H5TC2G83GFR-PBI [HYNIX]

DDR DRAM, 256MX8, CMOS, PBGA78, HALOGEN FREE AND ROHS COMPLIANT, FPBGA-78;
H5TC2G83GFR-PBI
型号: H5TC2G83GFR-PBI
厂家: HYNIX SEMICONDUCTOR    HYNIX SEMICONDUCTOR
描述:

DDR DRAM, 256MX8, CMOS, PBGA78, HALOGEN FREE AND ROHS COMPLIANT, FPBGA-78

动态存储器 双倍数据速率
文件: 总34页 (文件大小:446K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
2Gb DDR3L SDRAM  
2Gb DDR3L SDRAM  
Lead-Free&Halogen-Free  
(RoHS Compliant)  
H5TC2G83GFR-xxA  
H5TC2G83GFR-xxI  
H5TC2G83GFR-xxL  
H5TC2G83GFR-xxJ  
H5TC2G63GFR-xxA  
H5TC2G63GFR-xxI  
H5TC2G63GFR-xxL  
H5TC2G63GFR-xxJ  
* SK Hynix reserves the right to change products or specifications without notice.  
Rev. 1.3 / Nov. 2015  
1
Revision History  
Revision No.  
History  
Draft Date  
Mar. 2015  
June. 2015  
July. 2015  
Oct. 2015  
Nov. 2015  
Remark  
Preliminary  
Page 25  
0.1  
1.0  
1.1  
1.2  
1.3  
Preliminary version release  
IDD update  
Operating NOTE update  
IDD update  
Page 4  
Page 25 - IDD3N x16  
Page 4  
Typo Correct  
Rev. 1.3 / Nov. 2015  
2
Description  
The H5TC2G83GFR-xxA(I,L,J) and H5TC2G63GFR-xxA(I,L,J) are a 2Gb low power Double Data Rate III  
(DDR3L) Synchronous DRAM, ideally suited for the main memory applications which requires large mem-  
ory density, high bandwidth and low power operation at 1.35V. SK Hynix DDR3L SDRAM provides back-  
ward compatibility with the 1.5V DDR3 based environment without any changes. SK Hynix 2Gb DDR3L  
SDRAMs offer fully synchronous operations referenced to both rising and falling edges of the clock. While  
all addresses and control inputs are latched on the rising edges of the clock (falling edges of the clock),  
data, data strobes and write data masks inputs are sampled on both rising and falling edges of it. The data  
paths are internally pipelined and 8-bit prefetched to achieve very high bandwidth.  
Device Features and Ordering Information  
FEATURES  
• VDD=VDDQ=1.35V + 0.100 / - 0.067V  
• Fully differential clock inputs (CK, CK) operation  
• Differential Data Strobe (DQS, DQS)  
• BL switch on the fly  
• 8banks  
• AverageRefreshCycle (Tcaseof0 oC~95oC)  
- 7.8 µs at 0oC ~ 85 oC  
- 3.9 µs at 85oC ~ 95 oC  
• On chip DLL align DQ, DQS and DQS transition with CK  
transition  
Commerical Temperature (0oC ~ 95 oC)  
Industrial Temperature(-40oC ~ 95 oC)  
• DM masks write data-in at the both rising and falling  
edges of the data strobe  
• All addresses and control inputs except data,  
data strobes and data masks latched on the  
rising edges of the clock  
• JEDEC standard 78ball FBGA(x8), 96ball FBGA(x16)  
• Driver strength selected by EMRS  
• Dynamic On Die Termination supported  
• Asynchronous RESET pin supported  
• ZQ calibration supported  
• Programmable CAS latency 6, 7, 8, 9, 10, 11, 12 and  
13  
supported  
• Programmable additive latency 0, CL-1, and CL-2  
supported  
• TDQS (Termination Data Strobe) supported (x8 only)  
• Write Levelization supported  
• Programmable CAS Write latency (CWL) = 5, 6, 7, 8  
and 9  
• 8 bit pre-fetch  
• Programmable burst length 4/8 with both nibble  
sequential and interleave mode  
* This product in compliance with the RoHS directive.  
Rev. 1.3 / Nov. 2015  
3
ORDERING INFORMATION  
Part No.  
Configuration  
Power Consumption  
Temperature  
Package  
H5TC2G83GFR-*xxA  
H5TC2G83GFR-*xxI  
H5TC2G83GFR-*xxL  
H5TC2G83GFR-*xxJ  
H5TC2G63GFR-*xxA  
H5TC2G63GFR-*xxI  
H5TC2G63GFR-*xxL  
H5TC2G63GFR-*xxJ  
Commercial  
Industrial  
Normal Consumption  
256M x 8  
78ball FBGA  
Commercial  
Industrial  
Low Power Consumption  
(IDD6 Only)  
Commercial  
Industrial  
Normal Consumption  
128M x 16  
96ball FBGA  
Commercial  
Industrial  
Low Power Consumption  
(IDD6 Only)  
* xx means Speed Bin Grade  
OPERATING FREQUENCY  
Frequency [Mbps]  
CL5 CL6 CL7 CL8 CL9 CL10 CL11 CL12 CL13 CL14  
Speed  
Grade  
(Marking)  
Remark  
(CL-tRCD-tRP)  
-G7*  
-H9*  
-PB*  
-RD  
667  
667  
667  
800 1066 1066  
DDR3L-1066 7-7-7  
800 1066 1066 1333 1333  
800 1066 1066 1333 1333  
800 1066 1066 1333 1333  
DDR3L-1333 9-9-9  
1600  
1600  
DDR3L-1600 11-11-11  
DDR3L-1866 13-13-13  
1866  
*Note1: -RD covers lower speed of -PB and -H9 and -G7.  
Rev. 1.3 / Nov. 2015  
4
x8 Package Ball out (Top view): 78ball FBGA Package  
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
VSS  
VSS  
VDD  
VSSQ  
DQ2  
DQ6  
VDDQ  
VSS  
VDD  
CS  
NC  
DQ0  
DQS  
DQS  
DQ4  
RAS  
CAS  
WE  
NU/TDQS  
DM/TDQS  
DQ1  
VSS  
VSSQ  
DQ3  
VSS  
DQ5  
VSS  
VDD  
ZQ  
VDD  
VDDQ  
VSSQ  
VSSQ  
VDDQ  
NC  
A
B
C
D
E
F
VDDQ  
VSSQ  
VREFDQ  
NC  
VDD  
DQ7  
CK  
G
H
J
ODT  
NC  
CK  
CKE  
NC  
G
H
J
A10/AP  
NC  
VSS  
BA0  
A3  
BA2  
A0  
VREFCA  
BA1  
A4  
VSS  
K
L
VDD  
VSS  
A12/BC  
A1  
VDD  
VSS  
K
L
A5  
A2  
M
N
VDD  
VSS  
A7  
A9  
A11  
A6  
VDD  
VSS  
M
N
RESET  
A13  
A14  
A8  
1
2
3
4
5
6
7
8
9
1
2
3
7
8
9
A
B
C
D
E
(Top View: See the balls through the Package)  
F
Populated ball  
Ball not populated  
G
H
J
K
L
M
N
Rev. 1.3 / Nov. 2015  
5
x16 Package Ball out (Top view): 96ball FBGA Package  
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
VDDQ  
VSSQ  
VDDQ  
VSSQ  
VSS  
DQU5  
VDD  
DQU3  
VDDQ  
VSSQ  
DQL2  
DQL6  
VDDQ  
VSS  
DQU7  
VSS  
DQU1  
DMU  
DQL0  
DQSL  
DQSL  
DQL4  
RAS  
CAS  
WE  
DQU4  
DQSU  
DQSU  
DQU0  
DML  
DQL1  
VDD  
VDDQ  
DQU6  
DQU2  
VSSQ  
VSSQ  
DQL3  
VSS  
VSS  
VSSQ  
VDDQ  
VDD  
VDDQ  
VSSQ  
VSSQ  
VDDQ  
NC  
A
B
C
D
E
F
VDDQ  
VSSQ  
VREFDQ  
NC  
G
H
J
G
H
J
DQL7  
CK  
DQL5  
VSS  
K
L
ODT  
VDD  
CS  
CK  
VDD  
CKE  
NC  
K
L
NC  
A10/AP  
NC  
ZQ  
M
N
P
R
T
VSS  
BA0  
BA2  
A0  
VREFCA  
BA1  
VSS  
M
N
P
R
T
VDD  
A3  
A12/BC  
A1  
VDD  
VSS  
VSS  
A5  
A2  
A4  
VDD  
A7  
A9  
A11  
A6  
VDD  
VSS  
VSS  
RESET  
A13  
NC  
A8  
1
2
3
4
5
6
7
8
9
Rev. 1.3 / Nov. 2015  
6
1
2 3  
7
8 9  
A
B
C
D
E
F
G
H
J
(Top View: See the balls through the Package)  
Populated ball  
Ball not populated  
K
L
M
N
P
R
T
Pin Functional Description  
Symbol  
Type  
Function  
Clock: CK and CK are differential clock inputs. All address and control input signals are  
sampled on the crossing of the positive edge of CK and negative edge of CK.  
CK, CK  
Input  
Clock Enable: CKE HIGH activates, and CKE Low deactivates, internal clock signals and  
device input buffers and output drivers. Taking CKE Low provides Precharge Power-Down  
and Self-Refresh operation (all banks idle), or Active Power-Down (row Active in any  
bank).  
CKE, (CKE0),  
(CKE1)  
Input CKE is asynchronous for Self-Refresh exit. After VREFCA and VREFDQ have become stable  
during the power on and initialization sequence, they must be maintained during all  
operations (including Self-Refresh). CKE must be maintained high throughout read and  
write accesses. Input buffers, excluding CK, CK, ODT and CKE, are disabled during power-  
down. Input buffers, excluding CKE, are disabled during Self-Refresh.  
Chip Select: All commands are masked when CS is registered HIGH.  
CS provides for external Rank selection on systems with multiple Ranks.  
CS is considered part of the command code.  
CS, (CS0),  
(CS1), (CS2),  
(CS3)  
Input  
Rev. 1.3 / Nov. 2015  
7
Symbol  
Type  
Function  
On Die Termination: ODT (registered HIGH) enables termination resistance internal to the  
DDR3L SDRAM. When enabled, ODT is only applied to each DQ, DQS, DQS and DM/TDQS,  
NU/TDQS (When TDQS is enabled via Mode Register A11=1 in MR1) signal for x4/x8  
configurations. For x16 configuration, ODT is applied to each DQ, DQSU, DQSU, DQSL,  
DQSL, DMU, and DML signal. The ODT pin will be ignored if MR1 is programmed to disable  
ODT.  
ODT, (ODT0),  
(ODT1)  
Input  
Command Inputs: RAS, CAS and WE (along with CS) define the command being entered.  
RAS.  
CAS. WE  
Input  
Input  
Input Data Mask: DM is an input mask signal for write data. Input data is masked when  
DM is sampled HIGH coincident with that input data during a Write access. DM is sampled  
on both edges of DQS. For x8 device, the function of DM or TDQS/TDQS is enabled by  
Mode Register A11 setting in MR1.  
DM, (DMU),  
(DML)  
Bank Address Inputs: BA0 - BA2 define to which bank an Active, Read, Write or Precharge  
BA0 - BA2  
A0 - A15  
Input command is being applied. Bank address also determines if the mode register or extended  
mode register is to be accessed during a MRS cycle.  
Address Inputs: Provide the row address for Active commands and the column address for  
Read/Write commands to select one location out of the memory array in the respective  
bank. (A10/AP and A12/BC have additional functions, see below).  
Input  
The address inputs also provide the op-code during Mode Register Set commands.  
Auto-precharge: A10 is sampled during Read/Write commands to determine whether  
Autoprecharge should be performed to the accessed bank after the Read/Write operation.  
(HIGH: Autoprecharge; LOW: no Autoprecharge).A10 is sampled during a Precharge  
command to determine whether the Precharge applies to one bank (A10 LOW) or all  
banks (A10 HIGH). If only one bank is to be precharged, the bank is selected by bank  
addresses.  
A10 / AP  
A12 / BC  
Input  
Burst Chop: A12 / BC is sampled during Read and Write commands to determine if burst  
Input chop (on-the-fly) will be performed.  
(HIGH, no burst chop; LOW: burst chopped). See command truth table for details.  
Active Low Asynchronous Reset: Reset is active when RESET is LOW, and inactive when  
RESET is HIGH. RESET must be HIGH during normal operation.  
RESET is a CMOS rail-to-rail signal with DC high and low at 80% and 20% of VDD, i.e.  
1.20V for DC high and 0.30V for DC low.  
RESET  
DQ  
Input  
Input /  
Data Input/ Output: Bi-directional data bus.  
Output  
Data Strobe: output with read data, input with write data. Edge-aligned with read data,  
centered in write data. The data strobe DQS, DQSL, and DQSU are paired with differential  
signals DQS, DQSL, and DQSU, respectively, to provide differential pair signaling to the  
system during reads and writes. DDR3L SDRAM supports differential data strobe only and  
does not support single-ended.  
DQU, DQL,  
DQS, DQS,  
DQSU, DQSU, Output  
DQSL, DQSL  
Input /  
Rev. 1.3 / Nov. 2015  
8
Symbol  
Type  
Function  
Termination Data Strobe: TDQS/TDQS is applicable for x8 DRAMs only. When enabled via  
Mode Register A11 = 1 in MR1, the DRAM will enable the same termination resistance  
TDQS, TDQS Output function on TDQS/TDQS that is applied to DQS/DQS. When disabled via mode register A11  
= 0 in MR1, DM/TDQS will provide the data mask function and TDQS is not used. x4  
DRAMs must disable the TDQS function via mode register A11 = 0 in MR1.  
NC  
NF  
No Connect: No internal electrical connection is present.  
No Function  
VDDQ  
VSSQ  
VDD  
Supply DQ Power Supply: 1.35 V +0.100/-0.067V  
Supply  
Supply  
Supply  
Supply  
Supply  
Supply  
DQ Ground  
Power Supply: 1.35 V +0.100/-0.067V  
Ground  
VSS  
Reference voltage for DQ  
Reference voltage for CA  
Reference Pin for ZQ calibration  
VREFDQ  
VREFCA  
ZQ  
Note:  
Input only pins (BA0-BA2, A0-A15, RAS, CAS, WE, CS, CKE, ODT, DM, and RESET) do not supply termination.  
ROW AND COLUMN ADDRESS TABLE  
2Gb  
Configuration  
# of Banks  
256Mb x 8  
128Mb x 16  
8
8
Bank Address  
Auto precharge  
BL switch on the fly  
Row Address  
Column Address  
Page size 1  
BA0 - BA2  
A10/AP  
A12/BC  
A0 - A14  
A0 - A9  
1 KB  
BA0 - BA2  
A10/AP  
A12/BC  
A0 - A13  
A0 - A9  
2 KB  
Rev. 1.3 / Nov. 2015  
9
Note1: Page size is the number of bytes of data delivered from the array to the internal sense amplifiers  
when an ACTIVE command is registered. Page size is per bank, calculated as follows:  
page size = 2 COLBITS * ORG 8  
where COLBITS = the number of column address bits, ORG = the number of I/O (DQ) bits  
Absolute Maximum Ratings  
Absolute Maximum DC Ratings  
Absolute Maximum DC Ratings  
Symbol  
Parameter  
Voltage on VDD pin relative to Vss  
Voltage on VDDQ pin relative to Vss  
Voltage on any pin relative to Vss  
Storage Temperature  
Rating  
Units  
Notes  
VDD  
- 0.4 V ~ 1.80 V  
V
1,3  
VDDQ  
VIN, VOUT  
TSTG  
- 0.4 V ~ 1.80 V  
- 0.4 V ~ 1.80 V  
-55 to +100  
V
1,3  
1
V
oC  
1, 2  
Rev. 1.3 / Nov. 2015  
10  
Absolute Maximum DC Ratings  
Notes:  
1. Stresses greater than those listed under “Absolute Maximum Ratings” may cause permanent damage to the  
device. This is a stress rating only and functional operation of the device at these or any other conditions above  
those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rat-  
ing conditions for extended periods may affect reliability.  
2. Storage Temperature is the case surface temperature on the center/top side of the DRAM. For the measurement  
conditions, please refer to JESD51-2 standard.  
3. VDD and VDDQ must be within 300mV of each other at all times; and VREF must not be greater than  
0.6XVDDQ,When VDD and VDDQ are less than 500mV; VREF may be equal to or less than 300mV.  
DRAM Component Operating Temperature Range  
Temperature Range  
Symbol  
Parameter  
Normal Operating Temperature Range  
Extended Temperature Range  
Rating  
0 to 85  
85 to 95  
Units  
oC  
oC  
Notes  
1,2  
1,4  
TOPER  
-40 to 95  
oC  
1,3,4  
Industrial Temperature Range  
Notes:  
1. Operating Temperature TOPER is the case surface temperature on the center / top side of the DRAM. For mea-  
surement conditions, please refer to the JEDEC document JESD51-2.  
2. The Normal Temperature Range specifies the temperatures where all DRAM specifications will be supported. Dur-  
ing operation, the DRAM case temperature must be maintained between 0 - 85oC under all operating conditions.  
3. The Industrial Temperature Range specifies the temperatures where all DRAM specifications will be supported.  
During operation, the DRAM case temperature must be maintained between -40 - 85oC under all operating condi-  
tions.  
4. Some applications require operation of the DRAM in the Extended Temperature Range between 85oC and 95oC  
case temperature. Full specifications are guaranteed in this range, but the following additional conditions apply:  
a. Refresh commands must be doubled in frequency, therefore reducing the Refresh interval tREFI to 3.9 µs.  
b. If Self-Refresh operation is required in the Extended Temperature Range, then it is mandatory to use the Man-  
ual Self-Refresh mode with Extended Temperature Range capability (MR2 A6 = 0b and MR2 A7 = 1b).  
AC & DC Operating Conditions  
Recommended DC Operating Conditions  
Recommended DC Operating Conditions - DDR3L (1.35V) operation  
Rating  
Symbol  
Parameter  
Units  
Notes  
Min.  
Typ.  
Max.  
VDD  
1.283  
1.35  
1.45  
V
1,2,3,4  
Supply Voltage  
Rev. 1.3 / Nov. 2015  
11  
VDDQ  
Notes:  
1.283  
1.35  
1.45  
V
1,2,3,4  
Supply Voltage for Output  
1. Maximum DC value may not be greater than 1.425V. The DC value is the linear average of VDD/VDDQ (t) over a  
very long period of time (e.g., 1 sec).  
2. If maximum limit is exceeded, input levels shall be governed by DDR3 specifications.  
3. Under these supply voltages, the device operates to this DDR3L specification.  
4. Once initialized for DDR3L operation, DDR3 operation may only be used if the device is in reset while VDD and  
VDDQ are changed for DDR3 operation (see Figure 0).  
Recommended DC Operating Conditions - DDR3 (1.5V) operation  
Rating  
Symbol  
Parameter  
Units  
Notes  
Min.  
Typ.  
Max.  
VDD  
1.425  
1.5  
1.575  
V
V
1,2,3  
1,2,3  
Supply Voltage  
Supply Voltage for Output  
VDDQ  
1.425  
1.5  
1.575  
Notes:  
1. If minimum limit is exceeded, input levels shall be governed by DDR3L specifications.  
2. Under 1.5V operation, this DDR3L device operates to the DDR3 specifications under the same speed timings as  
defined for this device.  
3. Once initialized for DDR3 operation, DDR3L operation may only be used if the device is in reset while VDD and  
VDDQ are changed for DDR3L operation (see Figure 0).  
Rev. 1.3 / Nov. 2015  
12  
Ta  
Tb  
Tc  
Td  
Te  
Tf  
Tg  
Th  
Ti  
Tj  
Tk  
CK,CK#  
tCKSRX  
Tmin = 10ns  
VDD, VDDQ (DDR3)  
VDD, VDDQ (DDR3L)  
Tmin = 10ns  
Tmin = 200us  
T = 500us  
RESET#  
Tmin = 10ns  
CKE  
VALID  
VALID  
tDLLK  
tIS  
tXPR  
tMRD  
tMRD  
tMRD  
tMOD  
tZQinit  
1)  
COMMAND  
BA  
READ  
READ  
1)  
MRS  
MR2  
MRS  
MR3  
MRS  
MR1  
MRS  
MR0  
ZQCL  
VALID  
tIS  
tIS  
ODT  
RTT  
READ  
Static LOW in case RTT_Nom is enabled at time Tg, otherwise static HIGH or LOW  
VALID  
NOTE 1: From time point Tduntil TkNOP or DES commands must be applied  
between MRS and ZQCL commands.  
DONT CARE  
TIME BREAK  
Figure 0 - VDD/VDDQ Voltage Switch Between DDR3L and DDR3L  
Rev. 1.3 / Nov. 2015  
13  
IDD and IDDQ Specification Parameters and Test Conditions  
IDD and IDDQ Measurement Conditions  
In this chapter, IDD and IDDQ measurement conditions such as test load and patterns are defined. Figure  
1. shows the setup and test load for IDD and IDDQ measurements.  
IDD currents (such as IDD0, IDD1, IDD2N, IDD2NT, IDD2P0, IDD2P1, IDD2Q, IDD3N, IDD3P, IDD4R,  
IDD4W, IDD5B, IDD6, IDD6ET and IDD7) are measured as time-averaged currents with all VDD balls  
of the DDR3L SDRAM under test tied together. Any IDDQ current is not included in IDD currents.  
IDDQ currents (such as IDDQ2NT and IDDQ4R) are measured as time-averaged currents with all  
VDDQ balls of the DDR3L SDRAM under test tied together. Any IDD current is not included in IDDQ  
currents.  
Attention: IDDQ values cannot be directly used to calculate IO power of the DDR3L SDRAM. They can  
be used to support correlation of simulated IO power to actual IO power as outlined in Figure 2. In  
DRAM module application, IDDQ cannot be measured separately since VDD and VDDQ are using one  
merged-power layer in Module PCB.  
For IDD and IDDQ measurements, the following definitions apply:  
”0” and “LOW” is defined as VIN <= V  
ILAC(max).  
”1” and “HIGH” is defined as VIN >= V  
IHAC(max).  
“MID_LEVEL” is defined as inputs are VREF = VDD/2.  
Timing used for IDD and IDDQ Measurement-Loop Patterns are provided in Table 1.  
Basic IDD and IDDQ Measurement Conditions are described in Table 2.  
Detailed IDD and IDDQ Measurement-Loop Patterns are described in Table 3 through Table 10.  
IDD Measurements are done after properly initializing the DDR3L SDRAM. This includes but is not lim-  
ited to setting  
RON = RZQ/7 (34 Ohm in MR1);  
Qoff = 0 (Output Buffer enabled in MR1);  
B
RTT_Nom = RZQ/6 (40 Ohm in MR1);  
RTT_Wr = RZQ/2 (120 Ohm in MR2);  
TDQS Feature disabled in MR1  
Attention: The IDD and IDDQ Measurement-Loop Patterns need to be executed at least one time  
before actual IDD or IDDQ measurement is started.  
Define D = {CS, RAS, CAS, WE}:= {HIGH, LOW, LOW, LOW}  
Define D = {CS, RAS, CAS, WE}:= {HIGH, HIGH, HIGH, HIGH}  
Rev. 1.3 / Nov. 2015  
14  
IDDQ (optional)  
IDD  
VDD  
RESET  
CK/CK  
VDDQ  
DDR3L  
SDRAM  
RTT = 25 Ohm  
CKE  
CS  
DQS, DQS  
DQ, DM,  
VDDQ/2  
RAS, CAS, WE  
TDQS, TDQS  
A, BA  
ODT  
ZQ  
VSS  
VSSQ  
Figure 1 - Measurement Setup and Test Load for IDD and IDDQ (optional) Measurements  
[Note: DIMM level Output test load condition may be different from above]  
Application specific  
memory channel  
environment  
IDDQ  
Test Load  
Channel  
IO Power  
Simulation  
IDDQ  
Simulation  
IDDQ  
Simulation  
Correction  
Channel IO Power  
Number  
Figure 2 - Correlation from simulated Channel IO Power to actual Channel IO Power supported  
by IDDQ Measurement  
Rev. 1.3 / Nov. 2015  
15  
Table 1 -Timings used for IDD and IDDQ Measurement-Loop Patterns  
DDR3L-1066  
DDR3L-1333  
DDR3L-1600  
DDR3L-1866  
Symbol  
Unit  
7-7-7  
9-9-9  
1.5  
9
11-11-11  
13-13-13  
tCK  
1.875  
1.25  
11  
1.07  
13  
ns  
CL  
7
7
nCK  
nCK  
nCK  
nCK  
nCK  
nRCD  
nRC  
nRAS  
nRP  
9
11  
13  
27  
20  
7
33  
24  
9
39  
45  
28  
32  
11  
13  
1KB page  
20  
27  
4
20  
30  
4
24  
32  
5
26  
33  
5
nCK  
nCK  
nCK  
nCK  
size  
nFAW  
2KB page  
size  
1KB page  
size  
nRRD  
2KB page  
size  
6
5
6
6
nRFC -512Mb  
nRFC-1 Gb  
nRFC- 2 Gb  
nRFC- 4 Gb  
nRFC- 8 Gb  
48  
59  
60  
74  
72  
88  
85  
nCK  
nCK  
nCK  
nCK  
nCK  
103  
150  
243  
328  
86  
107  
174  
234  
128  
208  
280  
139  
187  
Table 2 -Basic IDD and IDDQ Measurement Conditions  
Symbol  
Description  
Operating One Bank Active-Precharge Current  
CKE: High; External clock: On; tCK, nRC, nRAS, CL: see Table 1; BL: 8a); AL: 0; CS: High between ACT  
and PRE; Command, Address, Bank Address Inputs: partially toggling according to Table 3; Data IO:  
MID-LEVEL; DM: stable at 0; Bank Activity: Cycling with one bank active at a time: 0,0,1,1,2,2,... (see  
IDD0  
Table 3); Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0; Pattern Details:  
see Table 3.  
Rev. 1.3 / Nov. 2015  
16  
Symbol  
Description  
Operating One Bank Active-Precharge Current  
CKE: High; External clock: On; tCK, nRC, nRAS, nRCD, CL: see Table 1; BL: 8a); AL: 0; CS: High between  
ACT, RD and PRE; Command, Address; Bank Address Inputs, Data IO: partially toggling according to  
Table 4; DM: stable at 0; Bank Activity: Cycling with on bank active at a time: 0,0,1,1,2,2,... (see Table  
IDD1  
4); Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0; Pattern Details: see  
Table 4.  
Precharge Standby Current  
CKE: High; External clock: On; tCK, CL: see Table 1; BL: 8a); AL: 0; CS: stable at 1; Command, Address,  
Bank Address Inputs: partially toggling according to Table 5; Data IO: MID_LEVEL; DM: stable at 0;  
IDD2N  
IDD2NT  
IDD2P0  
Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable  
at 0; Pattern Details: see Table 5.  
Precharge Standby ODT Current  
CKE: High; External clock: On; tCK, CL: see Table 1; BL: 8a); AL: 0; CS: stable at 1; Command, Address,  
Bank Address Inputs: partially toggling according to Table 6; Data IO: MID_LEVEL; DM: stable at 0;  
Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: tog-  
gling according to Table 6; Pattern Details: see Table 6.  
Precharge Power-Down Current Slow Exit  
CKE: Low; External clock: On; tCK, CL: see Table 1; BL: 8a); AL: 0; CS: stable at 1; Command, Address,  
Bank Address Inputs: stable at 0; Data IO: MID_LEVEL; DM: stable at 0; Bank Activity: all banks closed;  
Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0; Precharge Power Down  
Mode: Slow Exitc)  
Precharge Power-Down Current Fast Exit  
CKE: Low; External clock: On; tCK, CL: see Table 1; BL: 8a); AL: 0; CS: stable at 1; Command, Address,  
Bank Address Inputs: stable at 0; Data IO: MID_LEVEL; DM: stable at 0; Bank Activity: all banks closed;  
IDD2P1  
Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0; Precharge Power Down  
Mode: Fast Exitc)  
Precharge Quiet Standby Current  
CKE: High; External clock: On; tCK, CL: see Table 1; BL: 8a); AL: 0; CS: stable at 1; Command, Address,  
Bank Address Inputs: stable at 0; Data IO: MID_LEVEL; DM: stable at 0; Bank Activity: all banks closed;  
IDD2Q  
Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0  
Rev. 1.3 / Nov. 2015  
17  
Symbol  
Description  
Active Standby Current  
CKE: High; External clock: On; tCK, CL: see Table 1; BL: 8a); AL: 0; CS: stable at 1; Command, Address,  
Bank Address Inputs: partially toggling according to Table 5; Data IO: MID_LEVEL; DM: stable at 0;  
IDD3N  
Bank Activity: all banks open; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable  
at 0; Pattern Details: see Table 5.  
Active Power-Down Current  
CKE: Low; External clock: On; tCK, CL: see Table 1; BL: 8a); AL: 0; CS: stable at 1; Command, Address,  
Bank Address Inputs: stable at 0; Data IO: MID_LEVEL; DM: stable at 0; Bank Activity: all banks open;  
IDD3P  
Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0  
Operating Burst Read Current  
CKE: High; External clock: On; tCK, CL: see Table 1; BL: 8a); AL: 0; CS: High between RD; Command,  
Address, Bank Address Inputs: partially toggling according to Table 7; Data IO: seamless read data burst  
with different data between one burst and the next one according to Table 7; DM: stable at 0; Bank  
Activity: all banks open, RD commands cycling through banks: 0,0,1,1,2,2,...(see Table 7); Output Buffer  
IDD4R  
and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0; Pattern Details: see Table 7.  
Operating Burst Write Current  
CKE: High; External clock: On; tCK, CL: see Table 1; BL: 8a); AL: 0; CS: High between WR; Command,  
Address, Bank Address Inputs: partially toggling according to Table 8; Data IO: seamless read data burst  
with different data between one burst and the next one according to Table 8; DM: stable at 0; Bank  
Activity: all banks open, WR commands cycling through banks: 0,0,1,1,2,2,...(see Table 8); Output Buf-  
IDD4W  
fer and RTT: Enabled in Mode Registersb); ODT Signal: stable at HIGH; Pattern Details: see Table 8.  
Burst Refresh Current  
CKE: High; External clock: On; tCK, CL, nRFC: see Table 1; BL: 8a); AL: 0; CS: High between REF; Com-  
mand, Address, Bank Address Inputs: partially toggling according to Table 9; Data IO: MID_LEVEL; DM:  
stable at 0; Bank Activity: REF command every nREF (see Table 9); Output Buffer and RTT: Enabled in  
IDD5B  
Mode Registersb); ODT Signal: stable at 0; Pattern Details: see Table 9.  
Self-Refresh Current: Normal Temperature Range  
TCASE: 0 - 85 oC; Auto Self-Refresh (ASR): Disabledd);Self-Refresh Temperature Range (SRT): Normale);  
IDD6  
CKE: Low; External clock: Off; CK and CK: LOW; CL: see Table 1; BL: 8a); AL: 0; CS, Command, Address,  
Bank Address Inputs, Data IO: MID_LEVEL; DM: stable at 0; Bank Activity: Self-Refresh operation; Out-  
put Buffer and RTT: Enabled in Mode Registersb); ODT Signal: MID_LEVEL  
Rev. 1.3 / Nov. 2015  
18  
Symbol  
Description  
Self-Refresh Current: Extended Temperature Range  
TCASE: 0 - 95 oC; Auto Self-Refresh (ASR): Disabledd);Self-Refresh Temperature Range (SRT): Extend-  
ede); CKE: Low; External clock: Off; CK and CK: LOW; CL: see Table 1; BL: 8a); AL: 0; CS, Command,  
Address, Bank Address Inputs, Data IO: MID_LEVEL; DM: stable at 0; Bank Activity: Extended Tempera-  
IDD6ET  
ture Self-Refresh operation; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal:  
MID_LEVEL  
Operating Bank Interleave Read Current  
CKE: High; External clock: On; tCK, nRC, nRAS, nRCD, NRRD, nFAW, CL: see Table 1; BL: 8a), f); AL: CL-  
1; CS: High between ACT and RDA; Command, Address, Bank Address Inputs: partially toggling accord-  
ing to Table 10; Data IO: read data burst with different data between one burst and the next one  
according to Table 10; DM: stable at 0; Bank Activity: two times interleaved cycling through banks (0,  
IDD7  
1,...7) with different addressing, wee Table 10; Output Buffer and RTT: Enabled in Mode Registersb);  
ODT Signal: stable at 0; Pattern Details: see Table 10.  
a) Burst Length: BL8 fixed by MRS: set MR0 A[1,0]=00B  
b) Output Buffer Enable: set MR1 A[12] = 0B; set MR1 A[5,1] = 01B; RTT_Nom enable: set MR1 A[9,6,2] = 011B;  
RTT_Wr enable: set MR2 A[10,9] = 10B  
c) Precharge Power Down Mode: set MR0 A12=0B for Slow Exit or MR0 A12 = 1B for Fast Exit  
d) Auto Self-Refresh (ASR): set MR2 A6 = 0B to disable or 1B to enable feature  
e) Self-Refresh Temperature Range (SRT): set MR2 A7 = 0B for normal or 1B for extended temperature range  
f) Read Burst Type: Nibble Sequential, set MR0 A[3] = 0B  
Rev. 1.3 / Nov. 2015  
19  
Table 3 - IDD0 Measurement-Loop Patterna)  
Datab)  
0
ACT  
D, D  
D, D  
0
1
1
0
0
1
1
0
1
1
0
1
0
0
0
0
0
0
00  
00  
00  
0
0
0
0
0
0
0
0
0
0
0
0
-
-
-
0
1,2  
3,4  
...  
repeat pattern 1...4 until nRAS - 1, truncate if necessary  
nRAS  
PRE  
0
0
1
0
0
0
00  
0
0
0
0
-
...  
repeat pattern 1...4 until nRC - 1, truncate if necessary  
1*nRC+0  
1*nRC+1, 2  
1*nRC+3, 4  
...  
ACT  
D, D  
D, D  
0
1
1
0
0
1
1
0
1
1
0
1
0
0
0
0
0
0
00  
00  
00  
0
0
0
0
0
0
F
F
F
0
0
0
-
-
-
repeat pattern 1...4 until 1*nRC + nRAS - 1, truncate if necessary  
PRE 00  
1*nRC+nRAS  
...  
0
0
1
0
0
0
0
0
F
0
-
repeat pattern 1...4 until 2*nRC - 1, truncate if necessary  
repeat Sub-Loop 0, use BA[2:0] = 1 instead  
repeat Sub-Loop 0, use BA[2:0] = 2 instead  
repeat Sub-Loop 0, use BA[2:0] = 3 instead  
repeat Sub-Loop 0, use BA[2:0] = 4 instead  
repeat Sub-Loop 0, use BA[2:0] = 5 instead  
repeat Sub-Loop 0, use BA[2:0] = 6 instead  
repeat Sub-Loop 0, use BA[2:0] = 7 instead  
1
2
3
4
5
6
7
2*nRC  
4*nRC  
6*nRC  
8*nRC  
10*nRC  
12*nRC  
14*nRC  
a) DM must be driven LOW all the time. DQS, DQS are MID-LEVEL.  
b) DQ signals are MID-LEVEL.  
Rev. 1.3 / Nov. 2015  
20  
Table 4 - IDD1 Measurement-Loop Patterna)  
Datab)  
0
ACT  
D, D  
D, D  
0
1
1
0
0
1
1
0
1
1
0
1
0
0
0
0
0
0
00  
00  
00  
0
0
0
0
0
0
0
0
0
0
0
0
-
-
-
0
1,2  
3,4  
...  
repeat pattern 1...4 until nRCD - 1, truncate if necessary  
RD 00  
repeat pattern 1...4 until nRAS - 1, truncate if necessary  
nRCD  
...  
0
1
0
1
0
0
0
0
0
0
0
0
00000000  
-
nRAS  
PRE  
0
0
1
0
0
0
00  
0
0
...  
repeat pattern 1...4 until nRC - 1, truncate if necessary  
1*nRC+0  
1*nRC+1,2  
1*nRC+3,4  
...  
ACT  
D, D  
D, D  
0
1
1
0
0
1
1
0
1
1
0
1
0
0
0
0
0
0
00  
00  
00  
0
0
0
0
0
0
F
F
F
0
0
0
-
-
-
repeat pattern nRC + 1,...4 until nRC + nRCE - 1, truncate if necessary  
RD 00  
repeat pattern nRC + 1,...4 until nRC + nRAS - 1, truncate if necessary  
PRE 00  
1*nRC+nRCD  
...  
0
1
0
1
0
0
0
0
F
0
00110011  
-
1*nRC+nRAS  
...  
0
0
1
0
0
0
0
0
F
0
repeat pattern nRC + 1,...4 until *2 nRC - 1, truncate if necessary  
repeat Sub-Loop 0, use BA[2:0] = 1 instead  
repeat Sub-Loop 0, use BA[2:0] = 2 instead  
repeat Sub-Loop 0, use BA[2:0] = 3 instead  
repeat Sub-Loop 0, use BA[2:0] = 4 instead  
repeat Sub-Loop 0, use BA[2:0] = 5 instead  
repeat Sub-Loop 0, use BA[2:0] = 6 instead  
repeat Sub-Loop 0, use BA[2:0] = 7 instead  
1
2
3
4
5
6
7
2*nRC  
4*nRC  
6*nRC  
8*nRC  
10*nRC  
12*nRC  
14*nRC  
a) DM must be driven LOW all the time. DQS, DQS are used according to RD Commands, otherwise MID-LEVEL.  
b) Burst Sequence driven on each DQ signal by Read Command. Outside burst operation, DQ signals are MID_LEVEL.  
Rev. 1.3 / Nov. 2015  
21  
Table 5 - IDD2N and IDD3N Measurement-Loop Patterna)  
Datab)  
0
D
D
D
D
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
F
F
0
0
0
0
-
-
-
-
0
1
2
3
1
2
3
4
5
6
7
4-7  
repeat Sub-Loop 0, use BA[2:0] = 1 instead  
repeat Sub-Loop 0, use BA[2:0] = 2 instead  
repeat Sub-Loop 0, use BA[2:0] = 3 instead  
repeat Sub-Loop 0, use BA[2:0] = 4 instead  
repeat Sub-Loop 0, use BA[2:0] = 5 instead  
repeat Sub-Loop 0, use BA[2:0] = 6 instead  
repeat Sub-Loop 0, use BA[2:0] = 7 instead  
8-11  
12-15  
16-19  
20-23  
24-17  
28-31  
a) DM must be driven LOW all the time. DQS, DQS are MID-LEVEL.  
b) DQ signals are MID-LEVEL.  
Table 6 - IDD2NT and IDDQ2NT Measurement-Loop Patterna)  
Datab)  
0
D
D
D
D
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
-
-
-
-
0
1
0
0
0
0
F
F
0
0
0
2
3
1
2
3
4
5
6
7
4-7  
repeat Sub-Loop 0, but ODT = 0 and BA[2:0] = 1  
repeat Sub-Loop 0, but ODT = 1 and BA[2:0] = 2  
repeat Sub-Loop 0, but ODT = 1 and BA[2:0] = 3  
repeat Sub-Loop 0, but ODT = 0 and BA[2:0] = 4  
repeat Sub-Loop 0, but ODT = 0 and BA[2:0] = 5  
repeat Sub-Loop 0, but ODT = 1 and BA[2:0] = 6  
repeat Sub-Loop 0, but ODT = 1 and BA[2:0] = 7  
8-11  
12-15  
16-19  
20-23  
24-17  
28-31  
a) DM must be driven LOW all the time. DQS, DQS are MID-LEVEL.  
b) DQ signals are MID-LEVEL.  
Rev. 1.3 / Nov. 2015  
22  
Table 7 - IDD4R and IDDQ4R Measurement-Loop Patterna)  
Datab)  
0
RD  
D
0
1
1
0
1
1
1
0
1
1
0
1
0
0
1
0
0
1
1
0
1
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
00  
00  
00  
00  
00  
00  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
F
F
F
0
0
0
0
0
0
00000000  
0
1
-
2,3  
D,D  
RD  
D
-
4
00110011  
5
-
-
6,7  
D,D  
1
2
3
4
5
6
7
8-15  
16-23  
24-31  
32-39  
40-47  
48-55  
56-63  
repeat Sub-Loop 0, but BA[2:0] = 1  
repeat Sub-Loop 0, but BA[2:0] = 2  
repeat Sub-Loop 0, but BA[2:0] = 3  
repeat Sub-Loop 0, but BA[2:0] = 4  
repeat Sub-Loop 0, but BA[2:0] = 5  
repeat Sub-Loop 0, but BA[2:0] = 6  
repeat Sub-Loop 0, but BA[2:0] = 7  
a) DM must be driven LOW all the time. DQS, DQS are used according to RD Commands, otherwise MID-LEVEL.  
b) Burst Sequence driven on each DQ signal by Read Command. Outside burst operation, DQ signals are MID-LEVEL.  
Rev. 1.3 / Nov. 2015  
23  
Table 8 - IDD4W Measurement-Loop Patterna)  
Datab)  
0
WR  
D
0
1
1
0
1
1
1
0
1
1
0
1
0
0
1
0
0
1
0
0
1
0
0
1
1
1
1
1
1
1
0
0
0
0
0
0
00  
00  
00  
00  
00  
00  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
F
F
F
0
0
0
0
0
0
00000000  
0
1
-
2,3  
D,D  
WR  
D
-
4
00110011  
5
-
-
6,7  
D,D  
1
2
3
4
5
6
7
8-15  
16-23  
24-31  
32-39  
40-47  
48-55  
56-63  
repeat Sub-Loop 0, but BA[2:0] = 1  
repeat Sub-Loop 0, but BA[2:0] = 2  
repeat Sub-Loop 0, but BA[2:0] = 3  
repeat Sub-Loop 0, but BA[2:0] = 4  
repeat Sub-Loop 0, but BA[2:0] = 5  
repeat Sub-Loop 0, but BA[2:0] = 6  
repeat Sub-Loop 0, but BA[2:0] = 7  
a) DM must be driven LOW all the time. DQS, DQS are used according to WR Commands, otherwise MID-LEVEL.  
b) Burst Sequence driven on each DQ signal by Write Command. Outside burst operation, DQ signals are MID-LEVEL.  
Table 9 - IDD5B Measurement-Loop Patterna)  
Datab)  
0
1
0
REF  
D, D  
D, D  
0
1
1
0
0
1
0
0
1
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
F
0
0
0
-
-
-
1.2  
00  
00  
3,4  
5...8  
repeat cycles 1...4, but BA[2:0] = 1  
repeat cycles 1...4, but BA[2:0] = 2  
repeat cycles 1...4, but BA[2:0] = 3  
repeat cycles 1...4, but BA[2:0] = 4  
repeat cycles 1...4, but BA[2:0] = 5  
repeat cycles 1...4, but BA[2:0] = 6  
repeat cycles 1...4, but BA[2:0] = 7  
9...12  
13...16  
17...20  
21...24  
25...28  
29...32  
33...nRFC-1  
2
repeat Sub-Loop 1, until nRFC - 1. Truncate, if necessary.  
a) DM must be driven LOW all the time. DQS, DQS are MID-LEVEL.  
b) DQ signals are MID-LEVEL.  
Rev. 1.3 / Nov. 2015  
24  
Table 10 - IDD7 Measurement-Loop Patterna)  
ATTENTION! Sub-Loops 10-19 have inverse A[6:3] Pattern and Data Pattern than Sub-Loops 0-9  
Datab)  
0
1
0
1
2
...  
ACT  
RDA  
D
0
0
1
0
1
0
1
0
0
1
1
0
0
0
0
0
0
0
00  
00  
00  
0
1
0
0
0
0
0
0
0
0
0
0
-
00000000  
-
repeat above D Command until nRRD - 1  
nRRD  
nRRD+1  
nRRD+2  
...  
2*nRRD  
3*nRRD  
4*nRRD  
ACT  
RDA  
D
0
0
1
0
1
0
1
0
0
1
1
0
0
0
0
1
1
1
00  
00  
00  
0
1
0
0
0
0
F
F
F
0
0
0
-
00110011  
-
repeat above D Command until 2* nRRD - 1  
repeat Sub-Loop 0, but BA[2:0] = 2  
repeat Sub-Loop 1, but BA[2:0] = 3  
2
3
D
1
0
0
0
0
3
00  
0
0
F
0
-
-
4
Assert and repeat above D Command until nFAW - 1, if necessary  
repeat Sub-Loop 0, but BA[2:0] = 4  
repeat Sub-Loop 1, but BA[2:0] = 5  
repeat Sub-Loop 0, but BA[2:0] = 6  
repeat Sub-Loop 1, but BA[2:0] = 7  
5
6
7
8
nFAW  
nFAW+nRRD  
nFAW+2*nRRD  
nFAW+3*nRRD  
nFAW+4*nRRD  
D
1
0
0
0
0
7
00  
0
0
F
0
9
Assert and repeat above D Command until 2* nFAW - 1, if necessary  
2*nFAW+0  
2*nFAW+1  
ACT  
RDA  
D
0
0
1
0
1
0
1
0
0
1
1
0
0
0
0
0
0
0
00  
00  
00  
0
1
0
0
0
0
F
F
F
0
0
0
-
00110011  
-
10  
2&nFAW+2  
Repeat above D Command until 2* nFAW + nRRD - 1  
2*nFAW+nRRD  
2*nFAW+nRRD+1 RDA  
ACT  
0
0
1
0
1
0
1
0
0
1
1
0
0
0
0
1
1
1
00  
00  
00  
0
1
0
0
0
0
0
0
0
0
0
0
-
00000000  
-
11  
D
2&nFAW+nRRD+  
2
Repeat above D Command until 2* nFAW + 2* nRRD - 1  
12 2*nFAW+2*nRRD repeat Sub-Loop 10, but BA[2:0] = 2  
13 2*nFAW+3*nRRD repeat Sub-Loop 11, but BA[2:0] = 3  
D
1
0
0
0
0
3
00  
0
0
0
0
-
14 2*nFAW+4*nRRD  
Assert and repeat above D Command until 3* nFAW - 1, if necessary  
repeat Sub-Loop 10, but BA[2:0] = 4  
15 3*nFAW  
16 3*nFAW+nRRD  
repeat Sub-Loop 11, but BA[2:0] = 5  
17 3*nFAW+2*nRRD repeat Sub-Loop 10, but BA[2:0] = 6  
18 3*nFAW+3*nRRD repeat Sub-Loop 11, but BA[2:0] = 7  
D
1
0
0
0
0
7
00  
0
0
0
0
-
19 3*nFAW+4*nRRD  
Assert and repeat above D Command until 4* nFAW - 1, if necessary  
a) DM must be driven LOW all the time. DQS, DQS are used according to RD Commands, otherwise MID-LEVEL.  
b) Burst Sequence driven on each DQ signal by Read Command. Outside burst operation, DQ signals are MID-LEVEL.  
Rev. 1.3 / Nov. 2015  
25  
IDD Specifications  
IDD values are for full operating range of voltage and temperature unless otherwise noted.  
IDD Specification  
Speed Grade  
Bin  
DDR3L - 1066 DDR3 L- 1333 DDR3L - 1600 DDR3L - 1866  
7-7-7  
Max.  
28  
33  
32  
41  
11  
11  
11  
14  
13  
14  
15  
16  
14  
16  
19  
23  
23  
29  
50  
90  
54  
95  
143  
150  
9
9-9-9  
Max.  
28  
11-11-11  
Max.  
28  
13-13-13  
Max.  
32  
Unit  
Notes  
Symbol  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
x8  
x16  
x8  
I
DD0  
33  
35  
36  
32  
32  
36  
I
DD01  
41  
45  
45  
x16  
x8  
11  
11  
11  
I
I
DD2P0  
11  
11  
11  
x16  
x8  
11  
11  
11  
DD2P1  
14  
14  
14  
x16  
x8  
14  
14  
16  
I
DD2N  
14  
14  
16  
x16  
x8  
16  
18  
19  
I
DD2NT  
16  
18  
19  
x16  
x8  
14  
16  
16  
I
DD2Q  
16  
16  
16  
x16  
x8  
19  
19  
20  
I
DD3P  
DD3N  
DD4R  
DD4w  
24  
24  
25  
x16  
x8  
24  
25  
26  
I
31  
32  
33  
x16  
x8  
63  
69  
82  
I
100  
68  
110  
74  
125  
87  
x16  
x8  
I
105  
143  
150  
9
115  
146  
155  
9
130  
146  
155  
9
x16  
x8  
I
I
DD5  
x16  
x8  
DD6  
9
9
9
9
x16  
x8/16  
x8  
I
Low Power)  
6
6
6
6
DD6 (  
11  
11  
104  
180  
11  
11  
11  
I
DD6ET  
11  
11  
11  
x16  
x8  
114  
180  
115  
185  
130  
189  
I
DD7  
x16  
Notes:  
1. Applicable for MR2 settings A6=0 and A7=0. Temperature range for IDD6 is 0 - 85oC.  
2. Applicable for MR2 settings A6=0 and A7=1. Temperature range for IDD6ET is 0 - 95oC.  
Rev. 1.3 / Nov. 2015  
26  
Input/Output Capacitance  
DDR3L-1066 DDR3L-1333 DDR3L-1600 DDR3L-1866  
Parameter  
Symbol  
Units Notes  
Min  
Max Min Max Min Max Min Max  
Input/output capacitance  
(DQ, DM, DQS, DQS, TDQS,  
TDQS)  
CIO  
1.4  
2.7  
1.4  
2.5  
1.4  
2.3  
1.4  
2.2  
pF  
1,2,3  
Input capacitance, CK and  
CK  
Input capacitance delta  
CK and CK  
Input capacitance delta,  
DQS and DQS  
Input capacitance  
(All other input-only pins)  
Input capacitance delta  
(All CTRL input-only pins)  
Input capacitance delta  
(All ADD/CMD input-only  
pins)  
CCK  
CDCK  
CDDQS  
CI  
0.8  
0
1.6  
0.8  
0
1.4  
0.15  
0.15  
1.3  
0.8  
0
1.4  
0.15  
0.15  
1.3  
0.8  
0
1.3  
0.15  
0.15  
1.2  
pF  
pF  
pF  
pF  
pF  
2,3  
2,3,4  
2,3,5  
2,3,6  
2,3,7,8  
0.15  
0.20  
0
0
0
0
0.75  
-0.5  
1.35 0.75  
0.75  
-0.4  
0.75  
-0.4  
CDI_CTRL  
0.3  
0.5  
-0.4  
-0.4  
0.2  
0.2  
0.2  
CDI_ADD_  
-0.5  
0.4  
-0.4  
0.4  
-0.4  
0.4  
pF 2,3,9,10  
CMD  
Input/output capacitance  
delta  
(DQ, DM, DQS, DQS)  
Input/output capacitance of  
ZQ pin  
CDIO  
-0.5  
-
0.3  
3
-0.5  
-
0.3  
3
-0.5  
-
0.3  
3
-0.5  
-
0.3  
3
pF  
pF  
2,3,11  
2,3,12  
CZQ  
Notes:  
1. Although the DM, TDQS and TDQS pins have different functions, the loading matches DQ and DQS.  
2. This parameter is not subject to production test. It is verified by design and characterization. The capacitance is  
measured according to JEP147(“PROCEDURE FOR MEASURING INPUT CAPACITANCE USING A VECTOR NETWORK  
ANALYZER(VNA)”) with VDD, VDDQ, VSS,VSSQ applied and all other pins floating (except the pin under test, CKE,  
RESET and ODT as necessary). VDD=VDDQ=1.5V, VBIAS=VDD/2 and on-die termination off.  
3. This parameter applies to monolithic devices only; stacked/dual-die devices are not covered here  
4. Absolute value of CCK-CCK.  
5. Absolute value of CIO(DQS)-CIO(DQS).  
6. CI applies to ODT, CS, CKE, A0-A15, BA0-BA2, RAS, CAS, WE.  
7. CDI_CTR applies to ODT, CS and CKE.  
8. CDI_CTRL=CI(CNTL) - 0.5 * CI(CLK) + CI(CLK))  
9. CDI_ADD_CMD applies to A0-A15, BA0-BA2, RAS, CAS and WE.  
10. CDI_ADD_CMD=CI(ADD_CMD) - 0.5*(CI(CLK)+CI(CLK))  
11. CDIO=CIO(DQ) - 0.5*(CIO(DQS)+CIO(DQS))  
12. Maximum external load capacitance an ZQ pin: 5 pF.  
Rev. 1.3 / Nov. 2015  
27  
Standard Speed Bins  
DDR3L SDRAM Standard Speed Bins include tCK, tRCD, tRP, tRAS and tRC for each corresponding bin.  
DDR3L-1066 Speed Bins  
For specific Notes see “Speed Bin Table Notes” on page 31.  
Speed Bin  
DDR3L-1066  
7-7-7  
Unit  
Note  
CL - nRCD - nRP  
Parameter  
Symbol  
min  
max  
Internal read command to  
first data  
tAA  
13.125  
20  
ns  
ns  
ns  
ns  
ACT to internal read or  
write delay time  
tRCD  
13.125  
13.125  
50.625  
tRP  
PRE command period  
ACT to ACT or REF  
command period  
tRC  
ACT to PRE command  
period  
tRAS  
37.5  
3.0  
9 * tREFI  
3.3  
ns  
ns  
1, 2, 3, 4, 6,  
12,13  
tCK(AVG)  
CWL = 5  
CL = 5  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
CWL = 6  
Reserved  
ns  
ns  
4
1, 2, 3, 6  
1, 2, 3, 4  
4
CWL = 5  
CL = 6  
2.5  
3.3  
CWL = 6  
Reserved  
Reserved  
ns  
CWL = 5  
CL = 7  
ns  
CWL = 6  
1.875  
1.875  
< 2.5  
< 2.5  
ns  
1, 2, 3, 4  
4
CWL = 5  
CL = 8  
Reserved  
ns  
CWL = 6  
ns  
1, 2, 3  
13  
nCK  
nCK  
Supported CL Settings  
Supported CWL Settings  
5, 6, 7, 8  
5, 6  
Rev. 1.3 / Nov. 2015  
28  
DDR3L-1333 Speed Bins  
For specific Notes see “Speed Bin Table Notes” on page 31.  
Speed Bin  
DDR3L-1333  
9-9-9  
Unit  
Note  
CL - nRCD - nRP  
Parameter  
Symbol  
min  
13.5  
max  
Internal read  
command to first data  
tAA  
tRCD  
tRP  
20  
ns  
ns  
ns  
ns  
(13.125)5,11  
13.5  
(13.125)5,11  
ACT to internal read or  
write delay time  
13.5  
(13.125)5,11  
PRE command period  
49.5  
(49.125)5,11  
ACT to ACT or REF  
command period  
tRC  
ACT to PRE command  
period  
tRAS  
36  
9 * tREFI  
3.3  
ns  
ns  
1, 2, 3, 4,  
7, 12,13  
tCK(AVG)  
CWL = 5  
CL = 5  
3.0  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
CWL = 6, 7  
Reserved  
ns  
ns  
ns  
ns  
ns  
4
CWL = 5  
2.5  
3.3  
1, 2, 3, 7  
CL = 6  
CL = 7  
CL = 8  
CWL = 6  
CWL = 7  
CWL = 5  
Reserved  
Reserved  
Reserved  
1, 2, 3, 4, 7  
4
4
1.875  
1.875  
< 2.5  
< 2.5  
tCK(AVG)  
CWL = 6  
ns  
1, 2, 3, 4, 7  
(Optional)5  
Reserved  
Reserved  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
CWL = 7  
CWL = 5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1, 2, 3, 4  
4
CWL = 6  
1, 2, 3, 7  
1, 2, 3, 4  
4
CWL = 7  
Reserved  
Reserved  
CWL = 5, 6  
CWL = 7  
CL = 9  
1.5  
1.5  
<1.875  
<1.875  
1, 2, 3, 4  
4
CWL = 5, 6  
Reserved  
(Optional)  
CL = 10  
ns  
ns  
1, 2, 3  
5
tCK(AVG)  
CWL = 7  
nCK  
Supported CL Settings  
Supported CWL Settings  
5, 6, 8, (7), 9, (10)  
5, 6, 7  
nCK  
Rev. 1.3 / Nov. 2015  
29  
DDR3L-1600 Speed Bins  
For specific Notes see “Speed Bin Table Notes” on page 31.  
Speed Bin  
DDR3L-1600  
11-11-11  
Unit  
Note  
CL - nRCD - nRP  
Parameter  
Symbol  
min  
13.75  
max  
Internal read  
command to first data  
tAA  
tRCD  
tRP  
20  
ns  
ns  
ns  
ns  
(13.125)5,11  
13.75  
(13.125)5,11  
ACT to internal read or  
write delay time  
13.75  
(13.125)5,11  
PRE command period  
48.75  
(48.125)5,11  
ACT to ACT or REF  
command period  
tRC  
ACT to PRE command  
period  
tRAS  
35  
9 * tREFI  
3.3  
ns  
ns  
1, 2, 3, 4,  
8, 12,13  
4
tCK(AVG)  
CWL = 5  
CL = 5  
3.0  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
CWL = 6, 7  
Reserved  
ns  
ns  
ns  
ns  
ns  
CWL = 5  
2.5  
3.3  
1, 2, 3, 8  
CL = 6  
CL = 7  
CWL = 6  
CWL = 7  
CWL = 5  
Reserved  
Reserved  
Reserved  
1, 2, 3, 4, 8  
4
4
1.875  
< 2.5  
tCK(AVG)  
CWL = 6  
ns  
1, 2, 3, 4, 8  
(Optional)5  
Reserved  
Reserved  
Reserved  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
CWL = 7  
CWL = 8  
CWL = 5  
CWL = 6  
CWL = 7  
CWL = 8  
CWL = 5, 6  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1, 2, 3, 4, 8  
4
4
1.875  
1.5  
< 2.5  
1, 2, 3, 8  
1, 2, 3, 4, 8  
1, 2, 3, 4  
4
CL = 8  
CL = 9  
Reserved  
Reserved  
Reserved  
<1.875  
tCK(AVG)  
CWL = 7  
ns  
1, 2, 3, 4, 8  
(Optional)5  
Reserved  
Reserved  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
CWL = 8  
ns  
ns  
1, 2, 3, 4  
4
CWL = 5, 6  
CL = 10 CWL = 7  
CWL = 8  
1.5  
<1.875  
<1.5  
ns  
1, 2, 3, 8  
1, 2, 3, 4  
4
Reserved  
Reserved  
ns  
CWL = 5, 6,7  
CL = 11  
ns  
CWL = 8  
1.25  
ns  
1, 2, 3  
nCK  
nCK  
Supported CL Settings  
Supported CWL Settings  
5, 6, (7), 8, (9), 10, 11  
5, 6, 7, 8  
Rev. 1.3 / Nov. 2015  
30  
DDR3L-1866 Speed Bins  
For specific Notes see “Speed Bin Table Notes” on page 31.  
Speed Bin  
DDR3L-1866  
13-13-13  
Unit  
Note  
CL - nRCD - nRP  
Parameter  
Symbol  
min  
max  
13.91  
(13.125)5,14  
13.91  
(13.125)5,14  
13.91  
(13.125)5,14  
Internal read command  
to first data  
tAA  
tRCD  
tRP  
20  
ns  
ns  
ns  
ns  
ns  
ACT to internal read or  
write delay time  
PRE command period  
ACT to PRE command  
period  
tRAS  
tRC  
34  
9 * tREFI  
47.91  
(47.125)5,14  
3.0  
ACT to ACT or PRE  
command period  
-
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
CWL = 5  
CL = 5  
3.3  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
nCK  
nCK  
1, 2, 3, 4, 9  
CWL = 6,7,8,9  
Reserved  
4
CWL = 5  
2.5  
3.3  
1, 2, 3, 9  
CL = 6  
CL = 7  
CWL = 6  
CWL = 7,8,9  
CWL = 5  
Reserved  
Reserved  
Reserved  
1, 2, 3, 4, 9  
4
4
CWL = 6  
1.875  
1.875  
< 2.5  
< 2.5  
1, 2, 3, 4, 9  
CWL = 7,8,9  
CWL = 5  
Reserved  
Reserved  
4
4
CWL = 6  
1, 2, 3, 9  
CL = 8  
CL = 9  
CWL = 7  
Reserved  
Reserved  
Reserved  
1, 2, 3, 4, 9  
CWL = 8,9  
CWL = 5, 6  
CWL = 7  
4
4
1.5  
<1.875  
1, 2, 3, 4, 9  
CWL = 8  
Reserved  
Reserved  
Reserved  
1, 2, 3, 4, 9  
CWL = 9  
4
CWL = 5, 6  
CWL = 7  
4
1, 2, 3, 9  
1, 2, 3, 4, 9  
4
CL = 10  
CL = 11  
1.5  
<1.875  
<1.5  
CWL = 8  
Reserved  
Reserved  
CWL = 5,6,7  
CWL = 8  
1.25  
1, 2, 3, 4, 9  
1, 2, 3, 4  
4
CWL = 9  
Reserved  
Reserved  
Reserved  
Reserved  
CWL = 5,6,7,8  
CWL = 9  
CL = 12  
CL = 13  
1,2,3,4  
4
CWL = 5,6,7,8  
CWL = 9  
1.07  
<1.25  
1, 2, 3  
Supported CL Settings  
Supported CWL Settings  
6, 8, 10, 13, (7), (9), (11)  
5, 6, 7, 8, 9  
Rev. 1.3 / Nov. 2015  
31  
Speed Bin Table Notes  
Absolute Specification (TOPER; VDDQ = VDD = 1.5V +/- 0.075 V);  
1. The CL setting and CWL setting result in tCK(AVG).MIN and tCK(AVG).MAX requirements. When making  
a selection of tCK(AVG), both need to be fulfilled: Requirements from CL setting as well as requirements  
from CWL setting.  
2. tCK(AVG).MIN limits: Since CAS Latency is not purely analog - data and strobe output are synchronized  
by the DLL - all possible intermediate frequencies may not be guaranteed. An application should use the  
next smaller JEDEC standard tCK(AVG) value (3.0, 2.5, 1.875, 1.5, or 1.25 ns) when calculating CL [nCK]  
= tAA [ns] / tCK(AVG) [ns], rounding up to the next ‘Supported CL, where tCK(AVG) = 3.0 ns should  
only be used for CL = 5 calculation.  
3. tCK(AVG).MAX limits: Calculate tCK(AVG) = tAA.MAX / CL SELECTED and round the resulting tCK(AVG)  
down to the next valid speed bin (i.e. 3.3ns or 2.5ns or 1.875 ns or 1.25 ns). This result is tCK(AVG).MAX  
corresponding to CL SELECTED.  
4. ‘Reserved’ settings are not allowed. User must program a different value.  
5. ‘Optional’ settings allow certain devices in the industry to support this setting, however, it is not a man-  
datory feature. Refer to SK Hynix DIMM data sheet and/or the DIMM SPD information if and how this  
setting is supported.  
6. Any DDR3L-1066 speed bin also supports functional operation at lower frequencies as shown in the table  
which are not subject to Production Tests but verified by Design/Characterization.  
7. Any DDR3L-1333 speed bin also supports functional operation at lower frequencies as shown in the table  
which are not subject to Production Tests but verified by Design/Characterization.  
8. Any DDR3L-1600 speed bin also supports functional operation at lower frequencies as shown in the table  
which are not subject to Production Tests but verified by Design/Characterization.  
9. Any DDR3L-1866 speed bin also supports functional operation at lower frequencies as shown in the table  
which are not subject to Production Tests but verified by Design/Characterization.  
10. Any DDR3L-2133 speed bin also supports functional operation at lower frequencies as shown in the table  
which are not subject to Production Tests but verified by Design/Characterization.  
11. SK Hynix DDR3L SDRAM devices supporting optional down binning to CL=7 and CL=9, and tAA/tRCD/  
tRP must be 13.125 ns or lower. SPD settings must be programmed to match. For example, DDR3L-  
1333H devices supporting down binning to DDR3L-1066F should program 13.125 ns in SPD bytes for  
tAAmin (Byte 16), tRCDmin (Byte 18), and tRPmin (Byte 20). DDR3L-1600K devices supporting down  
binning to DDR3L-1333H or DDR3L-1600F should program 13.125 ns in SPD bytes for tAAmin (Byte 16),  
tRCDmin (Byte 18), and tRPmin (Byte 20). Once tRP (Byte 20) is programmed to 13.125ns, tRCmin  
(Byte 21,23) also should be programmed accordingly. For example, 49.125ns (tRASmin + tRPmin = 36  
ns + 13.125 ns) for DDR3L-1333H and 48.125ns (tRASmin + tRPmin = 35 ns + 13.125 ns) for DDR3L-  
1600K.  
12. DDR3L 800 AC timing apply if DRAM operates at lower than 800 MT/s data rate.  
13. For CL5 support, refer to DIMM SPD information. DRAM is required to support CL5. CL5 is not mandatory  
in SPD coding.  
14. SK Hynix DDR3L SDRAM devices supporting optional down binning to CL=11, CL=9 and CL=7, tAA/  
tRCD/tRPmin must be 13.125ns. SPD setting must be programed to match. For example, DDR3L-1866M  
devices supporting down binning to DDR3L-1600K or DDR3L-1333H or 1066F should program 13.125ns  
in SPD bytes for tAAmin(byte 16), tRCDmin(byte 18) and tRPmin(byte 20) is programmed to 13.125ns,  
tRCmin(byte 21,23) also should be programmed accordingly. For example, 47.125ns (tRASmin + tRPmin  
= 34ns +13.125ns)  
Rev. 1.3 / Nov. 2015  
32  
Package Dimensions  
Package Dimension(x8): 78Ball Fine Pitch Ball Grid Array Outline  
Rev. 1.3 / Nov. 2015  
33  
Package Dimension(x16): 96Ball Fine Pitch Ball Grid Array Outline  

相关型号:

H5TC2G83GFR-RDA

DDR DRAM, 256MX8, CMOS, PBGA78, HALOGEN FREE AND ROHS COMPLIANT, FPBGA-78
HYNIX

H5TC4G43AFR

4Gb DDR3L SDRAM
HYNIX

H5TC4G43AFR-G7A

4Gb DDR3L SDRAM
HYNIX

H5TC4G43AFR-H9A

4Gb DDR3L SDRAM
HYNIX

H5TC4G43AFR-PBA

4Gb DDR3L SDRAM
HYNIX

H5TC4G43AFR-RDA

4Gb DDR3L SDRAM
HYNIX

H5TC4G43BFR-G7A

4Gb DDR3L SDRAM
HYNIX

H5TC4G43BFR-H9A

4Gb DDR3L SDRAM
HYNIX

H5TC4G43BFR-PBA

DDR DRAM, 1GX4, CMOS, PBGA78, FBGA-78
HYNIX

H5TC4G43BFR-RDA

4Gb DDR3L SDRAM
HYNIX

H5TC4G43BFR-XXA

4Gb DDR3L SDRAM
HYNIX

H5TC4G43DFR-H9A

DDR DRAM, 1GX4, CMOS, PBGA78, FBGA-78
HYNIX