  
000454H  
000458H  
ICR04 [R/W]  
---11111  
ICR05 [R/W]  
---11111  
ICR06 [R/W]  
---11111  
ICR07 [R/W]  
---11111  
ICR08 [R/W]  
---11111  
ICR09 [R/W]  
---11111  
ICR10 [R/W]  
---11111  
ICR11 [R/W]  
---11111  
ICR12 [R/W]  
---11111  
ICR13 [R/W]  
---11111  
ICR14 [R/W]  
---11111  
ICR15 [R/W]  
---11111  
Interrupt  
Controller  
ICR16 [R/W]  
---11111  
ICR17 [R/W]  
---11111  
ICR18 [R/W]  
---11111  
ICR19 [R/W]  
---11111  
ICR20 [R/W]  
---11111  
ICR21 [R/W]  
---11111  
ICR22 [R/W]  
---11111  
ICR23 [R/W]  
---11111  
ICR24 [R/W]  
---11111  
ICR25 [R/W]  
---11111  
ICR26 [R/W]  
---11111  
ICR27 [R/W]  
---11111  
(Continued)  
41  
MB91305  
Register  
Address  
Block  
+0  
+1  
+2  
+3  
ICR28 [R/W]  
---11111  
ICR29 [R/W]  
---11111  
ICR30 [R/W]  
---11111  
ICR31 [R/W]  
---11111  
00045CH  
000460H  
000464H  
000468H  
00046CH  
ICR32 [R/W]  
---11111  
ICR33 [R/W]  
---11111  
ICR34 [R/W]  
---11111  
ICR35 [R/W]  
---11111  
ICR36 [R/W]  
---11111  
ICR37 [R/W]  
---11111  
ICR38 [R/W]  
---11111  
ICR39 [R/W]  
---11111  
Interrupt  
Controller  
ICR40 [R/W]  
---11111  
ICR41 [R/W]  
---11111  
ICR42 [R/W]  
---11111  
ICR43 [R/W]  
---11111  
ICR44 [R/W]  
---11111  
ICR45 [R/W]  
---11111  
ICR46 [R/W]  
---11111  
ICR47 [R/W]  
---11111  
000470H  
to  
00047CH  
Reserved  
RSRR [R/W]  
10000000 *2  
STCR [R/W]  
00110011 *2  
TBCR [R/W]  
00XXXX00 *1  
CTBR [W]  
XXXXXXXX  
000480H  
000484H  
Clock Control  
CLKR [R/W]  
00000000 *1  
WPR [W]  
XXXXXXXX  
DIVR0 [R/W]  
00000011 *1  
DIVR1[R/W]  
00000000 *1  
000488H  
00048CH  
000490H  
000494H  
to  
0005FCH  
Reserved  
000600H  
to  
00063FH  
ASR0 [R/W]  
ACR0 [R/W]  
000640H  
000644H  
000648H  
00064CH  
000650H  
000654H  
000658H  
00000000 00000000 *1  
1111XX00 00000000 *1  
ASR1 [R/W]  
XXXXXXXX XXXXXXXX *1  
ACR1 [R/W]  
XXXXXXXX XXXXXXXX *1  
ASR2 [R/W]  
XXXXXXXX XXXXXXXX *1  
ACR2 [R/W]  
XXXXXXXX XXXXXXXX *1  
ASR3 [R/W]  
XXXXXXXX XXXXXXXX *1  
ACR3 [R/W]  
XXXXXXXX XXXXXXXX *1  
T-unit  
ASR4 [R/W]  
XXXXXXXX XXXXXXXX *1  
ACR4 [R/W]  
XXXXXXXX XXXXXXXX *1  
ASR5 [R/W]  
XXXXXXXX XXXXXXXX *1  
ACR5 [R/W]  
XXXXXXXX XXXXXXXX *1  
ASR6 [R/W]  
XXXXXXXX XXXXXXXX *1  
ACR6 [R/W]  
XXXXXXXX XXXXXXXX *1  
(Continued)  
42  
MB91305  
Register  
Address  
Block  
+0  
+1  
+2  
+3  
ASR7 [R/W]  
ACR7 [R/W]  
00065CH  
000660H  
000664H  
000668H  
00066CH  
XXXXXXXX XXXXXXXX *1  
XXXXXXXX XXXXXXXX *1  
AWR0 [R/W]  
01111111 11111111 *1  
AWR1 [R/W]  
XXXXXXXX XXXXXXXX *1  
AWR2 [R/W]  
XXXXXXXX XXXXXXXX *1  
AWR3 [R/W]  
XXXXXXXX XXXXXXXX *1  
AWR4 [R/W]  
XXXXXXXX XXXXXXXX *1  
AWR5 [R/W]  
XXXXXXXX XXXXXXXX *1  
AWR6 [R/W]  
XXXXXXXX XXXXXXXX *1  
AWR7 [R/W]  
XXXXXXXX XXXXXXXX *1  
T-unit  
MCRA [R/W]  
XXXXXXXX  
MCRB [R/W]  
XXXXXXXX  
000670H  
000674H  
000678H  
00067CH  
000680H  
IOWR0 [R/W]  
XXXXXXXX  
IOWR1 [R/W]  
XXXXXXXX  
IOWR2 [R/W]  
XXXXXXXX  
CSER [R/W]  
00000001  
CHER [R/W]  
11111111  
TCR [R/W]  
00000000  
RCR [R/W]  
00XXXXXX XXXX0XXX  
000684H  
000688H  
to  
0007F8H  
Reserved  
MODR [W]  
XXXXXXXX  
0007FCH  
000800H  
to  
000AFCH  
Reserved  
ESTS0 [R/W]  
X0000000  
ESTS1 [R/W]  
XXXXXXXX  
ESTS2 [R]  
1XXXXXXX  
000B00H  
000B04H  
000B08H  
000B0CH  
000B10H  
ECTL0 [R/W]  
0X000000  
ECTL1 [R/W]  
00000000  
ECTL2 [W]  
000X0000  
ECTL3 [R/W]  
00X00X11  
ECNT0 [W]  
XXXXXXXX  
ECNT1 [W]  
XXXXXXXX  
EUSA [W]  
XXX00000  
EDTC [W]  
0000XXXX  
DSU  
EWP1 [R]  
00000000 00000000  
EDTR0 [W]  
XXXXXXXX XXXXXXXX  
EDTR1 [W]  
XXXXXXXX XXXXXXXX  
(Continued)  
43  
MB91305  
Register  
Address  
Block  
+0  
+1  
+2  
+3  
000B14H  
to  
000B1CH  
EIA0 [W]  
000B20H  
000B24H  
000B28H  
000B2CH  
000B30H  
000B34H  
000B38H  
000B3CH  
000B40H  
000B44H  
000B48H  
000B4CH  
000B50H  
000B54H  
000B58H  
000B5CH  
000B60H  
000B64H  
XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX  
EIA1 [W]  
XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX  
EIA2 [W]  
XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX  
EIA3 [W]  
XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX  
EIA4 [W]  
XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX  
EIA5 [W]  
XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX  
EIA6 [W]  
XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX  
EIA7 [W]  
XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX  
EDTA [R/W]  
DSU  
XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX  
EDTM [R/W]  
XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX  
EOA0 [W]  
XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX  
EOA1 [W]  
XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX  
EPCR [R/W]  
XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX  
EPSR [R/W]  
XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX  
EIAM0 [W]  
XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX  
EIAM1 [W]  
XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX  
EOAM0/EODM0 [W]  
XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX  
EOAM1/EODM1 [W]  
XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX  
(Continued)  
44  
MB91305  
(Continued)  
Register  
Address  
Block  
+0  
+1  
+2  
+3  
EOD0 [W]  
000B68H  
000B6CH  
XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX  
DSU  
EOD1 [W]  
XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX  
000B70H  
to  
000FFCH  
Reserved  
DMASA0 [R/W]  
XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX  
001000H  
001004H  
001008H  
00100CH  
001010H  
001014H  
001018H  
00101CH  
001020H  
001024H  
DMADA0 [R/W]  
XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX  
DMASA1 [R/W]  
XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX  
DMADA1 [R/W]  
XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX  
DMASA2 [R/W]  
XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX  
DMAC  
DMADA2 [R/W]  
XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX  
DMASA3 [R/W]  
XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX  
DMADA3 [R/W]  
XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX  
DMASA4 [R/W]  
XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX  
DMADA4 [R/W]  
XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX  
001028H  
to  
007104H  
Reserved  
*1 : Register whose initial value depends on the reset level. The registers at the INIT level are indicated.  
*2 : Register whose initial value depends on the reset level. The registers at the INIT level due to the INIT pin are  
indicated.  
45  
MB91305  
Register  
Address  
Block  
+0  
+1  
+2  
+3  
FIFO0o [R]  
XXXXXXXX XXXXXXXX  
FIFO0i [W]  
XXXXXXXX XXXXXXXX  
00060000H  
00060004H  
00060008H  
FIFO1 [R]  
XXXXXXXX XXXXXXXX  
FIFO2 [W]  
XXXXXXXX XXXXXXXX  
FIFO3 [R]  
XXXXXXXX XXXXXXXX  
-⎯  
0006000CH  
to  
0006001FH  
CONT1 [R/W]  
000XX0XX XXX00000  
00060020H  
00060024H  
00060028H  
0006002CH  
00060030H  
00060034H  
CONT2 [R/W]  
XXXXXXXX XXX00000  
CONT3 [R/W]  
XXXXXXXX XXX00000  
CONT4 [R/W]  
XXXXXXXX XXX00000  
CONT5 [R/W]  
XXXXXXXX XXXX00XX  
CONT6 [R/W]  
XXXXXXXX XXXX00XX  
CONT7 [R/W]  
XXXXXXXX XXX00000  
CONT8 [R/W]  
XXXXXXXX XXX00000  
CONT9 [R/W]  
0XX0XXXX 0XXX0000  
USB Function  
CONT10 [R/W]  
00000000 X00000XX  
TTSIZE [R/W]  
00010001 00010001  
TRSIZE [R/W]  
00010001 00010001  
00060038H  
0006003CH  
00060040H  
RSIZE0 [R]  
XXXXXXXX XXXX0000  
RSIZE1 [R]  
XXXXXXXX X0000000  
00060044H  
00060048H  
to  
0006005FH  
ST1 [R/W]  
XXXXXX00 00000000  
00060060H  
00060064H  
00060068H  
ST2 [R]  
XXXXXXXX XXX00000  
ST3 [R/W]  
XXXXXXXX XXX00000  
ST4 [R/W]  
XXXXX000 00000000  
ST5 [R/W]  
XXXX0XXX XX000000  
0006006CH  
(Continued)  
46  
MB91305  
(Continued)  
Register  
Address  
Block  
+0  
+1  
+2  
+3  
00060070H  
to  
0006007FH  
USB Function  
00060080H  
to  
0006FFFBH  
Reserved  
USB reset  
USBRST  
-0------  
0006FFFCH  
47  
MB91305  
INTERRUPT SOURCE TABLE  
Interrupt number  
Interrupt  
level  
Address of  
TBR default  
Resource  
number  
Interrupt source  
Offset  
Hexa-  
Decimal  
decimal  
Reset  
Mode vector  
0
1
00  
01  
02  
03  
04  
05  
06  
07  
08  
09  
0A  
0B  
0C  
0D  
0E  
3FCH  
3F8H  
3F4H  
3F0H  
3ECH  
3E8H  
3E4H  
3E0H  
3DCH  
3D8H  
3D4H  
3D0H  
3CCH  
3C8H  
3C4H  
000FFFFCH  
000FFFF8H  
000FFFF4H  
000FFFF0H  
000FFFECH  
000FFFE8H  
000FFFE4H  
000FFFE0H  
000FFFDCH  
000FFFD8H  
000FFFD4H  
000FFFD0H  
000FFFCCH  
000FFFC8H  
000FFFC4H  
Reserved for system  
Reserved for system  
Reserved for system  
Reserved for system  
Reserved for system  
No-coprocessor trap  
Coprocessor error trap  
INTE instruction  
2
3
4
5
6
7
8
9
Instruction break exception  
Operand break trap  
Step trace trap  
10  
11  
12  
13  
14  
NMI request (tool)  
Undefined instruction exception  
15 (FH)  
fixed  
NMI request  
15  
0F  
3C0H  
000FFFC0H  
External interrupt 0  
External interrupt 1  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
1A  
1B  
1C  
1D  
1E  
1F  
ICR00  
ICR01  
ICR02  
ICR03  
ICR04  
ICR05  
ICR06  
ICR07  
ICR08  
ICR09  
ICR10  
ICR11  
ICR12  
ICR13  
ICR14  
ICR15  
3BCH  
3B8H  
3B4H  
3B0H  
3ACH  
3A8H  
3A4H  
3A0H  
39CH  
398H  
394H  
390H  
38CH  
388H  
384H  
380H  
000FFFBCH  
000FFFB8H  
000FFFB4H  
000FFFB0H  
000FFFACH  
000FFFA8H  
000FFFA4H  
000FFFA0H  
000FFF9CH  
000FFF98H  
000FFF94H  
000FFF90H  
000FFF8CH  
000FFF88H  
000FFF84H  
000FFF80H  
8
External interrupt 2  
External interrupt 3  
External interrupt 4 (USB-function)  
External interrupt 5  
External interrupt 6  
External interrupt 7  
Reload timer 0  
Reload timer 1  
9
Reload timer 2  
10  
0
UART0 (Reception completed)  
UART1 (Reception completed)  
UART2 (Reception completed)  
UART0 (Transmission completed)  
UART1 (Transmission completed)  
1
2
3
4
(Continued)  
48  
MB91305  
Interrupt number  
Interrupt  
level  
Address of  
TBR default  
Resource  
number  
Interrupt source  
Offset  
Hexa-  
Decimal  
decimal  
UART2 (Transmission completed)  
DMAC0 (end or error)  
DMAC1 (end or error)  
DMAC2 (end or error)  
DMAC3 (end or error)  
DMAC4 (end or error)  
A/D  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
2A  
2B  
2C  
2D  
2E  
ICR16  
ICR17  
ICR18  
ICR19  
ICR20  
ICR21  
ICR22  
ICR23  
ICR24  
ICR25  
ICR26  
ICR27  
ICR28  
ICR29  
ICR30  
37CH  
378H  
374H  
370H  
36CH  
368H  
364H  
360H  
35CH  
358H  
354H  
350H  
34CH  
348H  
344H  
000FFF7CH  
000FFF78H  
000FFF74H  
000FFF70H  
000FFF6CH  
000FFF68H  
000FFF64H  
000FFF60H  
000FFF5CH  
000FFF58H  
000FFF54H  
000FFF50H  
000FFF4CH  
000FFF48H  
000FFF44H  
5
PPG0  
PPG1  
PPG2  
PPG3  
PWC  
External interrupt 8/U-TIMER0  
External interrupt 9/U-TIMER1  
External interrupt 10/U-TIMER2  
Timebase timer overflow /  
U-TIMER3  
47  
2F  
ICR31  
340H  
000FFF40H  
External interrupt 11/U-TIMER4  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
3A  
3B  
3C  
3D  
3E  
3F  
ICR32  
ICR33  
ICR34  
ICR35  
ICR36  
ICR37  
ICR38  
ICR39  
ICR40  
ICR41  
ICR42  
ICR43  
ICR44  
ICR45  
ICR46  
ICR47  
33CH  
338H  
334H  
330H  
32CH  
328H  
324H  
320H  
31CH  
318H  
314H  
310H  
30CH  
308H  
304H  
300H  
000FFF3CH  
000FFF38H  
000FFF34H  
000FFF30H  
000FFF2CH  
000FFF28H  
000FFF24H  
000FFF20H  
000FFF1CH  
000FFF18H  
000FFF14H  
000FFF10H  
000FFF0CH  
000FFF08H  
000FFF04H  
000FFF00H  
16-bit free-run timer  
I2C ch.0  
I2C ch.1  
I2C ch.2  
I2C ch.3  
UART3 (Reception completed)  
UART4 (Reception completed)  
UART3 (Transmission completed)  
UART4 (Transmission completed)  
External interrupt 12/Input capture 0  
External interrupt 13/Input capture 1  
External interrupt 14/Input capture 2  
External interrupt 15/Input capture 3  
Reserved for system  
Delayed interrupt source bit  
(Continued)  
49  
MB91305  
(Continued)  
Interrupt number  
Interrupt  
level  
Address of  
TBR default  
Resource  
number  
Interrupt source  
Offset  
Hexa-  
Decimal  
decimal  
Reserved for system  
(used by REALOS)  
64  
65  
40  
41  
2FCH  
2F8H  
000FFEFCH  
000FFEF8H  
Reserved for system  
(used by REALOS)  
Reserved for system  
Reserved for system  
Reserved for system  
Reserved for system  
Reserved for system  
Reserved for system  
Reserved for system  
Reserved for system  
Reserved for system  
Reserved for system  
Reserved for system  
Reserved for system  
Reserved for system  
Reserved for system  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
42  
43  
44  
45  
46  
47  
48  
49  
4A  
4B  
4C  
4D  
4E  
4F  
-
2F4H  
2F0H  
2ECH  
2E8H  
2E4H  
2E0H  
2DCH  
2D8H  
2D4H  
2D0H  
2CCH  
2C8H  
2C4H  
2C0H  
000FFEF4H  
000FFEF0H  
000FFEECH  
000FFEE8H  
000FFEE4H  
000FFEE0H  
000FFEDCH  
000FFED8H  
000FFED4H  
000FFED0H  
000FFECCH  
000FFEC8H  
000FFEC4H  
000FFEC0H  
80  
to  
255  
50  
to  
FF  
2BCH  
to  
000H  
000FFEBCH  
to  
000FFC00H  
Used in INT instruction  
50  
MB91305  
ELECTRICAL CHARACTERISTICS  
1. Absolute Maximum Rating  
Rating  
Parameter  
Symbol  
Unit  
Remarks  
*2  
Min  
VSS 0.5  
VSS 0.5  
VSS 0.5  
VSS 0.5  
VSS 0.3  
VSS 0.3  
VSS 0.3  
Max  
VSS + 4.0  
VSS + 2.2  
VSS + 4.0  
VSS + 4.0  
VDDE + 0.3  
AVCC + 0.3  
AVCC + 0.3  
10  
Power supply voltage*1  
VDDE  
VDDI  
AVCC  
AVRH  
VI  
V
V
Power supply voltage (Internal) *1  
Analog power supply voltage*1  
Analog reference voltage*1  
Input voltage*1  
*2  
*3  
*3  
V
V
V
Analog pin input voltage*1  
VIA  
V
Output voltage*1  
VO  
V
“L” level maximum output current  
“L” level average output current  
“L” level total maximum output current  
“L” level total average output current  
“H” level maximum output current  
“H” level average output current  
“H” level total maximum output current  
“H” level total average output current  
Power consumption  
IOL  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mW  
°C  
°C  
*4  
*5  
IOLAV  
ΣIOL  
ΣIOLAV  
IOH  
4
100  
50  
*6  
*4  
*5  
10  
IOHAV  
ΣIOH  
ΣIOHAV  
PD  
4  
50  
20  
*6  
750  
Operating temperature  
Ta  
10  
+70  
Storage temperature  
TSTG  
+150  
*1 : This parameter is based on AVSS = VSS = 0.0 V.  
*2 : VDDE must not be lower than VSS 0.3 V.  
*3 : Be careful not to exceed VDDE + 0.3 V, for example, when power is turned on.  
*4 : Maximum output current determines the peak value of any one of corresponding pins.  
*5 : Average output current is defined as the value of the average current flowing over 100 ms at any one of the  
corresponding pins.  
*6 : Average total output current is defined as the value of the average current flowing over 100 ms at all of the  
corresponding pins.  
WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current,  
temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.  
51  
MB91305  
2. Recommended Operating Conditions  
(VSS = AVSS = 0 V)  
Value  
Parameter  
Symbol  
Unit  
Remarks  
Min  
3.0  
Max  
3.6  
VDDE  
VDDI  
AVCC  
AVRH  
Ta  
V
V
Power supply voltage  
1.65  
1.95  
Analog power supply voltage  
Analog reference voltage  
Operating temperature  
VSS 0.3  
AVSS  
VSS + 3.6  
AVCC  
+70  
V
V
10  
°C  
WARNING: The recommended operating conditions are required in order to ensure the normal operation of the  
semiconductor device. All of the device’s electrical characteristics are warranted when the device is  
operated within these ranges.  
Always use semiconductor devices within their recommended operating condition ranges. Operation  
outside these ranges may adversely affect reliability and could result in device failure.  
No warranty is made with respect to uses, operating conditions, or combinations not represented on  
the data sheet. Users considering application outside the listed conditions are advised to contact their  
FUJITSU representatives beforehand.  
52  
MB91305  
3. DC Characteristics  
(1) CPU  
(VDDI = 1.8 V 0.15 V, VDDE = AVCC = 3.3 V 0.3 V, VSS = AVSS = 0 V, Ta = −10 °C to +70 °C)  
Value  
Sym-  
bol  
Parameter  
Pin  
Conditions  
Unit  
Remarks  
Min  
Typ  
Max  
VIH  
D31 to D16  
Input ports  
0.7 × VDDE  
VDDE + 0.3  
V
“H” level  
input voltage  
Hysteresis  
input  
VHIS except for  
D31 to D16  
0.8 × VDDE  
VSS  
VDDE + 0.3  
0.25 × VDDE  
0.2 × VDDE  
V
V
V
VIL  
D31 to D16  
“L” level  
input voltage  
Input ports  
except for  
D31 to D16  
Hysteresis  
input  
VILS  
VSS  
VDDE = 3.0 V  
IOH = −4.0 mA  
“H” level  
output voltage  
VOH All output pins  
VDDE 0.5  
VDDE  
0.4  
V
V
VDDE = 3.0 V  
IOL = 4.0 mA  
“L” level  
output voltage  
VOL  
All output pins  
VSS  
Input leak  
current  
(High-Z  
outputLeakage  
current)  
VDDE = 3.6 V  
All input pins 0.45 V < VI <  
VDDE  
ILI  
5  
+5  
µA  
Pull-up  
resistance  
VDDE = 3.6 V  
RUP  
*1  
12  
12  
25  
25  
100  
100  
kΩ  
kΩ  
VI = 0.45 V  
Pull-down  
resistance  
VDDE = 3.6 V  
VI = 3.3 V  
RDOWN  
*2  
(Multiply by 4)  
When  
operating at  
66 MHz  
fC = 16.5 MHz  
VDDE = 3.3 V  
VDDI = 1.8 V  
ICC  
120  
180  
mA  
Power supply  
current  
fC = 16.5 MHz  
VDDE, VDDI  
ICCS  
VDDE = 3.3 V  
60  
90  
mA at sleep  
VDDI = 1.8 V  
Ta = +25 °C  
VDDE = 3.3 V  
VDDI = 1.8 V  
ICCH  
200  
1000  
µA at stop  
Other than  
Input  
capacitance  
VDDE, VSS  
AVCC and  
CIH  
10  
pF  
AVSS  
*1 : Pins that the I/O circuit type is B and G  
*2 : Pins that the I/O circuit type is J  
53  
MB91305  
(2) USB  
[1] DC characteristics  
(VDDI = 1.8 V 0.15 V, VDDE = AVCC = 3.3 V 0.3 V, VSS = AVSS = 0 V, Ta = −10 °C to +70 °C)  
Value  
Typ  
Sym-  
bol  
Parameter  
“H” level  
Pin  
Conditions  
Unit  
Remarks  
Min  
Max  
VOH  
VOL  
IOH = −100 µA  
IOL = 100 µA  
VDDE 0.2  
VDDE  
V
V
output voltage  
“L” level  
output voltage  
0
20  
6  
20  
6
0.2  
Full Speed  
VOH = VDDE 0.4 V  
“H” level  
output voltage  
IOH  
mA  
mA  
Low Speed  
VOH = VDDE 0.4 V  
Full Speed  
VOL = 0.4 V  
“L” level  
output voltage  
IOL  
Low Speed  
VOL = 0.4 V  
Output Short-  
Circuit Current  
IOS  
ILZ  
300  
5
mA *1  
Input leak  
current  
µA *2  
*1 : < Output Short Circuit Current IOS >  
The output short circuit current IOS is the maximum current that flows when the output pin is connected to VDDE  
or VSS pin (within the maximum rating) .  
Output Short Circuit Current : The output short circuit current’s value is the short-circuit current value of one  
terminal in one side of the differential output terminal. As this USB I/O buffer is  
a differential output, consider both of the pins.  
Monitor short circuit current  
“H” level  
“H” output  
Short-circuit to GND level  
Short-circuit to VDDE level  
3-State Enable "L"  
“L” output  
“L” level  
Monitor short circuit current  
3-State Enable "L"  
54  
MB91305  
*2 : < Z leak current ILZ measurement >  
The leak current when VDDE or VSS potential is impressed to bi-directional pin at high-impedance state of USB  
I/O buffer is the input leak current ILZ.  
Monitor leak current  
Z output  
Impressed 0 V, VDDE level to  
output pin  
3-State Enable "H"  
55  
MB91305  
[2] DC Characteristics  
Conform to USB Specification Revision 1.1  
(VDDI = 1.8 V 0.15 V, VDDE = AVCC = 3.3 V 0.3 V, VSS = AVSS = 0 V, Ta = −10 °C to +70 °C)  
Value  
Parameter  
Symbol  
Unit Remarks  
Min  
2.0  
Max  
High (driven)  
VIH  
VIL  
V
V
V
V
V
V
V
*1  
*1  
*2  
*2  
*3  
*3  
*4  
Low  
0.8  
Input Levels  
Differential Input Sensitivity  
Common Mode Range  
Low  
VDI  
0.2  
0.8  
0.0  
2.8  
1.3  
VCM  
VOL  
VOH  
VCRS  
RPU  
RPD  
2.5  
0.3  
Output Levels High (driven)  
Differential Output Signal Voltage  
3.6  
2.0  
Bus Pull-Up Resistor on Upstream Port  
1.425  
1.425  
3.0  
1.575  
1.575  
3.6  
k1.5 k5%  
k1.5 k5%  
Terminations Bus Pull-Down Resistor on Downstream Port  
Termination Voltage for Upstream Port Pull-Up VTERM  
*1 : < Input Levels VIH and VIL >  
V
*5  
The switching-threshold voltage of the single-end-receiver in USB I/O buffer is set within the following range; VIL  
(Max) = 0.8 V, VIH (Min) = 2.0 V (TTL input standard).  
And, to fall the noise sensitivity, a little hysteresis is set.  
56  
MB91305  
*2 : < Input Levels VDI and VCM >  
Reception of the USB differential data signal uses the differential-receiver.  
The differential input sensitivity of the differential-receiver is 200 mV, when the difference voltage between the  
differrential data input and local ground reference level is the following ranges; 0.8 V to 2.5 V.  
The voltage range above is called the common2 mode input voltage range.  
1.0  
0.2  
0.8  
2.5  
Common mode input voltage (V)  
*3 : < Output Levels VOL and VOH >  
The driver’s output driving ability is set to following;  
- at low state (VOL) : less than 0.3 V (vs. 3.6 V, 1.5 kload)  
- at high state (VOH) : more than 2.8 V (vs. ground, 1.5 kload)  
*4 : < Output Levels VCRS >  
The cross voltage of the external differrencial output signal (D+/D) in USB buffer is from 1.3 V to 2.0 V.  
D+  
Max 2.0 V  
VCRS standard range  
Min 1.3 V  
D−  
*5 : < Terminations VTERM >  
Pull-up voltage for the upstream port is shown.  
57  
MB91305  
4. AC Characteristics  
(1) Clock timing ratings  
(VDDI = 1.8 V 0.15 V, VDDE = AVCC = 3.3 V 0.3 V, VSS = AVSS = 0 V, Ta = −10 °C to +70 °C)  
Value  
Condi-  
tions  
Parameter  
Clock frequency (1)  
Clock cycle time  
Symbol  
Pin  
Unit  
Remarks  
Min  
37.5  
12.5  
Max  
48  
MHz  
MHz  
ns  
X0  
X1  
fC  
16  
Using PLL*1  
20.8  
62.5  
X0  
X1  
tC  
ns  
X0  
X1  
Self-oscillation  
(1/2 division input)  
Clock frequency (2)  
Clock frequency (3)  
Clock cycle time  
fC  
fC  
tC  
10  
10  
40  
16  
50  
50  
100  
MHz  
MHz  
ns  
X0  
X1  
X0  
X1  
At external clock  
PWH  
PWL  
X0  
X1  
Input clock pulse width  
ns  
Input clock rise time  
and fall time  
tCR  
tCF  
X0  
X1  
8
ns  
tCR + tCF  
fCP  
fCPP  
fCPT  
tCP  
3.125*2  
3.125*2  
3.125*2  
15.6  
64  
32  
MHz CPU  
Internal operating clock  
frequency  
MHz Peripheral  
MHz External bus  
32  
1280*2  
1280*2  
1280*2  
ns  
ns  
ns  
CPU  
Internal operating clock  
cycle time  
tCPP  
tCPT  
31.2  
Peripheral  
External bus  
31.2  
*1 : This value is as follows;  
- With USB function (MD pin = 0000B)  
: 37.5 MHz to 48 MHz And using USB: fixed to 48 MHz  
(operation at a maximum internal speed of 64 MHz by  
quadrupling a self-oscillation frequency of 48 MHz via PLL of  
divided by 3.)  
- Without USB function (MD pin = 0010B) : 12.5 MHz to 16 MHz  
(operation at a maximum internal speed of 64 MHz by  
quadrupling a self-oscillation frequency of 16 MHz via PLL.)  
*2 : The values shown represent a minimum clock frequency of 12.5 MHz input at the X0 pin, using the oscillation  
circuit PLL and a gear ratio of 1/16.  
12.5 [MHz] × 4 (multiply) × 1/16 (gear 1/16) = 3.125 [MHz]  
58  
MB91305  
Conditions for measuring the clock timing ratings  
t
C
Output pin  
0.8 VDDE  
0.2 VDDE  
C = 30 pF  
P
WH  
PWL  
t
CF  
tCR  
Operation Assurance Range  
VDDI [V]  
Operation Assurance Range (Ta = − 10 °C to + 70 °C)  
VDDE = 3.0 V to 3.6 V  
fCPP is represented by the shaded area.  
1.95  
1.65  
f
CP/fCPP  
0
0.3125  
33  
66  
[MHz]  
Internal clock  
59  
MB91305  
External/internal clock setting range  
Oscillation input clock  
Without USB fc = 16 MHz  
WIth USB fc = 48 MHz  
[MHz]  
fCP  
fCPT  
,
64  
CPU :  
Peripheral, External bus :  
32  
fCPP  
16.5  
CPU : Division ration  
for peripheral  
4 : 4  
2 : 2  
1 : 2  
Notes : When the PLL is used, the external clock input must fall between 12.5 MHz and 16.5 MHz.  
Set the PLL oscillation stabilization wait time longer than 500 µs.  
The internal clock gear setting should not exceed the relevant value in the table in (1) "Clock timing ratings”.  
60  
MB91305  
(2) Clock output timing  
(VDDI = 1.8 V 0.15 V, VDDE = AVCC = 3.3 V 0.3 V, VSS = AVSS = 0 V, Ta = −10 °C to +70 °C)  
Value  
Condi-  
tions  
Parameter  
Symbol  
Pin  
Unit  
Remarks  
Min  
Max  
MCLK  
SYSCLK  
Cycle time  
tCYC  
tCPT  
ns  
*1  
MCLK (SYSCLK) ↑  
MCLK  
SYSCLK  
tCHCL  
1/2 × tCYC 3  
1/2 × tCYC 3  
1/2 × tCYC + 3  
1/2 × tCYC + 3  
ns  
ns  
*2  
*3  
MCLK (SYSCLK) ↓  
MCLK (SYSCLK) ↓  
MCLK (SYSCLK) ↑  
MCLK  
SYSCLK  
tCLCL  
t
CYC  
t
CHCL  
tCLCH  
V
OH  
VOH  
MCLK  
V
OL  
SYSCLK  
*1 : tCYC is the frequency of one clock cycle after gearing.  
*2 : The following ratings are for the gear ratio set to 1.  
For the ratings when the gear ratio is set to between 1/2, 1/4 and 1/8, substitute 1/2, 1/4 or 1/8 for n in the  
following equation.  
tCHCL = (1 / 2 × 1 / n) × tCYC 10  
*3 : The following rating are for the gear ratio set to 1.  
61  
MB91305  
(3) Reset and hardware standby input ratings  
(VDDI = 1.8 V 0.15 V, VDDE = AVCC = 3.3 V 0.3 V, VSS = AVSS = 0 V, Ta = −10 °C to +70 °C)  
Value  
Condi-  
tions  
Parameter  
INIT input time  
Symbol  
Pin  
Unit  
Remarks  
Min  
Max  
*
ns  
(at power-on)  
tINTL  
INIT  
INIT input time  
(other than at power-on)  
tCP × 5  
ns  
* : INIT input time (at power-on)  
FAR resonator, ceramic oscillator : φ × 215 or greater recommended  
Crystal : φ × 221 or greater recommended  
φ : Power on X0/X1 period × 2  
t
INTL  
INIT  
0.2 Vcc  
62  
MB91305  
(4-1) Normal bus access read/write operation  
(VDDI = 1.8 V 0.15 V, VDDE = AVCC = 3.3 V 0.3 V, VSS = AVSS = 0 V, Ta = −10 °C to +70 °C)  
Value  
Condi-  
tions  
Parameter  
Symbol  
Pin  
Unit Remarks  
Min  
Max  
CS0/CS1/CS4/CS5/  
CS6/CS7 setup  
tCSLCH  
tCSHCH  
3
ns  
ns  
MCLK/SYSCLK  
CS0 to CS7  
CS0/CS1/CS4/CS5/  
CS6/CS7 hold  
3
tCYC / 2 + 6  
Address setup  
Address hold  
tASCH  
tCHAX  
3
3
ns  
ns  
MCLK/SYSCLK  
A23 to A0  
tCYC / 2 + 6  
Valid address →  
Valid data input time  
A23 to A0  
D31 to D16  
*1  
ns  
tAVDV  
3/2 × tCYC 15  
*2  
WR0 , WR1 delay time  
WR0 , WR1 delay time  
tCHWL  
tCHWH  
6
6
ns  
ns  
MCLK/SYSCLK  
WR0, WR1  
WR0 , WR1 minimum  
pulse width  
tWLWH  
tDSWH  
tWHDX  
WR0, WR1  
tCYC 3  
tCYC  
ns  
ns  
ns  
Data setup WRx ↑  
WR0, WR1  
D31 to D16  
WRx ↑ → Data hold  
time  
5
RD delay time  
RD delay time  
tCHRL  
tCHRH  
6
6
ns  
ns  
MCLK/SYSCLK  
RD  
RD ↓ →  
Valid data input time  
tRLDV  
tCYC 15  
ns  
*1  
RD  
D31 to D16  
Data setup  
RD Time  
tDSRH  
tRHDX  
tRLRH  
15  
0
ns  
ns  
ns  
RD ↑ → Data hold time  
RD minimum pulse  
width  
RD  
tCYC 3  
AS setup  
AS hold  
tASLCH  
tASHCH  
3
3
ns  
ns  
MCLK/SYSCLK  
AS  
*1 : When the bus timing is delayed by automatic wait insertion or RDY input, add the time (tCYC × the number of  
cycles added for the delay) to this rating.  
*2 : The following ratings are for the gear ratio set to 1.  
For the ratings when the gear ratio is set to between 1/2, 1/4 and 1/8, substitute 1/2, 1/4 and 1/8 for n in the  
following equation.  
tAVDV : 3 / (2n) × tCYC 15  
63  
MB91305  
t
CYC  
BA1  
V
OH  
V
OH  
V
OH  
VOH  
MCLK  
SYSCLK  
t
ASHCH  
t
ASLCH  
V
OH  
AS  
VOL  
LBA  
t
t
CSLCH  
t
CSHCH  
V
OH  
V
OL  
CS0 to CS7  
A23 to A00  
RD  
ASCH  
t
CHAX  
V
V
OH  
OL  
V
V
OH  
OL  
t
CHRH  
t
CHRL  
t
RLRH  
V
OL  
V
OH  
t
RHDX  
t
RLDV  
t
DSRH  
t
AVDV  
V
V
OH  
OL  
V
V
OH  
OL  
D31 to D16  
t
t
CHWL  
tCHWH  
t
WLWH  
V
OL  
WR0, WR1  
D31 to D16  
V
OH  
t
WHDX  
DSWH  
V
OH  
OL  
V
OH  
write  
V
VOL  
64  
MB91305  
(4-2) Multiplex bus access read/write operation  
(VDDI = 1.8 V 0.15 V, VDDE = AVCC = 3.3 V 0.3 V, VSS = AVSS = 0 V, Ta = −10 °C to +70 °C)  
Value  
Condi-  
tions  
Parameter  
Symbol  
Pin  
Unit Remarks  
Min  
Max  
D31 to D16 address  
setup time  
MCLK (SYSCLK) ↑  
tASCH  
3
ns  
MCLK/SYSCLK  
D31 to D16  
(address)  
MCLK (SYSCLK) ↑ →  
D31 to D16 address  
hold time  
tCHAX  
tASASH  
tASHAX  
3
12  
tCYC / 2 + 6  
ns  
D31 to D16 address  
setup time AS ↑  
ns  
ns  
*
*
AS  
D31 to D16  
(address)  
AS ↑ →  
D31 to D16 address  
hold time  
tCYC 3  
tCYC + 3  
* : At CS RD/WR setup extension = 1  
Note : Use the same rating as normal bus interface except for this rating.  
65  
MB91305  
• At CS RD/WR setup extension = 1  
tCYC  
BA1  
BA2  
BA3  
BA1W  
MCLK  
VOH  
VOH  
VOH  
VOH  
VOH  
VOH  
SYSCLK  
tASLCH  
tASHCH  
VOH  
AS  
VOL  
tASASH  
tASHAX  
tCSLCH  
tASCH  
CS0 to CS7  
D31 to D16  
VOL  
tCHAX  
VOH  
VOL  
VOH  
VOL  
VIH  
VIL  
VIH  
VIL  
Address  
Read data  
tDSRH  
tRHDX  
VOH  
tRLDV  
VOL  
RD  
tRLRH  
tCHRL  
tCHRH  
VOH  
VOL  
VOH  
VOL  
VOH  
VOL  
VOH  
Write data  
Address  
D31 to D16  
WR0, WR1  
VOL  
tDSWH  
VOL  
tWHDX  
VOH  
tWLWH  
tCHWH  
tCHWL  
VOH  
VOL  
Address  
A23 to A00  
66  
MB91305  
• At CS RD/WR setup extension = 0  
tCYC  
BA1  
BA2  
BA3  
MCLK  
VOH  
VOH  
VOH  
VOH  
VOH  
SYSCLK  
VOH  
VOL  
AS  
tASLCH  
tCSLCH  
tASHCH  
CS0 to CS7  
D31 to D16  
VOL  
tASCH  
VOH  
tCHAX  
VIH  
VIL  
VOH  
VOL  
VIH  
VIL  
Address  
Read data  
VOL  
tDSRH  
tRHDX  
VOH  
tRLDV  
VOL  
RD  
tRLRH  
tCHRH  
tCHRL  
VOH  
VOL  
VOH  
VOL  
VOH  
VOL  
Address  
Write data  
D31 to D16  
tDSWH  
tWHDX  
VOH  
VOL  
WR0, WR1  
A23 to A00  
tWLWH  
tCHWL  
tCHWH  
VOH  
VOL  
Address  
67  
MB91305  
(5) Ready input timings  
(VDDI = 1.8 V 0.15 V, VDDE = AVCC = 3.3 V 0.3 V, VSS = AVSS = 0 V, Ta = −10 °C to +70 °C)  
Value  
Condi-  
tions  
Parameter  
Symbol  
Pin  
Unit  
Remarks  
Min  
Max  
MCLK  
SYSCLK  
RDY  
RDY setup time →  
MCLK (SYSCLK) ↓  
tRDYS  
10  
ns  
MCLK  
SYSCLK  
RDY  
MCLK (SYSCLK) ↓ →  
RDY hold time  
tRDYH  
0
ns  
t
CYC  
MCLK  
V
OH  
VOH  
SYSCLK  
V
OL  
VOL  
t
RDYS  
t
RDYH  
t
RDYS  
tRDYH  
RDY  
with wait  
V
OH  
V
OH  
V
OL  
V
V
OL  
RDY  
without wait  
OH  
V
OH  
V
OL  
V
OL  
68  
MB91305  
(6) Hold timing  
Parameter  
(VDDI = 1.8 V 0.15 V, VDDE = AVCC = 3.3 V 0.3 V, VSS = AVSS = 0 V, Ta = −10 °C to +70 °C)  
Value  
Condi-  
Symbol  
Pin  
Unit  
Remarks  
tions  
Min  
Max  
MCLK  
SYSCLK  
BGRNT  
BGRNT delay time  
BGRNT delay time  
tCHBGL  
tCHBGH  
tXHAL  
tHAHV  
tCYC / 2 6 tCYC / 2 + 6  
tCYC / 2 6 tCYC / 2 + 6  
ns  
ns  
Pin floating  
BGRNT time  
tCYC 10  
tCYC 10  
tCYC + 10  
tCYC + 10  
ns  
ns  
BGRNT  
BGRNT ↑ →  
Pin valid time  
Note : It takes one cycle or more from when BRQ is captured until BGRNT changes.  
t
CYC  
V
OH  
V
OH  
V
OH  
VOH  
MCLK  
SYSCLK  
BRQ  
t
CHBGL  
tCHBGH  
V
OH  
BGRNT  
V
OL  
t
XHAL  
t
HAHV  
V
OH  
OL  
V
OH  
OL  
Each pin  
V
V
High-impedance  
69  
MB91305  
(7) UART timing  
(VDDI = 1.8 V 0.15 V, VDDE = AVCC = 3.3 V 0.3 V, VSS = AVSS = 0 V, Ta = −10 °C to +70 °C)  
Value  
Parameter  
Symbol  
Pin  
Conditions  
Unit Remarks  
Min  
Max  
Serial clock cycle time  
tSCYC  
tSLOV  
SCK0 to SCK4  
8 tCYCP  
ns  
ns  
SCLK ↓ →  
SOUT delay time  
SCK0 to SCK4  
SOUT0 to SOUT4  
80  
100  
60  
+80  
Internal shift  
clock mode  
Valid SIN →  
SCLK ↑  
SCK0 to SCK4  
SIN0 to SIN4  
tIVSH  
tSHIX  
tSHSL  
tSLSH  
tSLOV  
tIVSH  
tSHIX  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCLK ↑ →  
valid SIN hold time  
SCK0 to SCK4  
SIN0 to SIN4  
Serial clock  
“H” Pulse Width  
SCK0 to SCK4  
SCK0 to SCK4  
4 tCYCP  
4 tCYCP  
Serial clock  
“L” Pulse Width  
External  
shift clock  
mode  
SCLK ↓ →  
SOUT delay time  
SCK0 to SCK4  
SOUT0 to SOUT4  
150  
Valid SIN →  
SCLK ↑  
SCK0 to SCK4  
SIN0 to SIN4  
60  
SCLK ↑ →  
valid SIN hold time  
SCK0 to SCK4  
SIN0 to SIN4  
60  
Notes : Above rating is for CLK synchronous mode.  
tCYCP indicates the peripheral clock cycle time.  
70  
MB91305  
• Internal shift clock mode  
tSCYC  
VOL  
VOH  
SCK0 to SCK4  
VOL  
tSLOV  
VOH  
VOL  
SOUT0 to SOUT4  
tIVSH  
tSHIX  
VOH  
VOL  
VOH  
VOL  
SIN0 to SIN4  
• External shift clock mode  
tSLSH  
tSHSL  
VOL  
VOL  
VOL  
SCK0 to SCK4  
VOH  
tSLOV  
VOH  
VOL  
SOUT0 to SOUT4  
tIVSH  
VOH  
VOL  
VOH  
VOL  
SIN0 to SIN4  
71  
MB91305  
(8) Timer clock Input Timing  
(VDDI = 1.8 V 0.15 V, VDDE = AVCC = 3.3 V 0.3 V, VSS = AVSS = 0 V, Ta = −10 °C to +70 °C)  
Value  
Parameter  
Symbol  
Pin  
Conditions  
Unit  
Remarks  
Min  
Max  
tTIWH  
tTIWL  
Input pulse width  
TIN0 to TIN2  
2 tCYCP  
ns  
Note : tCYCP indicates the peripheral clock cycle time.  
VIH  
VIH  
VIL  
VIL  
tTIWH  
tTIWL  
(9) Trigger Input Timing  
(VDDI = 1.8 V 0.15 V, VDDE = AVCC = 3.3 V 0.3 V, VSS = AVSS = 0 V, Ta = −10 °C to +70 °C)  
Value  
Parameter  
Symbol  
Pin  
Conditions  
Unit  
Remarks  
Min  
Max  
A/D activation trigger input  
time  
tATG  
ATRG  
5 tCYCP  
ns  
Note : tCYCP indicates the peripheral clock cycle time.  
tATG  
VIH  
VIH  
ATRG  
72  
MB91305  
(10) DMA controller timing  
(VDDI = 1.8 V 0.15 V, VDDE = AVCC = 3.3 V 0.3 V, VSS = AVSS = 0 V, Ta = −10 °C to +70 °C)  
Value  
Condi-  
tions  
Parameter  
Symbol  
Pin  
Unit Remarks  
Min  
5 tCYC  
Max  
6
DREQ Input pulse width  
DACK delay time  
tDRWH  
tCLDL  
tCLDH  
tCLEL  
DREQ0 to DREQ2  
ns  
ns  
MCLK/SYSCLK  
DACK0 to DACK2  
6
6
MCLK/SYSCLK  
DEOP delay time  
IORD delay time  
IOWR delay time  
ns  
ns  
ns  
DEOP0 to DEOP2  
tCLEH  
tCLIRL  
tCLIRH  
tCLIWL  
tCLIWH  
6
6
MCLK/SYSCLK  
MCLK/SYSCLK  
6
6
6
73  
MB91305  
tCYC  
BA1  
BA2  
VOH  
VOH  
MCLK  
VOL  
VOL  
VOL  
SYSCLK  
tCLDL  
tCLDH  
VOH  
VOL  
DACK0 to DACK2  
tCLEL  
tCLEH  
VOL  
DEOP0 to DEOP2  
VOH  
tCLIRL  
tCLIRH  
VOL  
IORD  
VOH  
tCLIWL  
tCLIWH  
VOL  
IOWR  
VOH  
tDRWH  
VOL  
DREQ0 to DREQ2  
VOH  
Note : The waveform of DACKx and DEOPx is the waveforms when the PFR register is set to FR30 compatible  
timing.  
When the setting is chip selection timing, The delay starts from the falling edge of MCLK/SYSCLK.  
74  
MB91305  
(11) USB interface  
Parameter  
(VDDI = 1.8 V 0.15 V, VDDE = AVCC = 3.3 V 0.3 V, VSS = AVSS = 0 V, Ta = −10 °C to +70 °C)  
Value  
Symbol Pin Conditions  
Unit  
Remarks  
Min  
Typ  
Max  
X0  
Self oscillation  
X1  
2500 ppm accuracy*1  
Input clock  
Tucyc  
48*1  
MHz  
External input  
2500 ppm accuracy*1  
X0  
UDP/  
UDM  
Rise Time  
Fall Time  
Tutfr  
Tutff  
Full Speed  
Full Speed  
Full Speed  
4
4
20  
20  
ns *2  
ns *2  
UDP/  
UDM  
Differential Rise and  
Fall Timing Matching  
UDP/  
UDM  
Tutfrfm  
Tuzdrv  
90  
28  
111.11  
44  
%
*2  
*3  
Driver Output  
Resistance  
UDP  
UDM  
Tucyc  
V
IH  
V
IH  
X0  
UDP  
UDM  
90%  
90%  
10%  
10%  
Tutfr  
Tutff  
*1 : AC characteristics for USB interface conform to USB Specification Revision 1.1.  
*2 : < Driver Characteristics Tutfr, Tutff and Tutfrfm >  
These are regulations of the rising / falling time of the differential data signal.  
This time is defined at the time between 10% to 90% of the output signal voltage.  
Forfull-speedbuffer, Tutfr/TutffisspecifiedsuchthattheTutfr/Tutffratiofallswithin 10%tominimizeRFIradiation.  
75  
MB91305  
*3 : < Driver Characteristics ZDRV >  
The USB Full-speed connection is done by 90 15% of characteristic impedance (Z0).  
It is connected through the shielded twist 2-pair cable.  
In this USB standard, both following conditions must be satisfied.  
- The output impedance of USB Driver is from 28 to 44 .  
- To balance, discrete series resistor (Rs) is added.  
The output impedance of USB I/O Buffer of this LSI is about 3 to 19 .  
Therefore, it is necessary to add the series resistance Rs of 25 to 30 (recommended value 27 ).  
Rs  
TxD+  
28 to 44 Equiv. Imped.  
28 to 44 Equiv. Imped.  
Rs  
TxD−  
3-State  
Driver output impedance 3 to 19 Ω  
Rs series resistance 25 to 30 Ω  
Resistance Rs of recommended value 27 should be added.  
76  
MB91305  
(12) I2C Timing  
In the master mode operation  
(VDDI = 1.8 V 0.15 V, VDDE = AVCC = 3.3 V 0.3 V, VSS = AVSS = 0 V, Ta = −10 °C to +70 °C)  
Fast-mode*3  
Standard-mode  
Sym-  
bol  
Parameter  
Condition  
Unit  
Remarks  
Min  
0
Max  
100  
Min  
0
Max  
400  
SCL clock frequency  
fSCL  
kHz  
µs  
“L” width of the SCL clock tLOW  
“H” width of the SCL clock tHIGH  
Bus free time between a  
4.7  
4.0  
1.3  
0.6  
µs  
STOP and START condi-  
tion  
tBUS  
4.7  
5 × M*1  
1.3  
5 × M*1  
µs  
ns  
µs  
SCL ↓ → SDA  
output delay time  
tDLDAT  
Set-up time for a repeated  
START condition  
SCL↑ → SDA↓  
tSUSTA  
4.7  
0.6  
R = 1 k,  
C = 50 pF*4  
Hold time (repeated)  
START condition  
SDA↓ → SCL↓  
The first clock  
tHDSTA  
4.0  
4.0  
0.6  
0.6  
µs pulse is gener-  
ated afterword.  
Set-up time for STOP  
condition  
SCL↑ → SDA↑  
tSUSTO  
µs  
Data input hold time  
(vs.SCL)  
tHDDAT  
tSUDAT  
2 × M*1  
2 × M*1  
µs  
Data input set-up time  
(vs.SCL)  
250  
100*2  
ns  
*1 : M = Resource clock cycle (ns)  
*2 : To use high-speed mode I2C bus device for standard mode I2C bus system, it must satisfy the request condition  
(tSUDAT = 250 ns). If a device does not extend "L" period of the SCL signal, the following data must be output to  
the SDA line before 1250 ns (SCL line is opened, equal to SDA, SCL rise Max time + tSUDATA).  
*3 : To use it exceeding 100kHz, the resource clock is set to 6MHz or more.  
*4 : R and C is the pull-up resistor and the load capacity for SCL and SDA output lines respectively.  
77  
MB91305  
In the slave mode operation  
(VDDI = 1.8 V 0.15 V, VDDE = AVCC = 3.3 V 0.3 V, VSS = AVSS = 0 V, Ta = −10 °C to +70 °C)  
Fast-mode*3  
Standard-mode  
Sym-  
bol  
Parameter  
Condition  
Unit  
Remarks  
Min  
0
Max  
100  
Min  
0
Max  
400  
SCL clock frequency  
fSCL  
kHz  
µs  
“L” width of the SCL clock tLOW  
“H” width of the SCL clock tHIGH  
4.7  
4.0  
1.3  
0.6  
µs  
SCL ↓ → SDA  
tDLDAT  
5 × M*1  
5 × M*1  
ns  
output delay time  
Bus free time between a  
STOP and START  
condition  
tBUS  
4.7  
1.3  
µs  
Data input hold time  
(vs.SCL)  
tHDDAT  
tSUDAT  
2 × M*1  
2 × M*1  
µs  
R = 1 k,  
C = 50 pF*4  
Data input set-up time  
(vs.SCL)  
250  
100*2  
ns  
Set-up time for a repeated  
START condition  
SCL↑ → SDA↓  
tSUSTA  
tHDSTA  
tSUSTO  
4.7  
4.0  
4.0  
0.6  
0.6  
0.6  
µs  
Hold time for a repeated  
START condition  
SDA↓ → SCL↓  
The first clock  
µs pulse is gener-  
ated afterword.  
Set-up time for STOP  
condition  
SCL↑ → SDA↑  
µs  
*1 : M = Resource clock cycle (ns)  
*2 : To use high-speed mode I2C bus device for standard mode I2C bus system, it must satisfy the request condition  
(tSUDAT = 250 ns). If a device does not extend "L" period of the SCL signal, the following data must be output  
to the SDA line before 1250 ns (SCL line is opened, equal to SDA, SCL rise Max time + tSUDATA).  
*3 : To use it exceeding 100kHz, the resource clock is set to 6MHz or more.  
*4 : R and C is the pull-up resistor and the load capacity for SCL and SDA output lines respectively.  
78  
MB91305  
(13) SDRAM Timing  
Parameter  
(VDDI = 1.8 V 0.15 V, VDDE = AVCC = 3.3 V 0.3 V, VSS = AVSS = 0 V, Ta = −10 °C to +70 °C)  
Value  
Condi-  
tions  
Symbol  
Pin  
Unit  
Remarks  
Min  
12  
12  
2
Max  
32  
15  
15  
15  
15  
15  
15  
15  
15  
Output clock cycle time  
“H” level clock pulse width  
“L” level clock pulse width  
MCLK ↑ → output delay time  
Output hold time  
tCYCSD  
tCHSD  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
MCLK  
tCLSD  
tODSDCKE  
tOHSDCKE  
tODSDRAS  
tOHSDRAS  
tODSDCAS  
tOHSDCAS  
tODSDWE  
tOHSDWE  
tODSDCS  
tOHSDCS  
tODSDA  
MCLKE  
SRAS  
SCAS  
SWR  
MCLK ↑ → output delay time  
Output hold time  
2
MCLK ↑ → output delay time  
Output hold time  
2
MCLK ↑ → output delay time  
Output hold time  
2
MCLK ↑ → output delay time  
Output hold time  
2
CS6  
CS7  
MCLK ↑ → output delay time  
Output hold time  
2
A00 to A15  
tOHSDA  
MCLK ↑ → output delay time  
Output hold time  
tODSDDQM  
tOHSDDQM  
tODSDD  
2
DQMUU  
DQMUL  
MCLK ↑ → output delay time  
Output hold time  
2
D16 to D31  
D16 to D31  
tOHSDD  
Data input setup time  
Data input hold time  
tISSDD  
15  
2
tIHSDD  
79  
MB91305  
t
CYCSD  
MCLK  
V
OH  
V
OH  
V
OH  
V
OL  
V
OL  
t
CHSD  
tCLSD  
V
OH  
VOH  
MCLK  
t
t
t
t
t
t
t
ODSDCKE  
ODSDRAS  
ODSDCAS  
ODSDWE  
ODSDCS  
ODSDA  
MCLKE  
SRAS  
ODSDDQM  
SCAS  
SWR  
CS6  
V
OH  
VOH  
CS7  
t
t
t
t
t
t
t
OHSDCKE  
OHSDRAS  
OHSDCAS  
OHSDWE  
OHSDCS  
OHSDA  
A00 to A15  
DQMUU  
DQMUL  
OHSDDQM  
t
ODSDD  
VOH  
VOL  
VOH  
VOL  
D16 to D31  
D16 to D31  
t
OHSDD  
V
V
IH  
IL  
V
V
IH  
IL  
t
ISSDD  
tIHSDD  
80  
MB91305  
5. Electrical Characteristics for the A/D Converter  
(VDDI = 1.8 V 0.15 V, VDDE = AVCC = 3.3 V 0.3 V, VSS = AVSS = 0 V, Ta = −10 °C to +70 °C)  
Value  
Symbol  
Parameter  
Pin  
Unit  
Min  
Typ  
Max  
10  
Resolution  
Total error  
BIT  
LSB  
LSB  
LSB  
5.5  
3.5  
2.0  
Nonlinear error  
Differential linear error  
AN0 to  
AN9  
Zero transition voltage  
VOT  
4.0  
+6.0  
LSB  
AN0 to  
AN9  
Full-transition voltage  
Conversion time  
VFST  
AVRH 5.5  
8.18*1  
AVRH+3.0  
LSB  
µs  
AN0 to  
AN9  
Analog port input current  
IAIN  
0.1  
10  
µA  
AN0 to  
AN9  
Analog input voltage  
Reference voltage  
VAIN  
AVSS  
AVRH  
V
IA  
AVRH  
AVSS  
3.6  
AVCC  
10*2  
V
mA  
µA  
µA  
µA  
Power supply current  
AVCC  
IAH  
IR  
600  
10*2  
Reference voltage supply current  
Variation between channels  
AVRH  
IRH  
AN0 to  
AN9  
5
LSB  
*1 : For VDDI = 1.8 V 0.15 V, VDDE = AVCC = 3.3 V 0.3 V, machine clock = 32 MHz  
*2 : Current when A/D converter not operating (VDDE = AVCC = AVRH = 3.6 V, VDDI = 1.95 V)  
Notes : The relative error increases as AVRH becomes smaller.  
If the output impedance of the external circuit is too high, the analog voltage sampling time may be too  
short.  
81  
MB91305  
About the external impedance of the analog input and its sampling time  
• A/D converter with sample and hold circuit. If the external impedance is too high to keep sufficient sampling  
time, the analog voltage charged to the internal sample and hold capacitor is insufficient, adversely affecting  
A/D conversion precision. Therefore, to satisfy the A/D conversion precision standard, consider the relationship  
between the external impedance and minimum sampling time and either adjust the operating frequency or  
decrease the external impedance so that the sampling time is longer than the minimum value.  
And if the sampling time cannot be sufficient, connect a capacitor of about 0.1 µF to the analog input pin.  
Analog input circuit model  
R
Analog input  
Comparator  
C
During sampling : ON  
R
C
4.9 k(Max)  
27 pF (Max)  
Note : The values are reference values.  
.
The relationship between the external impedance and minimum sampling time  
(External impedance = 0 kto 100 k)  
(External impedance = 0 kto 20 k)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
20  
18  
16  
14  
12  
10  
8
6
4
2
0
0
5
10  
15  
20  
25  
30  
35  
0
1
2
3
4
5
6
7
8
Minimum sampling time [µs]  
Minimum sampling time [µs]  
• About the error  
The accuracy gets worse as | AVRHAVSS | becomes smaller.  
82  
MB91305  
Definition of A/D Converter Terms  
• Resolution  
Analog variation that is recognized by an A/D converter.  
• Linearity error  
The deviation between the actual conversion characteristics and a straight line connecting the device's zero  
transition point (“0000000000” ←→“0000000001”) and full scale transition point (“1111111110” ←→  
“1111111111”).  
• Differential linear error  
Deviation of input voltage, which is required for changing output code by 1 LSB, from an ideal value.  
Linearity error  
Differential linear error  
Ideal characteristics  
Actual conversion characteristic  
3FF  
3FE  
3FD  
H
N-1  
N-2  
N-1  
N-2  
Actual conversion  
characteristic  
H
H
{1 LSB × (N-1) + VTO  
VFST  
(measure-  
ment value)  
VNT  
V (N-1) T  
004H  
(measure-  
(measure-  
ment value)  
ment value)  
003H  
Actual conversion  
characteristic  
Ideal characteristics  
VNT  
002  
H
H
(measurement  
value)  
001  
Actual conversion characteristic  
VTO(measurement value)  
AVRL  
AVRH  
AVRL  
AVRH  
Analog input  
Analog input  
VNT { 1LSB × (N 1) + VOT}  
Linear error in digital output N =  
[LSB]  
1LSB  
V (N + 1) T VNT  
Differential linear error in digital output N =  
VFST VOT  
[LSB]  
1LSB  
1LSB =  
[V]  
1022  
AVRH AVRL  
1LSB’ =  
[V] (Ideal value)  
1024  
N
: A/D converter digital output value  
VOT : A voltage at which digital output transitions from (000)H to (001)H.  
VFST : A voltage at which digital output transitions from (3FE)H to (3FF)H.  
VNT : A voltage at which digital output transitions from (N 1) to N.  
83  
MB91305  
Total error  
This error indicates the difference between actual and ideal values, including the zero transition error/full-scale  
transition error/linearity error.  
Total error  
Actual conversion characteristic  
3FFH  
1.5 LSB''  
3FEH  
3FDH  
{1 LSB'' × (N1) + 0.5 LSB''  
VNT  
004H  
003H  
002H  
001H  
(measure-  
ment value)  
Actual conversion  
characteristic  
Ideal  
characteristics  
0.5 LSB''  
AVRL  
AVRH  
Analog input  
VNT {1 LSB” × (N 1) + 0.5 LSB”}  
Total error of digital output N =  
[LSB]  
1 LSB”  
N : A/D converter digital output value  
VOT” (Ideal value) = AVRL + 0.5 LSB" [V]  
VFST” (Ideal value) = AVRH 1.5 LSB" [V]  
VNT: A voltage at which digital output transitions from (N 1) to N.  
84  
MB91305  
EXAMPLE CHARACTERISTICS  
ICC-VDDI example characteristics  
Ta = + 25 °C, fcp = 68 MHz  
fcpp = 34 MHz, fcpt = 34 MHz  
ICC-fCP example characteristics  
Ta = + 25 °C, VDDE = 3.3 V  
VDDI = 1.8 V  
120  
100  
80  
60  
40  
20  
0
120  
100  
80  
60  
40  
20  
0
0
10  
20  
30  
40  
50  
60  
70  
80  
1.5  
1.7  
1.9  
2.1  
fcp [MHz]  
V
DDI [V]  
(fcp : fcpp : fcpt = 2 : 1 : 1, PLL 4 multiplication)  
ICCS-VDDI example characteristics  
ICCH-VDDI example characteristics  
Ta = + 25 °C  
Ta = + 25 °C  
60  
140  
120  
100  
80  
60  
40  
20  
0
50  
40  
30  
20  
10  
0
0
1.7  
1.9  
DDI [V]  
2.1  
1.5  
1.7  
1.9  
VDDI [V]  
2.1  
V
VOH-VDDE example characteristics  
VOL-VDDE example characteristics  
Ta = + 25 °C  
Ta = + 25 °C  
0.6  
0.4  
0.2  
0
4
3
2
1
0
2
3
4
2
3
4
V
DDE [V]  
V
DDE [V]  
Note : Not including USB I/O  
(Continued)  
85  
MB91305  
Pull-up resistor example characteristics  
Pull-down resistor example characteristics  
Ta = + 25 °C  
Ta = + 25 °C  
120  
80  
40  
0
120  
80  
40  
0
2
3
4
2
3
4
V
DDE [V]  
VDDE [V]  
ICC-VDDI example characteristics  
Ta = + 25 °C, fcp = 68 MHz  
fcpp = 34 MHz, fcpt = 34 MHz  
ICC-fCP example characteristics  
Ta = + 25 °C, VDDE = 3.3 V  
VDDI = 1.8 V  
120  
100  
80  
60  
40  
20  
0
120  
100  
80  
60  
40  
20  
0
1.5  
1.7  
1.9  
2.1  
0
10  
20  
30  
40  
50  
60  
70  
80  
V
DDI [V]  
fcp [MHz]  
(fcp : fcpp : fcpt = 2 : 1 : 1, PLL 4 multiplication)  
ICCS-VDDI example characteristics  
ICCH-VDDI example characteristics  
Ta = + 25 °C  
Ta = + 25 °C  
140  
60  
50  
40  
30  
20  
10  
0
120  
100  
80  
60  
40  
20  
0
1.5  
1.7  
1.9  
2.1  
0
1.7  
1.9  
2.1  
V
DDI [V]  
VDDI [V]  
Note : Not including USB I/O  
(Continued)  
86  
MB91305  
(Continued)  
VOH-VDDE example characteristics  
VOL-VDDE example characteristics  
Ta = + 25 °C  
Ta = + 25 °C  
4
3
2
1
0.6  
0.4  
0.2  
0
0
2
3
4
2
3
4
VDDE [V]  
V
DDE [V]  
Pull-up resistor example characteristics  
Pull-down resistor example characteristics  
Ta = + 25 °C  
Ta = + 25 °C  
120  
80  
40  
0
120  
80  
40  
0
2
3
4
2
3
4
VDDE [V]  
VDDE [V]  
Note : Not including USB I/O  
87  
MB91305  
ORDERING INFORMATION  
Part number  
Package  
Remarks  
176-pin plastic LQFP  
(FPT-176P-M07)  
MB91305PMC  
88  
MB91305  
PACKAGE DIMENSION  
Note 1) * : Values do not include resin protrusion.  
176-pin plastic LQFP  
(FPT-176P-M07)  
Resin protrusion is +0.25 (.010) Max (each side) .  
Note 2) Pins width and pins thickness include plating thickness.  
Note 3) Pins width do not include tie bar cutting remainder.  
26.00±0.20(1.024±.008)SQ  
*24.00±0.10(.945±.004)SQ  
0.145±0.055  
(.006±.002)  
132  
89  
133  
88  
0.08(.003)  
Details of "A" part  
1.50 +00..1200  
(Mounting height)  
.059 +..000048  
0.10±0.10  
(.004±.004)  
(Stand off)  
0˚~8˚  
INDEX  
0.25(.010)  
0.50±0.20  
176  
45  
(.020±.008)  
"A"  
0.60±0.15  
(.024±.006)  
1
44  
LEAD No.  
0.50(.020)  
0.22±0.05  
(.009±.002)  
M
0.08(.003)  
C
2004 FUJITSU LIMITED F176013S-c-1-1  
Dimensions in mm (inches).  
Note: The values in parentheses are reference values.  
89  
MB91305  
The information for microcontroller supports is shown in the following homepage.  
http://www.fujitsu.com/global/services/microelectronics/product/micom/support/index.html  
FUJITSU LIMITED  
All Rights Reserved.  
The contents of this document are subject to change without notice.  
Customers are advised to consult with FUJITSU sales  
representatives before ordering.  
The information, such as descriptions of function and application  
circuit examples, in this document are presented solely for the  
purpose of reference to show examples of operations and uses of  
Fujitsu semiconductor device; Fujitsu does not warrant proper  
operation of the device with respect to use based on such  
information. When you develop equipment incorporating the  
device based on such information, you must assume any  
responsibility arising out of such use of the information. Fujitsu  
assumes no liability for any damages whatsoever arising out of  
the use of the information.  
Any information in this document, including descriptions of  
function and schematic diagrams, shall not be construed as license  
of the use or exercise of any intellectual property right, such as  
patent right or copyright, or any other right of Fujitsu or any third  
party or does Fujitsu warrant non-infringement of any third-party’s  
intellectual property right or other right by using such information.  
Fujitsu assumes no liability for any infringement of the intellectual  
property rights or other rights of third parties which would result  
from the use of information contained herein.  
The products described in this document are designed, developed  
and manufactured as contemplated for general use, including  
without limitation, ordinary industrial use, general office use,  
personal use, and household use, but are not designed, developed  
and manufactured as contemplated (1) for use accompanying fatal  
risks or dangers that, unless extremely high safety is secured, could  
have a serious effect to the public, and could lead directly to death,  
personal injury, severe physical damage or other loss (i.e., nuclear  
reaction control in nuclear facility, aircraft flight control, air traffic  
control, mass transport control, medical life support system, missile  
launch control in weapon system), or (2) for use requiring  
extremely high reliability (i.e., submersible repeater and artificial  
satellite).  
Please note that Fujitsu will not be liable against you and/or any  
third party for any claims or damages arising in connection with  
above-mentioned uses of the products.  
Any semiconductor devices have an inherent chance of failure. You  
must protect against injury, damage or loss from such failures by  
incorporating safety design measures into your facility and  
equipment such as redundancy, fire protection, and prevention of  
over-current levels and other abnormal operating conditions.  
If any products described in this document represent goods or  
technologies subject to certain restrictions on export under the  
Foreign Exchange and Foreign Trade Law of Japan, the prior  
authorization by Japanese government will be required for export  
of those products from Japan.  
Edited  
Business Promotion Dept.  
F0604  

相关型号:

MB91306RPFF

Microcontroller
FUJITSU

MB91306RPFV

32-Bit Microcontroller
FUJITSU

MB91307

32-Bit Microcontroller
FUJITSU

MB91307APFV

暂无描述
FUJITSU

MB91307B

32-Bit Microcontroller
FUJITSU

MB91307BPFF

Microcontroller
FUJITSU

MB91307BPFV

32-Bit Microcontroller
FUJITSU

MB91307RPFF

Microcontroller
FUJITSU

MB91307RPFV

32-Bit Microcontroller
FUJITSU

MB91310

Proprietary 32-bit Microcontroller
FUJITSU

MB91314A

32-bit Microcontroller
FUJITSU

MB91314APMC-GE1

32-bit Microcontroller
FUJITSU