HXNV0100ASF [HONEYWELL]

Memory Circuit, 64KX16, CMOS, CQFP64, QFP-64;
HXNV0100ASF
型号: HXNV0100ASF
厂家: Honeywell    Honeywell
描述:

Memory Circuit, 64KX16, CMOS, CQFP64, QFP-64

内存集成电路
文件: 总14页 (文件大小:539K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HXNV0100  
64K x 16 Non-Volatile  
Magnetic RAM  
Advanced Information  
The 64K x 16 radiation hardened low power nonvolatile  
Magnetic RAM (MRAM) is a high performance 65,536  
word x 16-bit magnetic random access memory with  
industry-standard functionality.  
Integrated Power Up and Power Down circuitry controls  
the condition of the device during power transitions.  
It is fabricated with Honeywell’s radiation hardened  
Silicon On Insulator (SOI) technology, and is designed  
for use in low-voltage systems operating in radiation  
environments. The MRAM operates over the full military  
temperature range and is operated with 3.3 ± 0.3V and  
1.8 ± 0.15 V power supplies.  
The MRAM is designed for very high reliability.  
Redundant write control lines, error correction coding  
and low-voltage write protection ensure the correct  
operation of the memory and that it is protected from  
inadvertent writes.  
FEATURES  
Read Cycle Time 60 ns  
Fabricated on S150 Silicon On  
Insulator (SOI) CMOS  
Dual Power Supplies  
Write Cycle Time 100ns  
1.8 V ± 0.15V, 3.3 V ±0.3V  
Underlayer Technology  
Typical Operating Power 500 mW  
3.3V CMOS Compatible I/O  
150 nm Process (Leff = 130 nm)  
Unlimited Read/Write (>1E15  
Total Dose Hardness 3x105  
Operating Range is -55°C to  
+125°C  
Cycles)  
rad (SiO2)  
>10 years Power-Off Data  
Package: 64 Lead Shielded  
Dose Rate Upset Hardness ≥  
Retention  
1x1010 rad(Si)/s  
ceramic Quad Flat Pack  
Synchronous Operation  
Dose Rate Survivability 1x1012  
Single-Bit Error Detection &  
rad(Si)/s  
Correction (ECC)  
Soft Error Rate 1x10-10  
upsets/bit-day  
Neutron Hardness 1x1013 cm-2  
No Latchup  
HMXNV0100  
FUNCTIONAL BLOCK DIAGRAM  
Bit Line Current Drivers  
A(7:15)  
CS  
D
C
Q
Q
ECC Array  
65,536 x 5  
Memory Array  
65,536 x 16  
WE  
D
C
WE_AS  
OE  
ECC Logic  
NWI  
Digit Line Current  
Drivers  
ECC_DISABLE  
ERROR  
A(0:6)  
D
C
Q
Column Decoder  
Data Input/Output  
Read Circuits  
DQ(0:15)  
SIGNAL DESCRIPTION  
Signal  
Definition  
A(0:6)  
Column Select Address Input. Signals which select a column within the  
memory array.  
A–(7:15)  
DQ(0:15)  
Row Select Address Input. Signals which select a row within the  
memory array.  
Data Input/Output Signals. Bi-directional data pins which serve as data  
outputs during a read operation and as data inputs during a write  
operation.  
CS  
Chip select. The rising edge of CS will clock in the address and WE  
signals  
WE  
WE_AS  
Write Enable. This signal is latched to enable a write.  
Write Enable Asynchronous – This signal can be used to delay the  
beginning of the write cycle  
OE  
NWI_0  
NWI_1  
Output Enable.  
Not Write Inhibit – When set low, these signals inhibit writes to the  
memory. A high level allows the memory to be written.  
NWI(0) controls address locations A(15:0) = 0x0000 to 0x7FFF.  
NWI(1) controls address locations A(15:0) = 0x1000 to 0xFFFF.  
ECC_Disable Error Correction Disable – Disables the error correction function.  
ERROR  
Test_1  
Test_2  
VDD1  
ECC Error flag  
These signals are for Honeywell test purposes only. These should be  
grounded in normal operation.  
DC Power Source Input: 1.8V  
VDD2  
DC Power Source Input: 3.3V  
2
www.honeywell.com  
HMXNV0100  
TRUTH TABLE  
NWI  
L
WE & WE_ASY  
OE  
L
MODE  
Deselected  
Disabled  
Read  
DQ  
X
L
High Z  
High Z  
Data Out  
Data In  
H
L
H
H
L
H
H
X
Write  
X: VI = VIH or VIL  
PACKAGE PINOUT  
VDD1  
GND  
DQ(1)  
DQ(0)  
CS  
NWI(0)  
VDD2  
VDD1  
GND  
1
2
3
4
5
6
7
8
9
48 GND  
47 VDD2  
46 ADR(6)  
45 ADR(15)  
44 WE  
43 WE_ASY  
42 OE  
HMXNV1000  
41 VDD2  
40 VDD1  
NWI(1) 10  
ECCDISABLE 11  
ERROR 12  
DQ(8) 13  
39 GND  
38 ADDR(14)  
37 ADDR(13)  
36 ADDR(12)  
35 ADDR(11)  
34 GND  
DQ(9) 14  
VDD2 15  
GND 16  
33 VDD1  
RAM and ROM Functional Capability  
This MRAM incorporates two write control  
signals allowing the two sections of the  
memory to be controlled independently.  
The two NOT WRITE INHIBIT signals,  
NWI(0) and NWI(1), allow one section of the  
devices to operate as a RAM and the other  
to operate as a ROM at the full control of the  
user.  
3
www.honeywell.com  
HMXNV0100  
SOI AND MAGNETIC MEMORY TECHNOLOGY  
two orthogonal currents of the desired  
Honeywell’s S150 Silicon On Insulator  
(SOI) is radiation hardened through the use  
of advanced and proprietary design, layout  
and process hardening techniques. The 150  
nm process is a technology with a 32Å gate  
oxide for 1.8 V transistors and 70Å gate  
oxide for 3.3 V transistors. The memory  
element is a magnetic tunnel junction (MTJ)  
that is composed of a magnetic storage  
layer structure and a magnetic pinned layer  
structure separated by an insulating tunnel  
barrier interlayer. During a write cycle, the  
storage layer is written by the application of  
polarity using row-and-column addressing.  
The resistance of the MTJ depends on the  
magnetic state of the storage layer, which  
uses the pinned layer structure as a  
reference, and which enables sensing,  
signal amplification, and readback. The  
resistance change is a consequence of the  
change in tunneling magnetoresistance  
(TMR) between the storage and pinned  
layers that depends on the magnetic state of  
the storage layer. With read and write cycles  
in excess of 1015, there is no wear-out.  
ERROR CORRECTION CODE (ECC)  
Hamming 5-Bit ECC  
from memory and corrected, if necessary,  
before being placed on the output data bus.  
There is no change made to the actual data  
in the memory cells based on the ECC  
results. Actual data in memory is changed  
only upon writing new values.  
A 5-bit Hamming ECC is generated for all  
data written into memory. This code allows  
for the correction of all single-bit errors per  
address. On a read cycle, the data is read  
RADIATION CHARACTERISTIC  
Transient Pulse Ionizing Radiation  
Total Ionizing Radiation Dose  
The MRAM is capable of writing, reading,  
and retaining stored data during and after  
exposure to a transient ionizing radiation  
pulse, up to the specified transient dose rate  
upset specification, when applied under  
recommended operating conditions. To  
ensure validity of all specified performance  
parameters before, during, and after  
The MRAM will meet all stated functional  
and electrical specifications over the entire  
operating temperature range after the  
specified total ionizing radiation dose. All  
electrical and timing performance  
parameters will remain within specifications  
after rebound at typical VDD and T =125°C  
extrapolated to ten years of operation. Total  
dose hardness is assured by wafer level  
testing of process monitor transistors and  
RAM product using 10 KeV X-ray and Co60  
radiation sources. Transistor gate threshold  
shift correlations have been made between  
10 KeV X-rays applied at a dose rate of  
1x105 rad(SiO2)/min at T = 25°C and gamma  
rays (Cobalt 60 source) to ensure that wafer  
level X-ray testing is consistent with  
standard military radiation test  
radiation (timing degradation during  
transient pulse radiation is ±10%), it is  
suggested that stiffening capacitance be  
placed near the package VDD2 and ground  
(GND).  
It is recommended that the inductance  
between the MRAM package leads and the  
stiffening capacitance be less that 1.0 nH. If  
there are no operate through or valid stored-  
data requirements, typical circuit board  
mounted de-coupling capacitors are  
recommended. The MRAM will meet any  
functional or electrical specification after  
exposure to a radiation pulse up to the  
transient dose rate survivability  
environments.  
specification, when applied under  
4
www.honeywell.com  
HMXNV0100  
recommended operating conditions. Note  
that the current conducted during the pulse  
by the RAM inputs, outputs, and power  
supply may significantly exceed the normal  
operating levels. The application design  
must accommodate these effects.  
recommended operating conditions. This  
hardness level is defined by the Adams 90%  
worst case cosmic ray environment for  
geosynchronous orbits.  
Latchup  
Neutron Radiation  
The MRAM will not latch up under any of the  
above radiation exposure conditions when  
applied under recommended operating  
conditions. Fabrication with the SIMOX  
substrate material provides oxide isolation  
between adjacent PMOS and NMOS  
The MRAM will meet any functional or timing  
specification after exposure to the specified  
neutron fluence under recommended  
operating or storage conditions. This  
assumes equivalent neutron energy of 1  
MeV.  
transistors and eliminates any potential  
SCR-type latchup structures. Sufficient  
transistor body tie connections to the p-  
channel and n-channel substrates are made  
to ensure no source/drain snapback occurs.  
Soft Error Rate  
The MRAM is capable of meeting the  
specified Soft Error Rate (SER) under  
Radiation-Hardness Ratings  
Parameter  
Total Dose:  
R-Level  
Limits  
Units  
Test Conditions  
5
5
6
Rads(SiO2)  
VDD1= 1.95 Volts, VDD2= 3.6 Volts  
T = 25C, X-Ray or Co  
A
1 x 10  
3 x 10  
1 x 10  
F-Level  
60  
H-Level  
Soft Error Rate:  
-
Upsets/bit-day VDD1= 1.8 Volts, VDD2= 3.3 Volts  
= -55 to 125°C  
10  
1 x 10  
T
C
Transient Dose  
Rate Upset  
10  
Rads(Si)/s  
Rads(Si)/s  
N/cm-2  
VDD1= 1.65 Volts, VDD2= 3.0 Volts  
1 x 10  
T
= 125°C Pulse Width = 1µsec, X-  
C
Ray  
Transient Dose  
12  
VDD1= 1.95 Volts, VDD2= 3.6 Volts  
1 x 10  
Rate Survivability  
T = 25°C  
A
Pulse Width = 50 nsec, X-Ray  
Neutron Fluence  
1x1013  
1MeV equivalent energy  
MAGNETIC FIELD CHARACTERISTICS  
The MRAM will meet all stated functional  
and electrical specifications over the entire  
operating temperature range when exposed  
to the specified magnetic fields. The  
magnetic field hardening is achieved  
through a combination of SOI technology  
characteristics, circuit design and  
specialized packaging.  
5
www.honeywell.com  
HMXNV0100  
MAGNETIC FIELD RATING  
Parameter  
Magnetic Field  
Limits  
50  
Units  
Oe  
Test Conditions  
VDD1= 1.8 Volts, VDD2= 3.3 Volts  
T
C
= -55 to 125°C  
ELECTRICAL SPECIFICATIONS  
ABSOLUTE MAXIMUM RATINGS (1)  
Ratings  
Symbol  
Parameter  
Min  
-0.5  
-0.5  
-0.5  
-65  
Max  
2.5  
Units  
Volts  
Volts  
VDD  
Positive Supply Voltage (2)  
Positive Supply Voltage (2)  
Voltage on Any Pin (2)  
Storage Temperature  
Soldering Temperature  
1
VDD  
4.5  
2
VPIN  
VDD2 + 0.5 Volts  
150  
TSTORE  
TSOLDER  
PD  
°C  
225°C  
°C*sec (5)  
Package Power Dissipation (3)  
2.5  
W
PJC  
Package Thermal Resistance (Junction  
2.0  
°C/W  
to Case)  
VPROT  
TJ  
Electrostatic Discharge Protection  
Voltage (4)  
2000  
V
Junction Temperature  
175  
°C  
Stresses in excess of those listed above may result in immediate permanent damage  
to the device. These are stress ratings only, and operation at these levels is not  
implied. Frequent or extended exposure to absolute maximum conditions may affect  
device reliability.  
1.  
Voltage referenced to GND  
2.  
3. RAM power dissipation due to IDDS, IDDOP, and IDDSEI, plus RAM output driver power  
dissipation due to external loading must not exceed this specification  
4. Class 2 electrostatic discharge (ESD) input protection voltage per MIL-STD-883,  
Method 3015  
5. Maximum soldering temp of 225°C can be maintained for no more than 5 seconds.  
RECOMMENDED OPERATING CONDITIONS (1)  
Limits  
Symbol  
DD1  
DD2  
Parameter  
Min  
1.65  
3.0  
Typical  
Max  
1.95  
3.6  
Units  
Volts  
Volts  
V
V
T
Positive Supply Voltage  
Positive Supply Voltage  
1.8  
3.3  
25  
External Package Temperature -55  
Voltage On Any Pin  
125  
°C  
C
V
PIN  
-0.3  
V
DD2  
+0.3 Volts  
(1) Voltages referenced to GND  
6
www.honeywell.com  
HMXNV0100  
DC ELECTRICAL CHARACTERISTICS  
Limits  
Symbol  
Parameter  
Low Level Input  
Voltage  
Min  
Typical  
Max  
Units  
Test Conditions  
VIL  
0.3VDD  
V
VIH  
High-level Input Voltage 0.7VDD  
Low-level Output  
V
V
VOL  
0.35  
0.5  
VDD = 3.0 volts  
Voltage  
VOH  
IOZ  
High-level Output  
Voltage  
VDD-0.5  
2.66  
(2.95)  
TBD  
V
VDD = 3.0 volts  
(VDD = 3.3 volts)  
Output Leakage  
Current  
µA  
IL  
Input Leakage Current  
Output Drive Current  
Standby Current  
VDD1 (1.8V)  
TBD  
6
µA  
IO  
mA  
mA  
IDDSB  
3
3
VDD2 (3.3V)  
AC ELECTRICAL CHARACTERISTICS  
Limits  
Symbol  
Parameter  
Min  
Typical  
Max  
Units  
Test Conditions  
Continuous write  
cycle at 10 MHz (1)  
IDDWR  
Average Write Current  
VDD1 (1.8V)  
mA  
15  
VDD2 (3.3V)  
260  
IDDRD  
Average Read Current  
VDD1 (1.8V)  
mA  
Continuous read  
15  
3
cycle at 10 MHz (1)  
VDD2 (3.3V)  
1. Current consumption is reduced with lower duty cycle. The scale is linear with respect to  
duty cycle with 3 mA minimum values of on each VDD signal.  
CAPACITANCE (1)  
Limits  
Max  
6
Test Conditions  
TBD  
Symbol  
Parameter  
Min  
Units  
Ca and CC  
Address and Control line  
Capacitance  
pF  
CD  
Data Line Capacitance  
Not Write Inhibit  
Capacitance  
9
pF  
pF  
Value is I/O buffer only.  
CNWI  
100  
Note: 1. These values are tested at characterization only.  
7
www.honeywell.com  
HMXNV0100  
RISE/FALL TIMES  
Value  
Min  
Test Conditions  
Symbol  
Rt  
Rt  
Parameter  
Rise Time  
Rise Time  
Max  
1.4  
2.9  
Units  
ns  
ns  
Cload = 5 pF  
Cload = 25 pF  
Ft  
Ft  
Fall Time  
Fall Time  
1.4  
2.9  
ns  
ns  
Cload = 5 pF  
Cload = 25 pF  
DATA ENDURANCE  
Ratings  
Test Conditions  
Test Conditions  
Parameter  
Min  
Max  
Max  
Units  
Data Endurance  
1x1015  
Cycles  
DATA RETENTION  
Ratings  
Min  
>10  
Parameter  
Data Retention  
Units  
years  
Tester Equivalent Load Circuit  
Valid High  
3.3V  
Output  
V1  
V2  
249  
Valid Low  
Output  
DUT  
Output  
CL > 50 pf  
8
www.honeywell.com  
HMXNV0100  
READ CYCLE  
The RAM is synchronous in operation  
relative to the rising edge of the Chip Select  
(CS) signal. With the initiation of a CS  
signal, the address and the Write Enable  
(WE) signal are latched into the device and  
the read operation begins. The memory  
locations are read and compared with the  
ECC values. Any single bit errors are  
detected and corrected.  
If WE was low when latched in, the data is  
sent to the output drivers. In addition to WE  
low being latched, Output Enable (OE) must  
be set to a high value to enable the DQ  
output buffers. OE is not latched, and may  
be set high before or after the rising edge of  
CS.  
READ CYCLE AC TIMING CHARACTERISTICS  
READ CYCLE  
Trdc  
CS  
Tcspw  
ADDR[0:15]  
ADDR VALID  
Tadsu Tadhd  
Tcsdv  
WE  
OE  
Twesu Twehd  
Toedv  
HIGH Z  
DQ[0:15]  
OUTPUT DATA VALID  
Min  
Typ  
------  
Max  
------  
Tcspw  
Tcspi  
CS pulse width (for valid read)  
10ns  
CS ignored pulse width (glitch tolerance)  
------  
3ns  
------  
------  
------  
------  
------  
------  
------  
------  
1ns  
------  
------  
------  
------  
60ns  
10ns  
------  
Twesu  
Twehd  
Tadsu  
Tadhd  
Tcsdv  
Toedv  
Trdc  
WE setup time with respect to rising edge of CS  
WE hold time with respect to rising edge of CS  
Address setup time with respect to rising edge of CS  
Address hold time with respect to rising edge of CS  
Output data valid with respect to rising edge of CS  
Output data valid with respect to rising edge of OE  
CS rising edge to next CS rising edge (read cycle time)  
2ns  
8ns  
2ns  
------  
------  
60ns  
9
www.honeywell.com  
HMXNV0100  
WRITE CYCLE  
The RAM is synchronous in operation  
relative to the rising edge of the Chip Select  
(CS) signal. With the initiation of a CS  
signal, the address and the Write Enable  
(WE) signal are latched into the device.  
The WRITE CYCLE begins by reading the  
current value in memory. The current  
memory data is compared to the data to be  
written. If the location needs to change  
value, the data is then written.  
If WE was high when latched in, the Write  
Asynchronous (WE_AS) signal is checked.  
If WE_AS is high, the WRITE CYCLE will  
begin. If WE_AS is low, the WRITE CYCLE  
will be delayed until WE_AS is set high. This  
allows control by the host processor of the  
actual time the data is written to memory.  
The bit cell construction of this device does  
not provide a method of simply writing a “1”  
or a “0” to match the data. The “write” to a  
bit can only change its state, thus the need  
to read the bit locations first. Only the bits  
which need to “change state” are actually  
written.  
WRITE CYCLE AC TIMING CHARACTERISTICS  
NON-DELAYED  
W RITE CYCLE - non delayed (W E_ASYN < 40ns after CS)  
Twrc  
CS  
Tcspw  
ADDR[0:15]  
ADDR VALID  
Tadsu Tadhd  
W E  
Twesu Twehd  
Tcswa  
W E_ASYN  
DQ[0:15]  
DATA VALID  
DATA W RITTEN  
Tdqsu  
Tdqhd  
NW I  
Tcsdw, Tcshd  
Min  
10ns  
Typ  
------  
Max  
Tcspw  
Tcspi  
CS pulse width (for valid write)  
CS ignored pulse width (glitch tolerance)  
------  
1ns  
------  
3ns  
2ns  
8ns  
2ns  
------  
------  
------  
------  
------  
Twesu  
Twehd  
Tadsu  
Tadhd  
Tcswa  
Tdqsu  
Tdqhd  
Tcsdw  
Tcshd  
Twrc  
W E setup tim e with respect to rising edge of CS  
W E hold tim e with respect to rising edge of CS  
Address setup tim e with respect to rising edge of CS  
Address hold tim e with respect to rising edge of CS  
W E_ASYN delay from rising edge of CS  
------  
------  
------  
------  
40ns  
20ns  
------  
100ns  
------  
------  
DQ setup tim e after rising edge of CS  
------  
60ns  
------  
------  
------  
------  
------  
DQ hold tim e with respect to rising edge of CS  
W RT  
Valid data write tim e  
rising edge of CS  
------  
NW I,W E_ASYNC hold tim e W RT rising edge of CS  
CS rising edge to next CS rising edge (write cycle tim e)  
100ns  
100ns  
10  
www.honeywell.com  
HMXNV0100  
DELAYED  
WRITE CYCLE - delayed (WE_ASYN > 40ns after CS)  
Twrdc  
CS  
Tcspw  
ADDR VALID  
Tadsu Tadhd  
ADDR[0:15]  
WE  
Twesu Twehd  
Tcswa  
WE_ASYN  
DQ[0:15]  
DATA VALID  
DATA WRITTEN  
Tdqsu  
Tdqhd  
NWI  
Twahd  
Min  
10ns  
------  
3ns  
Typ  
Max  
------  
Tcspw  
Tcspi  
CS pulse width (for valid write)  
CS ignored pulse width (glitch tolerance)  
------  
------  
------  
------  
------  
------  
------  
------  
------  
------  
------  
------  
1ns  
------  
------  
------  
------  
------  
------  
------  
60ns  
------  
------  
Twesu  
Twehd  
Tadsu  
Tadhd  
Tcswa  
Tdqsu  
Tdqhd  
Twadw  
Twahd  
Twrdc  
WE setup time with respect to rising edge of CS  
WE hold time with respect to rising edge of CS  
2ns  
8ns  
2ns  
40ns  
4ns  
20ns  
------  
60ns  
Address setup time with respect to rising edge of CS  
Address hold time with respect to rising edge of CS  
WE_ASYN delay from rising edge of CS  
DQ setup time to rising edge of WE_ASYN  
DQ hold time  
WRT  
NWI,WE_ASYN, hold time  
rising edge of WE_ASYN  
WRT  
Valid data write time  
rising edge of WE_ASYNC  
WRT  
rising edge of WE_ASYN  
Tcswa + 60ns  
CS rising edge to next CS rising edge (write cycle time)  
POWER UP TIMING  
During power-up there are no restrictions on  
which supply comes up first provided NWI is  
asserted (low). NWI is de-asserted within  
1us of both supplies reaching their 90%  
values.  
11  
www.honeywell.com  
HMXNV0100  
POWER-UP SEQUENCE  
VDD1  
VDD2  
NWI  
1us  
POWER DOWN TIMING  
POWER-DOWN SEQUENCE  
VDD1  
VDD2  
NWI  
100ns  
QUALITY AND RADIATION HARDNESS ASSURANCE  
Honeywell maintains a high level of product  
integrity through process control, utilizing  
statistical process and six sigma controls. It  
is part of a “Total Quality Assurance  
Program”, the computer-based process  
performance tracking system and a radiation  
hardness assurance stategy.  
SCREENING LEVELS  
Honeywell offers several levels of device  
screeing to meet your needs. “Engineering  
Devices” are available with limited  
perfomrance and screening for prototype  
development and evaluation testing. Hi-Rel  
Level B and S devices undergo additional  
screening per the requirements of MIL-STD-  
883.  
12  
www.honeywell.com  
HMXNV0100  
RELIABILITY  
Honeywell understands the stringent  
reliability requirements that space and  
defense systems require. Honeywell has  
extensive experience in reliability testing on  
programs of this nature. Reliability attributes  
of the SOI process were characterized by  
testing specially designed structures to  
evaluate failure mechanisms including hot  
carriers, electro migration, and time-  
dependent dielectric breakdown. The  
results are feedback to improve the process  
to ensure the highest reliability products.  
In addition, our products are subjected to  
dynamic, accelerated life tests. The  
packages used are qualified through MIL-  
STD-883, TM 5005 Class S. The product  
screening flow can be modified to meet the  
specific requirements. Quality conformance  
testing is performed as an option on all  
production lots to ensure on-going reliability.  
PACKAGE OUTLINE  
The 64 Lead Shielded Ceramic QFP Package shown is preliminary and is subject to change,  
including external capacitors. The outline is for reference only.  
.900  
39  
47  
VDD2  
VS S  
VDD2  
VS S  
38  
48  
210  
205  
200  
195  
190  
185  
180  
175  
170  
165  
160  
155  
150  
145  
140  
135  
215  
220  
225  
130  
125  
230  
120  
235  
240  
115  
110  
245  
105  
100  
VS S  
250  
255  
VDD1  
95  
260  
265  
90  
85  
VDD2  
.900  
270  
80  
75  
275  
280  
H
o n e yw el  
l
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
55  
60  
65  
70  
D
SES  
11  
75  
2202xxxx  
VS S  
VDD2  
VS S  
VDD2  
1
10  
.050  
.018  
.150  
.075  
13  
www.honeywell.com  
HMXNV0100  
ORDERING INFORMATION (1)  
H
X
NV  
0100  
A
S
H
Screen Level  
V = QML Class V  
Q = QML Class Q  
S = Level S  
Part Number  
Process  
0100 = 1 Meg  
X = SOI  
Total Dose Hardness  
R = 1x105 rad (SiO2)  
F = 3x105 rad (SiO2)  
H = 1x106 rad (SiO2)  
N = No Level Guaranteed  
Part Type  
Package Designation  
B = Level B  
NV = Non Volatile  
A = 64 Lead QFP  
Source  
E = Eng. Model (2)  
H = Honeywell  
(1) To order parts or obtain technical assistance, call 1-800-323-8295  
(2) Engineering Model Description: Parameters are tested from-55 to 1250C, 24-hour burn-in, no radiation  
guarantee.  
For more information about Honeywell’s MRAM product and our family of memory and ASIC  
products and services, visit www.myspaceparts.com.  
Honeywell reserves the right to make changes to any products or technology herein to improve reliability, function or design. Honeywell does not  
assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its  
patent rights nor the rights of others.  
Honeywell International Inc.  
Aerospace Electronics Systems  
Defense & Space Electronics Systems  
12001 Highway 55  
Form #900232  
Plymouth, MN 55441  
1-800-323-8295  
May 2005  
©2005 Honeywell International Inc.  
www.honeywell.com  
14  
www.honeywell.com  

相关型号:

HXNV0100ASH

Memory Circuit, 64KX16, CMOS, CQFP64, QFP-64
HONEYWELL

HXNV0100ASN

Memory Circuit, 64KX16, CMOS, CQFP64, QFP-64
HONEYWELL

HXNV0100ASR

Memory Circuit, 64KX16, CMOS, CQFP64, QFP-64
HONEYWELL

HXNV0100AVF

Memory Circuit, 64KX16, CMOS, CQFP64, QFP-64
HONEYWELL

HXNV0100AVH

Memory Circuit, 64KX16, CMOS, CQFP64, QFP-64
HONEYWELL

HXNV0100AVN

Memory Circuit, 64KX16, CMOS, CQFP64, QFP-64
HONEYWELL

HXNV0100AVR

Memory Circuit, 64KX16, CMOS, CQFP64, QFP-64
HONEYWELL

HXNV0100AYN

Memory Circuit, 64KX16, CMOS, CQFP64, QFP-64
HONEYWELL

HXNV0100AZF

Memory Circuit, 64KX16, CMOS, CQFP64, QFP-64
HONEYWELL

HXNV0100AZH

Memory Circuit, 64KX16, CMOS, CQFP64, QFP-64
HONEYWELL

HXNV0100AZN

Memory Circuit, 64KX16, CMOS, CQFP64, QFP-64
HONEYWELL

HXNV01600AVH

Memory Circuit,
HONEYWELL