IC-MH8_11 [ICHAUS]

12 BIT ANGULAR HALL ENCODER; 12几分棱角霍尔编码器
IC-MH8_11
型号: IC-MH8_11
厂家: IC-HAUS GMBH    IC-HAUS GMBH
描述:

12 BIT ANGULAR HALL ENCODER
12几分棱角霍尔编码器

编码器
文件: 总25页 (文件大小:703K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
iC-MH8  
12 BIT ANGULAR HALL ENCODER  
Rev A0.9, Page 1/25  
FEATURES  
APPLICATIONS  
Digital angular sensor  
technology, 0–360°  
Incremental angular encoder  
Absolute angular encoder  
Brushless motors  
Real-time system for rotation speed up to 120,000 rpm  
Integrated Hall sensors with automatic offset compensation  
4x sensor arrangement for fault-tolerant adjustment  
Amplitude control for optimum operating point  
Interpolator with 4096 angular increments/resolution better  
than 0.1°  
Motor feedback  
Rotational speed control  
Programmable resolution, hysteresis, edge spacing, zero  
position and rotating direction  
Incremental output of sensor position up to 8 MHz edge rate  
RS422-compatible AB encoder signals with index Z  
UVW commutation signals for eight pole EC motor applications  
Serial interface for data output and configuration  
SSI-compatible output mode  
PACKAGES  
Integrated ZAP diodes for module setup and OEM data,  
programmable via serial interface  
Signal error (e.g. magnet loss) can also be read out via serial  
interface  
Analogue sine and cosine differential signals  
Extended temperature range from -40 to +125 °C  
QFN28 5 x 5 mm²  
BLOCK DIAGRAM  
Sine / cosine outputs  
+ 5V  
VPA  
+ 5V  
VPD  
PCOUT NCOUT  
PSOUT NSOUT  
Binary interpolation factors  
1, 2, 4, ... 256, 512, 1024  
A
B
Z
A
B
Z
B
B
B
B
S
N
PTE  
Test  
CONVERSION  
LOGIC  
TEST  
HALL SENSOR  
SINE-TO-DIG  
RS422  
Two, four and eight pole  
commutating signals  
0°  
U
2
U
V
SIN2+ COS  
AMPLITUDE  
120°  
Loss of magnet,  
frequency error  
NERR  
V
W
240°  
PHASE  
SHIFT  
CORRECTION  
W
ERROR MONITOR  
AMPL CONTROL  
SINE-TO-COM  
INCR INTERFACE  
Analog output signals  
PSOUT  
NSOUT  
0x00  
iC-MH8  
MA  
SLO  
SLI  
0x0F  
0x10  
16 Byte ZROM  
0.5 Vpp  
0x1F  
0x77  
0x7F  
Programming  
Voltage  
ZAP CONTROL  
ZAPROM  
VNA2  
VZAP  
PCOUT  
NCOUT  
Data,  
Programming  
SERIAL  
INTERFACE  
RAM  
BIAS/VREF  
0°  
180°  
Angular position  
360°  
VNA1  
VND  
C061010-2  
α
Copyright © 2011 iC-Haus  
http://www.ichaus.com  
iC-MH8  
12 BIT ANGULAR HALL ENCODER  
Rev A0.9, Page 2/25  
DESCRIPTION  
The iC-MH8 12-bit angular encoder is a position sen- The commutation interface with the signals U, V and  
sor with integrated Hall sensors for scanning a per- W provides 120° phase-shifted signals for block com-  
manent magnet. The signal conditioning unit gen- mutation of eight pole EC motors. The zero point of  
erates constant-amplitude sine and cosine voltages the commutation signals is freely definable in incre-  
that can be used for angle calculation. The resolu- ments of 5.625° over 360°.  
tion can be programmed up to a maximum of 4,096  
angular increments per rotation.  
Sine and cosine signals are externally availabe to fa-  
cilitate adjustement.  
The integrated serial interface also enables the posi-  
tion data to be read out to several networked sensors. The RS422-compatible outputs of the incremental  
And the integrated memory can be written embedded interface and the commutation interface are pro-  
in the data protocol.  
grammable in the output current and the slew rate.  
The incremental interface with the pins A, B and Z In conjunction with a rotating permanent magnet, the  
supplies quadrature signals with an edge rate of up iC-MH8 module forms a one-chip encoder. The en-  
to 8 MHz. Interpolation can be carried out with maxi- tire configuration can be stored in the internal pa-  
mum resolution at a speed of 120,000 rpm. The po- rameter ROM with zapping diodes. The integrated  
sition of the index pulse Z is adjustable.  
programming algorithm assumes writing of the ROM  
structure.  
PACKAGES QFN28 5 x5 mm² to JEDEC MO-220-VHHD-1  
PIN CONFIGURATION QFN28 5 x 5mm²  
PIN FUNCTIONS  
No. Name Function  
3 VPA  
4 VNA1  
5 SLI  
6 MA  
7 SLO  
+5 V Supply Voltage (analog)  
Ground (analog)  
Serial Interface, Data Input  
Serial Interface, Clock Input  
Serial Interface, Data Output  
not connected  
PSOUT NSOUT  
nc nc  
nc nc  
W
28 27 26 25 24 23 22  
8,9 nc  
21  
20  
19  
18  
17  
16  
15  
PTE  
NERR  
VPA  
VNA1  
SLI  
1
2
3
4
5
6
7
V
10 PCOUT Positive Cosine Output  
11 NCOUT Negative Cosine Output  
12 VZAP  
13 VNA2  
14 nc  
15 A  
16 B  
17 Z  
18 VND  
19 VPD  
20 U  
21 V  
22 W  
U
VPD  
VND  
Z
Zener Zapping Programming Voltage  
Ground (analog)  
not connected  
Incremental A (+NU)  
Incremental B (+NV)  
Index Z (+NW)  
MH8  
MA  
B
SLO  
A
8
9
10 11 12 13 14  
nc  
C061010-1  
Ground (digital)  
nc nc  
+5 V Supply Voltage (digital)  
Commutation U (+NA)  
Commutation V (+NB)  
Commutation W (+NZ)  
not connected  
PCOUT VZAP  
NCOUT  
VNA2  
23,24 nc  
25 NSOUT Negative Sine Output  
26 PSOUT Positive Sine Output  
PIN FUNCTIONS  
No. Name Function  
27,28 nc  
TP  
not connected  
Thermal-Pad  
1 PTE Test Enable Pin  
2 NERR Error output(active low)  
The Thermal Pad is to be connected to common ground (VNA1, VNA2, VND) on the PCB. Orientation of the  
logo ( MH8 CODE ...) is subject to alteration.  
iC-MH8  
12 BIT ANGULAR HALL ENCODER  
Rev A0.9, Page 3/25  
PACKAGE DIMENSIONS  
RECOMMENDED PCB-FOOTPRINT  
4.70  
3.15  
SIDE  
0.50  
0.30  
TOP  
5
BOTTOM  
3.15  
0.50  
0.25  
drb_qfn28-2_pack_1, 10:1  
All dimensions given in mm.  
iC-MH8  
12 BIT ANGULAR HALL ENCODER  
Rev A0.9, Page 4/25  
ABSOLUTE MAXIMUM RATINGS  
Beyond these values damage may occur; device operation is not guaranteed.  
Item Symbol  
No.  
Parameter  
Conditions  
Unit  
Min.  
Max.  
G001 V()  
Supply voltages at VPA, VPD  
Zapping voltage  
-0.3  
-0.3  
-0.3  
6
8
6
V
V
V
G002 V(VZAP)  
G003 V()  
Voltages at A, B, Z, U, V, W, MA, SLO,  
SLI, NERR, PTE  
G004 I()  
G005 I()  
G006 I()  
G007 I()  
G008 Vd()  
G009 Ts  
G010 Tj  
Current in VPA  
-10  
-20  
20  
200  
100  
10  
mA  
mA  
mA  
mA  
kV  
Current in VPD  
Current in A, B, Z, U, V, W  
Current in MA, SLO, SLI, NERR, PTE  
ESD-voltage, all pins  
Storage temperature  
Chip temperature  
-100  
-10  
HBM 100 pF discharged over 1.5 k  
2
-40  
-40  
150  
135  
°C  
°C  
THERMAL DATA  
Operating conditions: VPA, VPD = 5 V ±10 %  
Item Symbol  
No.  
Parameter  
Conditions  
Unit  
Min. Typ. Max.  
-40 125  
T01 Ta  
Operating Ambient Temperature Range  
Thermal Resistance Chip to Ambient  
°C  
T02 Rthja  
surface mounted to PCB, thermal pad linked  
40  
K/W  
to cooling area of approx. 2 cm²  
All voltages are referenced to ground unless otherwise stated.  
All currents flowing into the device pins are positive; all currents flowing out of the device pins are negative.  
iC-MH8  
12 BIT ANGULAR HALL ENCODER  
Rev A0.9, Page 5/25  
ELECTRICAL CHARACTERISTICS  
Operating conditions:  
VPA, VPD = 5 V ±10 %, VNA=VND, Tj = -40...125 °C, IBM adjusted to 200 µA , 4 mm NdFeB magnet, unless otherwise noted  
Item Symbol  
No.  
Parameter  
Conditions  
Unit  
Min.  
Typ.  
Max.  
General  
001 V(VPA),  
V(VPD)  
Permissible Supply Voltage  
4.5  
5.5  
V
002 I(VPA)  
003 I(VPD)  
004 I(VPD)  
005 Vc()hi  
Supply Current in VPA  
Supply Current in VPD  
Supply Current in VPD  
3
5
12  
27  
20  
1.5  
mA  
mA  
mA  
V
PRM = ’0’, without Load  
PRM = ’1’, without Load  
Vc()hi = V() VPD, I() = 1 mA  
2
Clamp Voltage hi at MA, SLI,  
SLO, PTE, NERR  
0.4  
006 Vc()lo  
Clamp Voltage lo at MA, SLI,  
SLO, PTE, NERR  
I() = -1 mA  
-1.5  
20  
-0.3  
V
Hall Sensors and Signal Conditioning  
101 Hext  
Operating Magnetic Field  
Strength  
at surface of chip  
100  
2
kA/m  
kHz  
102 fmag  
Operating Magnetic Field  
Frequency  
120 000 rpm  
Rotating Speed of Magnet  
103 dsens  
104 xdis  
Diameter of Hall Sensor Array  
2
mm  
Max. Magnet Axis Displacement  
vs. Center of Hall Sensor Array  
0.2  
0.2  
+3  
mm  
mm  
105 xpac  
Chip Placement Error vs. Pack- with QFN28  
age  
-0.2  
-3  
106 φpac  
Chip Tilt Error vs. Package  
with QFN28  
Deg  
mm  
107 hpac  
Sensor-to-Package-Surface Dis- with QFN28  
tance  
0.4  
108 Vos  
109 Vos  
110 Vopt  
Trimming range of output offset VOSS or VOSC = 0x7F  
voltage  
-55  
mV  
mV  
Vpp  
Trimming range of output offset VOSS or VOSC = 0x3F  
voltage  
55  
Optimal differential output voltage Vopt = Vpp(PSIN) Vpp(NSIN), ENAC = ’0’,  
4
see Fig. 6  
111  
112  
Vratio  
Vratio  
Amplitude Ratio  
Amplitude Ratio  
Vratio = Vpp(PSIN) / Vpp(PCOS), GCC = 0x3F  
1.09  
Vratio = Vpp(PSIN) / Vpp(PCOS), GCC = 0x40  
0.92  
4.8  
Signal Level Control  
201 Vpp  
Differential Peak-to-Peak Output Vpp = Vpk(Px) Vpk(Nx), ENAC = ’1’, see Fig.  
3.2  
Vpp  
Amplitude  
6
202 ton  
Controller Settling Time  
to ±10% of final amplitude  
300  
2.8  
µs  
203 Vt()lo  
MINERR Amplitude Error Thresh- see 201  
old  
1.0  
4.8  
Vpp  
204 Vt()hi  
MAXERR Amplitude Error  
Threshold  
see 201  
5.8  
Vpp  
Bandgap Reference  
401 Vbg  
402 Vref  
Bandgap Reference Voltage  
1.18  
45  
1.25  
50  
1.32  
55  
V
Reference Voltage  
Bias Current  
%VPA  
403  
Iibm  
CIBM = 0x0  
CIBM = 0xF  
Bias Current adjusted  
-100  
µA  
µA  
µA  
-370  
-220  
-200  
4.0  
-180  
4.3  
404 VPDon  
405 VPDoff  
406 VPDhys  
Turn-on Threshold VPD, System V(VPD) V(VND), increasing voltage  
3.65  
V
V
V
on  
Turn-off Threshold VPD, System V(VPD) V(VND), decreasing voltage  
3
3.5  
3.8  
reset  
Hysteresis System on/reset  
0.3  
iC-MH8  
12 BIT ANGULAR HALL ENCODER  
Rev A0.9, Page 6/25  
ELECTRICAL CHARACTERISTICS  
Operating conditions:  
VPA, VPD = 5 V ±10 %, VNA=VND, Tj = -40...125 °C, IBM adjusted to 200 µA , 4 mm NdFeB magnet, unless otherwise noted  
Item Symbol  
No.  
Parameter  
Conditions  
Unit  
Min.  
Typ.  
Max.  
407 Vosr  
Reference voltage offset com-  
pensation  
475  
500  
525  
mV  
Clock Generation  
501 f()sys  
System Clock  
Bias Current adjusted  
Bias Current adjusted  
0.85  
13.5  
1.0  
16  
1.2  
18  
MHz  
MHz  
502 f()sdc  
Sinus/Digital-Converter Clock  
Sin/Digital Converter  
601 RESsdc  
Sinus/Digital-Converter Resolu-  
12  
Bit  
tion  
602 AAabs  
Absolute Angular Accuracy  
Relative Angular Accuracy  
Vpp() = 4 V, adjusted  
-0.35  
0.35  
Deg  
%
603  
604  
AArel  
f()ab  
with reference to an output periode at A, B.  
CFGRES=0x2, ENF=1, PRM=0, HCLH=1,  
GAING=0x0, Vpp(SIN/COS) = 4 Vpp.  
see Fig. 17  
± 10  
Output frequency at A, B  
CFGMTD = 0x0, CFGRES=0x0  
CFGMTD = 0x7, CFGRES=0x0  
2.0  
0.25  
MHz  
MHz  
Serial Interface, Digital Outputs MA, SLO, SLI  
701 Vs(SLO)hi Saturation Voltage High  
V(SLO) = V(VPD) V(),  
0.4  
0.4  
V
I(SLO) = 4 mA  
702 Vs(SLO)lo Saturation Voltage Low  
703 Isc(SLO)hi Short-Circuit Current High  
704 Isc(SLO)lo Short-Circuit Current Low  
I(SLO) = 4 mA to VND  
V(SLO) = V(VND), 25°C  
V(SLO) = V(VPD), 25°C  
CL = 50 pF  
V
mA  
mA  
ns  
-90  
-50  
50  
80  
60  
60  
2
705 tr(SLO)  
706 tf(SLO)  
707 Vt()hi  
Rise Time SLO  
Fall Time SLO  
CL = 50 pF  
ns  
Threshold Voltage High: MA, SLI  
Threshold Voltage Low: MA, SLI  
Threshold Hysteresis: MA, SLI  
Pull-Down Current: MA, SLI  
V
708 Vt()lo  
0.8  
140  
6
V
709 Vt()hys  
710 Ipd()  
250  
30  
mV  
µA  
µA  
MHz  
V() = 0...VPD 1 V  
60  
-6  
711 Ipu(MA)  
712 f(MA)  
-60  
-30  
10  
Zapping and Test  
801 Vt()hi  
Threshold Voltage High VZAP,  
PTE  
with reference to VND  
with reference to VND  
Vt()hys = Vt()hi Vt()lo  
2
V
V
802 Vt()lo  
Threshold Voltage Low VZAP,  
PTE  
0.8  
803 Vt()hys  
Hysteresis  
140  
0.7  
250  
7.0  
mV  
V
804 Vt()nozap Threshold Voltage Nozap VZAP V() = V(VZAP) V(VPA), V(VPA) = 5 V ±5 %,  
at chip temperature 27 °C  
805 Vt()zap  
Threshold Voltage Zap VZAP  
V() = V(VZAP) V(VPA), V(VPA) = 5 V ±5 %,  
1.2  
V
at chip temperature 27 °C  
806 V()zap  
807 V()zpd  
808 V()uzpd  
Zapping voltage  
PROG = ’1’  
6.9  
7.1  
2
V
V
Diode voltage, zapped  
Diode voltage, unzapped  
3
V
809 Rpd()VZAP Pull-Down Resistor at VZAP  
30  
55  
kΩ  
NERR Output  
901 Vt()hi  
902 Vs()lo  
903 Vt()lo  
904 Vt()hys  
905 Ipu()  
Input Threshold Voltage High  
Saturation Voltage Low  
Input Threshold Voltage Low  
Input Hysteresis  
with reference to VND  
I() = 4 mA , with reference to VND  
with reference to VND  
Vt()hys = Vt()hi Vt()lo  
V(NERR) = 0...VPD 1 V  
V(NERR) = V(VPD), Tj = 25°C  
CL = 50 pF  
2
V
V
0.4  
0.8  
140  
-800  
V
250  
-300  
50  
mV  
µA  
mA  
ns  
Pull-up Current Source  
Short circuit current Lo  
Decay time  
-80  
80  
60  
906 Isc()lo  
907 tf()hilo  
iC-MH8  
12 BIT ANGULAR HALL ENCODER  
Rev A0.9, Page 7/25  
ELECTRICAL CHARACTERISTICS  
Operating conditions:  
VPA, VPD = 5 V ±10 %, VNA=VND, Tj = -40...125 °C, IBM adjusted to 200 µA , 4 mm NdFeB magnet, unless otherwise noted  
Item Symbol  
No.  
Parameter  
Conditions  
Unit  
Min.  
Typ.  
Max.  
Digital Line Driver Outputs  
P01  
Vs()hi  
Saturation Voltage hi  
Vs() = VPD V();  
CfgDR(1:0) = 00, I() = -4 mA  
CfgDR(1:0) = 01, I() = -50 mA  
CfgDR(1:0) = 10, I() = -50 mA  
CfgDR(1:0) = 11, I() = -20 mA  
200  
700  
700  
400  
mV  
mV  
mV  
mV  
P02  
P03  
Vs()lo  
Isc()hi  
Saturation Voltage lo  
CfgDR(1:0) = 00, I() = -4 mA  
CfgDR(1:0) = 01, I() = -50 mA  
CfgDR(1:0) = 10, I() = -50 mA  
CfgDR(1:0) = 11, I() = -20 mA  
200  
700  
700  
400  
mV  
mV  
mV  
mV  
Short-Circuit Current hi  
V() = 0 V;  
CfgDR(1:0) = 00  
CfgDR(1:0) = 01  
CfgDR(1:0) = 10  
CfgDR(1:0) = 11  
-12  
-125  
-125  
-60  
-4  
mA  
mA  
mA  
mA  
-50  
-50  
-20  
P04  
Isc()lo  
Short-Circuit Current lo  
V() = VPD;  
CfgDR(1:0) = 00  
CfgDR(1:0) = 01  
CfgDR(1:0) = 10  
CfgDR(1:0) = 11  
4
12  
125  
125  
60  
mA  
mA  
mA  
mA  
50  
50  
20  
P05 Ilk()tri  
Leakage Current Tristate  
Rise-Time lo to hi at Q  
TRIHL(1:0) = 11  
-100  
100  
µA  
P06  
tr()  
RL = 100 to VND;  
CfgDR(1:0) = 00  
CfgDR(1:0) = 01  
CfgDR(1:0) = 10  
CfgDR(1:0) = 11  
5
5
50  
5
20  
20  
350  
40  
ns  
ns  
ns  
ns  
P07  
tf()  
Fall-Time hi to lo at Q  
RL = 100 to VND;  
CfgDR(1:0) = 00  
CfgDR(1:0) = 01  
CfgDR(1:0) = 10  
CfgDR(1:0) = 11  
5
5
50  
5
20  
20  
350  
40  
ns  
ns  
ns  
ns  
Analog Outputs PSOUT, NSOUT, PCOUT, NCOUT  
Q01 Vpk()  
Q02 Vos()  
Q03 fc()  
Max. Output Signal Amplitude  
Output Offset Voltage  
Rl = 50 vs. VPD / 2, see Fig.  
200  
300  
50  
mV  
µV  
±200  
Output Cut-off Frequency  
Output Short-circuit Current  
Cl = 250 pF  
10  
10  
kHz  
mA  
Q04 Isc()hi,lo  
pin shorten to VPD or VND  
iC-MH8  
12 BIT ANGULAR HALL ENCODER  
Rev A0.9, Page 8/25  
OPERATING REQUIREMENTS: Serial Interface  
Operating conditions: VPA, VPD = 5 V ±10 %, Ta = -40...125 °C, IBM calibrated to 200 µA;  
Logic levels referenced to VND: lo = 0...0.45 V, hi = 2.4 V...VPD  
Item Symbol  
No.  
Parameter  
Conditions  
Unit  
Min.  
Max.  
SSI Protocol (ENSSI = 1)  
I001 TMAS  
I002 tMASh  
I003 tMASl  
Permissible Clock Period  
tout determined by CFGTOS  
250  
25  
2x tout  
tout  
ns  
ns  
ns  
Clock Signal Hi Level Duration  
Clock Signal Lo Level Duration  
25  
tout  
Figure 1: I/O Interface timing with SSI protocol  
iC-MH8  
12 BIT ANGULAR HALL ENCODER  
Rev A0.9, Page 9/25  
Registers  
OVERVIEW  
Adr  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Hall Signal Conditioning  
0x00  
0x01  
0x02  
0x03  
0x04  
z
z
z
z
z
GAING(1:0)  
ENAC  
GAINF(5:0)  
GCC(6:0)  
VOSS(6:0)  
VOSC(6:0)  
1
PRM  
HCLH  
DPU  
DAO  
CFGTOB  
CIBM(3:0)  
RS422 Driver  
0x05 ENSSI  
Sine/Digital Converter  
z
CFGPROT  
CFGO(1:0)  
TRIHL(1:0)  
CFGDR(1:0)  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
z
z
z
z
z
z
z
ENF  
CFGMTD(2:0)  
CFGDIR  
CFGRES(3:0)  
CFGZPOS(7:0)  
CFGSU  
CfgCOM(7:0)  
CFGHYS(1:0)  
CFGPOLE(1:0)  
CFGAB(1:0)  
-
-
-
-
Test settings  
0x0E  
0x0F  
p
TEST(7:0)  
ENHC  
res.  
res.  
res.  
res.  
res.  
res.  
PROGZAP  
ZAP diodes (read only)  
0x10  
..  
ZAP diodes for addresses 0x00..0x0C and 0x7D..0x7F  
0x1F  
not used  
0x20  
..  
’invalid adresses’  
0x41  
Profile identification (read only)  
0x42  
Profile - 0x2C  
0x43  
Profile - 0x0  
Data length DLEN  
not used  
0x44  
..  
’invalid adress’  
0x75  
Status messages (read only; messages will be set back during reading)  
0x76  
0x77  
GAIN  
PROGERR  
ERRSDATA  
ERRAMIN  
ERRAMAX  
ERREXT  
res.  
res.  
PROGOK  
iC-MH8  
12 BIT ANGULAR HALL ENCODER  
Rev A0.9, Page 10/25  
OVERVIEW  
Adr  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Identification (0x78 bis 0x7B read-only)  
0x78  
0x79  
0x7A  
0x7B  
0x7C  
Device ID - 0x4D (’M’)  
Device ID - 0x48 (’H’)  
Revision - 0x38 (’8’)  
Revision - 0x00 (”)  
-
CFGTOS  
0x7D  
0x7E  
0x7F  
z
z
z
Manufacturer Revision - 0x00  
Manufacturer ID - 0x00  
Manufacturer ID - 0x00  
z: Register value programmable by zapping  
p: Register value write protected; can only be changed while V(VZAP)> Vt()hi  
Table 5: Register layout  
Hall signal processing . . . . . . . . . . . . . . . . . . . . Page 12 Sine/digital converter . . . . . . . . . . . . . . . . . . . . . Page 18  
GAING:  
GAINF:  
Hall signal amplification range  
Hall signal amplification (1–20, log.  
scale)  
Amplification calibration cosine  
Activation of amplitude control  
Offset calibration sine  
Offset calibration cosine  
Energy-saving mode  
Calibration of bias current  
Deactivation of NERR pull-up  
Activation of high Hall clock pulse  
Activation of noise filter  
CFGRES:  
CFGZPOS:  
CFGAB:  
CFGPOLE:  
CFGSU:  
CFGMTD:  
CFGDIR:  
CFGHYS:  
CFGCOM:  
Resolution of sine digital converter  
Zero point for position  
Configuration of incremental output  
No. of poles for commutation signals  
Behavior during start-up  
GCC:  
ENAC:  
VOSS:  
VOSC:  
PRM:  
CIBM:  
DPU  
HCLH  
ENF  
DAO:  
Frequency at AB  
Rotating direction reversal  
Hysteresis sine/digital converter  
Zero point for commutation  
Test  
TEST:  
ENHC:  
Test mode  
Disable Analog Outputs  
Enable High Current during ZAP-  
Diode Read (iC-MH82 and later)  
Activation of programming routine  
RS422 driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Page 21  
PROGZAP:  
CFGDR:  
TRIHL:  
CFGO:  
CFGPROT:  
ENSSI:  
Driver property  
Tristate high-side/low-side driver  
Configuration of output mode  
Write/read protection memory  
Activation of SSI mode  
iC-MH8  
12 BIT ANGULAR HALL ENCODER  
Rev A0.9, Page 11/25  
Sensor principle  
In conjunction with a rotating permanent magnet, the  
iC-MH8 module can be used to create a complete en-  
coder system. A diametrically magnetized, cylindri-  
cal permanent magnet made of neodymium iron boron  
(NdFeB) or samarium cobalt (SmCo) generates op-  
timum sensor signals. The diameter of the magnet  
should be in the range of 3 to 6 mm.  
The iC-MH8 has four Hall sensors adapted for angle  
determination and to convert the magnetic field into  
a measurable Hall voltage. Only the z-component of  
the magnetic field is evaluated, whereby the field lines  
pass through two opposing Hall sensors in the oppo-  
site direction. Figure 2 shows an example of field vec-  
tors. The arrangement of the Hall sensors is selected  
so that the mounting of the magnets relative to iC-MH8  
is extremely tolerant. Two Hall sensors combined pro-  
vide a differential Hall signal. When the magnet is ro-  
tated around the longitudinal axis, sine and cosine out-  
put voltages are produced which can be used to deter-  
mine angles.  
z
y
+Bz  
B
x
-Bz  
C151107-1  
Figure 2: Sensor principle  
Position of the Hall sensors and the analog sensor signal  
The Hall sensors are placed in the center of the QFN28 In order to calculate the angle position of a diametri-  
package at 90° to one another and arranged in a circle cally polarized magnet placed above the device a dif-  
with a diameter of 2 mm as shown in Figure 3.  
ference in signal is formed between opposite pairs of  
Hall sensors, resulting in the sine being VSIN = VPSIN  
-
VNSIN and the cosine VCOS = VPCOS - VNCOS. The zero  
angle position of the magnet is marked by the resulting  
cosine voltage value being at a maximum and the sine  
voltage value at zero.  
Pin 1 Mark  
28 27 26 25 24 23 22  
21  
20  
19  
18  
17  
16  
15  
1
2
PSIN  
PCOS  
3
4
5
6
7
This is the case when the south pole of the magnet is  
exactly above the PCOS sensor and the north pole is  
above sensor NCOS, as shown in Figure 4. Sensors  
PSIN and NSIN are placed along the pole boundary so  
that neither generate a Hall signal.  
NCOS  
NSIN  
(top view)  
8
9
10 11 12 13 14  
C040907-2  
Figure 3: Position of the Hall sensors  
When a magnetic south pole comes close to the sur-  
face of the package the resulting magnetic field has a When the magnet is rotated counterclockwise the  
positive component in the +z direction (i.e. from the top poles then also cover the PSIN and NSIN sensors, re-  
of the package) and the individual Hall sensors each sulting in the sine and cosine signals shown in Figure  
generate their own positive signal voltage.  
5 being produced.  
iC-MH8  
12 BIT ANGULAR HALL ENCODER  
Rev A0.9, Page 12/25  
28 27 26 25 24 23 22  
28 27 26 25 24 23 22  
(top view)  
21  
20  
19  
18  
17  
16  
15  
21  
20  
19  
18  
17  
16  
15  
1
2
3
4
5
6
7
1
2
3
4
5
6
7
S
28 27 26 25 24 23 22  
21  
20  
19  
18  
17  
16  
15  
1
2
3
4
5
6
7
N
a > 0  
8
9
10 11 12 13 14  
8
9
10 11 12 13 14  
a = 0  
0
VCOS= VPCOS- VNCOS  
VSIN= VPSIN- VNSIN  
+2V  
-90°  
90°  
180°  
270°  
360°  
a
-2V  
8
9
10 11 12 13 14  
C041007-3  
C040907-1  
Figure 5: Pattern of the analog sensor signals with  
the angle of rotation  
Figure 4: Zero position of the magnet  
Hall Signal Processing  
The iC-MH8 module has a signal calibration function The second amplifier stage can be varied in an addi-  
that can compensate for the signal and adjustment er- tional range. With the amplitude control (ENAC = ’0’)  
rors. The Hall signals are amplified in two steps. First, deactivated, the amplification in the GAINF register is  
the range of the field strength within which the Hall sen- used. With the amplitude control (ENAC = ’1’) acti-  
sor is operated must be roughly selected. The first vated, the GAINF register bits have no effect.  
amplifier stage can be programmed in the following  
ranges:  
GCC(6:0)  
0x00  
0x01  
...  
Addr. 0x01; bit 6:0  
1,000  
1,0015  
exp(  
GAING(1:0)  
Addr. 0x00; bit 7:6  
ln(20)  
2048  
00  
01  
10  
11  
5-fold  
· GCC)  
10-fold  
15-fold  
20-fold  
0x3F  
0x40  
...  
1,0965  
0,9106  
ln(20)  
exp(2048 · (128 GCC))  
0x7F  
0,9985  
Table 6: Range selection for Hall signal amplification  
Table 8: Amplification calibration cosine  
The operating range can be specified in advance in  
accordance with the temperature coefficient and the  
magnet distance. The integrated amplitude control can  
correct the signal amplitude between 1 and 20 via an-  
other amplification factor. Should the control reach the  
range limits, a different signal amplification must be se-  
lected via GAING.  
The GCC register is used to correct the sensitivity of  
the sine channel in relation to the cosine channel. The  
cosine amplitude can be corrected within a range of  
approximately ±10%.  
ENAC  
Addr. 0x01; bit 7  
amplitude control deactivated  
amplitude control active  
0
1
GAINF(5:0)  
0x00  
...  
Addr. 0x00; bit 5:0  
1,000  
1,048  
Table 9: Activation of amplitude control  
0x02  
0x03  
...  
exp(ln(20) · GAINF 2)  
64  
The integrated amplitude control can be activated with  
the ENAC bit. In this case the differential signal am-  
plitude is adjusted to 4 Vss and the values of GAINF  
have no effect here.  
0x3F  
17,38  
Table 7: Hall signal amplification  
iC-MH8  
12 BIT ANGULAR HALL ENCODER  
Rev A0.9, Page 13/25  
PRM  
Addr. 0x03; bit 7  
PSIN−NSIN  
0
1
Energy-saving mode deactivated  
Energy-saving mode active  
4Vss  
PCOS−NCOS  
Table 11: Energy-saving mode  
Figure 6: Definition of differential amplitude  
In the energy-saving mode the current consumption of  
the Hall sensors can be quartered. This also reduces  
the maximum rotating frequency by a factor of 4.  
After switch-on the amplification is increased until the  
setpoint amplitude is reached. The amplification is  
automatically corrected in case of a change in the  
input amplitude by increasing the distance between  
the magnet and the sensor, in case of a change in  
the supply voltage or a temperature change. The  
sine signals are therefore always converted into high-  
resolution quadrature signals at the optimum ampli-  
tude.  
CIBM(3:0)  
Addr. 0x04; bit 3:0  
0x0  
...  
-40 %  
...  
0x8  
0x9  
...  
0 %  
+5 %  
...  
0xF  
+35 %  
VOSS(6:0)  
VOSC(6:0)  
0x00  
Addr. 0x02; bit 6:0  
Addr. 0x03; bit 6:0  
Table 12: Calibration of bias current  
0 mV  
1 mV  
...  
0x01  
...  
The bias current is factory calibrated to 200 µA. The  
calibration can be verified in test mode (TEST = 0x43)  
by measuring the current from Pin B to Pin VNA.  
0x3F  
63 mV  
0 mV  
-1 mV  
...  
0x40  
0x41  
...  
HCLH  
Addr. 0x04; bit 7  
250 kHz  
500 kHz  
0x7F  
-63 mV  
0
1
Table 10: Offset calibration for sine and cosine  
Table 13: Activation of high Hall clock pulse  
Should there be an offset in the sine or cosine signal  
that, among other things, can also be caused by an  
inexactly adjusted magnet, then this offset can be cor- The switching-current hall sensors can be operated at  
rected by the VOSS and VOSC registers. The output two frequencies. At 500 kHz the sine has twice the  
voltage can be shifted by ±63 mV in each case to com- number of support points. This setting is of interest at  
pensate for the offset.  
high speeds above 30,000 rpm.  
iC-MH8  
12 BIT ANGULAR HALL ENCODER  
Rev A0.9, Page 14/25  
Test modes for signal calibration  
For signal calibration iC-MH8 has several test settings  
which make internal reference quantities and the am-  
plified Hall voltages of the individual sensors accessi-  
ble at external pins A, B, Z and U for measurement pur-  
poses. This enables the settings of the offset (VOSS,  
VOSC), gain (GAING, GAINF) and amplitude ratio of  
the cosine to the sine signal (GCC) to be directly ob-  
served on the oscilloscope.  
iC-MH8  
PSIN  
A
B
Z
HPSP  
HPSN  
HNSP  
HNSN  
VPSIN  
B
B
B
B
VNSIN  
U
NSIN  
HALL SENSORS  
Test mode can be triggered by connecting pin VZAP  
to VPD and programming the TEST register (address  
0x0E). The individual test modes are listed in the fol-  
lowing table:  
VNA  
C021107-1acr  
Test Mode: Analog SIN  
Figure 7: Output signals of the sine Hall sensors in  
test mode Analog SIN  
Output signals in test mode  
Mode  
TEST Pin A Pin B Pin Z Pin U  
0x00  
0x20 HPSP HPSN HNSP HNSN  
Normal  
Analog SIN  
A
B
Z
U
iC-MH8  
PCOS  
A
B
Z
HPCP  
HPCN  
HNCP  
HNCN  
Analog COS 0x21 HPCP HPCN HNCP HNCN  
Analog OUT 0x22 PSIN NSIN PCOS NCOS  
VPCOS  
B
B
B
Analog REF 0x43 VREF IBM  
Digital CLK 0xC0 CLKD  
VBG  
VOSR  
B
VNCOS  
U
NCOS  
HALL SENSORS  
Table 14: Test modes and available output signals  
VNA  
C021107-2acr  
Test Mode: Analog COS  
The output voltages are provided as differential sig-  
nals with an average voltage of 2.5 V. The gain is de-  
termined by register values GAING and GAINF and  
should be set so that output amplitudes from the sine  
and cosine signals of about 1 V are visible.  
Figure 8: Output signals of the cosine Hall sensors  
in test mode Analog COS  
Test modes Analog SIN and Analog COS  
iC-MH8  
In these test modes it is possible to measure the sig-  
nals from the individual Hall sensors independent of  
one another. The name of the signal is derived from  
the sensor name and position. HPSP, for example,  
is the (amplified) Hall voltage of sensor PSIN at the  
positive signal path; similarly, HNCN is the Hall voltage  
of sensor NCOS at the negative signal path. The effec-  
tive Hall voltage is accrued from the differential voltage  
between the positive and negative signal paths of the  
respective sensor.  
PSIN  
PCOS  
A
B
Z
PSIN  
VSIN  
B
B
B
NSIN  
PCOS  
NCOS  
B
VCOS  
U
NCOS  
NSIN  
HALL SENSORS  
VNA  
C021107-3acr  
Test Mode: Analog OUT  
Test mode Analog OUT  
Figure 9: Differential sine and cosine signals in test  
mode Analog OUT  
In this test mode the sensor signals are available at  
the outputs as they would be when present internally  
for further processing on the interpolator. The interpo-  
lation accuracy which can be obtained is determined Test mode Analog REF  
by the quality of signals Vsin and Vcos and can be influ- In this mode various internal reference voltages are  
enced in this particular test mode by the calibration of provided. VREF is equivalent to half the supply voltage  
the offset, gain and amplitude ratio.  
(typically 2.5 V) and is used as a reference voltage for  
iC-MH8  
12 BIT ANGULAR HALL ENCODER  
Rev A0.9, Page 15/25  
Test Mode: Analog REF  
the Hall sensor signals. VBG is the internal bandgap  
reference (1.24 V), with VOSR (0.5 V) used to gener-  
ate the range of the offset settings. Bias current IBM  
determines the internal current setting of the analog  
circuitry. In order to compensate for variations in this  
current and thus discrepancies in the characteristics  
of the individual iC-MH8 devices (due to fluctuations in  
production, for example), this can be set within a range  
of -40% to +35% using register parameter CIBM. The  
nominal value of 200 µA is measured as a short-circuit  
current at pin B to ground.  
iC-MH8  
A
B
Z
VREF  
~ 2.5 V  
IBM  
VBG  
VOSR  
~ 1.24 V  
~ 0.5 V  
U
~ 200 µA  
VNA  
C021107-4acr  
Test mode Digital CLK  
If, due to external circuitry, it is not possible to mea-  
sure IBM directly, by way of an alternative clock signal  
CLKD at pin A can be calibrated to a nominal 1 MHz  
in this test mode via register value CIBM.  
Figure 10: Setting bias current IBM in test mode  
Analog REF  
Calibration procedure  
The calibration procedure described in the following  
applies to the optional setting of the internal analog  
sine and cosine signals and the mechanical adjust-  
ment of the magnet and iC-MH8 in relation to one an-  
other.  
Vsin  
+2 V  
BIAS SETTING  
a
The BIAS setting compensates for possible manufac-  
turing tolerances in the iC-MH8 devices. A magnetic  
field does not need to be present for this setting which  
can thus be made either prior to or during the assem-  
bly of magnet and iC-MH8.  
-2 V  
+2 V  
Vcos  
If the optional setup process is not used, register CIBM  
should be set to an average value of 0x8 (which is  
equivalent to a change of 0%). As described in the  
previous section, by altering the value in register CIBM  
in test mode Analog REF current IBM is set to 200 µA  
or, alternatively, in test mode Digital CLK signal CLKD  
is set to 1 MHz.  
-2 V  
C141107-1  
Figure 11: Ideal Lissajous curve  
CALIBRATION USING ANALOG SIGNALS  
In test mode Analog OUT as shown in Figure 5 the in-  
ternal signals which are transmitted to the sine/digital  
converter can be tapped with high impedance. With  
a rotating magnet it is then possible to portray the dif-  
ferential signals VSIN and VCOS as an x-y graph (Lis-  
sajous curve) with the help of an oscilloscope. In an  
ideal setup the sine and cosine analog values describe  
a perfect circle as a Lissajous curve, as illustrated by  
Figure 11.  
MECHANICAL ADJUSTMENT  
iC-MH8 can be adjusted in relation to the magnet in  
test modes Analog SIN and Analog COS, in which the  
Hall signals of the individual Hall sensors can be ob-  
served while the magnet rotates.  
In test mode Analog SIN the output signals of the sine  
Hall sensors which are diagonally opposite one an-  
other are visible at pins A, B, Z and U. iC-MH8 and  
the magnet are then adjusted in such a way that dif- At room temperature and with the amplitude control  
ferential signals VPSIN and VNSIN have the same am- switched off (ENAC = 0) a rough GAING setting is se-  
plitude and a phase shift of 180°. The same applies lected so that at an average fine gain of GAINF = 0x20  
to test mode Analog COS, where differential signals (a gain factor of ca. 4.5) the Hall signal amplitudes are  
VPCOS and VNCOS are calibrated in the same manner.  
as close to 1 V as possible. The amplitude can then  
iC-MH8  
12 BIT ANGULAR HALL ENCODER  
Rev A0.9, Page 16/25  
Vsin  
be set more accurately by varying GAINF. Variations in  
the gain factor, as shown in Figure 12, have no effect  
on the Lissajous curve, enabling the angle information  
for the interpolator to be maintained.  
VOSS  
a
Vsin  
GAING  
GAINF  
Vcos  
a
C141107-3  
Vcos  
Figure 13: Effect of the sine offset setting  
Vsin  
VOSC  
C141107-2  
Figure 12: Effect of gain settings GAING and  
GAINF  
a
Deviations of the observed Lissajous curve from the  
ideal circle can be corrected by varying the ampli-  
tude offset (register VOSS, VOSC) and amplitude ratio  
(register GCC). Changes in these parameters are de-  
scribed in the following figures 13 to 15. Each of these  
settings has a different effect on the interpolated angle  
value. A change in the sine offset thus has a maximum  
effect on the angle value at 0° and 180°, with no al-  
terations whatsoever taking place at angles of 90° and  
270°. When varying the cosine offset exactly the oppo-  
site can be achieved as these angle pairs can be set  
independent of one another. Setting the cosine/sine  
amplitude ratio does not change these angles (0°, 90°,  
180° and 270°); however, in-between values of 45°,  
135°, 225° and 315° can still be influenced by this pa-  
rameter.  
Vcos  
C141107-4  
Figure 14: Effect of the cosine offset setting  
Vsin  
GCC  
a
Once calibration has been carried out a signal such as  
the one illustrated in Figure 11 should be available.  
Vcos  
In the final stage of the process the amplitude control  
can be switched back on (ENAC =1) to enable devi-  
ations in the signal amplitude caused by variations in  
the magnetic field due to changes in distance and tem-  
perature to be automatically controlled.  
C141107-5  
Figure 15: Effect of the amplitude ratio  
iC-MH8  
12 BIT ANGULAR HALL ENCODER  
Rev A0.9, Page 17/25  
CALIBRATION USING INCREMENTAL SIGNALS  
distance of the rising edge (equivalent to angle posi-  
If test mode cannot be used, signals can also be cali- tions of 0° and 180°) at signal A should be exactly half  
brated using the incremental signals or the values read a period (PER). Should the edges deviate from this in  
out serially. In order to achieve a clear relationship be- distance, the offset of the sine channel can be adjusted  
tween the calibration parameters which have an effect using VOSS. The same applies to the falling edges of  
on the analog sensor signals and the digital sensor val- the A signal which should also have a distance of half  
ues derived from these, the position of the zero pulse a period; deviations can be calibrated using the offset  
should be set to ZPOS = 0x0 and the rotating direction of cosine parameter VOSC. With parameter GCC the  
should be set to CFGDIR=0, so that the digital signal distance between the neighboring flanks of signals A  
starting point matches that of the analog signals.  
and B can then be adjusted to the exact value of an  
eighth of a cycle (a 45° angle distance).  
At an incremental resolution of 8 edges per revolu-  
tion (CFGRES = 0x1) those angle values can be dis-  
played at which calibration parameters VOSS, VOSC  
and GCC demonstrate their greatest effect. When ro-  
tating the magnet at a constant angular speed the in-  
cremental signals shown in Figure 16 are achieved,  
with which the individual edges ideally succeed one  
another at a temporal distance of an eighth of a cy-  
cle (a 45° angle distance). Alternatively, the angle po-  
sition of the magnet can also be determined using a  
reference encoder, rendering an even rotational action  
unnecessary and allowing calibration to be performed  
using the available set angle values .  
A
B
Z
VOSS  
VOSC  
GCC  
PER  
The various possible effects of parameters VOSS,  
VOSC and GCC on the flank position of incremental  
signals A and B are shown in Figure 16. Ideally, the  
Figure 16: Calibration using incremental signals  
iC-MH8  
12 BIT ANGULAR HALL ENCODER  
Rev A0.9, Page 18/25  
Sine/Digital Converter  
100%  
The iC-MH8 module integrates a high-resolution  
sine/digital converter. In the highest output resolution  
with an interpolation factor of 1024, 4096 edges per  
rotation are generated and 4096 angular steps can be  
differentiated. Even in the highest resolution, the abso-  
lute position can be calculated in real time at the max-  
imum speed.  
A
B
Z
This absolute position is used to generate quadrature  
signals (ABZ) and commutation signals (UVW). The  
zero point of the quadrature signals and the commu-  
tation signals can be set seperately. This enables the  
commutation at other angles based on the index track  
Z.  
Figure 17: ABZ signals and relative accuracy  
The incremental signals can be inverted again inde-  
pendently of the output drivers. As a result, other  
phase angles of A and B relative to the index pulse Z  
can be generated. The standard is A and B high level  
for the zero point, i.e. Z is equal to high.  
The resolution of the incremental output signals is pro-  
grammed with CFGRES.  
The value of the 12-bit sine-digital converter is avail-  
able in full resolution in the ’Extended SSI-Mode’ and  
in a resolution according to CFGRES in the ’SSI-  
Mode’.  
Figure 17 shows the position of the incremental sig-  
nals around the zero point. The relative accuracy of  
the edges to each other at a resolution setting of 10  
bit is better than 10%. This means that, based on a  
period at A or B, the edge occurs in a window between  
40% and 60%.  
CFGRES(2:0)  
Addr. 0x06; bit 3:0  
0x0  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
0x8  
0x9  
0xA  
1024  
512  
256  
128  
64  
32  
16  
8
CFGHYS(1:0)  
Addr. 0x08; bit 7:6  
0x0  
0x1  
0x2  
0x3  
0,17°  
4
0,35°  
0,7°  
2
1
1,4°  
Table 15: Programming interpolation factor  
Table 17: Programming angular hysteresis  
After the resolution is changed, a module reset is trig-  
gered internally and the absolute position is recalcu-  
lated.  
With rotating direction reversal, an angular hysteresis  
prevents multiple switching of the incremental signals  
at the reversing point. The angular hysteresis corre-  
sponds to a slip which exists between the two rotating  
directions. However, if a switching point is approached  
from the same direction, then the edge is always gen-  
erated at the same position on the output. The fol-  
lowing figure shows the generated quadrature signals  
for a resolution of 360 edges per rotation (interpolation  
factor 90) and a set angular hysteresis of 1.4°.  
CFGAB(1:0)  
Addr. 0x08; bit 1:0  
A and B not inverted  
0x0  
0x1  
0x2  
0x3  
B inverted, A normal  
A inverted, B normal  
A and B inverted  
Table 16: Inversion of AB signals  
iC-MH8  
12 BIT ANGULAR HALL ENCODER  
Rev A0.9, Page 19/25  
10°  
0°  
It should be noted then, however, that the maximum  
rotation speed is reduced.  
−10°  
A
B
CFGDIR  
Addr. 0x08; bit 5  
Rotating direction CCW  
Rotating direction CW  
Z
0
1
0°  
1.4°  
0°  
Figure 18: Quadrature signals for rotating direction  
reversal (hysteresis 1.4°)  
Table 20: Rotating direction reversal  
At the reversal point at +10°, first the corresponding  
edge is generated at A. As soon as an angle of 1.4°  
has been exceeded in the other direction in accor-  
dance with the hysteresis, the return edge is generated  
at A again first. This means that all edges are shifted  
by the same value in the rotating direction.  
The rotating direction can easily be changed with  
the bit CFGDIR. When the setting is CCW (counter-  
clockwise, CFGDIR = ’0’) the resulting angular position  
values will increase when rotation of the magnet is per-  
formed as shown in figure 5. To obtain increasing an-  
gular position values in the CW (clockwise) direction,  
CFGDIR then has to be set to ’1’.  
CFGZPOS(7:0)  
Addr. 0x07; bit 7:0  
0x0  
0x1  
0x2  
...  
0°  
1,4°  
2,8°  
The internal analoge sine and cosine signal which are  
available in test mode are not affected by the setting of  
CFGDIR. They will always appear as shown in figure  
5.  
360  
256 ·CFGZPOS  
0xFF  
358,6°  
Table 18: Programming AB zero position  
The position of the index pulse Z can be set in 1.4°  
steps. An 8-bit register is provided for this purpose,  
which can shift the Z-pulse once over 360°.  
CFGSU  
Addr. 0x08; bit 4  
0
1
ABZ output "111" during startup  
AB instantly counting to actual position  
CFGMTD(2:0)  
Addr. 0x06; bit 6:4  
Table 21: Configuration of output startup  
0
Minimum edge spacing 125 ns at IPO 1024 (max.  
2 MHz at A)  
1
2
Minimum edge spacing 250 ns at IPO 1024  
Minimum edge spacing 500 ns at IPO 1024 (max.  
500 kHz at A)  
Depending on the application, a counter cannot bear  
generated pulses while the module is being switched  
on. When the supply voltage is being connected, first  
the current position is determined. During this phase,  
the quadrature outputs are constantly set to "111". In  
the setting CFGSU = ’1’, edges are generated at the  
output until the absolute position is reached. This en-  
ables a detection of the absolute position with the in-  
cremental interface.  
3
4
5
6
7
Minimum edge spacing 1 µs at IPO 1024  
Minimum edge spacing 2 µs at IPO 1024  
Minimum edge spacing 4 µs at IPO 1024  
Minimum edge spacing 8 µs at IPO 1024  
Minimum edge spacing 16 µs at IPO 1024  
Table 19: Minimum edge spacing  
The CFGMTD register defines the time in which two  
consecutive position events can be output at the high-  
est resolution. The default is a maximum output fre- The converter for the generation of the commutation  
quency of 500 kHz on A. This means that at the high- signals can be configured for two, four and eight-pole  
est resolution, speeds of 30,000 rpms can still be cor- motors. Three rectangular signals each with a phase  
rectly shown. In the setting with an edge spacing of shift of 120° are generated. With two-pole commuta-  
125 ns, the edges can be generated even at the high- tion, the sequence repeats once per rotation. With a  
est revolution and the maximum speed. However, the four-pole setting, the commutation sequence is gener-  
counter connected to the module must be able to cor- ated twice per rotation. With a eight-pole setting, the  
rectly process all edges in this case. The settings commutation sequence is generated four times per ro-  
with 2 µs, and 8 µs can be used for slower counters. tation.  
iC-MH8  
12 BIT ANGULAR HALL ENCODER  
Rev A0.9, Page 20/25  
CFGPOLE(1:0)  
Addr. 0x8; bit 3,2  
2 pole commutation  
4 pole commutation  
8 pole commutation  
PSIN  
00  
01  
1-  
PCOS  
U
V
W
Table 22: Commutation  
U
V
W
The zero position of the commutation, i.e. the rising  
edge of the track U, can be set as desired over a rota-  
tion. Here 256 possible positions are available.  
U
V
W
CFGCOM(7:0)  
Addr. 0x09; bit 7:0  
0x00  
0x01  
...  
0°  
-1,4°  
360  
-
256 · CFGCOM  
Figure 19: UVW signals for different settings of  
CFGPOLE  
Table 23: Commutation  
iC-MH8  
12 BIT ANGULAR HALL ENCODER  
Rev A0.9, Page 21/25  
Output Drivers  
PSIN  
Six RS422-compatible output drivers are available,  
which can be configured for the incremental signals  
and commutation signals. The following table on the  
CFGO register bits provides an overview of the possi-  
ble settings.  
PCOS  
A
B
Z
U
V
W
CFGO(1:0)  
Addr. 0x05; bit 5:4  
00  
01  
10  
11  
Incrementral Diff ABZ (U=NA, V=NB, W=NZ)  
Incr ABZ + Comm UVW  
Figure 20: ABZ differential incremental signals  
Commutation Diff UVW (A=NU, B=NV, Z=NW)  
Incr. ABZ + AB4 (U=A4, V=B4, W=0)  
PSIN  
PCOS  
Table 24: Configuration of output drivers  
A
B
Z
U
V
W
In the differential incremental mode (CFGO = ’00’, Fig-  
ure 20), quadrature signals are available on the Pins  
A, B and Z. The respective inverted quadrature sig-  
nals are available on the pins U, V and W. As a result,  
lines can be connected directly to the module. Another  
configuration of the incremental signals is specified in  
the section "Sine/Digital Converter".  
Figure 21: ABZ and UVW single ended signals  
PSIN  
PCOS  
A
B
Z
U
V
W
With CFGO = ’01’ (Figure 21) the ABZ incremental sig-  
nals and the UVW commutation signals are available  
on the six pins. As long as the current angular posi-  
tion is not yet available during the start-up phase, all  
commutation signals are at the low level.  
Figure 22: UVW differential commutation signals  
With CFGO = ’10’, the third mode (Figure 22) is avail-  
able for transferring the commutation signals via a dif-  
ferential line. The non-inverted signals are on the pins  
U, V and W, the inverted signals on A, B and Z.  
PSIN  
PCOS  
A
B
Z
U
V
W
The ABZ quadrature signals with an adjustable higher  
resolution and quadrature signals with one period per  
rotation are available in the fourth mode (Figure 23).  
Four segments can be differentiated with the pins U  
and V. This information can be used for an external  
period counter which counts the number of scanned  
complete rotations.  
Figure 23: ABZ incremental signals / period counter  
iC-MH8  
12 BIT ANGULAR HALL ENCODER  
Rev A0.9, Page 22/25  
The property of the RS422 driver of the connected line able a high transmission rate. A lower slew rate is of-  
can be adjusted in the CFGDR register.  
fered by the setting CFGDR = ’10’, which is excellent  
for longer lines in an electromagnetically sensitive en-  
vironment. Use of the setting CFGDR = ’11’ is advis-  
able at medium transmission rates with a limited driver  
capability.  
CFGDR(1:0)  
Addr. 0x05; bit 1:0  
10 MHz 4 mA (default)  
00  
01  
10  
11  
10 MHz 60 mA  
300 kHz 60 mA  
3 MHz 20 mA  
TRIHL  
00  
Addr. 0x05; bit 3:2  
Push Pull Output Stage  
Highside Driver  
Table 25: Driver property  
01  
10  
Lowside Driver  
11  
Tristate  
Signals with the highest frequency can be transmitted  
in the setting CFGDR = ’00’. The driver capability is  
at least 4 mA, however it is not designed for a 100   
line. This mode is ideal for connection to a digital in-  
Table 26: Tristate Register  
put on the same assembly. With the setting CFGDR = The drivers consist of a push-pull stage in each case  
’01’ the same transmission speed is available and the with low-side and high-side drivers which can each be  
driver power is sufficient for the connection of a line activated individually. As a result, open-drain outputs  
over a short distance. Steep edges on the output en- with an external pull-up resistor can also be realized.  
Serial Interface  
The serial interface is used to read out the absolute tailed description of the protocol, see separate inter-  
position and to parameterize the module. For a de- face specification.  
CDM  
MA  
SLI  
Ack Start CDS D11 D10  
D0  
nE nW CRC5CRC4  
Data Range  
CRC0 Stop  
Timeout  
SLO  
Figure 24: Serial Interface Protocol  
Serial Interface  
Protocol  
Mode C  
The sensor sends a fixed cycle-start sequence con-  
taining the Acknowledge-, Start and Control-Bit fol-  
lowed by the binary 12 bit sensor data. The low-active  
error bit nE a ’0’ indicates an error which can be fur-  
ther identified by reading the status register 0x77. The  
following bit nW is always at ’1’ state. Following the  
6 CRC bits the data of the next sensors, if available,  
are presented. Otherwise, the master stops generat-  
ing clock pulse on the MA line an the sensor runs into  
a timeout, indicating the end of communication.  
Cycle start sequence  
Lenght of sensor data  
CRC Polynom  
Ack/Start/CDS  
12 Bit + ERR + WARN  
0b1000011  
CRC Mode  
inverted  
Multi Cycle Data  
max. Data Rate  
not available  
10 MHz  
Table 27: Interface Protocol  
ENSSI  
Addr. 0x05; bit 7  
Extended SSI-Mode  
SSI-Mode  
0
1
Table 28: Activation of SSI mode  
The extended SSI-Mode is active if V(VZAP) = V()ZAP  
or Bit ENSSI is 0. The extended SSI-Mode must be  
iC-MH8  
12 BIT ANGULAR HALL ENCODER  
Rev A0.9, Page 23/25  
forced by applying V(VZAP) = V()ZAP before chang- With the profile ID, the data format can be requested  
ing the value of Bit ENSSI to avoid an aborted register for the following sensor data cycles in the module. A  
communication.  
read operation at address 0x42 results in 0x2C, with is  
the equivalent to 12-bit single-cycle data.  
In the SSI mode the absolute position is output with 13  
bits according to the SSI standard. (The data is trans-  
mitted as Gray code with trailing zeros.)  
The status register provides information on the status  
of the module. There are 5 different errors that can  
be signaled. Following unsuccessful programming of  
the zapping diodes, the bit PROGERR is set. If an  
attempt is made to read the current position via the se-  
rial interface during the start-up phase, an error is sig-  
naled with ERRSDATA, as the actual position is not yet  
known. The ERRAMAX bit is output to signal that the  
amplitude is too high, while the ERRAMIN bit signals  
an amplitude which is too low, caused, for example, by  
too great a distance to the magnet. If the NERR pin  
is pulled against VND outside the module, this error is  
also signaled via the serial interface. The ERREXT bit  
is then equal to ’1’. The error bits are reset again after  
the status register is read out at the address 0x77. The  
error bit in the data word is then also read in the next  
cycle as ’0’.  
Figure 25: SSI protocol, data GRAY-coded  
The register range 0x00 to 0x0F is equivalent to the  
settings with which the IC can be parameterized. The  
settings directly affect the corresponding switching  
parts. The range 0x10 to 0x1F is read-only and reflects  
the contents of the integrated zapping diodes. Follow-  
ing programming the data can be verified via these ad-  
dresses. After the supply voltage is connected, the  
contents of the zapping diodes are copied to the RAM  
area 0x00 to 0x0F. Then the settings can be overwrit-  
ten via the serial interface. Overwriting is not possible  
if the CFGPROT bit is set.  
CFGTOS  
CFGTOB  
Timeout  
16 µs  
2 µs  
0
1
x
0
0
1
2 µs  
Errors in the module are signaled via the error mes-  
sage output NERR. This open-drain output signals an  
error if the output is pulled against VND. If the er-  
ror condition no longer exists, then the pin is released  
again after a waiting time of approximately 1 ms. If the  
integrated pull-up resistor is deactivated with DPU =  
’1’, then an external resistor must be provided. With  
DPU = ’0’ it brings the pin up to the high level again.  
Table 30: Timeout for sensor data  
The timeout can be programmed to a shorter value  
with the CFGTOS bit. However, this setting is reset  
to the default value 16 µs again following a reset. The  
timeout can be permanently programmed for faster  
data transmission with the CFGTOB register via a zap-  
ping diode. Resetting to slower data transmission is  
then not possible.  
DPU  
Addr. 0x04; bit 6  
Pull-up activated  
0
1
Pull-up deactive  
The registers 0x7D to 0x7F are reserved for the man-  
ufacturer and can be provided with an ID so that the  
manufacturer can identify its modules  
Table 29: Activation of NERR pull-up  
OTP Programming  
CFGPROT  
Addr. 0x05; bit 6  
ENHC  
Addr. 0x0f; bit 7  
Default setting  
0
1
no protection  
0
1
write/read protection  
ZAP diode testing: Use a higher current for reading  
the ZAP diodes memory (0x10-0x1f)  
Table 31: Write/read protection of configuration  
Table 32: Enable High Current  
With CFGPROT = ’0’, the registers at the addresses  
0x00 to 0x0F and 0x78 to 0x7F are readable and write-  
iC-MH8  
12 BIT ANGULAR HALL ENCODER  
Rev A0.9, Page 24/25  
able. The addresses 0x10 to 0x1F and 0x77 are read-  
only. With CFGPROT = ’1’, all registers except the ad-  
dresses 0x7B and 0x7C are write-protected; the ad-  
dresses 0x77 to 0x7F are readable, while all others  
are read-protected.  
100 nF  
100 nF  
Programming  
Board  
+ 5V  
VPD VPA  
VZAP  
+ 7V  
MA  
SLI  
iC-MH8  
Serial  
Interface  
An internal programming algorithm for the ZAP diodes  
is started by setting the bit PROGZAP. This process  
can only be successful if the voltage at VZAP is greater  
than 6.5 V and the test register TEST (2:0) is not set.  
Following programming, the register is reset internally  
again. In the process, the bit PROGOK is set in the  
status register (address 0x77) when programming is  
successful, and the bit PROGERR if it is not.  
SLO  
10 µF  
100 nF  
0V  
VND VNA1 VNA2  
Figure 26: Recommended setup for external program-  
ming. A short low impedance path (shown in  
light red) must be provided directly from pin  
VZAP to pins VNA1, VNA2.  
The ZAP memory can be tested by reading the regis-  
ter range 0x10-0x1f. This test can be done with with a  
higher readout current (Bit ENHC=1) to simulate dete-  
riorated working conditions.  
For reliable ROM writing, a low impedance connection  
path as shown in Figure 26 must be established for the  
VZAP blocking capacitor (about 100 nF) between pin  
VZAP and pins VNA1, VNA2 to ensure stable VZAP  
voltage during programming. A further capacitor of  
10 µF which may be located externally (e.g. on the pro-  
gramming board) is recommended for additional block-  
ing purpose.  
Figure 27: Example PCB layout showing low impedance  
connection of capacitors to supply voltages  
(VPA, VPD, VZAP) and common ground  
A typical PCB layout may look like the one shown in  
Figure 27.  
iC-Haus expressly reserves the right to change its products and/or specifications. An info letter gives details as to any amendments and additions made to the  
relevant current specifications on our internet website www.ichaus.de/infoletter; this letter is generated automatically and shall be sent to registered users by  
email.  
Copying – even as an excerpt – is only permitted with iC-Haus’ approval in writing and precise reference to source.  
iC-Haus does not warrant the accuracy, completeness or timeliness of the specification and does not assume liability for any errors or omissions in these  
materials.  
The data specified is intended solely for the purpose of product description. No representations or warranties, either express or implied, of merchantability, tness  
for a particular purpose or of any other nature are made hereunder with respect to information/specification or the products to which information refers and no  
guarantee with respect to compliance to the intended use is given. In particular, this also applies to the stated possible applications or areas of applications of  
the product.  
iC-Haus conveys no patent, copyright, mask work right or other trade mark right to this product. iC-Haus assumes no liability for any patent and/or other trade  
mark rights of a third party resulting from processing or handling of the product and/or any other use of the product.  
As a general rule our developments, IPs, principle circuitry and range of Integrated Circuits are suitable and specifically designed for appropriate use in technical  
applications, such as in devices, systems and any kind of technical equipment, in so far as they do not infringe existing patent rights. In principle the range of  
use is limitless in a technical sense and refers to the products listed in the inventory of goods compiled for the 2008 and following export trade statistics issued  
annually by the Bureau of Statistics in Wiesbaden, for example, or to any product in the product catalogue published for the 2007 and following exhibitions in  
Hanover (Hannover-Messe).  
We understand suitable application of our published designs to be state-of-the-art technology which can no longer be classed as inventive under the stipulations  
of patent law. Our explicit application notes are to be treated only as mere examples of the many possible and extremely advantageous uses our products can  
be put to.  
iC-MH8  
12 BIT ANGULAR HALL ENCODER  
Rev A0.9, Page 25/25  
ORDERING INFORMATION  
Type  
Package  
QFN28  
Order Designation  
iC-MH8 QFN28-5x5  
iC-MH8  
For technical support, information about prices and terms of delivery please contact:  
iC-Haus GmbH  
Tel.: +49 (61 35) 92 92-0  
Am Kuemmerling 18  
D-55294 Bodenheim  
GERMANY  
Fax: +49 (61 35) 92 92-192  
Web: http://www.ichaus.com  
E-Mail: sales@ichaus.com  
Appointed local distributors: http://www.ichaus.com/sales_partners  

相关型号:

IC-MHA

HALL ANGLE ENCODER WITH SIN/COS OUTPUTS
ICHAUS

IC-MHEVALMH1D

12 BIT ANGULAR HALL ENCODER
ICHAUS

IC-MHQFN28

12 BIT ANGULAR HALL ENCODER
ICHAUS

IC-ML

HALL Position Sensor / Encoder
ICHAUS

IC-MLEVALML1D

HALL Position Sensor / Encoder
ICHAUS

IC-MLTSSOP20

HALL Position Sensor / Encoder
ICHAUS

IC-MN

25-BIT NONIUS ENCODER WITH 3-CH. SAMPLING 13-BIT Sin/D INTERPOLATION
ICHAUS

IC-MNEVALMN1D

25-BIT NONIUS ENCODER WITH 3-CH. SAMPLING 13-BIT Sin/D INTERPOLATION
ICHAUS

IC-MNQFN48

25-BIT NONIUS ENCODER WITH 3-CH. SAMPLING 13-BIT Sin/D INTERPOLATION
ICHAUS

IC-MP

8-BIT HALL ANGLE ENCODER WITH RATIOMETRIC OUTPUT
ICHAUS

IC-MPDFN10

8-BIT HALL ANGLE ENCODER WITH RATIOMETRIC OUTPUT
ICHAUS

IC-MPEVALMP1D

8-BIT HALL ANGLE ENCODER WITH RATIOMETRIC OUTPUT
ICHAUS