HY5PS121621CFLP-S6 [HYNIX]

DDR DRAM, 32MX16, 0.4ns, CMOS, PBGA84, ROHS COMPLIANT, FBGA-84;
HY5PS121621CFLP-S6
型号: HY5PS121621CFLP-S6
厂家: HYNIX SEMICONDUCTOR    HYNIX SEMICONDUCTOR
描述:

DDR DRAM, 32MX16, 0.4ns, CMOS, PBGA84, ROHS COMPLIANT, FBGA-84

动态存储器 双倍数据速率 内存集成电路
文件: 总38页 (文件大小:613K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HY5PS12421C(L)FP  
HY5PS12821C(L)FP  
HY5PS121621C(L)FP  
512Mb DDR2 SDRAM  
HY5PS12421C(L)FP  
HY5PS12821C(L)FP  
HY5PS121621C(L)FP  
This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any  
responsibility for use of circuits described. No patent licenses are implied.  
Rev. 0.8 / Oct. 2007  
1
1HY5PS12421C(L)FP  
1HY5PS12821C(L)FP  
1HY5PS121621C(L)FP  
Revision History  
Rev.  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
History  
Preliminary  
Draft Date  
May 2006  
July 2006  
July 2006  
Aug. 2006  
Feb. 2007  
July 2007  
Sep. 2007  
Oct. 2007  
IDD Spec. Changed  
Removed improper note in ODT spec.  
Updated IDD3P-S value/OCD Default Characteristics  
Updated IDD spec for x8 org. on page 16  
Removed Y4 Speed bin  
Updated Timing Patterns (DDR2-800 5/5/5 and 6/6/6)  
Corrected Typo  
Rev. 0.8 / Oct. 2007  
2
1HY5PS12421C(L)FP  
1HY5PS12821C(L)FP  
1HY5PS121621C(L)FP  
Contents  
1. Description  
1.1 Device Features and Ordering Information  
1.1.1 Key Features  
1.1.2 Ordering Information  
1.1.3 Ordering Frequency  
1.2 Pin configuration  
1.3 Pin Description  
2. Maximum DC ratings  
2.1 Absolute Maximum DC Ratings  
2.2 Operating Temperature Condition  
3. AC & DC Operating Conditions  
3.1 DC Operating Conditions  
5.1.1 Recommended DC Operating Conditions(SSTL_1.8)  
5.1.2 ODT DC Electrical Characteristics  
3.2 DC & AC Logic Input Levels  
3.2.1 Input DC Logic Level  
3.2.2 Input AC Logic Level  
3.2.3 AC Input Test Conditions  
3.2.4 Differential Input AC Logic Level  
3.2.5 Differential AC output parameters  
3.3 Output Buffer Levels  
3.3.1 Output AC Test Conditions  
3.3.2 Output DC Current Drive  
3.3.3 OCD default characteristics  
3.4 IDD Specifications & Measurement Conditions  
3.5 Input/Output Capacitance  
4. AC Timing Specifications  
5. Package Dimensions  
Rev. 0.8 / Oct. 2007  
3
1HY5PS12421C(L)FP  
1HY5PS12821C(L)FP  
1HY5PS121621C(L)FP  
1. Description  
1.1 Device Features & Ordering Information  
1.1.1 Key Features  
• VDD ,VDDQ =1.8 +/- 0.1V  
• All inputs and outputs are compatible with SSTL_18 interface  
• Fully differential clock inputs (CK, /CK) operation  
• Double data rate interface  
• Source synchronous-data transaction aligned to bidirectional data strobe (DQS, DQS)  
• Differential Data Strobe (DQS, DQS)  
• Data outputs on DQS, DQS edges when read (edged DQ)  
• Data inputs on DQS centers when write(centered DQ)  
• On chip DLL align DQ, DQS and DQS transition with CK transition  
• DM mask write data-in at the both rising and falling edges of the data strobe  
• All addresses and control inputs except data, data strobes and data masks latched on the rising edges of the clock  
• Programmable CAS latency 3, 4, 5 and 6 supported  
• Programmable additive latency 0, 1, 2, 3, 4 and 5 supported  
• Programmable burst length 4 / 8 with both nibble sequential and interleave mode  
• Internal four bank operations with single pulsed RAS  
• Auto refresh and self refresh supported  
• tRAS lockout supported  
• 8K refresh cycles /64ms  
• JEDEC standard 60ball FBGA(x4/x8) & 84ball FBGA(x16)  
• Full strength driver option controlled by EMRS  
• On Die Termination supported  
• Off Chip Driver Impedance Adjustment supported  
• Read Data Strobe supported (x8 only)  
• Self-Refresh High Temperature Entry  
• Partial Array Self Refresh support  
Operating Frequency  
Ordering Information  
Speed Bin tCK(ns) CL tRCD tRP Unit  
Part No.  
Organization  
Package  
E3  
C4  
Y5  
S5  
S6  
Clk  
Clk  
Clk  
Clk  
Clk  
5
3.75  
3
3
4
5
5
6
3
4
5
5
6
3
4
5
5
6
HY5PS12421C(L)FP-X*  
128Mx4  
64Mx8  
HY5PS12821C(L)FP-X*  
Lead free**  
HY5PS121621C(L)FP-X*  
32Mx16  
2.5  
2.5  
Note:  
1. -X* is the speed bin, refer to the Operation Frequency table for  
complete Part No.  
2. Hynix Lead-free products are compliant to RoHS.  
Rev. 0.8 / Oct. 2007  
4
1HY5PS12421C(L)FP  
1HY5PS12821C(L)FP  
1HY5PS121621C(L)FP  
1.2 Pin Configuration & Address Table  
128Mx4 DDR2 Pin Configuration(Top view: see balls through package)  
7
8
3
9
1
2
VSSQ  
DQS  
VSS  
VDDQ  
VDD  
NC  
NC  
A
B
C
D
DQS  
VDDQ  
DQ2  
VSSQ  
DQ0  
VSSQ  
CK  
DM  
VDDQ  
DQ3  
VSS  
NC  
VDDQ  
NC  
VSSQ  
DQ1  
VDDQ  
NC  
VSSQ  
VREF  
CKE  
VSSDL  
RAS  
VDD  
ODT  
VDDL  
E
F
CK  
WE  
CAS  
A2  
CS  
A0  
BA1  
A1  
G
H
J
NC  
VSS  
VDD  
BA0  
A10  
A3  
VDD  
VSS  
A6  
A4  
A5  
A11  
NC  
A8  
A9  
K
L
A7  
A13  
NC  
A12  
ROW AND COLUMN ADDRESS TABLE  
ITEMS  
# of Bank  
128Mx4  
4
Bank Address  
Auto Precharge Flag  
Row Address  
BA0, BA1  
A10/AP  
A0 - A13  
A0-A9, A11  
1 KB  
Column Address  
Page size  
Rev. 0.8 / Oct. 2007  
5
1HY5PS12421C(L)FP  
1HY5PS12821C(L)FP  
1HY5PS121621C(L)FP  
64Mx8 DDR2 PIN CONFIGURATION(Top view: see balls through package)  
7
8
3
9
1
2
VSSQ  
DQS  
VSS  
VDDQ  
VDD  
DQ6  
VDDQ  
DQ4  
VDDL  
NU, RDQS  
A
B
C
D
DQS  
VDDQ  
DQ2  
VSSQ  
DQ0  
VSSQ  
CK  
DM, RDQS  
VDDQ  
DQ3  
DQ7  
VDDQ  
DQ5  
VSSQ  
DQ1  
VSSQ  
VREF  
CKE  
VSSDL  
RAS  
VSS  
VDD  
E
F
CK  
WE  
ODT  
CAS  
A2  
CS  
A0  
BA1  
A1  
G
H
J
NC  
VSS  
VDD  
BA0  
A10  
A3  
VDD  
VSS  
A6  
A4  
A5  
A11  
NC  
A8  
A9  
K
L
A7  
A13  
NC  
A12  
ROW AND COLUMN ADDRESS TABLE  
ITEMS  
# of Bank  
64Mx8  
4
Bank Address  
Auto Precharge Flag  
Row Address  
BA0, BA1  
A10/AP  
A0 - A13  
A0-A9  
Column Address  
Page size  
1 KB  
Rev. 0.8 / Oct. 2007  
6
1HY5PS12421C(L)FP  
1HY5PS12821C(L)FP  
1HY5PS121621C(L)FP  
32Mx16 DDR2 PIN CONFIGURATION(Top view: see balls through package)  
7
8
3
9
1
2
VSSQ  
UDQS  
VSS  
VDDQ  
VDD  
NC  
A
B
C
D
E
F
UDQS  
VDDQ  
DQ10  
VSSQ  
LDQS  
VDDQ  
DQ2  
VSSQ  
DQ8  
UDM  
VDDQ  
DQ11  
VSS  
DQ15  
VDDQ  
DQ13  
VDDQ  
DQ7  
DQ14  
VDDQ  
DQ12  
VDD  
VSSQ  
DQ9  
VSSQ  
NC  
VSSQ  
LDQS  
VSSQ  
DQ0  
LDM  
DQ6  
VSSQ  
DQ1  
VSSQ  
VDDQ  
DQ3  
VDDQ  
DQ5  
VDDQ  
DQ4  
G
H
VSSQ  
VSSDL  
RAS  
CK  
CK  
VSS  
WE  
VDD  
ODT  
VDDL  
VREF  
CKE  
J
K
CAS  
A2  
CS  
A0  
A4  
A8  
NC  
BA1  
A1  
L
M
N
P
NC  
VSS  
VDD  
BA0  
A10  
A3  
VDD  
VSS  
A6  
A5  
A11  
NC  
A9  
A7  
NC  
R
A12  
ROW AND COLUMN ADDRESS TABLE  
ITEMS  
# of Bank  
32Mx16  
4
Bank Address  
Auto Precharge Flag  
Row Address  
BA0, BA1  
A10/AP  
A0 - A12  
A0-A9  
Column Address  
Page size  
2 KB  
Rev. 0.8 / Oct. 2007  
7
1HY5PS12421C(L)FP  
1HY5PS12821C(L)FP  
1HY5PS121621C(L)FP  
1.3 PIN DESCRIPTION  
PIN  
TYPE  
DESCRIPTION  
Clock: CK and CK are differential clock inputs. All address and control input signals are  
sampled on the crossing of the positive edge of CK and negative edge of CK. Output  
(read) data is referenced to the crossings of CK and CK (both directions of crossing).  
CK, CK  
Input  
Clock Enable: CKE HIGH activates, and CKE LOW deactivates internal clock signals, and  
device input buffers and output drivers. Taking CKE LOW provides PRECHARGE POWER  
DOWN and SELF REFRESH operation (all banks idle), or ACTIVE POWER DOWN (row  
ACTIVE in any bank). CKE is synchronous for POWER DOWN entry and exit, and for  
SELF REFRESH entry. CKE is asynchronous for SELF REFRESH exit. After VREF has  
become stable during the power on and initialization sequence, it must be maintained  
for proper operation of the CKE receiver. For proper self-refresh entry and exit, VREF  
must be maintained to this input. CKE must be maintained high throughout READ and  
WRITE accesses. Input buffers, excluding CK, CK and CKE are disabled during POWER  
DOWN. Input buffers, excluding CKE are disabled during SELF REFRESH.  
CKE  
Input  
Input  
Chip Select : All commands are masked when CS is registered HIGH. CS provides for  
external bank selection on systems with multiple banks. CS is considered part of the  
command code.  
CS  
On Die Termination Control : ODT(registered HIGH) enables on die termination resis-  
tance internal to the DDR2 SDRAM. When enabled, ODT is only applied to DQ, DQS,  
DQS, RDQS, RDQS, and DM signal for x4,x8 configurations. For x16 configuration ODT  
is applied to each DQ, UDQS/UDQS.LDQS/LDQS, UDM and LDM signal. The ODT pin  
will be ignored if the Extended Mode Register(EMRS(1)) is programmed to disable ODT.  
ODT  
Input  
Input  
Input  
Command Inputs: RAS, CAS and WE (along with CS) define the command being  
entered.  
RAS, CAS, WE  
Input Data Mask : DM is an input mask signal for write data. Input Data is masked  
when DM is sampled High coincident with that input data during a WRITE access. DM  
is sampled on both edges of DQS, Although DM pins are input only, the DM loading  
matches the DQ and DQS loading. For x8 device, the function of DM or RDQS/ RDQS is  
enabled by EMRS command.  
DM  
(LDM, UDM)  
Bank Address Inputs: BA0 - BA2 define to which bank an ACTIVE, Read, Write or PRE-  
CHARGE command is being applied(For 256Mb and 512Mb, BA2 is not applied). Bank  
address also determines if the mode register or extended mode register is to be  
accessed during a MRS or EMRS cycle.  
BA0 - BA2  
A0 -A15  
Input  
Input  
Address Inputs: Provide the row address for ACTIVE commands, and the column  
address and AUTO PRECHARGE bit for READ/WRITE commands to select one location  
out of the memory array in the respective bank. A10 is sampled during a precharge  
command to determine whether the PRECHARGE applies to one bank (A10 LOW) or all  
banks (A10 HIGH). If only one bank is to be precharged, the bank is selected by BA0-  
BA2. The address inputs also provide the op code during MODE REGISTER SET com-  
mands.  
Input/  
Output  
DQ  
Data input / output : Bi-directional data bus  
Rev. 0.8 / Oct. 2007  
8
1HY5PS12421C(L)FP  
1HY5PS12821C(L)FP  
1HY5PS121621C(L)FP  
-Continue-  
PIN  
TYPE  
DESCRIPTION  
Data Strobe : Output with read data, input with write data. Edge aligned with read data,  
centered in write data. For the x16, LDQS correspond to the data on DQ0~DQ7; UDQS  
corresponds to the data on DQ8~DQ15. For the x8, an RDQS option using DM pin can  
be enabled via the EMRS(1) to simplify read timing. The data strobes DQS, LDQS,  
UDQS, and RDQS may be used in single ended mode or paired with optional comple-  
mentary signals DQS, LDQS,UDQS and RDQS to provide differential pair signaling to the  
system during both reads and wirtes. An EMRS(1) control bit enables or disables all  
complementary data strobe signals.  
DQS, (DQS)  
In this data sheet, "differential DQS signals" refers to any of the following with A10 = 0  
(UDQS),(UDQS) Input/  
(LDQS),(LDQS) Output  
(RDQS),(RDQS)  
of EMRS(1)  
x4 DQS/DQS  
x8 DQS/DQS  
x8 DQS/DQS, RDQS/RDQS,  
if EMRS(1)[A11] = 0  
if EMRS(1)[A11] = 1  
x16 LDQS/LDQS and UDQS/UDQS  
"single-ended DQS signals" refers to any of the following with A10 = 1  
of EMRS(1)  
x4 DQS  
x8 DQS  
if EMRS(1)[A11] = 0  
x8 DQS, RDQS, if EMRS(1)[A11] = 1  
x16 LDQS and UDQS  
NC  
No Connect : No internal electrical connection is present.  
VDDQ  
VSSQ  
VDDL  
VSSDL  
VDD  
Supply DQ Power Supply: 1.8V +/- 0.1V  
Supply DQ Ground  
Supply DLL Power Supply : 1.8V +/- 0.1V  
Supply DLL Ground  
Supply Power Supply : 1.8V +/- 0.1V  
Supply Ground  
VSS  
VREF  
Supply Reference voltage for inputs for SSTL interface.  
Rev. 0.8 / Oct. 2007  
9
1HY5PS12421C(L)FP  
1HY5PS12821C(L)FP  
1HY5PS121621C(L)FP  
2. Maximum DC Ratings  
2.1 Absolute Maximum DC Ratings  
Symbol  
Parameter  
Rating  
Units  
Notes  
VDD  
- 1.0 V ~ 2.3 V  
V
1
Voltage on VDD pin relative to Vss  
Voltage on VDDQ pin relative to Vss  
Voltage on VDDL pin relative to Vss  
Voltage on any pin relative to Vss  
Storage Temperature  
VDDQ  
VDDL  
- 0.5 V ~ 2.3 V  
- 0.5 V ~ 2.3 V  
- 0.5 V ~ 2.3 V  
-55 to +100  
V
V
1
1
V
IN, VOUT  
V
1
TSTG  
1, 2  
Input leakage current; any input 0V VIN VDD;  
all other balls not under test = 0V)  
II  
-2 uA ~ 2 uA  
-5 uA ~ 5 uA  
uA  
uA  
Output leakage current; 0V VOUT VDDQ; DQ  
and ODT disabled  
IOZ  
1. Stresses greater than those listed under “Absolute Maximum Ratings” may cause permanent damage to the  
device. This is a stress rating only and functional operation of the device at these or any other conditions above  
those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum  
rating conditions for extended periods may affect reliability.  
2. Storage Temperature is the case surface temperature on the center/top side of the DRAM. For the measurement  
conditions. Please refer to JESD51-2 standard.  
2.2 Operating Temperature Condition  
Symbol  
Parameter  
Rating  
Units  
Notes  
tOPER  
0 to 95  
°C  
1,2  
Operating Temperature  
1. Operating Temperature is the case surface temperature on the center/top side of the DRAM. For the mea-  
surement conditions, please refer to JESD51-2 standard.  
2. At tOPER 85~95℃, Double refresh rate(tREFI: 3.9us) is required, and to enter the self refresh mode at this  
temperature range it must be required an EMRS command to change itself refresh rate.  
Rev. 0.8 / Oct. 2007  
10  
1HY5PS12421C(L)FP  
1HY5PS12821C(L)FP  
1HY5PS121621C(L)FP  
3. AC & DC Operating Conditons  
3.1 DC Operating Conditions  
3.1.1 Recommended DC Operating Conditions (SSTL_1.8)  
Rating  
Symbol  
Parameter  
Supply Voltage  
Units  
Notes  
Min.  
Typ.  
Max.  
VDD  
VDDL  
VDDQ  
VREF  
VTT  
1.7  
1.8  
1.9  
V
V
1
1.7  
1.8  
1.8  
1.9  
1,2  
1,2  
3,4  
5
Supply Voltage for DLL  
Supply Voltage for Output  
Input Reference Voltage  
Termination Voltage  
1.7  
1.9  
V
0.49*VDDQ  
VREF-0.04  
0.50*VDDQ  
VREF  
0.51*VDDQ  
VREF+0.04  
mV  
V
1. Min. Typ. and Max. values increase by 100mV for C3(DDR2-533 3-3-3) speed option.  
2. VDDQ tracks with VDD,VDDL tracks with VDD. AC parameters are measured with VDD,VDDQ and VDD.  
3. The value of VREF may be selected by the user to provide optimum noise margin in the system. Typically the  
value of VREF is expected to be about 0.5 x VDDQ of the transmitting device and VREF is expected to track vari-  
ations in VDDQ  
4. Peak to peak ac noise on VREF may not exceed +/-2% VREF (dc).  
5. VTT of transmitting device must track VREF of receiving device.  
3.1.2 ODT DC electrical characteristics  
PARAMETER/CONDITION  
SYMBOL MIN NOM MAX UNITS NOTES  
Rtt effective impedance value for EMRS(A6,A2)=0,1; 75 ohm  
Rtt1(eff)  
60  
120  
40  
75  
150  
50  
90  
180  
60  
ohm  
ohm  
ohm  
%
1
1
1
1
Rtt effective impedance value for EMRS(A6,A2)=1,0; 150 ohm Rtt2(eff)  
Rtt effective impedance value for EMRS(A6,A2)=1,1; 50 ohm  
Deviation of VM with respect to VDDQ/2  
Rtt3(eff)  
delta VM  
-6  
+6  
Note:  
1. Test condition for Rtt measurements  
Measurement Definition for Rtt(eff): Apply VIH (ac) and VIL (ac) to test pin separately, then measure current I(VIH  
(ac)) and I(VIL(ac)) respectively. VIH (ac), VIL (ac), and VDDQ values defined in SSTL_18  
VIH (ac) - VIL (ac)  
Rtt(eff) =  
I(VIH (ac)) - I(VIL (ac))  
Measurement Definition for VM : Measurement Voltage at test pin(mid point) with no load.  
2 x Vm  
delta VM =  
- 1 x 100%  
VDDQ  
Rev. 0.8 / Oct. 2007  
11  
1HY5PS12421C(L)FP  
1HY5PS12821C(L)FP  
1HY5PS121621C(L)FP  
3.2 DC & AC Logic Input Levels  
3.2.1 Input DC Logic Level  
Symbol  
Parameter  
Min.  
Max.  
Units  
Notes  
Notes  
VIH(dc)  
VREF + 0.125  
VDDQ + 0.3  
V
dc input logic high  
dc input logic low  
VIL(dc)  
- 0.3  
VREF - 0.125  
V
3.2.2 Input AC Logic Level  
DDR2 400,533  
DDR2 667,800  
Symbol  
Parameter  
Units  
Min.  
Max.  
Min.  
Max.  
VREF +  
0.250  
VREF +  
0.200  
VIH (ac)  
VIL (ac)  
-
-
V
V
ac input logic high  
ac input logic low  
-
VREF - 0.250  
-
VREF - 0.200  
3.2.3 AC Input Test Conditions  
Symbol  
Condition  
Value  
Units  
Notes  
VREF  
VSWING(MAX)  
SLEW  
Input reference voltage  
Input signal maximum peak to peak swing  
Input signal minimum slew rate  
0.5 * VDDQ  
1.0  
V
V
1
1
1.0  
V/ns  
2, 3  
Note:  
1. Input waveform timing is referenced to the input signal crossing through the VREF level applied to the device  
under test.  
2. The input signal minimum slew rate is to be maintained over the range from VREF to VIH(ac) min for rising  
edges and the range from VREF to VIL(ac) max for falling edges as shown in the below figure.  
3. AC timings are referenced with input waveforms switching from VIL(ac) to VIH(ac) on the positive transitions  
and VIH(ac) to VIL(ac) on the negative transitions.  
VDDQ  
VIH(ac) min  
VIH(dc) min  
VREF  
VSWING(MAX)  
V
IL(dc) max  
VIL(ac) max  
VSS  
delta TF  
delta TR  
VREF - VIL(ac) max  
delta TF  
VIH(ac) min - VREF  
Falling Slew =  
Rising Slew =  
delta TR  
< Figure : AC Input Test Signal Waveform>  
Rev. 0.8 / Oct. 2007  
12  
1HY5PS12421C(L)FP  
1HY5PS12821C(L)FP  
1HY5PS121621C(L)FP  
3.2.4 Differential Input AC logic Level  
Symbol  
Parameter  
Min.  
Max.  
Units  
Notes  
VID (ac)  
0.5  
VDDQ + 0.6  
V
1
ac differential input voltage  
ac differential cross point voltage  
VIX (ac)  
0.5 * VDDQ - 0.175 0.5 * VDDQ + 0.175  
V
2
1. VIN(DC) specifies the allowable DC execution of each input of differential pair such as CK, CK, DQS, DQS,  
LDQS, LDQS, UDQS and UDQS.  
2. VID(DC) specifies the input differential voltage |VTR -VCP | required for switching, where VTR is the true input  
(such as CK, DQS, LDQS or UDQS) level and VCP is the complementary input (such as CK, DQS, LDQS  
or UDQS) level. The minimum value is equal to VIH(DC) - V IL(DC).  
V
DDQ  
V
TR  
Crossing point  
V
ID  
V
V
IX or OX  
V
CP  
V
SSQ  
< Differential signal levels >  
Note:  
1. VID(AC) specifies the input differential voltage |VTR -VCP | required for switching, where VTR is the true input  
signal (such as CK, DQS, LDQS or UDQS) and VCP is the complementary input signal (such as CK, DQS, LDQS  
or UDQS). The minimum value is equal to V IH(AC) - V IL(AC).  
2. The typical value of VIX(AC) is expected to be about 0.5 * VDDQ of the transmitting device and VIX(AC) is  
expected to track variations in VDDQ . VIX(AC) indicates the voltage at which differential input signals must  
cross.  
3.2.5 Differential AC output parameters  
Symbol  
OX (ac)  
Note:  
Parameter  
Min.  
Max.  
Units Notes  
V
0.5 * VDDQ - 0.125 0.5 * VDDQ + 0.125  
V
1
ac differential cross point voltage  
1. The typical value of VOX(AC) is expected to be about 0.5 * V DDQ of the transmitting device and VOX(AC) is  
expected to track variations in VDDQ . VOX(AC) indicates the voltage at whitch differential output signals  
must cross.  
Rev. 0.8 / Oct. 2007  
13  
1HY5PS12421C(L)FP  
1HY5PS12821C(L)FP  
1HY5PS121621C(L)FP  
3.3 Output Buffer Characteristics  
3.3.1 Output AC Test Conditions  
Symbol  
Parameter  
SSTL_18 Class II  
Units  
Notes  
VOTR  
Output Timing Measurement Reference Level  
0.5 * VDDQ  
V
1
1. The VDDQ of the device under test is referenced.  
3.3.2 Output DC Current Drive  
Symbol  
IOH(dc)  
IOL(dc)  
Parameter  
Output Minimum Source DC Current  
Output Minimum Sink DC Current  
SSTl_18  
- 13.4  
Units  
mA  
Notes  
1, 3, 4  
2, 3, 4  
13.4  
mA  
1. VDDQ = 1.7 V; VOUT = 1420 mV. (VOUT - VDDQ)/IOH must be less than 21 ohm for values of VOUT between VDDQ  
and VDDQ - 280 mV.  
2. VDDQ = 1.7 V; VOUT = 280 mV. VOUT/IOL must be less than 21 ohm for values of VOUT between 0 V and 280  
mV.  
3. The dc value of VREF applied to the receiving device is set to VTT  
4. The values of IOH(dc) and IOL(dc) are based on the conditions given in Notes 1 and 2. They are used to test  
device drive current capability to ensure VIH min plus a noise margin and VIL max minus a noise margin are  
delivered to an SSTL_18 receiver. The actual current values are derived by shifting the desired driver operating  
point (see Section 3.3) along a 21 ohm load line to define a convenient driver current for measurement.  
Rev. 0.8 / Oct. 2007  
14  
1HY5PS12421C(L)FP  
1HY5PS12821C(L)FP  
1HY5PS121621C(L)FP  
3.3.3 OCD default characteristics  
Description  
Parameter  
Min  
Nom  
Max  
Unit  
Notes  
See full strength default  
driver characteristics  
Output impedance  
ohms  
1
Output impedance step size for OCD calibration  
Pull-up and pull-down mismatch  
Output slew rate  
0
0
1.5  
4
ohms  
ohms  
V/ns  
6
1,2,3  
Sout  
1.5  
-
5
1,4,5,6,7,8  
Note  
1. Absolute Specifications ( Toper; VDD = +1.8V ±0.1V, VDDQ = +1.8V ±0.1V). DRAM I/O specifications for  
timing,voltage, and  
slew rate are no longer applicable if OCD is changed from default settings. Please refer to the Device Operation &  
Timing Diagram  
of DDR2 for the Full Strength Default Driver Characteristics.  
2. Impedance measurement condition for output source dc current: VDDQ=1.7V; VOUT=1420mV; (VOUT-VDDQ)/Ioh  
must be less than 23.4 ohms for values of VOUT between VDDQ and VDDQ-280mV. Impedance measurement  
condition for output sink  
dc current: VDDQ = 1.7V; VOUT = 280mV; VOUT/Iol must be less than 23.4 ohms for values of VOUT between 0V  
and 280mV.  
3. Mismatch is absolute value between pull-up and pull-dn, both are measured at same temperature and voltage.  
4. Slew rate measured from vil(ac) to vih(ac).  
5. The absolute value of the slew rate as measured from DC to DC is equal to or greater than the slew rate as  
measured from AC to AC. This is guaranteed by design and characterization.  
6. This represents the step size when the OCD is near 18 ohms at nominal conditions across all process corners/  
variations and represents only the DRAM uncertainty. A 0 ohm value(no calibration) can only be achieved if the  
OCD impedance is 18 ohms +/- 0.75 ohms under nominal conditions.  
Output Slew rate load:  
VTT  
25 ohms  
Reference  
point  
Output  
(Vout)  
7. DRAM output slew rate specification applies to 400 , 533 and 667 MT/s speed bins.  
8. Timing skew due to DRAM output slew rate mis-match between DQS / DQS and associated DQs is included in  
tDQSQ and tQHS specification.  
Rev. 0.8 / Oct. 2007  
15  
1HY5PS12421C(L)FP  
1HY5PS12821C(L)FP  
1HY5PS121621C(L)FP  
3.4 IDD Specifications & Test Conditions  
IDD Specifications(max)  
DDR2 800  
DDR2 667  
DDR2 533  
DDR2 400  
Units  
Symbol  
x4/x8  
x16  
x4/x8  
x16  
x4/x8  
x16  
x4/x8  
x16  
IDD0  
IDD1  
100  
100  
8
120  
90  
90  
110  
80  
90  
100  
110  
8
80  
100  
mA  
130  
8
120  
8
80  
8
110  
8
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
IDD2P  
IDD2Q  
IDD2N  
8
8
40  
40  
40  
40  
30  
30  
30  
30  
30  
12  
40  
90  
80  
150  
30  
50  
50  
40  
40  
40  
40  
30  
F
S
35  
35  
30  
30  
30  
30  
30  
IDD3P  
12  
12  
12  
12  
12  
12  
12  
IDD3N  
IDD4W  
IDD4R  
IDD5B  
60  
60  
50  
50  
50  
50  
40  
160  
140  
160  
240  
200  
165  
140  
120  
160  
200  
170  
160  
120  
100  
150  
170  
150  
150  
130  
110  
150  
Normal  
Power  
8
8
8
8
8
8
8
8
mA  
IDD6  
Low Power*  
4
4
4
4
4
4
4
4
mA  
mA  
IDD7  
230  
340  
220  
320  
210  
320  
210  
320  
Note:  
1. Low power parts have an extra suffix ‘L’ in part number ; ex) HY5PS1216CLFP-C4  
Rev. 0.8 / Oct. 2007  
16  
1HY5PS12421C(L)FP  
1HY5PS12821C(L)FP  
1HY5PS121621C(L)FP  
IDD Test Conditions  
(IDD values are for full operating range of Voltage and Temperature, Notes 1-5)  
Symbol  
IDD0  
Conditions  
Units  
t
t
t
t
t
Operating one bank active-precharge current; CK = CK(IDD), RC = RC(IDD), RAS =  
t
mA  
RAS min(IDD) ; CKE is HIGH, CS is HIGH between valid commands;Address bus inputs are  
SWITCHING;Data bus inputs are SWITCHING  
Operating one bank active-read-precharge current ; IOUT = 0mA;BL = 4, CL = CL(IDD), AL  
t
t
t
t
t
t
t
t
= 0; CK = CK(IDD), RC = RC (IDD), RAS = RASmin(IDD), RCD = RCD(IDD) ; CKE is HIGH,  
CS is HIGH between valid commands ; Address bus inputs are SWITCHING ; Data pattern is same  
as IDD4W  
IDD1  
mA  
t
t
Precharge power-down current ; All banks idle ; CK = CK(IDD) ; CKE is LOW ; Other control  
IDD2P  
IDD2Q  
IDD2N  
mA  
mA  
mA  
and address bus inputs are STABLE; Data bus inputs are FLOATING  
t
t
Precharge quiet standby current ; All banks idle; CK = CK(IDD);CKE is HIGH, CS is HIGH;  
Other control and address bus inputs are STABLE; Data bus inputs are FLOATING  
t
t
Precharge standby current; All banks idle; CK = CK(IDD); CKE is HIGH, CS is HIGH; Other  
control and address bus inputs are SWITCHING; Data bus inputs are SWITCHING  
mA  
mA  
Fast PDN Exit MRS(12) = 0  
Slow PDN Exit MRS(12) = 1  
t
t
Active power-down current; All banks open; CK = CK(IDD);  
CKE is LOW; Other control and address bus inputs are STABLE;  
Data bus inputs are FLOATING  
IDD3P  
t
t
t
t
t
Active standby current; All banks open; CK = CK(IDD), RAS = RASmax(IDD), RP  
IDD3N  
IDD4W  
t
mA  
mA  
= RP(IDD); CKE is HIGH, CS is HIGH between valid commands; Other control and address bus  
inputs are SWITCHING; Data bus inputs are SWITCHING  
Operating burst write current; All banks open, Continuous burst writes; BL = 4, CL = CL(IDD),  
AL = 0; CK = CK(IDD), RAS = RASmax(IDD), RP = RP(IDD); CKE is HIGH, CS is HIGH  
between valid commands; Address bus inputs are SWITCHING; Data bus inputs are SWITCHING  
t
t
t
t
t
t
Operating burst read current; All banks open, Continuous burst reads, IOUT = 0mA; BL = 4,  
t
t
t
t
t
t
CL = CL(IDD), AL = 0; CK = CK(IDD), RAS = RASmax(IDD), RP = RP(IDD); CKE is HIGH, CS  
is HIGH between valid commands; Address bus inputs are SWITCHING;; Data pattern is same as  
IDD4W  
IDD4R  
mA  
mA  
t
t
t
Burst refresh current; CK = CK(IDD); Refresh command at every RFC(IDD) interval; CKE is  
HIGH, CS is HIGH between valid commands; Other control and address bus inputs are SWITCH-  
ING; Data bus inputs are SWITCHING  
IDD5B  
IDD6  
Self refresh current; CK and CK at 0V; CKE £ 0.2V; Other control and address bus inputs are  
FLOATING; Data bus inputs are FLOATING  
mA  
Rev. 0.8 / Oct. 2007  
17  
1HY5PS12421C(L)FP  
1HY5PS12821C(L)FP  
1HY5PS121621C(L)FP  
Operating bank interleave read current; All bank interleaving reads, IOUT = 0mA; BL = 4, CL  
t
t
t
t
t
t
t
t
= CL(IDD), AL = RCD(IDD)-1* CK(IDD); CK = CK(IDD), RC = RC(IDD), RRD = RRD(IDD),  
IDD7  
Note:  
t
t
mA  
RCD = 1* CK(IDD); CKE is HIGH, CS is HIGH between valid commands; Address bus inputs are  
STABLE during DESELECTs; Data pattern is same as IDD4R; - Refer to the following page for  
detailed timing conditions  
1. VDDQ = 1.8 +/- 0.1V ; VDD = 1.8 +/- 0.1V  
(exclusively VDDQ = 1.9 +/- 0.1V ; VDD = 1.9 +/- 0.1V for C3 speed grade)  
2. IDD specifications are tested after the device is properly initialized  
3. Input slew rate is specified by AC Parametric Test Condition  
4. IDD parameters are specified with ODT disabled.  
5. Data bus consists of DQ, DM, DQS, DQS, RDQS, RDQS, LDQS, LDQS, UDQS, and UDQS. IDD values must be met  
with all combinations of EMRS bits 10 and 11.  
6. Definitions for IDD  
LOW is defined as Vin £ VILAC(max)  
HIGH is defined as Vin Š VIHAC(min)  
STABLE is defined as inputs stable at a HIGH or LOW level  
FLOATING is defined as inputs at VREF = VDDQ/2  
SWITCHING is defined as: inputs changing between HIGH and LOW every other clock cycle (once per two clocks)  
for address and control signals, and inputs changing between HIGH and LOW every other data transfer (once per  
clock) for DQ signals not including masks or strobes.  
Rev. 0.8 / Oct. 2007  
18  
1HY5PS12421C(L)FP  
1HY5PS12821C(L)FP  
1HY5PS121621C(L)FP  
For purposes of IDD testing, the following parameters are to be utilized  
DDR2-800  
DDR2-667  
DDR2-533  
DDR2-400  
Speed Bin  
Units  
(CL-tRCD-tRP)  
5-5-5  
6-6-6  
6
5-5-5  
5
4-4-4  
4
3-3-3  
3
CL(IDD)  
5
tCK  
t
12.5  
15  
15  
15  
15  
RCD(IDD)  
ns  
ns  
t
57.25  
7.5  
60  
60  
60  
55  
RC(IDD)  
t
ns  
ns  
RRD(IDD)-x4/x8  
7.5  
7.5  
7.5  
7.5  
t
RRD(IDD)-x16  
10  
10  
10  
3
10  
10  
5
t
2.5  
2.5  
3.75  
CK(IDD)  
ns  
ns  
t
45  
70000  
12.5  
75  
45  
70000  
15  
45  
70000  
15  
45  
70000  
15  
40  
70000  
15  
RASmin(IDD)  
t
ns  
ns  
ns  
ns  
ns  
RASmax(IDD)  
t
RP(IDD)  
t
t
75  
75  
75  
75  
RFC(IDD)-256Mb  
RFC(IDD)-512Mb  
105  
105  
105  
105  
105  
t
127.5  
127.5  
127.5  
127.5  
127.5  
RFC(IDD)-1Gb  
Detailed IDD7  
The detailed timings are shown below for IDD7. Changes will be required if timing parameter changes are made to the  
specification.  
Legend: A = Active; RA = Read with Autoprecharge; D = Deselect  
IDD7: Operating Current: All Bank Interleave Read operation  
t
t
All banks are being interleaved at minimum RC(IDD) without violating RRD(IDD) using a burst length of 4. Control  
and address bus inputs are STABLE during DESELECTs. IOUT = 0mA  
Timing Patterns for 4 bank devices x4/ x8/ x16  
-DDR2-400 3/3/3: A0 RA0 A1 RA1 A2 RA2 A3 RA3 D D D (11 clocks)  
-DDR2-533 3/3/3: A0 RA0 D A1 RA1 D A2 RA2 D A3 RA3 D D D D (15 clocks)  
-DDR2-533 4/4/4: A0 RA0 D A1 RA1 D A2 RA2 D A3 RA3 D D D D D (16 clocks)  
-DDR2-667 4/4/4: A0 RA0 D D A1 RA1 D D A2 RA2 D D A3 RA3 D D D D D (19 clocks)  
-DDR2-667 5/5/5: A0 RA0 D D A1 RA1 D D A2 RA2 D D A3 RA3 D D D D D D (20 clocks)  
-DDR2-800 5/5/5: A0 RA0 D D A1 RA1 D D A2 RA2 D D A3 RA3 D D D D D D D D D (23 clocks)  
-DDR2-800 6/6/6: A0 RA0 D D A1 RA1 D D A2 RA2 D D A3 RA3 D D D D D D D D D D (24 clocks)  
Rev. 0.8 / Oct. 2007  
19  
1HY5PS12421C(L)FP  
1HY5PS12821C(L)FP  
1HY5PS121621C(L)FP  
3.5. Input/Output Capacitance  
DDR2- 400  
DDR2- 533  
DDR2 667  
DDR2 800  
Parameter  
Symbol  
Units  
Min Max Min Max Min Max  
Input capacitance, CK and CK  
CCK  
CDCK  
CI  
1.0  
x
2.0  
0.25  
2.0  
1.0  
x
2.0  
0.25  
2.0  
1.0  
x
2.0  
0.25  
1.75  
0.25  
3.5  
pF  
pF  
pF  
pF  
pF  
pF  
Input capacitance delta, CK and CK  
Input capacitance, all other input-only pins  
Input capacitance delta, all other input-only pins  
Input/output capacitance, DQ, DM, DQS, DQS  
Input/output capacitance delta, DQ, DM, DQS, DQS  
1.0  
x
1.0  
x
1.0  
x
CDI  
0.25  
4.0  
0.25  
3.5  
CIO  
2.5  
x
2.5  
x
2.5  
x
CDIO  
0.5  
0.5  
0.5  
4. Electrical Characteristics & AC Timing Specification  
( 0 ℃ ≤ TCASE ≤ 95℃; VDDQ = 1.8 V +/- 0.1V; VDD = 1.8V +/- 0.1V)  
Refresh Parameters by Device Density  
Parameter  
Symbol  
256Mb 512Mb 1Gb  
2Gb  
4Gb Units  
Refresh to Active  
/Refresh command time  
tRFC  
75  
105  
127.5  
195  
327.5  
ns  
0 TCASE 85℃  
85< TCASE ≤ 95℃  
7.8  
3.9  
7.8  
3.9  
7.8  
3.9  
7.8  
3.9  
7.8  
3.9  
us  
us  
Average periodic refresh interval  
tREFI  
DDR2 SDRAM speed bins and tRCD, tRP and tRC for corresponding bin  
Speed  
DDR2-800D  
DDR2-800E  
DDR2-667D  
DDR2-533C  
DDR2-400B Units  
Bin(CL-tRCD-tRP)  
5-5-5  
min  
5
6-6-6  
min  
6
5-5-5  
min  
5
4-4-4  
min  
4
3-3-3  
min  
Parameter  
CAS Latency  
tRCD  
5
tCK  
ns  
12.5  
12.5  
45  
15  
15  
15  
15  
15  
40  
55  
tRP  
15  
15  
15  
ns  
tRAS  
45  
45  
45  
ns  
tRC  
57.25  
60  
60  
60  
ns  
Rev. 0.8 / Oct. 2007  
20  
1HY5PS12421C(L)FP  
1HY5PS12821C(L)FP  
1HY5PS121621C(L)FP  
Timing Parameters by Speed Grade  
(Refer to notes for information related to this table at the following pages of this table)  
DDR2-400  
DDR2-533  
Symbol  
Unit Note  
Parameter  
min  
max  
+600  
+500  
0.55  
min  
max  
+500  
+450  
0.55  
DQ output access time from CK/CK  
DQS output access time from CK/CK  
CK high-level width  
tAC  
-600  
-500  
-500  
-450  
ps  
ps  
tDQSCK  
tCH  
0.45  
0.45  
tCK  
tCK  
CK low-level width  
tCL  
0.45  
0.55  
0.45  
0.55  
min  
(tCL,tCH)  
5000  
min  
(tCL,tCH)  
3750  
CK half period  
tHP  
-
8000  
-
-
8000  
-
ps  
ps  
ps  
11,12  
Clock cycle time, CL=x  
DQ and DM input setup time  
(differential strobe)  
tCK  
15  
6,7,8,  
20  
tDS  
(base)  
tDH  
150  
275  
25  
100  
225  
-25  
-25  
0.6  
DQ and DM input hold time  
(differential strobe)  
6,7,8,  
21  
-
-
-
-
-
-
-
-
-
-
ps  
ps  
(base)  
DQ and DM input setup time  
(single ended strobe)  
6,7,8,  
20  
tDS  
DQ and DM input hold time  
(single ended strobe)  
6,7,8,  
21  
tDH  
25  
ps  
Control & Address input pulse width for  
each input  
tIPW  
tDIPW  
0.6  
0.35  
tCK  
tCK  
DQ and DM input pulse width for each  
input  
0.35  
Data-out high-impedance time from CK/CK tHZ  
-
tAC max  
tAC max  
-
tAC max  
tAC max  
ps  
ps  
ps  
18  
18  
18  
DQS low-impedance time from CK/CK  
DQ low-impedance time from CK/CK  
DQS-DQ skew for DQS and associated DQ  
signals  
tLZ(DQS)  
tAC min  
tAC min  
tLZ(DQ)  
2*tAC min tAC max 2*tAC min tAC max  
tDQSQ  
-
350  
-
300  
ps  
13  
12  
DQ hold skew factor  
tQHS  
tQH  
-
450  
-
-
400  
-
ps  
ps  
DQ/DQS output hold time from DQS  
First DQS latching transition to associated  
clock edge  
tHP - tQHS  
tHP - tQHS  
tDQSS  
-0.25  
+ 0.25  
-0.25  
+ 0.25  
tCK  
DQS input high pulse width  
DQS input low pulse width  
DQS falling edge to CK setup time  
DQS falling edge hold time from CK  
Mode register set command cycle time  
Write postamble  
tDQSH  
tDQSL  
tDSS  
0.35  
0.35  
0.2  
0.2  
2
-
-
0.35  
0.35;;  
0.2  
-
-
tCK  
tCK  
tCK  
tCK  
tCK  
tCK  
tCK  
-
-
tDSH  
-
0.2  
-
tMRD  
tWPST  
tWPRE  
-
2
-
0.4  
0.35  
0.6  
-
0.4  
0.6  
-
10  
Write preamble  
0.35  
5,7,9,  
23  
Address and control input setup time  
Address and control input hold time  
tIS(base)  
tIH(base)  
350  
475  
-
-
250  
375  
-
-
ps  
ps  
5,7,9,  
23  
Rev. 0.8 / Oct. 2007  
21  
1HY5PS12421C(L)FP  
1HY5PS12821C(L)FP  
1HY5PS121621C(L)FP  
-Continue-  
(Refer to notes for information related to this table at the following pages of this table)  
DDR2-400  
DDR2-533  
Symbol  
Unit Note  
Parameter  
min  
max  
1.1  
min  
max  
1.1  
Read preamble  
Read postamble  
tRPRE  
tRPST  
0.9  
0.4  
0.9  
0.4  
tCK  
tCK  
0.6  
0.6  
Active to active command period for 1KB  
page size products  
tRRD  
tRRD  
tFAW  
tFAW  
7.5  
10  
-
-
-
-
7.5  
10  
-
-
-
-
ns  
ns  
ns  
ns  
4
4
Active to active command period for 2KB  
page size products  
Four Active Window for 1KB page size  
products  
37.5  
50  
37.5  
50  
Four Active Window for 2KB page size  
products  
CAS to CAS command delay  
Write recovery time  
tCCD  
tWR  
2
2
tCK  
ns  
15  
-
-
-
15  
-
-
-
Auto precharge write recovery + precharge  
time  
tDAL  
WR+tRP  
WR+tRP  
tCK  
14  
Internal write to read command delay  
tWTR  
10  
7.5  
7.5  
7.5  
ns  
ns  
24  
3
Internal read to precharge command delay tRTP  
Exit self refresh to a non-read command  
Exit self refresh to a read command  
Exit precharge power down to any non-  
read command  
tXSNR  
tRFC + 10  
200  
tRFC + 10  
200  
ns  
tXSRD  
-
-
-
-
tCK  
tXP  
2
2
2
2
tCK  
tCK  
tCK  
Exit active power down to read command tXARD  
1
Exit active power down to read command  
tXARDS  
6 - AL  
6 - AL  
1, 2  
(Slow exit, Lower power)  
CKE minimum pulse width  
(high and low pulse width)  
tCKE  
3
2
3
2
tCK  
tCK  
ns  
27  
tAOND  
tAON  
ODT turn-on delay  
2
2
tAC(max)  
+1  
tAC(max)  
+1  
ODT turn-on  
tAC(min)  
tAC(min)  
16  
2tCK+  
tAC(max)  
+1  
2tCK+  
tAC(max)  
+1  
tAC(min)+  
2
tAC(min)+  
2
tAONPD  
ODT turn-on(Power-Down mode)  
ns  
tAOFD  
tAOF  
ODT turn-off delay  
ODT turn-off  
2.5  
2.5  
2.5  
2.5  
tCK  
ns  
tAC(max)  
+ 0.6  
tAC(max)  
+ 0.6  
tAC(min)  
tAC(min)  
17  
15  
2.5tCK+  
tAC(max)  
+1  
2.5tCK+  
tAC(max)  
+1  
tAC(min)+  
2
tAC(min)+  
2
tAOFPD  
ODT turn-off (Power-Down mode)  
ns  
ODT to power down entry latency  
ODT power down exit latency  
OCD drive mode output delay  
Minimum time clocks remains ON after CKE  
asynchronously drops LOW  
tANPD  
tAXPD  
tOIT  
3
8
3
8
tCK  
tCK  
ns  
0
tIS+tCK+t  
IH  
12  
0
tIS+tCK+t  
IH  
12  
tDelay  
ns  
Rev. 0.8 / Oct. 2007  
22  
1HY5PS12421C(L)FP  
1HY5PS12821C(L)FP  
1HY5PS121621C(L)FP  
DDR2-667  
DDR2-800  
Unit Note  
Symbol  
tAC  
Parameter  
min  
max  
+450  
+400  
0.55  
min  
max  
+400  
+350  
0.55  
DQ output access time from CK/CK  
DQS output access time from CK/CK  
CK high-level width  
-450  
-400  
-400  
-350  
ps  
ps  
tDQSCK  
tCH  
0.45  
0.45  
tCK  
tCK  
CK low-level width  
tCL  
0.45  
0.55  
0.45  
0.55  
min(tCL,  
tCH)  
min(tCL,  
tCH)  
CK half period  
tHP  
-
8000  
-
-
ps  
ps  
ps  
11,12  
Clock cycle time, CL=x  
DQ and DM input setup time  
tCK  
3000  
2500  
15  
6,7,8,2  
0
tDS(base)  
100  
175  
0.6  
50  
-
-
-
-
tDH  
(base)  
6,7,8,2  
1
DQ and DM input hold time  
-
-
-
125  
0.6  
ps  
tCK  
tCK  
ps  
Control & Address input pulse width for  
each input  
tIPW  
tDIPW  
tHZ  
DQ and DM input pulse width for each  
input  
0.35  
0.35  
Data-out high-impedance time from CK/  
CK  
-
tAC max  
tAC max  
-
tAC max  
tAC max  
18  
DQS low-impedance time from CK/CK  
DQ low-impedance time from CK/CK  
DQS-DQ skew for DQS and associated  
DQ signals  
tLZ(DQS)  
tLZ(DQ)  
tAC min  
tAC min  
ps  
ps  
18  
18  
2*tAC min tAC max  
2*tAC min tAC max  
tDQSQ  
-
240  
-
200  
ps  
13  
12  
DQ hold skew factor  
tQHS  
tQH  
-
340  
-
-
300  
-
ps  
ps  
DQ/DQS output hold time from DQS  
First DQS latching transition to  
associated clock edge  
tHP - tQHS  
tHP - tQHS  
tDQSS  
- 0.25  
+ 0.25  
- 0.25  
+ 0.25  
tCK  
DQS input high pulse width  
DQS input low pulse width  
DQS falling edge to CK setup time  
DQS falling edge hold time from CK  
tDQSH  
tDQSL  
tDSS  
0.35  
0.35  
0.2  
0.2  
2
-
-
0.35  
0.35  
0.2  
0.2  
2
-
-
tCK  
tCK  
tCK  
tCK  
tCK  
tCK  
tCK  
-
-
tDSH  
-
-
Mode register set command cycle time tMRD  
-
-
Write postamble  
Write preamble  
tWPST  
tWPRE  
0.4  
0.35  
0.6  
-
0.4  
0.35  
0.6  
-
10  
5,7,9,2  
Address and control input setup time  
Address and control input hold time  
tIS(base)  
tIH(base)  
200  
275  
-
-
175  
250  
-
-
ps  
ps  
2
5,7,9,2  
3
Read preamble  
tRPRE  
tRPST  
tRAS  
0.9  
0.4  
45  
1.1  
0.6  
0.9  
0.4  
45  
1.1  
0.6  
tCK  
tCK  
ns  
19  
Read postamble  
19  
Activate to precharge command  
Active to active command period for 1KB  
page size products  
70000  
70000  
3
tRRD  
tRRD  
7.5  
10  
-
-
7.5  
10  
-
-
ns  
ns  
4
4
Active to active command period for 2KB  
page size products  
Rev. 0.8 / Oct. 2007  
23  
1HY5PS12421C(L)FP  
1HY5PS12821C(L)FP  
1HY5PS121621C(L)FP  
-Continue-  
DDR2-667  
DDR2-800  
Symbol  
Unit Note  
Parameter  
min  
max  
min  
max  
Four Active Window for 1KB page size  
products  
tFAW  
37.5  
-
ns  
37.5  
50  
-
Four Active Window for 2KB page size  
products  
tFAW  
50  
-
-
ns  
CAS to CAS command delay  
Write recovery time  
tCCD  
tWR  
2
2
tCK  
ns  
15  
-
-
-
15  
-
-
-
Auto precharge write recovery +  
precharge time  
tDAL  
tWTR  
tRTP  
WR+tRP  
7.5  
WR+tRP  
7.5  
tCK  
ns  
14  
3
Internal write to read command delay  
Internal read to precharge command  
delay  
7.5  
7.5  
ns  
tRFC +  
10  
Exit self refresh to a non-read command tXSNR  
tRFC + 10  
ns  
Exit self refresh to a read command  
Exit precharge power down to any non-  
read command  
tXSRD  
tXP  
200  
2
-
-
200  
-
-
tCK  
tCK  
tCK  
tCK  
2
2
Exit active power down to read command tXARD  
2
1
Exit active power down to read command  
tXARDS  
7 - AL  
8 - AL  
1, 2  
(Slow exit, Lower power)  
CKE minimum pulse width  
(high and low pulse width)  
tCKE  
3
2
3
2
tCK  
tCK  
ns  
tAOND  
tAON  
ODT turn-on delay  
2
2
tAC(max)  
+0.7  
tAC(max)  
+0.7  
ODT turn-on  
tAC(min)  
tAC(min)  
6,16  
17  
2tCK+  
tAC(max)+1  
tAC(min)  
+2  
2tCK+  
tAC(max)+1  
tAONPD  
tAOFD  
tAOF  
ODT turn-on(Power-Down mode)  
ODT turn-off delay  
tAC(min)+2  
2.5  
ns  
tCK  
ns  
2.5  
2.5  
2.5  
tAC(max)+  
0.6  
tAC(max)  
+0.6  
ODT turn-off  
tAC(min)  
tAC(min)  
tAC(min)  
2.5tCK+  
tAC(max)+1  
tAC(min)  
2.5tCK+  
tAC(max)+1  
tAOFPD  
ODT turn-off (Power-Down mode)  
ns  
+2  
+2  
ODT to power down entry latency  
ODT power down exit latency  
OCD drive mode output delay  
Minimum time clocks remains ON after  
CKE asynchronously drops LOW  
tANPD  
tAXPD  
tOIT  
3
8
3
8
0
tCK  
tCK  
ns  
0
tIS+tCK+tI  
H
12  
12  
tIS+tCK  
+tIH  
tDelay  
ns  
15  
Rev. 0.8 / Oct. 2007  
24  
1HY5PS12421C(L)FP  
1HY5PS12821C(L)FP  
1HY5PS121621C(L)FP  
General notes, which may apply for all AC parameters  
1. Slew Rate Measurement Levels  
a. Output slew rate for falling and rising edges is measured between VTT - 250 mV and VTT + 250 mV for single ended  
signals.  
For differential signals (e.g. DQS - DQS) output slew rate is measured between DQS - DQS = -500 mV and DQS  
- DQS = +500mV. Output slew rate is guaranteed by design, but is not necessarily tested on each device.  
b. Input slew rate for single ended signals is measured from dc-level to ac-level: from VIL(dc) to VIH(ac) for  
rising edges and from  
VIH(dc) and VIL(ac) for falling edges.  
For differential signals (e.g. CK - CK) slew rate for rising edges is measured from CK - CK = -250 mV to CK - CK =  
+500 mV(250mV to -500 mV for falling egdes).  
c. VID is the magnitude of the difference between the input voltage on CK and the input voltage on CK, or between  
DQS and DQS for differential strobe.  
2. DDR2 SDRAM AC timing reference load  
The following figure represents the timing reference load used in defining the relevant timing parameters of the part.  
It is not intended to be either a precise representation of the typical system environment nor a depiction of the actual  
load presented by a production tester. System designers will use IBIS or other simulation tools to correlate the timing  
reference load to a system environment. Manufacturers will correlate to their production test conditions (generally a  
coaxial transmission line terminated at the tester electronics).  
VDDQ  
DQ  
DQS  
DQS  
Output  
DUT  
VTT = VDDQ/2  
RDQS  
RDQS  
Timing  
reference  
point  
25Ω  
AC Timing Reference Load  
The output timing reference voltage level for single ended signals is the crosspoint with VTT. The output timing refer-  
ence voltage level for differential signals is the crosspoint of the true (e.g. DQS) and the complement (e.g. DQS)  
signal.  
3. DDR2 SDRAM output slew rate test load  
Output slew rate is characterized under the test conditions as shown below.  
VDDQ  
DUT  
DQ  
Output  
DQS, DQS  
VTT = VDDQ/2  
RDQS, RDQS  
25Ω  
Test point  
Slew Rate Test Load  
4. Differential data strobe  
DDR2 SDRAM pin timings are specified for either single ended mode or differential mode depending on the setting of  
the EMRS “Enable DQS” mode bit; timing advantages of differential mode are realized in system design. The method  
by which the DDR2 SDRAM pin timings are measured is mode dependent. In single  
Rev. 0.8 / Oct. 2007  
25  
1HY5PS12421C(L)FP  
1HY5PS12821C(L)FP  
1HY5PS121621C(L)FP  
VREF. In differential mode, these timing relationships are measured relative to the crosspoint of DQS and its comple-  
ment, DQS. This distinction in timing methods is guaranteed by design and characterization. Note that when differen-  
tial data strobe mode is disabled via the EMRS, the complementary pin, DQS, must be tied externally to VSS through a  
20 ohm to 10 K ohm resistor to insure proper operation.  
t
t
DQSL  
DQSH  
DQS  
DQS  
DQS/  
DQS  
t
t
WPST  
WPRE  
V
(dc)  
V
(ac)  
IH  
IH  
DQ  
DM  
D
D
D
t
D
t
V
(ac)  
V
(dc)  
IL  
IL  
t
t
DH  
DH  
DS  
DS  
V
(dc)  
V
(ac)  
IH  
IH  
DMin  
DMin  
DMin  
(ac)  
DMin  
V
IL  
V
(dc)  
IL  
Figure -- Data input (write) timing  
t
t
CL  
CH  
CK  
CK  
CK/CK  
DQS  
DQS  
DQS/DQS  
DQ  
t
t
RPRE  
RPST  
Q
Q
Q
Q
t
DQSQmax  
t
DQSQmax  
t
QH  
t
QH  
Figure -- Data output (read) timing  
5. AC timings are for linear signal transitions. See System Derating for other signal transitions.  
6. These parameters guarantee device behavior, but they are not necessarily tested on each device.  
They may be guaranteed by device design or tester correlation.  
7. All voltages referenced to VSS.  
8. Tests for AC timing, IDD, and electrical (AC and DC) characteristics, may be conducted at nominal reference/  
supply voltage levels, but the related specifications and device operation are guaranteed for the full voltage  
range specified.  
Rev. 0.8 / Oct. 2007  
26  
1HY5PS12421C(L)FP  
1HY5PS12821C(L)FP  
1HY5PS121621C(L)FP  
Specific Notes for dedicated AC parameters  
1. User can choose which active power down exit timing to use via MRS(bit 12). tXARD is expected to be used for fast  
active power down exit timing. tXARDS is expected to be used for slow active power down exit timing where a lower  
power value is defined by each vendor data sheet.  
2. AL = Additive Latency  
3. This is a minimum requirement. Minimum read to precharge timing is AL + BL/2 providing the tRTP and tRAS(min)  
have been satisfied.  
4. A minimum of two clocks (2 * tCK) is required irrespective of operating frequency  
5. Timings are guaranteed with command/address input slew rate of 1.0 V/ns. See System Derating for other slew rate  
values.  
6. Timings are guaranteed with data, mask, and (DQS/RDQS in singled ended mode) input slew rate of 1.0 V/ns.  
See System Derating for other slew rate values.  
tDS, tDH Derating Values(ALL units in 'ps', Note 1 applies to entire Table)  
DQS, DQS Differential Slew Rate  
4.0 V/ns 3.0 V/ns 2.0 V/ns 1.8 V/ns 1.6 V/ns 1.4 V/ns 1.2 V/ns 1.0 V/ns 0.8 V/ns  
tD  
tD  
tD  
tD  
tD  
tD  
tD  
tD  
tD  
tD  
tD  
tD  
tD  
tD  
tD  
tD  
tD  
tD  
S
H
S
H
S
H
S
H
S
H
S
H
S
H
S
H
S
H
125 45 125 45 +125 +45  
-
-
-
-
-
-
-
-
-
-
-
-
2.0  
1.5  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
83  
0
-
21  
0
-
83  
0
21 +83 +21 95  
33  
12  
-2  
-
-
-
-
-
-
-
-
-
-
-
0
0
0
12  
1
24  
13  
-1  
24  
10  
-7  
-
-
-
-
-
-
-
DQ  
Slew  
rate  
V/ns  
-11 -14 -11 -14  
25  
11  
-7  
22  
5
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-25 -31 -13 -19  
23  
5
17  
-6  
-
-
-
-
-
-
-
-
-
-
-
-
-
-31 -42 -42 -19  
-8  
17  
-7  
6
-
-
-
-
-
-
-
-
-
-
-43 -59 -31 -47 -19 -35  
-23  
5
-11  
-
-
-
-
-
-
-74 -89 -62 -77 -50 -65 -38 -53  
-127 -140 -115 -128 -103 -116  
-
-
-
-
7. Timings are guaranteed with CK/CK differential slew rate of 2.0 V/ns. Timings are guaranteed for DQS signals with a  
differen tial slew rate of 2.0 V/ns in differential strobe mode and a slew rate of 1V/ns in single ended mode. See System  
Derating for other slew rate values.  
8. tDS and tDH derating table (for DDR2- 400 / 533)  
1) For all input signals the total tDS(setup time) and tDH(hold time) required is calculated by adding the datasheet value  
to the derating value listed in above Table.  
Setup(tDS) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of VREF(dc) and the  
first crossing of Vih(ac)min. Setup(tDS) nominal slew rate for a falling signal is defined as the slew rate between the last  
crossing of VREF(dc) and the first crossing of Vil(ac)max. If the actual signal is always earlier than the nominal slew rate  
line between shaded ‘ VREF(dc) to ac region’, use nominal slew rate for derating value(see Fig a.) If the actual signal is  
later than the nominal slew rate line anywhere between shaded ‘VREF(dc) to ac region’, the slew rate of a tangent line to  
the actual signal from the ac level to dc level is used for derating value(see Fig b.)  
Hold(tDH) nominal slew rate for a rising signal is defined as the slew rate rate between the last crossing of Vil(dc) max and  
the first crossing of VREF(dc). Hold (tDH) nominal slew rate for a falling signal is defined as the slew rate between the last  
crossing of Vih(dc) min and the first crossing of VREF(dc). If the actual signal is earlier than the nominal slew rate line  
anywhere between shaded ‘dc to VREF(dc) region’, the slew rate of a tangent line to the actual signal from the dc level to  
VREF(dc) level is used for derating value(see Fig d.)  
Rev. 0.8 / Oct. 2007  
27  
1HY5PS12421C(L)FP  
1HY5PS12821C(L)FP  
1HY5PS121621C(L)FP  
Although for slow slew rates the total setup time might be negative(i.e. a valid input signal will not have reached VIH/  
IL(ac) at the time of the rising clock transition) a valid input signal is still required to complete the transition and reach  
VIH/IL(ac).  
For slew rate in between the values listed in table x, the derating valued may obtained by linear interpolation.  
These values are typically not subject to production test. They are verified by design and characterization.  
Hold(tDH) nominal slew rate for a rising signal is defined as the slew rate rate between the last crossing of Vil(dc) max  
and the first crossing of VREF(dc). Hold (tDH) nominal slew rate for a falling signal is defined as the slew rate between  
the last crossing of Vih(dc) min and the first crossing of VREF(dc). If the actual signal is earlier than the nominal slew  
rate line anywhere between shaded ‘dc to VREF(dc) region’, the slew rate of a tangent line to the actual signal from the  
dc level to VREF(dc) level is used for derating value(see Fig d.)  
Although for slow slew rates the total setup time might be negative(i.e. a valid input signal will not have reached VIH/  
IL(ac) at the time of the rising clock transition) a valid input signal is still required to complete the transition and reach  
VIH/IL(ac).  
For slew rate in between the values listed in table x, the derating valued may obtained by linear interpolation.  
These values are typically not subject to production test. They are verified by design and characterization.  
Rev. 0.8 / Oct. 2007  
28  
1HY5PS12421C(L)FP  
1HY5PS12821C(L)FP  
1HY5PS121621C(L)FP  
Fig. a Illustration of nominal slew rate for tIS,tDS  
CK,DQS  
CK, DQS  
tIS,  
tDS  
tIH,  
tDH  
tIS,  
tDS  
tIH,  
tDH  
VDDQ  
VIH(ac)min  
VIH(dc)min  
nominal  
slew rate  
VREF(dc)  
nominal  
slew rate  
VIL(dc)max  
VREF to ac  
region  
VIL(ac)max  
Vss  
Delta TF  
Delta TR  
Setup Slew Rate  
Falling Signal  
VREF(dc)-VIL(ac)max  
Delta TF  
Setup Slew Rate  
Rising Signal  
VIH(ac)min-VREF(dc)  
Delta TR  
=
=
Rev. 0.8 / Oct. 2007  
29  
1HY5PS12421C(L)FP  
1HY5PS12821C(L)FP  
1HY5PS121621C(L)FP  
Fig. -b Illustration of tangent line for tIS,tDS  
CK, DQS  
CK, DQS  
tIS,  
tDS  
tIH,  
tDH  
tIS,  
tDS  
tIH,  
tDH  
VDDQ  
nominal  
line  
VIH(ac)min  
VIH(dc)min  
tangent  
line  
VREF(dc)  
VIL(dc)max  
VIL(ac)max  
Tangent  
line  
V
REF to ac  
region  
Nomial  
line  
Vss  
Delta TR  
Setup Slew Rate  
Rising Signal  
Tangent line[VIH(ac)min-VREF(dc)]  
Delta TR  
=
Delta TF  
Tangent line[VREF(dc)-VIL(ac)max]  
Delta TF  
Setup Slew Rate  
Falling Signal  
=
Rev. 0.8 / Oct. 2007  
30  
1HY5PS12421C(L)FP  
1HY5PS12821C(L)FP  
1HY5PS121621C(L)FP  
Fig. -c Illustration of nominal line for tIH, tDH  
CK, DQS  
CK, DQS  
tIS,  
tDS  
tIH,  
tDH  
tIS,  
tDS  
tIH,  
tDH  
VDDQ  
VIH(ac)min  
VIH(dc)min  
dc to VREF  
region  
nominal  
slew rate  
VREF(dc)  
nominal  
slew rate  
VIL(dc)max  
VIL(ac)max  
Vss  
Delta TR  
Hold Slew Rate  
Delta TF  
VIH(dc)min - VREF(dc)  
Delta TF  
Hold Slew Rate  
Rising Signal  
VREF(dc)-VIL(dc)max  
Delta TR  
=
=
Falling Signal  
Rev. 0.8 / Oct. 2007  
31  
1HY5PS12421C(L)FP  
1HY5PS12821C(L)FP  
1HY5PS121621C(L)FP  
Fig. -d Illustration of tangent line for tIH , tDH  
CK, DQS  
CK, DQS  
tIS,  
tDS  
tIS,  
tDS  
tIH,  
tDH  
tIH,  
tDH  
VDDQ  
VIH(ac)min  
nominal  
line  
VIH(dc)min  
tangent  
line  
VREF(dc)  
dc to VREF  
region  
Tangent  
line  
nominal  
line  
VIL(dc)max  
VIL(ac)max  
Vss  
Delta TR  
Delta TF  
Hold Slew Rate Tangent line[VREF(dc)-VIL(ac)max]  
=
Rising Signal  
Delta TR  
Tangent line[VIH(ac)min-VREF(dc)]  
Delta TF  
Hold Slew Rate  
Falling Signal  
=
Rev. 0.8 / Oct. 2007  
32  
1HY5PS12421C(L)FP  
1HY5PS12821C(L)FP  
1HY5PS121621C(L)FP  
9. tIS and tIH (input setup and hold) derating  
tIS, tIH Derating Values for DDR2 400, DDR2 533  
CK, CK Differential Slew Rate  
1.5 V/ns  
2.0 V/ns  
tIS  
1.0 V/ns  
tIH  
+94  
+89  
+83  
+75  
+45  
+21  
0
tIS  
+217  
+209  
+197  
+180  
+155  
+113  
+30  
tIH  
+124  
+119  
+113  
+105  
+75  
tIS  
+247  
+239  
+227  
+210  
+185  
+143  
+60  
tIH  
+124  
+149  
+143  
+135  
+105  
+81  
Units Notes  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.25  
0.2  
0.15  
0.1  
+187  
+179  
+167  
+150  
+125  
+83  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
+51  
+0  
+30  
60  
-11  
-14  
+19  
+16  
+49  
+46  
Command /  
Address Slew  
rate(V/ns)  
-25  
-31  
+5  
-1  
+35  
+29  
-43  
-54  
-37  
-53  
-7  
+6  
-67  
-83  
-37  
-53  
-7  
-23  
-100  
-150  
-223  
-250  
-500  
-750  
-1250  
-125  
-188  
-292  
-375  
-500  
-708  
-1125  
-80  
-95  
-50  
-65  
-145  
-255  
-320  
-495  
-770  
-1420  
-158  
-262  
-345  
-470  
-678  
-1095  
-115  
-225  
-290  
-465  
-740  
-1065  
-128  
-232  
-315  
-440  
-648  
TBD  
tIS, tIH Derating Values for DDR2 667, DDR2 800  
CK, CK Differential Slew Rate  
2.0 V/ns  
tIS  
1.5 V/ns  
tIS  
1.0 V/ns  
tIH  
+94  
+89  
+83  
+75  
+45  
+21  
0
tIH  
+124  
+119  
+113  
+105  
+75  
tIS  
+210  
+203  
+193  
+180  
+160  
+127  
+60  
tIH  
+154  
+149  
+143  
+135  
+105  
+81  
Units Notes  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.25  
0.2  
0.15  
0.1  
+150  
+143  
+133  
+120  
+100  
+67  
0
+180  
+173  
+163  
+150  
+130  
+97  
+30  
+25  
+17  
+8  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
+51  
+30  
60  
-5  
-14  
+16  
+55  
+46  
Command /  
Address Slew  
rate(V/ns)  
-13  
-31  
-1  
+47  
+29  
-22  
-54  
-24  
+38  
+6  
-34  
-83  
-4  
-53  
-26  
-23  
-60  
-125  
-188  
-292  
-375  
-500  
-708  
-1125  
-30  
-95  
0
-65  
-100  
-168  
-200  
-325  
-517  
-1000  
-70  
-158  
-262  
-345  
-470  
-678  
-1095  
-40  
-128  
-232  
-315  
-440  
-648  
-1065  
-138  
-170  
-295  
-487  
-970  
-108  
-140  
-265  
-457  
-940  
Rev. 0.8 / Oct. 2007  
33  
1HY5PS12421C(L)FP  
1HY5PS12821C(L)FP  
1HY5PS121621C(L)FP  
1) For all input signals the total tIS(setup time) and tIH(hold) time) required is calculated by adding the datasheet value to  
the derating value listed in above Table.  
Setup(tIS) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of VREF(dc) and the first  
crossing of VIH(ac)min. Setup(tIS) nominal slew rate for a falling signal is defined as the slew rate between the last crossing  
of VREF(dc) and the first crossing of VIL(ac)max. If the actual signal is always earlier than the nominal slew rate for line  
between shaded ‘VREF(dc) to ac region, use nominal slew rate for derating value(see fig a.) If the actual signal is later than  
the nominal slew rate line anywhere between shaded ‘VREF(dc) to ac region, the slew rate of a tangent line to the actual  
signal from the ac level to dc level is used for derating value(see Fig b.)  
Hold(tIH) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of VIL(dc)max and the  
first crossing of VREF(dc). Hold(tIH) nominal slew rate for a falling signal is defined as the slew rate between the last cross-  
ing of VREF(dc). If the actual signal signal is always later than the nominal slew rate line between shaded ‘dc to VREF(dc)  
region, use nominal slew rate for derating value(see Fig.c) If the actual signal is earlier than the nominal slew rate line any-  
where between shaded ‘dc to VREF(dc) region, the slew rate of a tangent line to the actual signal from the dc level to  
V
REF(dc) level is used for derating value(see Fig d.)  
Although for slow rates the total setup time might be negative(i.e. a valid input signal will not have reached VIH/IL(ac) at the  
time of the rising clock transition) a valid input signal is still required to complete the transition and reach VIH/IL(ac).  
For slew rates in between the values listed in table, the derating values may obtained by linear interpolation.  
These values are typically not subject to production test. They are verified by design and characterization.  
10. The maximum limit for this parameter is not a device limit. The device will operate with a greater value for this  
parameter, but system performance (bus turnaround) will degrade accordingly.  
11. MIN ( t CL, t CH) refers to the smaller of the actual clock low time and the actual clock high time as provided to the  
device (i.e. this value can be greater than the minimum specification limits for t CL and t CH). For example, t CL and t CH  
are = 50% of the period, less the half period jitter ( t JIT(HP)) of the clock source, and less the half period jitter due to  
crosstalk (tJIT(crosstalk)) into the clock traces.  
12. t QH = t HP – t QHS, where: tHP = minimum half clock period for any given cycle and is defined by clock high or clock  
low ( tCH, tCL).  
tQHS accounts for:  
1) The pulse duration distortion of on-chip clock circuits; and  
2) The worst case push-out of DQS on one transition followed by the worst case pull-in of DQ on the next transition,  
both of which are, separately, due to data pin skew and output pattern effects, and p-channel to n-channel  
variation of the output drivers.  
13. tDQSQ: Consists of data pin skew and output pattern effects, and p-channel to n-channel variation of the output drivers  
as well as output slew rate mismatch between DQS/ DQS and associated DQ in any given cycle.  
14. DAL = WR + RU{tRP(ns)/tCK(ns)}, where RU stands for round up. WR refers to the tWR parameter stored in the MRS.  
For tRP, if the result of the division is not already an integer, round up to the next highest integer. tCK refers to the  
application clock period.  
Example: For DDR533 at tCK = 3.75ns with tWR programmed to 4 clocks.  
tDAL = 4 + (15ns/3.75ns) clocks = 4+(4) clocks = 8 clocks.  
15. The clock frequency is allowed to change during self–refresh mode or precharge power-down mode. In case of clock  
frequency change during precharge power-down, a specific procedure is required as described in section 2.9.  
16. ODT turn on time min is when the device leaves high impedance and ODT resistance begins to turn on.  
ODT turn on time max is when the ODT resistance is fully on. Both are measured from tAOND.  
Rev. 0.8 / Oct. 2007  
34  
1HY5PS12421C(L)FP  
1HY5PS12821C(L)FP  
1HY5PS121621C(L)FP  
17. ODT turn off time min is when the device starts to turn off ODT resistance.  
ODT turn off time max is when the bus is in high impedance. Both are measured from tAOFD.  
18. tHZ and tLZ transitions occur in the same access time as valid data transitions. Thesed parameters are referenced  
to a specific voltage level which specifies when the device output is no longer driving(tHZ), or begins driving (tLZ).  
Below figure shows a method to calculate the point when device is no longer driving (tHZ), or begins driving (tLZ)  
by measuring the signal at two different voltages. The actual voltage measurement points are not critical as long as  
the calculation is consistenet.  
19. tRPST end point and tRPRE begin point are not referenced to a specific voltage level but specify when the device  
output is no longer driving (tRPST), or begins driving (tRPRE). Below figure shows a method to calculate these  
points when the device is no longer driving (tRPST), or begins driving (tRPRE). Below Figure shows a method to  
calculate these points when the device is no longer driving (tRPST), or begins driving (tRPRE) by measuring the  
signal at two different voltages. The actual voltage measurement points are not critical as long as the calculation is  
consistent.  
VOH + xmV  
VTT + 2xmV  
VTT + xmV  
VOH + 2xmV  
tHZ  
tHZ  
tRPST end point  
tRPRE begin point  
VOL + 1xmV  
VOL + 2xmV  
VTT -xmV  
VTT - 2xmV  
tHZ , tRPST end point = 2*T1-T2  
tLZ , tRPRE begin point = 2*T1-T2  
20. Input waveform timing with differential data strobe enabled MR[bit10] =0, is referenced from the input signal  
crossing at the VIH(ac) level to the differential data strobe crosspoint for a rising signal, and from the input signal  
crossing at the VIL(ac) level to the differential data strobe crosspoint for a falling signal applied to the device under  
test.  
21. Input waveform timing with differential data strobe enabled MR[bit10]=0, is referenced from the input signal  
crossing at the VIH(dc) level to the differential data strobe crosspoint for a rising signal and VIL(dc) to the  
differential data strobe crosspoint for a falling signal applied to the device under test.  
Differential Input waveform timing  
DQS  
DQS  
tDS tDH  
tDS tDH  
VDDQ  
VIH(ac)min  
VIH(dc)min  
VREF(dc)  
VIL(dc)max  
VIL(ac)max  
VSS  
Rev. 0.8 / Oct. 2007  
35  
1HY5PS12421C(L)FP  
1HY5PS12821C(L)FP  
1HY5PS121621C(L)FP  
DQS  
DQS  
tIS  
tIH  
tIS  
tIH  
VDDQ  
VIH(ac)min  
VIH(dc)min  
VREF(dc)  
VIL(dc)max  
VIL(ac)max  
VSS  
24. tWTR is at least two clocks (2*tCK) independent of operation frequency.  
25. Input waveform timing with single-ended data strobe enabled MR[bit10] = 1, is referenced from the input signal  
crossing at the VIH(ac) level to the single-ended data strobe crossing VIH/L(dc) at the start of its transition for a  
rising signal, and from the input signal crossing at the VIL(ac) level to the single-ended data strobe crossing  
VIH/L(dc) at the start of its transition for a falling signal applied to the device under test. The DQS signal must be  
monotonic between VIL(dc)max and VIH(dc) min.  
26. Input waveform timing with single-ended data strobe enabled MR[bit10] = 1, is referenced from the input signal  
crossing at the VIH(dc) level to the single-ended data strobe crossing VIH/L(ac) at the end of its transition for a  
rising signal, and from the input signal crossing at the VIL(dc) level to the single-ended data strobe crossing  
VIH/L(ac) at the end of its transition for a falling signal applied to the device under test. The DQS signal must be  
monotonic between VIL(dc) max and VIH(dc) min.  
27. tCKE min of 3 clocks means CKE must be registered on three consecutive positive clock edges. CKE must remain at  
the valid input level the entire time it takes to achieve the 3 clocks of registration. Thus, after any CKE transition,  
CKE may not transition from its valid level during the time period of tIS + 2*tCK + tIH.  
Rev. 0.8 / Oct. 2007  
36  
1HY5PS12421C(L)FP  
1HY5PS12821C(L)FP  
1HY5PS121621C(L)FP  
5. Package Dimensions  
Package Dimension(x4,x8)  
60Ball Fine Pitch Ball Grid Array Outline  
10.50 +/- 0.10  
A1 Ball Mark  
<Top View>  
1.20 Max.  
0.34 +/- 0.05  
A1 Ball Mark  
60 - φ0.45 ± 0.05  
1
2
3
7
8
9
0.80  
0.80 x 8 = 6.40  
<Bottom View>  
note: all dimension units are Millimeters.  
Rev. 0.8 / Oct. 2007  
37  
1HY5PS12421C(L)FP  
1HY5PS12821C(L)FP  
1HY5PS121621C(L)FP  
Package Dimension(x16)  
84Ball Fine Pitch Ball Grid Array Outline  
10.50 +/- 0.10  
A1 Ball Mark  
1.20 Max.  
0.34 +/- 0.05  
A1 Ball Mark  
1
2
3
7
8
9
84 - φ0.45 ± 0.05  
0.80  
0.80 x 8 = 6.40  
<Bottom View>  
note: all dimension units are Millimeters.  
Rev. 0.8 / Oct. 2007  
38  

相关型号:

HY5PS121621CFP-25

DDR DRAM, 32MX16, 0.5ns, CMOS, PBGA84, LEAD FREE, FBGA-84
HYNIX

HY5PS121621CFP-28

DDR DRAM, 32MX16, 0.55ns, CMOS, PBGA84, LEAD FREE, FBGA-84
HYNIX

HY5PS121621CFP-C4

512Mb DDR2 SDRAM
HYNIX

HY5PS121621CFP-C4I

512Mb DDR2 SDRAM
HYNIX

HY5PS121621CFP-CFP4

DDR DRAM, 32MX16, 0.5ns, CMOS, PBGA84, ROHS COMPLIANT, FBGA-84
HYNIX

HY5PS121621CFP-E3

512Mb DDR2 SDRAM
HYNIX

HY5PS121621CFP-E3I

512Mb DDR2 SDRAM
HYNIX

HY5PS121621CFP-S5

512Mb DDR2 SDRAM
HYNIX

HY5PS121621CFP-S5I

512Mb DDR2 SDRAM
HYNIX

HY5PS121621CFP-S6

512Mb DDR2 SDRAM
HYNIX

HY5PS121621CFP-S6I

512Mb DDR2 SDRAM
HYNIX

HY5PS121621CFP-Y4

512Mb DDR2 SDRAM
HYNIX