IC-MNEVALMN1D [ICHAUS]

25-BIT NONIUS ENCODER WITH 3-CH. SAMPLING 13-BIT Sin/D INTERPOLATION; 25位游标编码器, 3 -CH 。采样13位仙/ D插值
IC-MNEVALMN1D
型号: IC-MNEVALMN1D
厂家: IC-HAUS GMBH    IC-HAUS GMBH
描述:

25-BIT NONIUS ENCODER WITH 3-CH. SAMPLING 13-BIT Sin/D INTERPOLATION
25位游标编码器, 3 -CH 。采样13位仙/ D插值

编码器
文件: 总59页 (文件大小:1705K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
iC-MN 25-BIT NONIUS ENCODER  
WITH 3-CH. SAMPLING 13-BIT Sin/D INTERPOLATION  
Rev D1, Page 1/59  
FEATURES  
APPLICATIONS  
Multi-channel sine-to-digital  
converter  
Optical and magnetic position  
sensors  
Singleturn and multiturn  
absolute encoders  
Linear scales for absolute  
position  
3 chan. simultaneous sampling 13 bit sine-to-digital conversion  
Differential and single-ended PGA inputs to 200 kHz  
Input adaptation to current or voltage signals  
Adjustable signal conditioning for offset, amplitude and phase  
Input signal stabilization by LED or MR bridge supply tracking  
(via controlled 50 mA and 2 x 10 mA highside sources)  
2 or 3 track nonius calculation of up to 25 bit singleturn position  
Data update within 7 µs supported by flash period counting  
Serial 2-wire interface to multiturn sensors (BiSS, SSI, 2-bit)  
Fast, serial I/O interface with fail-safe RS422 transceiver  
(SSI to 4 MHz, BiSS C to 10 MHz)  
Resolver systems  
PACKAGES  
Differential 1 Vpp sin/cos outputs to 100 , short-circuit-proof  
Position preset function, selectable up/down code direction  
Signal and system monitoring with configurable error/warning  
messaging and diagnosis memory  
Device setup via I/O interface (BiSS) or serial EEPROM  
Reverse-polarity-proof and tolerant against faulty output wiring  
Power-good switch protecting the peripheral circuitry  
Single 5 V supply, operation from -40 to +95 (+110) °C  
QFN48 7x7  
BLOCK DIAGRAM  
Copyright © 2010 iC-Haus  
http://www.ichaus.com  
iC-MN 25-BIT NONIUS ENCODER  
WITH 3-CH. SAMPLING 13-BIT Sin/D INTERPOLATION  
Rev D1, Page 2/59  
DESCRIPTION  
Encoder device iC-MN is a 3-channel, simultaneous For the purpose of input signal stabilization the con-  
sampling sine-to-digital converter which interpolates ditioned signals are fed into signal level controllers  
sine/cosine sensor signals using a high precision featuring current source outputs of up to 50 mA (mas-  
SAR converter with a selectable resolution of up to ter channel) and of up to 10 mA (for the nonius and  
13 bits. Each input has a separate sample-and-hold segment channels each). These ACOx source pins  
stage which halts the track signal for the subsequent either power the LEDs of an optical encoder or the  
sequential digitization. Various 2- and 3-track Vernier magneto resistor bridges of a magnetic encoder. If  
scale computations (after Nonius) can be configured the control thresholds are reached this event can be  
for the calculation of high resolution angle positions; released for alarm messaging using the serial inter-  
these computations permit angle resolutions of up to face or the NERR output.  
25 bits.  
Both major chip functions and sensor errors are also  
The absolute angle position is output via the serial monitored and can be enabled for alarm indication.  
Interface with clock rates of up to 4 Mbit/s (SSI com- In this manner typical sensor errors, such as signal  
patible; up to 10 Mbit/s with BiSS C protocol). The loss due to wire breakage, short circuiting, dirt or ag-  
RS422 transceiver required to this end is integrated ing, for example, can be signaled by alarms.  
on the chip and has both a differential clock input and  
a differential line driver for data output.  
The device features further digital encoder functions  
covering the correction of phase errors between the  
Programmable instrumentation amplifiers with a se- tracks, for example, or the zeroing or presetting of a  
lectable gain and offset and phase correction can specific position offset for data output. Using the SSI  
be adjusted separately for each channel; these al- master also integrated on the chip position data from  
low differential or single-ended input signals. At multiturn sensors, provided by a second iC-MN, for  
the same time the inputs can either be set to high example, can be read in and synchronized.  
impedance for voltage signals from magneto resistor  
sensor bridges, for example, or to low impedance for iC-MN is protected against a reversed power supply  
adaptation and use with photosensors which provide voltage; the integrated supply switch for loads of up  
current signals, for instance. This enables the device to 20 mA extends this protection to cover the over-  
to be directly connected up to a number of different all system. The device is configured via an external  
optical and magnetic sensors.  
EEPROM.  
iC-MN 25-BIT NONIUS ENCODER  
WITH 3-CH. SAMPLING 13-BIT Sin/D INTERPOLATION  
Rev D1, Page 3/59  
CONTENTS  
PACKAGES  
5
6
S/D CONVERSION with MULTITURN  
SYNCHRONIZATION  
33  
ABSOLUTE MAXIMUM RATINGS  
THERMAL DATA  
Op. Mode Descriptions Of Multiturn Modes . 33  
MODE_ST Code 0x0C . . . . . . . . . . . . . 33  
MODE_ST Code 0x0D . . . . . . . . . . . . . 33  
MODE_ST Code 0x0E . . . . . . . . . . . . . 33  
MODE_ST Code 0x0F . . . . . . . . . . . . . 33  
6
ELECTRICAL CHARACTERISTICS  
OPERATING REQUIREMENTS: I/O Interface  
CONFIGURATION PARAMETERS  
REGISTER MAP (EEPROM)  
7
15  
16  
17  
S/D CONVERSION with DIRECT OUTPUT  
34  
Op. Mode Descriptions Of Direct Output  
Modes . . . . . . . . . . . . . . . . . . . 34  
MODE_ST Code 0x0C . . . . . . . . . . . . . 34  
MODE_ST Code 0x0D . . . . . . . . . . . . . 34  
MODE_ST Code 0x0E . . . . . . . . . . . . . 34  
MODE_ST Code 0x0F . . . . . . . . . . . . . 34  
OPERATING MODES and CALIBRATION  
PROCEDURES  
21  
Calibration Using  
Comparated Sine/Cosine Signals . . . . 22  
TRACK OFFSET CALIBRATION  
35  
I/O INTERFACE  
36  
SIGNAL CONDITIONING for MASTER-,  
SEGMENT- and NONIUS-Channel (x= M,S,N) 23  
Protocol . . . . . . . . . . . . . . . . . . . . . 36  
Output Data Length . . . . . . . . . . . . . . 36  
Output Options . . . . . . . . . . . . . . . . . 37  
Current Signals . . . . . . . . . . . . . . . . . 23  
Voltage Signals . . . . . . . . . . . . . . . . . 23  
Gain Adjustment . . . . . . . . . . . . . . . . 24  
Offset Calibration . . . . . . . . . . . . . . . . 24  
Phase Correction . . . . . . . . . . . . . . . . 26  
I/O INTERFACE with EXTENDED FUNCTIONS 38  
Protocol . . . . . . . . . . . . . . . . . . . . . 38  
Output Data Length . . . . . . . . . . . . . . 39  
Output Options . . . . . . . . . . . . . . . . . 39  
Safety Application Settings . . . . . . . . . . 40  
Busy Register . . . . . . . . . . . . . . . . . . 40  
ANALOG PARAMETERS  
27  
Signal Level Controller . . . . . . . . . . . . . 27  
Bias Current Source . . . . . . . . . . . . . . 28  
Temperature Sensor . . . . . . . . . . . . . . 28  
Signal Noise Filters . . . . . . . . . . . . . . . 28  
CONFIGURATION OF DIGITAL DRIVER  
OUTPUTS  
41  
42  
SINE-TO-DIGITAL CONVERSION MODES  
29  
COMMAND and STATUS REGISTERS  
Internal Bit Lengths . . . . . . . . . . . . . . 29  
Execution Of Internal Commands . . . . . . . 42  
Execution Of Protocol Commands . . . . . . 42  
Automatic Reset Function . . . . . . . . . . . 42  
Status Register . . . . . . . . . . . . . . . . . 43  
Non-Volatile Diagnosis Memory . . . . . . . . 43  
S/D CONVERSION with NONIUS  
CALCULATION  
30  
Output Data Verification . . . . . . . . . . . . 30  
Op. Mode Descriptions Of Nonius Modes . . 30  
MODE_ST Codes 0x00, 0x01, 0x02 . . . . . 30  
MODE_ST Codes 0x03, 0x04 . . . . . . . . . 30  
MODE_ST Codes 0x05, 0x06, 0x7 . . . . . . 31  
MODE_ST Codes 0x08, 0x09, 0xA . . . . . . 31  
MODE_ST Code 0x0B . . . . . . . . . . . . . 31  
ERROR AND WARNING BIT  
44  
Visibility Of Latched Status Messages . . . . 45  
MT INTERFACE  
46  
Configuration Of Data Lengths . . . . . . . . 46  
Error Handling . . . . . . . . . . . . . . . . . 47  
MT Interface with 2-bit mode . . . . . . . . . 48  
Principle PPR And Bit Length Dependencies  
31  
Digital Frequency Monitoring . . . . . . . . . 32  
iC-MN 25-BIT NONIUS ENCODER  
WITH 3-CH. SAMPLING 13-BIT Sin/D INTERPOLATION  
Rev D1, Page 4/59  
MT INTERFACE with EXTENDED FUNCTIONS 49  
Bank-Wise Addressing . . . . . . . . . . . . . 52  
Direct Communication To Multiturn Sensor  
.
49  
50  
51  
52  
APPLICATION NOTES: Configuration As  
BiSS C-Slave Including EDS (Electronic  
PRESET FUNCTION  
Data Sheet)  
55  
57  
STARTUP BEHAVIOR  
APPLICATION NOTES: PLC Operation  
EEPROM INTERFACE  
PLC Operation . . . . . . . . . . . . . . . . . 57  
Memory Map And Register Access . . . . . . 52  
Direct Addressing . . . . . . . . . . . . . . . 52 DESIGN REVIEW: Notes On Chip Functions  
58  
iC-MN 25-BIT NONIUS ENCODER  
WITH 3-CH. SAMPLING 13-BIT Sin/D INTERPOLATION  
Rev D1, Page 5/59  
PACKAGES  
PIN CONFIGURATION QFN48  
PIN FUNCTIONS  
No. Name  
21 MAO  
22 SLI  
23 NMA*  
24 MA*  
Function  
I/O Interface, clock output  
I/O Interface, data input  
I/O Interface, clock input -  
I/O Interface, clock input +  
25 NSLO* I/O Interface, data output -  
26 SLO*  
27 MTSLI  
28 T3  
I/O Interface, data output +  
Multiturn Interface, data input  
External Trigger Input,  
Test Signal Input  
29 MTMA  
30 T2  
Multiturn Interface, clock output  
Test Signal Input  
31 GND*  
32 VDD*  
Ground  
+4.5 to 5.5 V Supply Voltage  
33 NERR* Error Message Output,  
System Error Message Input  
34 n.c.  
35 n.c.  
36 n.c.  
37 NSOUT* Analog Output Sine - (Master)  
38 PSOUT* Analog Output Sine + (Master)  
39 NCOUT* Analog Output Cosine - (Master)  
40 PCOUT* Analog Output Cosine + (Master)  
PIN FUNCTIONS  
No. Name Function  
1 NSINS Signal Input Sine - (Segment)  
2 PSINS Signal Input Sine + (Segment)  
3 PCINS Signal Input Cosine + (Segment)  
4 NCINS Signal Input Cosine - (Segment)  
5 NSINM Signal Input Sine - (Master)  
6 PSINM Signal Input Sine + (Master)  
7 PCINM Signal Input Cosine+ (Master)  
8 NCINM Signal Input Cosine - (Master)  
9 NSINN Signal Input Sine - (Nonius)  
10 PSINN Signal Input Sine + (Nonius)  
11 PCINN Signal Input Cosine + (Nonius)  
12 NCINN Signal Input Cosine - (Nonius)  
13 n.c.  
41 T0  
42 T1  
Test Signal Output  
Test Signal Output  
43 ACOM* Signal Level Controller Outp. (Master)  
44 VACO* +4.5 to 5.5 V Signal Level Controller  
Supply  
45 ACON* Signal Level Controller Output  
46 ACOS* Signal Level Controller Output,  
VREFin Ref. Voltage Input/Output  
47 GNDA  
48 VDDA  
Sub-System Ground Output  
Sub-System Positive Supply Output  
* :  
Pin is immune against faulty output  
or supply connection.  
14 n.c.  
15 n.c.  
16 n.c.  
n.c. :  
Pin is not connected.  
17 DIR  
Sense of Rotation Preselection Input,  
Calibration Signal IPB  
18 PRES Preset Input  
19 SCL  
20 SDA  
EEPROM Interface, clock line  
EEPROM Interface, data line  
Wiring unused input pins can be recommended, especially for pins SLI, DIR, PRES and T2 (to GNDA). For  
calibrating the internal bias current source a pull-down resistor of 5 k±1 % connected from pin DIR to GNDA  
is useful (see Figure 10).  
To improve heat dissipation the thermal pad of the QFN package (bottom side) should be joined to an extended  
copper area which must have GNDA potential.  
iC-MN 25-BIT NONIUS ENCODER  
WITH 3-CH. SAMPLING 13-BIT Sin/D INTERPOLATION  
Rev D1, Page 6/59  
ABSOLUTE MAXIMUM RATINGS  
These ratings do not imply operating conditions; functional operation is not guaranteed. Beyond these ratings device damage may occur.  
Item Symbol  
No.  
Parameter  
Conditions  
Unit  
Min.  
Max.  
G001 V()  
Voltage at VDD, GND, NSLO, SLO,  
NERR, PSOUT, NSOUT, PCOUT,  
NCOUT, VACO  
referenced to GND  
-6  
6
V
G002 V()  
G003 V()  
Voltage at MA, NMA  
referenced to GND  
-9  
14  
6
V
V
Pin-to-Pin Voltage vs. VDD, GND,  
NSLO, SLO, NERR, PSOUT, NSOUT,  
PCOUT, NCOUT, VACO  
G004 V()  
Voltage at NSINS, PSINS, PCINS,  
NCINS, NSINM, PSINM, PCINM,  
NCINM, NSINN, PSINN, PCINN,  
NCINN, DIR, PRES, SCL, SDA, MAO,  
SLI, MTSLI, T2, MTMA, T3, T0, T1,  
ACOM, ACON, ACOS, GNDA, VDDA  
referenced to AGND, V() < VDD + 0.3 V  
-0.3  
6
V
G005 I(VDD)  
G006 I()  
Current in VDD  
-100  
-50  
400  
50  
mA  
mA  
Current in VDDA, GNDA, PSOUT,  
NSOUT, PCOUT, NCOUT  
G007 I()  
Current in PSINM, NSINM, PCINM,  
NCINM, PSINS, NSINS, PCINS,  
NCINS, PSINN, NSINN, PCINN,  
NCINN, DIR, PRES, SCL, SDA, MAO,  
SLI, T3, T2, NERR, T0, T1  
-20  
20  
mA  
G008 I()  
Current in SLO, NSLO, VACO  
Current in MA, NMA  
-120  
-0.6  
-100  
-50  
120  
1
mA  
mA  
mA  
mA  
kV  
G009 I()  
G010 I(ACOM)  
G011 I()  
Current in ACOM  
20  
20  
2
Current in ACOS, ACON  
ESD Susceptibility at all pins  
Junction Temperature  
G012 Vd()  
G013 Tj  
HBM 100 pF discharged through 1.5 k  
-40  
-40  
150  
150  
° C  
° C  
G014 Ts  
Storage Temperature Range  
THERMAL DATA  
Operating conditions: VDD = 5 V ±10 %  
Item Symbol  
No.  
Parameter  
Conditions  
Unit  
Min. Typ. Max.  
-40 110  
T01 Ta  
Operating Ambient Temperature Range package QFN48  
° C  
T02 Rthja  
Thermal Resistance Chip to Ambient; QFN48 surface mounted to PCB according to  
30  
K/W  
QFN48  
JEDEC 51  
All voltages are referenced to ground unless otherwise stated.  
All currents flowing into the device pins are positive; all currents flowing out of the device pins are negative.  
iC-MN 25-BIT NONIUS ENCODER  
WITH 3-CH. SAMPLING 13-BIT Sin/D INTERPOLATION  
Rev D1, Page 7/59  
ELECTRICAL CHARACTERISTICS  
Operating conditions: VDD = VACO = 5 V ±10 %, Tj = -40...125 °C,  
IBP calibrated to 200 µA, reference point GNDA (GND for digital I/O pins), unless otherwise stated  
Item Symbol  
No.  
Parameter  
Conditions  
Unit  
Min.  
Typ.  
Max.  
Total Device  
001 VDD,  
VACO  
Permissible Supply Voltage  
Supply Current in VDD  
4.5  
5.5  
V
002 I(VDD)  
Tj = 27 °C, no load  
45  
60  
0
mA  
mA  
003 I(VDDA)  
Permissible Load Current at  
VDDA  
-20  
0.4  
004 Vc()hi  
Clamp Voltage hi  
(all pins with the exception of MA,  
NMA)  
Vc()hi = V() VDD, I() = 1 mA  
1.5  
V
005 Vc()hi  
006 Vc()lo  
Clamp Voltage hi MA, NMA  
Vc()hi = V() VDD, I() = 10 mA  
I() = -1 mA  
12.5  
-1.5  
16  
V
V
Clamp Voltage lo  
-0.3  
(all pins with the exception of  
VDDA, MA, NMA)  
007 Vc()lo  
008 Vc()lo  
Clamp Voltage lo at VDDA  
I() = -1 mA  
-1.5  
-17  
-0.2  
-10  
V
V
Clamp Voltage lo at MA, NMA  
I() = -10 mA  
Signal Conditioning and Inputs: PSINx, NSINx, PCINx, NCINx (x = M, S, N)  
101  
Vin()sig  
Permissible V-Mode Input Voltage  
UIN = 1, TUIN = 0  
0.75  
-0.1  
VDDA  
1.5  
VDDA  
+ 0.1  
V
V
UIN = 1, TUIN = 1, DCPOS = 1  
102 Iin()  
103 Rin()  
V-Mode Input Current  
UIN = 1, TUIN = 0  
-100  
16.4  
100  
nA  
V-Mode Input Resistance  
Permissible I-Mode Input Current  
vs. VREFin, Tj = 27 °C, UIN = 1, TUIN = 1  
20  
23.6  
kΩ  
104  
Iin()sig  
UIN = 0;  
DCPOS = 0  
DCPOS = 1  
-10  
10  
-300  
300  
µA  
µA  
105 SCR()  
106  
Permissible Signal Contrast Ratio ratio of Iin()pk vs. Iin()dc  
0.125  
1
Rin()  
I-Mode Input Resistance  
Tj = 27 °C, vs. VREFin;  
UIN = 0, RIN = 00  
UIN = 0, RIN = 01  
UIN = 0, RIN = 10  
UIN = 0, RIN = 11  
1.1  
1.6  
2.2  
3.2  
1.6  
2.3  
3.2  
4.6  
2.1  
3.0  
4.2  
6.0  
kΩ  
kΩ  
kΩ  
kΩ  
107 TCRin  
108  
Temperature Coefficient Rin  
Input Reference Voltage  
0.15  
%/K  
VREFin  
DCPOS = 1  
DCPOS = 0  
1.35  
2.25  
1.5  
2.5  
1.65  
2.75  
V
V
109 Vin()os  
110  
Input Offset Voltage  
referred to side of input  
150  
µV  
Vin()diff  
Recommended Differential Input  
Voltage  
Vin()diff = V(PSINx) V(NSINx),  
Vin()diff = V(PCINx) V(NCINx);  
TUIN = 0  
20  
80  
1000  
4000  
mVpp  
mVpp  
TUIN = 1  
111 Vcore()  
112  
Recommended Internal Signal  
Level  
G * Vin()diff  
6
Vpp  
GF, GC  
Selectable Gain Factors  
TUIN = 0  
TUIN = 1  
6
1.5  
300  
75  
113 GFdiff  
114 GFdiff  
Differential Gain Accuracy  
(Master)  
referenced to fine gain range  
-1  
-2  
1
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
%
Differential Gain Accuracy  
(Segment, Nonius)  
referenced to fine gain range  
2
115 GFSabs Absolute Gain Accuracy Sine  
referenced to fine gain range, guaranteed  
monotony  
-20  
-1  
20  
1
(Master)  
116 GFCabs Absolute Gain Accuracy Cosine referenced to fine gain range, guaranteed  
(Master)  
monotony  
117 GFSabs Absolute Gain Accuracy Sine  
referenced to fine gain range, guaranteed  
monotony  
-20  
-1  
20  
1
(Segment, Nonius)  
118 GFCabs Absolute Gain Accuracy Cosine referenced to fine gain range, guaranteed  
(Segment, Nonius)  
monotony  
119 GCabs Gain Accuracy  
referenced to coarse gain range  
-8  
8
iC-MN 25-BIT NONIUS ENCODER  
WITH 3-CH. SAMPLING 13-BIT Sin/D INTERPOLATION  
Rev D1, Page 8/59  
ELECTRICAL CHARACTERISTICS  
Operating conditions: VDD = VACO = 5 V ±10 %, Tj = -40...125 °C,  
IBP calibrated to 200 µA, reference point GNDA (GND for digital I/O pins), unless otherwise stated  
Item Symbol  
No.  
Parameter  
Conditions  
Unit  
Min.  
Typ.  
Max.  
120  
121  
122  
123  
VOScal  
Offset Calibration Range  
measured at output, source V(ACOx) = 3 V,  
REFVOS = 00;  
ORS_x/ORC_x = 00  
ORS_x/ORC_x = 01  
ORS_x/ORC_x = 10  
±450  
±900  
±2700  
±5400  
mV  
mV  
mV  
mV  
ORS_x/ORC_x = 11  
VOScal2  
VOScal3  
VOScal4  
Offset Calibration Range  
Offset Calibration Range  
Offset Calibration Range  
measured at output, source V05,  
REFVOS = 01;  
ORS_x/ORC_x = 00  
ORS_x/ORC_x = 01  
ORS_x/ORC_x = 10  
ORS_x/ORC_x = 11  
±1500  
±3000  
±9000  
±18000  
mV  
mV  
mV  
mV  
measured at output, source V025,  
REFVOS = 10;  
ORS_x/ORC_x = 00  
ORS_x/ORC_x = 01  
ORS_x/ORC_x = 10  
ORS_x/ORC_x = 11  
±750  
±1500  
±4500  
±9000  
mV  
mV  
mV  
mV  
measured at output, source VDC = 125 mV,  
REFVOS = 11;  
ORS_x/ORC_x = 00  
ORS_x/ORC_x = 01  
ORS_x/ORC_x = 10  
ORS_x/ORC_x = 11  
±375  
±750  
±2250  
±4500  
mV  
mV  
mV  
mV  
124 VOSdiff Differential Linearity Error of  
-0.5  
-2  
0.5  
2
LSB  
LSB  
LSB  
LSB  
Offset Correction Master  
125 VOSdiff Differential Linearity Error of Off-  
set Correction Segment, Nonius  
126 VOSint Integral Linearity Error of Offset  
-100  
-100  
100  
100  
Correction Master  
127 VOSint Integral Linearity Error of Offset  
Correction Segment, Nonius  
128 PHIcal  
Phase Correction Range  
sine vs. cosine signal  
±10.4  
°
129 PHIdiff  
Differential Linearity Error of  
Phase Correction Master  
-0.25  
-2  
0.25  
2
LSB  
130 PHIdiff  
Differential Linearity Error of  
Phase Correction Segment, Non-  
ius  
LSB  
131 PHIint  
132 PHIint  
Integral Linearity Error of Phase  
Correction Master  
-20  
-20  
200  
250  
20  
20  
LSB  
LSB  
kHz  
kHz  
Integral Linearity Error of Phase  
Correction Segment, Nonius  
133  
fin()max  
Permissible Input Frequency  
angle accuracy better 8 bit  
134 fhc()  
Input Amplifier Cut-off Frequency  
(-3 dB)  
iC-MN 25-BIT NONIUS ENCODER  
WITH 3-CH. SAMPLING 13-BIT Sin/D INTERPOLATION  
Rev D1, Page 9/59  
ELECTRICAL CHARACTERISTICS  
Operating conditions: VDD = VACO = 5 V ±10 %, Tj = -40...125 °C,  
IBP calibrated to 200 µA, reference point GNDA (GND for digital I/O pins), unless otherwise stated  
Item Symbol  
No.  
Parameter  
Conditions  
Unit  
Min.  
Typ.  
Max.  
Signal Level Controller: ACOM  
401  
Vs()hi  
Saturation Voltage hi  
Short-circuit Current hi  
Vs()hi = V(VACO) - V();  
ACOR_M(6:5) = 00, I() = -5 mA  
ACOR_M(6:5) = 01, I() = -10 mA  
ACOR_M(6:5) = 10, I() = -25 mA  
ACOR_M(6:5) = 11, I() = -50 mA  
1
1
1
1
V
V
V
V
402  
Isc()hi  
V() = 0...V(VACO) 1 V;  
ACOR_M(6:5) = 00  
ACOR_M(6:5) = 01  
ACOR_M(6:5) = 10  
ACOR_M(6:5) = 11  
-9.5  
-19  
-46  
-85  
-7  
-14.5  
-36  
-5  
mA  
mA  
mA  
mA  
-10  
-25  
-50  
-73  
403 Ilk()  
404 Tctrl  
Residual Current With Reversed  
Supply  
50  
µA  
Control Time Constant  
quadratic or sum regulation  
1.6  
3
ms  
V
405 Vscq()avg Controlled Average S/C Signal  
Amplitude:  
quadratic regulation: ACOT_M(8:7) = 00,  
Op.mode ANA_M  
2.7  
3.3  
SQRT of [V(PSOUT)-  
V(NSOUT)]2 + [V(PCOUT)-  
V(NCOUT)]2  
406 Vt()min  
407 Vt()max  
408 It()min  
409 It()max  
Signal Monitoring AM_Min  
Signal Monitoring AM_Max  
Control Monitoring ACM_Min  
Control Monitoring ACM_Max  
referred to Vscq()  
40  
135  
3
%
referred to Vscq()  
%
referenced to range ACOR_M()  
referenced to range ACOR_M()  
%Isc  
%Isc  
90  
Signal Level Controller: ACOS, ACON  
501  
Vs()hi  
Saturation Voltage hi  
Vs()hi = V(VACO) V();  
ACOR_x(5) = 0, I() = -5 mA  
ACOR_x(5) = 1, I() = -10 mA  
1
1
V
V
502  
Isc()hi  
Short-circuit Current hi  
V() = 0...V(VACO) 1 V;  
ACOR_x(5) = 0  
-9.5  
-19  
-7  
-14.5  
-5  
-10  
mA  
mA  
ACOR_x(5) = 1  
503 Ilk()  
504 Tctrl  
Residual Current with Reverse  
Polarity  
50  
µA  
Control Time Constant  
control to sine square or sum  
1.6  
3
ms  
V
505 Vscq()avg Controlled Average S/C Signal  
Amplitude:  
quadratic regulation: ACOT_x(7:6) = 00,  
operating mode ANA_x  
2.7  
3.3  
SQRT of [V(PSOUT)-  
V(NSOUT)]2 + [V(PCOUT)-  
V(NCOUT)]2  
506 Vt()min  
507 Vt()max  
508 It()min  
509 It()max  
Signal Monitoring AN_Min,  
AS_Min  
referred to Vscq()  
40  
135  
3
%
%
Signal Monitoring AN_Max,  
AS_Max  
referred to Vscq()  
Control Monitoring ACN_Min,  
ACS_Min  
referenced to range ACOR_x()  
referenced to range ACOR_x()  
%Isc  
%Isc  
V
Control Monitoring ACN_Max,  
ACS_Max  
90  
510 Vin(ACOS) Permissible Ref. Input Voltage at CVREF = 11  
ACOS  
0.75  
VDDA  
2  
iC-MN 25-BIT NONIUS ENCODER  
WITH 3-CH. SAMPLING 13-BIT Sin/D INTERPOLATION  
Rev D1, Page 10/59  
ELECTRICAL CHARACTERISTICS  
Operating conditions: VDD = VACO = 5 V ±10 %, Tj = -40...125 °C,  
IBP calibrated to 200 µA, reference point GNDA (GND for digital I/O pins), unless otherwise stated  
Item Symbol  
No.  
Parameter  
Conditions  
Unit  
Min.  
Typ.  
Max.  
Sample-&-Hold Stage, Signal Filter and Sine-To-Digital Conversion  
601  
fc1()  
Cut-off Frequency of M/S/N  
Channel Signal Filter  
(-3 dB lowpass filter)  
ENF(1) = 1;  
fin (master channel) < 20 Hz  
fin (master channel) > 1300 Hz  
4
300  
kHz  
kHz  
602 amax  
Permissible Angle Acceleration  
for 3(2) track nonius calculation  
ENF(1) = 1  
1000  
Mrad/s2  
603 AAabs  
604 AAR  
Absolute Angular Accuracy  
Repeatability  
Used bit length UBL_x = 0x0D: 13 bit  
±2  
±1  
LSB  
LSB  
605  
tcnv  
Used bit length UBL_x:  
0x0D: 13 bit  
0x0C: 12 bit  
0x0B: 11 bit  
0x0A: 10 bit  
0x09: 9 bit  
0x08: 8 bit  
0x07: 7 bit  
0x06: 6 bit  
0x05: 5 bit  
Conversion Time (1 Channel)  
4.25  
3.88  
3.5  
3.13  
2.75  
2.5  
2.25  
2.0  
1.75  
1.5  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
0x04: 4 bit  
606 trec()  
Recovery Time Sampling-to-  
Sampling  
termination of calculation and synchronization  
(Nonius or MT modes) to follow-up S&H trigger  
1.25  
300  
µs  
Analog Line Driver Outputs: PSOUT, NSOUT, PCOUT, NCOUT  
701 Vout()  
702  
Output Amplitude  
RLdiff = 100 , VDD = 4.5 V, DC level = VDD/2  
mV  
fc2()  
Cut-off Frequency of Line Driver  
Signal Filter  
(-3 dB lowpass filter)  
ENF(0) = 1;  
fin (master channel) < 20 Hz  
fin (master channel) > 1300 Hz  
8
600  
kHz  
kHz  
703 fc3()  
Cut-off Frequency of Line Driver CL = 500 pF, Vpp = 0.5 V, ENF0 = 1  
(-3 dB)  
500  
kHz  
704 Voffs()  
705 Isc()hi  
706 Isc()lo  
707 SR()  
708 Ilk()  
Offset Voltage  
-8  
-40  
15  
8
mV  
mA  
mA  
V/µs  
µA  
Short-circuit Current hi  
Short-circuit Current lo  
Slew Rate  
V() = GND  
-20  
20  
5
-15  
40  
V() = VDD  
RLdiff = 100 , CL = 25 pF  
Residual Current with Reverse  
Polarity  
-50  
50  
2
709 Vout()err  
Output Signal with Temperature VTs > VTth  
Error  
50  
5
%VDD  
710 Rout()  
Output Impedance  
Op.Mode ANA_M, ANA_N, ANA_S  
kΩ  
711 fout()cal  
Permissible Output Frequency  
During Calibration  
Op.Mode ANA_M, ANA_N, ANA_S;  
CL = 200 pF  
kHz  
Bias Current Source and Reference Voltages  
801 IBP  
Bias Current Source  
IBP calibrated to 200 µA  
referenced to GNDA  
referenced to GNDA  
referenced to GNDA  
92.5  
48  
100  
50  
107.5  
52  
%
802 VPAH  
803 V05  
804 V025  
Reference Voltage VPAH  
Reference Voltage V05  
Reference Voltage V025  
%VDD  
mV  
460  
512  
50  
570  
%V05  
iC-MN 25-BIT NONIUS ENCODER  
WITH 3-CH. SAMPLING 13-BIT Sin/D INTERPOLATION  
Rev D1, Page 11/59  
ELECTRICAL CHARACTERISTICS  
Operating conditions: VDD = VACO = 5 V ±10 %, Tj = -40...125 °C,  
IBP calibrated to 200 µA, reference point GNDA (GND for digital I/O pins), unless otherwise stated  
Item Symbol  
No.  
Parameter  
Conditions  
Unit  
Min.  
Typ.  
Max.  
Power-Down-Reset  
901 VDDon  
Turn-on Threshold VDD  
(power on release)  
increasing voltage VDD  
decreasing voltage VDD  
VDDhys = VDDon VDDoff  
includes tbusy()cfg;  
MODE_MT = 00  
MODE_MT = 00  
3.6  
3.1  
400  
3.9  
3.4  
4.3  
3.8  
V
V
902 VDDoff  
Turn-off Threshold VDD  
(power down reset)  
903 VDDhys  
Hysteresis  
mV  
904  
tready()cfg Operation Start-Up Time  
21  
29  
ms  
ms  
Clock Oscillator  
A01 fosc  
Clock Frequency  
8
MHz  
mV  
Supply Switch and Reverse Polarity Protection: VDDA, GNDA  
B01 Vs()  
Switch Drop-Off Voltage vs. VDD V() = V(VDD) V(VDDA), I(VDDA) = 0  
115  
(unloaded)  
B02 Rs()  
B03 Vs()  
VDDA Switch On-Resistance  
VDD vs. VDDA, load current to 20 mA  
5
1
10  
20  
7
Switch Drop-Off Voltage vs.  
GNDA (unloaded)  
V() = V(GNDA) V(GND), I(GNDA) = 0  
105  
mV  
B04 Rs()  
GNDA Switch On-Resistance  
ground current to 20 mA  
3.8  
Temperature Monitoring  
C01  
VTSw  
Sensor Voltage for Warning  
Temperature  
VTSw() = VDDA V(T1), Tj = 27 °C,  
610  
635  
640  
665  
670  
695  
mV  
mV  
operating mode TWIB  
C02  
VTSe  
Sensor Voltage for Shutdown  
Temperature  
VTSe() = VDDA V(T1), Tj = 27 °C,  
operating mode TEIB  
C03 TCs  
C04  
Sensor Voltage Temperature  
Coefficient  
-1.95  
mV/K  
VTth  
Activation Threshold Temperature  
Warning  
VTth() = VDDA V(T0), Tj = 27 °C;  
CFGTA(4:0) = 0x00  
CFGTA(4:0) = 0x0F  
225  
400  
585  
285  
498  
725  
355  
615  
895  
mV  
mV  
mV  
CFGTA(4:0) = 0x1F  
C05 TCth  
Activation Threshold Temperature  
Coefficient  
1.32  
‰/K  
C06 Thysw  
C07 T  
Warning Temperature Hysteresis  
4
5
9
15  
15  
30  
19  
20  
39  
°C  
°C  
°C  
Relative Shutdown Temperature T = Te Tw  
Shutdown Temperature Hystere-  
sis  
C08 Thyse  
EEPROM Interface: SCL, SDA  
D01 Vs()lo  
D02 Isc()lo  
D03 Vt()hi  
D04 Vt(lo)  
D05 Vt()hys  
D06 Ipu()  
D07 Vpu()  
Saturation Voltage lo  
I() = 4 mA  
450  
60  
2
mV  
mA  
V
Short-circuit Current lo  
Input Threshold Voltage hi  
Input Threshold Voltage lo  
Input Hysteresis  
4
800  
150  
-750  
mV  
mV  
µA  
Vt(hys) = Vt()hi Vt()lo  
V() = 0...VDD 1 V  
Vpu() = VDD V(), I() = -5 µA  
250  
Input Pull-up Current  
Input Pull-up Voltage  
-300  
-60  
400  
80  
mV  
kHz  
ms  
D08 fclk(SCL) Clock Frequency  
45  
62.5  
13  
D09 tbusy()cfg Duration Of Startup Configuration error free EEPROM access  
15  
iC-MN 25-BIT NONIUS ENCODER  
WITH 3-CH. SAMPLING 13-BIT Sin/D INTERPOLATION  
Rev D1, Page 12/59  
ELECTRICAL CHARACTERISTICS  
Operating conditions: VDD = VACO = 5 V ±10 %, Tj = -40...125 °C,  
IBP calibrated to 200 µA, reference point GNDA (GND for digital I/O pins), unless otherwise stated  
Item Symbol  
No.  
Parameter  
Conditions  
Unit  
Min.  
Typ.  
Max.  
I/O Interface: RS442 Line Driver Outputs SLO, NSLO  
E01  
Vs()hi  
Saturation Voltage hi  
Vs() = VDD V();  
DSC(1:0) = 00, I() = -1.2 mA  
DSC(1:0) = 01, I() = -4 mA  
DSC(1:0) = 10, I() = -20 mA  
DSC(1:0) = 11, I() = -50 mA  
200  
200  
400  
900  
mV  
mV  
mV  
mV  
E02  
E03  
Vs()lo  
Isc()hi  
Saturation Voltage lo  
Short-circuit Current hi  
DSC(1:0) = 00, I() = 1.2 mA  
DSC(1:0) = 01, I() = 4 mA  
DSC(1:0) = 10, I() = 20 mA  
DSC(1:0) = 11, I() = 50 mA  
200  
200  
400  
900  
mV  
mV  
mV  
mV  
V() = 0 V;  
DSC(1:0) = 00  
DSC(1:0) = 01  
DSC(1:0) = 10  
DSC(1:0) = 11  
-3  
-10  
-45  
-120  
-1.2  
-4  
-20  
-50  
mA  
mA  
mA  
mA  
E04  
Isc()lo  
Short-circuit Current lo  
V() = VDD  
DSC(1:0) = 00  
DSC(1:0) = 01  
DSC(1:0) = 10  
DSC(1:0) = 11  
1.2  
4
20  
50  
3
10  
45  
120  
mA  
mA  
mA  
mA  
E05 Ilk()tri  
Tristate Leakage Current  
Rise Time hi  
DTRI(1:0) = 11  
-10  
10  
µA  
E06  
tr()  
RL = 100 to GND, DSC(1:0) = 11;  
DSR(1:0) = 00  
DSR(1:0) = 01  
DSR(1:0) = 10  
DSR(1:0) = 11  
10  
22  
60  
30  
40  
140  
350  
ns  
ns  
ns  
ns  
250  
E07  
tf()  
Fall Time lo  
RL = 100 to VDD, DSC(1:0) = 11;  
DSR(1:0) = 00  
5
22  
60  
250  
15  
40  
140  
350  
ns  
ns  
ns  
ns  
DSR(1:0) = 01  
DSR(1:0) = 10  
DSR(1:0) = 11  
E08 Ilk()  
Residual Current with Reverse  
Polarity  
-100  
100  
µA  
I/O Interface: RS442 Line Receiver MA, NMA  
F01 Vin()  
F02 Rin()  
F03 Vhys()  
F04 Vt()hi  
F05 Vt()lo  
Permissible Input Voltage  
Input Resistance  
-7  
15  
50  
12  
25  
200  
2
V
kΩ  
mV  
V
MA vs. GND, NMA vs. GND  
Vhys() = ( V(MA) - V(NMA) ) / 2  
20  
Differential Input Hysteresis  
Input Threshold Voltage hi at MA pin NMA open  
Input Threshold Voltage lo at MA pin NMA open  
800  
mV  
MHz  
F06  
fclk()  
Permissible Clock Frequency:  
SSI protocol  
MODE_ST = 0x05 to 0x0B, 0x0D to 0x0F  
4
F07 fclk()  
Permissible Clock Frequency:  
BiSS protocol  
NBISS = 0  
10  
50  
MHz  
ns  
F08 tp(MA-  
SLO)  
Propagation Delay:  
MA edge vs. SLO output  
RL(SLO/NSLO) = 120 Ω  
10  
F09  
Processing Time Singlecycle  
Data (delay of start bit)  
Nonius modes:  
tbusy_s  
MODE_ST = 0x00 to 0x02  
MODE_ST = 0x03 to 0x04, 2 track  
MODE_ST = 0x03 to 0x04, 3 track  
MODE_ST = 0x05 to 0x0B  
MT modes:  
tcnv *1  
tcnv *2  
tcnv *3  
0
µs  
µs  
µs  
µs  
MODE_ST = 0x0C, 3 track  
MODE_ST = 0x0D to 0x0F  
tcnv *3  
0
µs  
µs  
F10 tbusy_r  
F11 tidle  
Processing Time Register Ac-  
cess (delay of start bit)  
with read access to EEPROM  
2
2
ms  
Interface Blocking Time  
powering up without EEPROM  
ms  
iC-MN 25-BIT NONIUS ENCODER  
WITH 3-CH. SAMPLING 13-BIT Sin/D INTERPOLATION  
Rev D1, Page 13/59  
ELECTRICAL CHARACTERISTICS  
Operating conditions: VDD = VACO = 5 V ±10 %, Tj = -40...125 °C,  
IBP calibrated to 200 µA, reference point GNDA (GND for digital I/O pins), unless otherwise stated  
Item Symbol  
No.  
Parameter  
Conditions  
Unit  
Min.  
Typ.  
Max.  
I/O Interface: Clock Line Output MAO  
G01 Vs()hi  
G02 Vs()lo  
G03 Isc()hi  
G04 Isc()lo  
Saturation Voltage hi  
Saturation Voltage lo  
Short-circuit Current hi  
Short-circuit Current lo  
Vs()hi = VDD V(), I() = -4 mA  
I() = 4 mA  
450  
450  
-30  
65  
mV  
mV  
mA  
mA  
-85  
20  
Test Signal Inputs: T2, T3  
H01 Vt()hi  
H02 Vt()lo  
H03 Vt()hys  
H04 Ipd()  
H05 Vpd()  
H06 Ipu()  
H07 Vpu()  
Input Threshold Voltage hi  
2
V
Input Threshold Voltage lo  
Input Hysteresis  
800  
150  
4
mV  
mV  
µA  
250  
30  
Input-Pull-Down-Current at T2  
Input-Pull-Down-Voltage at T2  
Input Pull-up Current at T3  
Input Pull-up Voltage at T3  
V() = 1 V...VDD  
75  
650  
-5  
I() = 5 µA  
mV  
µA  
V() = 0...VDD 1 V  
Vpu() = VDD V(), I() = -5 µA  
-65  
30  
650  
mV  
Test Signal Outputs: T0, T1  
I01 Vs()hi  
I02 Vs()lo  
I03 Isc()hi  
I04 Isc()lo  
I05 Voffs()  
Saturation Voltage hi  
Vs()hi = VDD V(), I() = -4 mA  
500  
600  
-15  
60  
mV  
mV  
mA  
mA  
mV  
Saturation Voltage lo  
Short-circuit Current hi  
Short-circuit Current lo  
I() = 4 mA  
-60  
15  
Analog Buffer Offset Voltage at  
T0  
Vos() = V(T1) V(T0), operating mode TBOS  
-25  
25  
I/O Interface: Input SLI  
J01 Vt()hi  
J02 Vt()lo  
J03 Vt()hys  
J04 Ipd()  
J05 Vpd()  
Input Threshold Voltage hi  
2
V
Input Threshold Voltage lo  
Input Hysteresis  
0.8  
150  
4
V
250  
30  
mV  
µA  
mV  
Input Pull-down Current  
Input Pull-Down Voltage  
V() = 1 V...VDD  
I() = 5 µA  
75  
650  
Digital Inputs: DIR, PRES  
K01 Vt()hi  
K02 Vt()lo  
K03 Vt()hys  
K04 Ipd()  
K05 Vs()hi  
K06 Vs()lo  
K07 Vpd()  
Input Threshold Voltage hi  
2
V
Input Threshold Voltage lo  
Input Hysteresis  
0.8  
150  
20.5  
V
250  
120  
mV  
µA  
mV  
mV  
mV  
Input Pull-down Current  
Saturation Voltage hi  
Saturation Voltage lo  
Input Pull-down Voltage  
V() = 1 V ... VDD  
296  
295  
275  
600  
Vs()hi = VDD - V(); I() = 1.6 mA  
during test function, I() = 1.6 mA  
during test function, I() = 5 µA  
iC-MN 25-BIT NONIUS ENCODER  
WITH 3-CH. SAMPLING 13-BIT Sin/D INTERPOLATION  
Rev D1, Page 14/59  
ELECTRICAL CHARACTERISTICS  
Operating conditions: VDD = VACO = 5 V ±10 %, Tj = -40...125 °C,  
IBP calibrated to 200 µA, reference point GNDA (GND for digital I/O pins), unless otherwise stated  
Item Symbol  
No.  
Parameter  
Conditions  
Unit  
Min.  
Typ.  
Max.  
Error Message Input/Output: NERR  
L01 Vs()lo  
L02 Isc()lo  
L03 Vt()hi  
L04 Vt()lo  
L05 Vt()hys  
L06 Ipu()  
L07 Vpu()  
L08 Ilk()  
Saturation Voltage lo  
Short-circuit Current lo  
Input Threshold Voltage hi  
Input Threshold Voltage lo  
Input Hysteresis  
I() = 4 mA  
450  
60  
2
mV  
mA  
V
4
0.8  
150  
-750  
V
Vt(hys) = Vt()hi - Vt()lo  
V() = 0... VDD - 1 V  
250  
mV  
µA  
mV  
µA  
Input Pull-up Current  
Input Pull-up Voltage  
-300  
-60  
400  
100  
Vpu() = VDD - V(), I() = -5 µA  
Residual Current with Reverse  
Polarity  
-100  
Multiturn Interface: MTMA, MTSLI  
Input Threshold Voltage hi  
M01 Vt()hi  
M02 Vt()lo  
M03 Vt()hys  
M04 Ipd()  
M05 Vpd()  
M06 Ipu()  
M07 Vpu()  
M08 Vs()hi  
M09 Vs()lo  
M10 Isc()hi  
M11 Isc()lo  
M12 fclk()  
M13 fclk()  
M14 tcycle  
M15 tcycle  
MODE_MT = 11  
2
V
V
Input Threshold Voltage lo  
MODE_MT = 11  
0.8  
150  
4
Input Hysteresis  
MODE_MT = 11  
250  
30  
mV  
µA  
Input Pull-down Current MTSLI  
Input Pull-down Voltage MTSLI  
Input Pull-up Current MTMA  
Input Pull-up Voltage MTMA  
Saturation Voltage hi at MTMA  
Saturation Voltage lo at MTMA  
Short-circuit Current hi at MTMA  
Short-circuit Current lo at MTMA  
SSI Clock Frequency at MTMA  
V() = 1 V ... VDD  
I() = 5 µA  
75  
650  
-20.5  
600  
450  
450  
-30  
mV  
µA  
V() = 0 V ... VDD - 1 V  
Vpu() = VDD - V(), I() = -5 µA  
Vs()hi = VDD - V(), I() = 4 mA  
I() = 4 mA  
-296  
-120  
mV  
mV  
mV  
mA  
mA  
MHz  
MHz  
µs  
-85  
20  
65  
0.125  
1
BiSS Clock Frequency at MTMA MODE_MT = 01  
Max. BiSS Read Cycle Duration MODE_MT = 01  
256  
MT Data Update Interval  
MODE_MT = 01 or 10, CHK_MT = 1  
8
ms  
iC-MN 25-BIT NONIUS ENCODER  
WITH 3-CH. SAMPLING 13-BIT Sin/D INTERPOLATION  
Rev D1, Page 15/59  
OPERATING REQUIREMENTS: I/O Interface  
Operating conditions: VDD = 5 V ±10 %, Ta = -40...95(110) °C,  
IBP calibrated for fosc = 8 MHz, reference point GNDA (GND for digital I/O pins), unless otherwise stated  
Item Symbol  
No.  
Parameter  
Conditions  
Unit  
Min.  
Max.  
SSI Protocol  
I001 TMAS  
I002 tMASh  
I003 tMASl  
I004 tcycle  
Permissible Clock Period  
tout selected in accordance to Table 50  
250  
25  
2x tout  
tout  
ns  
ns  
ns  
µs  
Clock Signal Hi Level Duration  
Clock Signal Lo Level Duration  
25  
tout  
Permissible Cycle Time:  
MODE_ST = 0x05...0x07,  
11.25  
Example for 19-bit ST data from  
3-track nonius calculation  
UBL_M = 13 bit, UBL_N + SBL_N = 7 bit,  
UBL_S + SBL_S = 7 bit  
BiSS C Protocol (NBISS = 0x0)  
I005 TMAS  
I006 tMASh  
I007 tMASl  
I008 tbusy  
Permissible Clock Period  
tout selected in accordance to Table 58  
100  
25  
ns  
ns  
ns  
µs  
Clock Signal Hi Level Duration  
Clock Signal Lo Level Duration  
Minimum Data Output Delay  
tout  
25  
MODE_ST = 0x05...0x0B, 0x0D...0x0F,  
2x TMAS  
MA lohi until SLO lohi  
I009 tbusy  
I010 tbusy  
I011 tbusy  
Maximum Data Output Delay:  
Example for 19-bit ST data from  
3-track nonius calculation  
MODE_ST = 0x00...0x02, fclk(MA) = 10 MHz,  
UBL_x and SBL_x see I004  
5.3  
10  
14  
µs  
µs  
µs  
Maximum Data Output Delay:  
Example for 19-bit ST data from  
3-track nonius calculation  
MODE_ST = 0x03...0x04, fclk(MA) = 10 MHz,  
UBL_x and SBL_x see I004  
Maximum Data Output Delay:  
Example for 39-bit ST data from  
3-track interpolation without  
synchronization  
MODE_ST = 0x0C, fclk(MA) = 10 MHz,  
UBL_M 13 bit, UBL_N 13 bit, UBL_S 13 bit  
I012 tcycle  
Permissible Cycle Time:  
Example for 19-bit ST data from  
3-track nonius calculation  
MODE_ST = 0x05...0x07,  
UBL_x and SBL_x see I004  
11.25  
µs  
Figure 1: I/O Interface timing with SSI protocol  
Figure 2: I/O Interface timing with BiSS C protocol  
iC-MN 25-BIT NONIUS ENCODER  
WITH 3-CH. SAMPLING 13-BIT Sin/D INTERPOLATION  
Rev D1, Page 16/59  
CONFIGURATION PARAMETERS  
Analog Parameters (valid for all channels)  
I/O Interface With Extended Functions  
NBISS:  
TOS:  
DL_ST:  
M2S:  
Interface Protocol (P. 38)  
Timeout (S. 38)  
ST Data Length (P. 39)  
MT Data Output (P. 39)  
Inversion Of Code Direction (P. 39)  
CFGIBP:  
CFGTA:  
DCPOS:  
ENF:  
CVREF:  
REFVOS:  
RIN:  
Bias Trimming (P. 28)  
Temperature Sensor Calib. (P. 28)  
Input Current Polarity (P. 23)  
Noise Filter Enable (P. 28)  
VREF Source Selection (P. 23)  
Offset Reference Source (P. 24)  
Input Resistance (P. 23)  
DIR:  
GRAY_SCD: Data Format (P. 39)  
CID_SCD:  
NC_BISS:  
ELC:  
CRC Start Value (P. 39)  
Communication Disable (S. 39)  
Lifecounter (P. 40)  
TUIN:  
UIN:  
Input Voltage Divider (P. 23)  
Signal Mode (P. 23)  
Driver Settings  
Signal Conditioning  
x = M, S, N (for master, segment, nonius channel)  
DSC:  
DTRI:  
DSR:  
Driver Short-Circuit Current (P. 41)  
Driver Output Mode (P. 41)  
Driver Slew Rate (P. 41)  
ACOC_x:  
ACOR_x:  
ACOT_x:  
GFC_x:  
GR_x:  
Signal Level Control: Current (P. 27)  
Signal Level Control: Range (P. 27)  
Signal Level Control: Op. Mode (P. 27)  
Gain Factor Cosine (P. 24)  
Command And Status Register  
STATUS:  
Status Register (P. 43)  
MN_CMD:  
Implemented Commands (P. 42)  
Gain Range (P. 24)  
AUTORES: Automatic Reset Function (S. 42)  
GFS_x:  
MPS_x:  
MPC_x:  
OFC_x:  
ORC_x:  
OFS_x:  
ORS_x:  
PH_x:  
Gain Factor Sine (P. 24)  
Intermediate Voltage Sine (P. 25)  
Intermediate Voltage Cosine (P. 25)  
Offset Factor Cosine (P. 26)  
Offset Range Cosine (P. 25)  
Offset Factor Sine (P. 25)  
Error And Warning Bit  
CFGEW:  
S2ERR:  
S2WRN:  
E2EPR:  
Error And Warning Bit Config. (P. 44)  
Visibility For Warning Bit (P. 45)  
Visibility For Error Bit (P. 45)  
Diagnosis Memory Enable (P. 43)  
Offset Range Sine (P. 25)  
S/C Phase Correction (P. 26)  
MT Interface  
MODE_MT: MT Interface Operating Mode (P. 46)  
DL_MT:  
SBL_MT:  
LNT_MT:  
MT Data Length (P. 46)  
Operating Modes  
TRACMODE: Op. Mode Parameter (P. 21)  
MT Synch. Bit Length (P. 47)  
Leading/Trailing Gear Box Assembly  
(P. 47)  
CALMODE:  
BYP:  
Op. Mode Parameter (P. 21)  
Bypass Switch (P. 21)  
CHK_MT:  
Period Counter Verification (P. 47)  
GRAY_MT: MT Interface Data Format (P. 47)  
Sine-To-Digital Conversion  
MODE_ST: S/D Conversion Mode (P. 30)  
MT Interface with Extended Functions  
MODE_MT: MT Interface Operating Mode (P. 46)  
UBL_M:  
UBL_N:  
SBL_N:  
UBL_S:  
SBL_S:  
FRQ_TH:  
SPO_N:  
SPO_S:  
Bit Length Master (P. 29)  
Used Bit Length Nonius (P. 29)  
Synch. Bit Length Nonius (P. 29)  
Used Bit Length Segment (P. 29)  
Synch. Bit Length Segment (P. 29)  
Signal Frequency Monitoring (P. 32)  
Offset Nonius Track (P. 35)  
GET_MT:  
Direct BiSS Communication Enable for  
MT Sensor via I/O Interface (P. 49)  
NCRC_MT: MT Interface CRC Verification (P. 49)  
SWC_MT: MT Interface CRC Polynomial (P. 49)  
Preset Function  
OFFS_ST: Position Offset for ST Data Output  
(P. 50)  
Offset Segment Track (P. 35)  
PRES_ST: Preset Value for ST Data Output (P. 50)  
OFFS_MT: Position Offset for MT Data Output  
(P. 50)  
I/O Interface  
TOS:  
DL_ST:  
M2S:  
Timeout (P. 36)  
ST Data Length (P. 36)  
MT Data Output (P. 39)  
Error Bit (P. 37)  
PRES_MT: Preset Value for MT Data Output (P. 50)  
ESSI:  
EEPROM Interface  
GRAY_SCD: Data Format (P. 37)  
CFG_E2P: Config. Of External Memory (P. 52)  
CRC_E2P: EEPROM Data Check Sum (P. 52)  
PROT_E2P: Register Access Control (P. 53)  
RSSI:  
DIR:  
Ring Operation (P. 37)  
Inversion Of Code Direction (P. 37)  
iC-MN 25-BIT NONIUS ENCODER  
WITH 3-CH. SAMPLING 13-BIT Sin/D INTERPOLATION  
Rev D1, Page 17/59  
REGISTER MAP (EEPROM)  
OVERVIEW  
Adr  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Signal Conditioning Master Channel  
0x00  
0x01  
GFC_M  
GR_M  
GFS_M(7:0)  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
MPS_M(4:0)  
GFS_M(10:8)  
MPS_M(9:5)  
MPC_M(2:0)  
ORS_M(0)  
MPC_M(9:3)  
OFS_M(6:0)  
ORS_M(1)  
OFC_M(1:0)  
ORC_M  
OFS_M(10)*  
OFS_M(9:7)  
OFC_M(9:2)  
PH_M(6:0)  
OFC_M(10)*  
PH_M(9)*  
PH_M(8:7)  
Signal Conditioning Master Channel and Analog Parameters  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
1
DCPOS  
REFVOS  
TUIN  
RIN  
UIN  
1
CVREF  
0
BYP  
ACOT_M(0)  
ACOR_M(1:0)  
CFGTA(2:0)  
ACOC_M(4:0)  
CFGIBP(3:0)  
ACOT_M(1)  
ENF(1:0)  
CFGTA(4:3)  
*) MSB and signum respectively.  
Table 5: Register layout  
iC-MN 25-BIT NONIUS ENCODER  
WITH 3-CH. SAMPLING 13-BIT Sin/D INTERPOLATION  
Rev D1, Page 18/59  
OVERVIEW  
Adr  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Signal Conditioning Segment Channel  
0x10  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
0x18  
0x19  
0x1A  
0x1B  
0x1C  
0x1D  
0x1E  
0x1F  
GFC_S  
GR_S  
GFS_S(7:0)  
MPS_S(4:0)  
GFS_S(10:8)  
MPC_S(2:0)  
MPS_S(9:5)  
ORS_S(0)  
MPC_S(9:3)  
OFS_S(6:0)  
ORS_S(1)  
OFC_S(1:0)  
ORC_S  
OFS_S(10)*  
OFS_S(9:7)  
OFC_S(9:2)  
PH_S(6:0)  
OFC_S(10)*  
PH_S(9)*  
PH_S(8:7)  
ACOT_S(0)  
ACOR_S  
ACOC_S(4:0)  
ACOT_S(1)  
Signal Conditioning Nonius Channel  
0x20  
0x21  
GFC_N  
GR_N  
GFS_N(7:0)  
0x22  
0x23  
0x24  
0x25  
0x26  
0x27  
0x28  
0x29  
0x2A  
0x2B  
0x2C  
0x2D  
0x2E  
0x2F  
MPS_N(4:0)  
GFS_N(10:8)  
MPS_N(9:5)  
MPC_N(2:0)  
OSR_N(0)  
MPC_N(9:3)  
OFS_N(6:0)  
OSR_N(1)  
OFC_N(1:0)  
ORC_N  
OFS_N(10)*  
OFS_N(9:7)  
OFC_N(9:2)  
PH_N(6:0)  
OFC_N(10)*  
PH_N(9)*  
PH_N(8:7)  
ACOT_N(0)  
ACOR_N  
ACOC_N(4:0)  
ACOT_N(1)  
*) MSB and signum respectively.  
Table 6: Register layout  
iC-MN 25-BIT NONIUS ENCODER  
WITH 3-CH. SAMPLING 13-BIT Sin/D INTERPOLATION  
Rev D1, Page 19/59  
OVERVIEW  
Adr  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Digital Parameters  
0x30  
0x31  
0x32  
0x33  
OFFS_ST(7:0)  
OFFS_ST(15:8)  
OFFS_ST(23:16)  
OFFS_ST(31:24)  
0x34  
0x35  
0x36  
0x37  
0x38  
0x39  
0x3A  
0x3B  
0x3C  
0x3D  
0x3E  
0x3F  
0x40  
0x41  
0x42  
0x43  
0x44  
0x45  
0x46  
0x47  
0x48  
0x49  
0x4A  
0x4B  
0x4C  
0x4D  
0x4E  
0x4F  
0x50∗  
0x51  
0x52  
0x53  
0x54  
0x55  
0x56  
0x57  
0x58  
...  
0
OFFS_ST(38:32)  
OFFS_MT(7:0)  
OFFS_MT(15:8)  
OFFS_MT(23:16)  
SPO_S(7:0)  
SPO_N(2:0)  
SPO_S(12:8)  
SPO_N(10:3)  
UBL_M(3:0)  
UBL_S(1:0)  
UBL_N(2:0)  
MODE_ST(3:0)  
DL_MT(2:0)  
SPO_N(12:11)  
UBL_S(3:2)  
UBL_N(3)  
SBL_S(2:0)  
SBL_N(2:0)  
DL_ST(4:0)  
GRAY_SCD  
ELC  
ESSI  
RSSI  
NBISS  
M2S(1:0)  
CFG_E2P(2:0)  
DL_MT(3)  
0
CHK_MT  
SWC_MT  
DIR  
MODE_MT(1:0)  
E2EPR  
GET_MT  
NCRC_MT  
GRAY_MT  
LNT_MT  
SBL_MT(1:0)  
CFGEW(7:0)  
FRQ_TH(1:0)  
NC_BISS  
0
0
S2ERR  
S2WRN  
PROT_E2P(1:0)  
AUTORES(1:0)  
0
0
TRACMODE(1:0)  
CALMODE(2:0)  
DSR(1:0)  
DTRI(1:0)  
DSC(1:0)  
CID_SCD(3:0)  
TOS(1:0)  
0
0
0
0
0
1
CRC_E2P(9:2)  
CRC_E2P(1:0)  
PRES_ST(7:0)  
PRES_ST(15:8)  
PRES_ST(23:16)  
PRES_ST(31:24)  
0
PRES_ST(38:32)  
PRES_MT(7:0)  
PRES_MT(15:8)  
PRES_MT(23:16)  
0x74  
iC-MN 25-BIT NONIUS ENCODER  
WITH 3-CH. SAMPLING 13-BIT Sin/D INTERPOLATION  
Rev D1, Page 20/59  
OVERVIEW  
Adr  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
STATUS Register (with read access)  
0x75  
0x76  
0x77  
TH_WRN  
ACS_MAX  
CMD_EXE  
EPR_ERR  
AM_MIN  
AN_MIN  
FRQ_WDR  
AM_MAX  
AN_MAX  
FRQ_STUP  
ACM_MIN  
ACN_MIN  
NON_CTR  
ACM_MAX  
ACN_MAX  
MT_CTR  
CT_ERR  
AS_MIN  
MT_ERR  
RF_ERR  
AS_MAX  
MT_WRN  
TH_ERR  
ACS_MIN  
COMMAND Register: MN_CMD (with write access)  
0x77  
0
0
0
0
0
MN_CMD(2:0)  
Device Identification (preset values after start-up without EEPROM)  
0x78  
0x79  
0x7A  
0x7B  
0x7C  
0x7D  
0x7E  
0x7F  
Hints  
0x4D M  
0x4E N  
Internal identifier (0x04 Y2)  
0
0
0
BANK_ACT*  
GRAY_SCD  
M2S(1:0)  
DL_MT(3)  
equivalent to address 0x4C  
equivalent to address 0x3E  
0x69 i  
0x43 C  
All registers can be written and read as long as no protection level has been set (see PROT_E2P). Addresses with gray  
face box are located in the external EEPROM  
*) Bank selection is active. BANK_ACT = 1, if CFG_E2P /= 000  
Table 7: Register layout  
iC-MN 25-BIT NONIUS ENCODER  
WITH 3-CH. SAMPLING 13-BIT Sin/D INTERPOLATION  
Rev D1, Page 21/59  
OPERATING MODES and CALIBRATION PROCEDURES  
iC-MN supports a number of different calibration troller signal CGUCKx available at pin T0 are devoid of  
strategies, providing both digital and analog test sig- AC contents.  
nals to this end. The following tables give the various  
modes of operation.  
In calibration modes TWIB and TEIB the temper-  
ature monitoring and bias reference source IBP can  
For the adjustment of the signal conditioning unit be adjusted. Here the temperature threshold is set to  
analog test signals are output in analog calibration the required value for either warning or shutdown; the  
modes ANA_x, with digital signals activated by digital other value is determined by the fixed difference of the  
calibration modes DIG_x, enabling the signal condi- switching thresholds.  
tioning to be set across measurements of various duty  
cycles. The order of the procedure for both modes of As the VTTx measurement voltages and CGUCKx sig-  
calibration is described in the following chapter.  
nals are only available via a buffer stage the buffer off-  
set voltage must be taken into account if the tempera-  
Alternatively, with an active signal level controller iC- ture thresholds are to be adjusted with any accuracy.  
MN can be calibrated in controller modes AAC_x, To this end the buffer offset voltage can be measured  
where the residual signal ripple is minimized. For this in calibration mode TBOS. A voltage is then applied  
purpose the signal gain, offset and phase correction to pin T1, with the buffer offset voltage being the differ-  
parameters must be set in such a way that the con- ence between this and pin T0.  
Parameter  
Output Signals  
Op. Mode TRACMODE CALMODE BYP* Pins PSOUT, NSOUT, PCOUT, NCOUT Pin T0 Pin T1 Pin DIR  
Normal  
0
0
Output of master track via line driver  
Table 8: Normal operating mode  
0
0
-
Parameter  
Output Signals  
Op. Mode TRACMODE CALMODE BYP* Pins PSOUT, NSOUT, PCOUT, NCOUT Pin T0  
Pin T1  
Pin DIR  
Signal calibration modes with VDCx intermediate voltages  
ANA_M  
ANA_S  
ANA_N  
1
1
2
2
3
3
0
0
0
0
0
0
0
1
0
1
0
1
Calib. signals of master chan.  
PSINM, NSINM, PCINM, NCINM  
Calib. signals of segment chan.  
PSINS, NSINS, PCINS, NCINS  
Calib. signals of nonius chan.  
PSINN, NSINN, PCINN, NCINN  
SVDCM  
SVDCM  
SVDCS  
SVDCS  
SVDCN  
SVDCN  
CVDCM  
CVDCM  
CVDCS  
CVDCS  
CVDCN  
CVDCN  
-
-
-
-
-
-
Signal calibration modes with AC noise evaluation (with active sine-square level controlling)  
AAC_M  
AAC_S  
AAC_N  
1
2
3
4
4
4
Calib. signals of master chan.  
Calib. signals of segment chan.  
Calib. signals of nonius chan.  
CGUCKM  
CGUCKS  
CGUCKN  
-
-
-
-
-
Bias calibration, temperature-sensor calibration, and buffer offset measurement  
TWIB  
TEIB  
0
0
0
5
6
7
Output of master track via line driver  
Output of master track via line driver  
Output of master track via line driver  
VTSw  
VTSe  
VTth  
IBP  
IBP  
-
VTtherr  
TBOS  
Notes  
BUFFOUT BUFFIN  
S/D conversion modes with a cyclic conversion, such as 0x08, 0x09, 0x0A, are not permitted during  
signal calibration. Cyclic BiSS data requests must also be avoided due to its trigger for sample-and-hold.  
Analog calibration signals are output via 5 ksource impedance. The maximum permissible signal  
frequency is 2 kHz for a load of 200 pF (see Elec. Char. 709, 710)  
* Bypass function: inputs (without voltage divider) to outputs, ca. 7 ksource impedance  
Table 9: Operating modes for analog signal calibration  
iC-MN 25-BIT NONIUS ENCODER  
WITH 3-CH. SAMPLING 13-BIT Sin/D INTERPOLATION  
Rev D1, Page 22/59  
Calibration Using  
Comparated Sine/Cosine Signals  
Parameter  
Output Signals  
Op. Mode TRACMODE CALMODE BYP* Pins PSOUT, NSOUT, PCOUT, NCOUT Pin T0  
Pin T1  
Pin DIR  
Signal calibration modes with comparated sine/cosine signals  
DIGO_M  
DIGA_M  
DIGP_M  
DIGO_S  
DIGA_S  
DIGP_S  
DIGO_N  
DIGA_N  
DIGP_N  
1
1
1
2
2
2
3
3
3
1
2
3
1
2
3
1
2
3
Calib. signals of master chan.  
Calib. signals of master chan.  
Calib. signals of master chan.  
Calib. signals of segment chan.  
Calib. signals of segment chan.  
Calib. signals of segment chan.  
Calib. signals of nonius chan.  
Calib. signals of nonius chan.  
Calib. signals of nonius chan.  
DIGOFFCOS DIGOFFSIN  
-
-
-
-
-
-
-
-
-
0
0
DIGAMP  
DIGPHASE  
DIGOFFCOS DIGOFFSIN  
0
0
DIGAMP  
DIGPHASE  
DIGOFFCOS DIGOFFSIN  
0
0
DIGAMP  
DIGPHASE  
Table 10: Operating modes for digital signal calibration  
Calibration Of Signal Offsets Calibration Of Signal Amplitudes And Phase  
Fig. 3: The duty ratio is set accurately to 50 % using Fig. 5: To calibrate the duty cycle to exactly 50 % the  
parameter OFS_x. This measurement requires a high fine gain parameters GFC_x und GFS_x can balance  
resolution, for instance of 0.06 %, for calibrating the off- the signal amplitudes. If a signal amplitude difference  
set to 0.2 % with reference to the signal amplitude. The of 0.67 % remains after calibration, the interpolation  
resulting interpolation error of 3 LSB (referred to a res- error enlarges to approx. 4.5 LSB at 13 bit resolution.  
olution of 13 bits) corresponds to an angle error of 0.11  
degree (360 degree means one signal period).  
Fig. 6: Duty cycle calibration to exactly 50 % is carried  
out using parameter PH_x. A remaining phase error of  
Fig. 4: The duty ratio is set accurately to 50 % using 0.7 degree reduces the interpolation accuracy to 10 bit  
parameter OFC_x.  
(equal to 8 LSB error at 13 bit resolution, respectively).  
degree  
0.2  
degree  
0.2  
0.1  
0
0.1  
0
-0.1  
-0.2  
-0.1  
-0.2  
0
90  
180  
270  
360  
0
90  
180  
270  
360  
Figure 3: Mode DIGO_x: DIGOFFSIN at Pin T1.  
Figure 5: Mode DIGA_x: DIGAMP at Pin T1.  
degree  
0.4  
degree  
0.2  
0.1  
0
0.2  
0
-0.1  
-0.2  
-0.2  
-0.4  
0
90  
180  
270  
360  
0
90  
180  
270  
360  
Figure 4: Mode DIGO_x: DIGOFFCOS at Pin T0.  
Figure 6: Mode DIGP_x: DIGPHASE at Pin T1.  
iC-MN 25-BIT NONIUS ENCODER  
WITH 3-CH. SAMPLING 13-BIT Sin/D INTERPOLATION  
Rev D1, Page 23/59  
SIGNAL CONDITIONING for MASTER-, SEGMENT- and NONIUS-Channel (x= M,S,N)  
DCPOS  
Addr. 0x0A; bit 6  
Polarity Isensor  
Code  
VREFin()  
2.5 V  
0
1
Negative  
Positive  
1.5 V  
Table 12: Input current polarity  
RIN  
Addr. 0x0A; bit 2:1  
Code  
Resistance  
1.6 kΩ  
0
1
2
3
2.3 kΩ  
3.2 kΩ  
4.6 kΩ  
Table 13: Input resistance with I mode  
Voltage Signals  
If the voltage signals are too large the input signal can  
be quartered by an internal divider. The voltage divider  
is referenced to the VREFin reference source which is  
set by DCPOS. In order to use the input voltage range  
of the input amplifier to its full capacity DCPOS should  
be set to 1 in voltage divider mode.  
Figure 7: Schematic of Input Stage  
The input stages for sine and cosine are instrumen-  
tation amplifiers and can process current and voltage  
signals; selection is made for all three tracks using  
UIN. Signal conditioning should be performed in the  
order given in the following.  
TUIN  
Code  
0
Addr. 0x0A; bit 3  
Function  
Not active  
UIN  
Code  
0
Addr. 0x0A; bit 0  
Function  
1
Voltage divider active  
Table 14: Input voltage divider  
I Mode: current inputs  
V Mode: voltage inputs  
1
Table 11: Signal mode  
Additionally, using CVREF the user can select whether  
VREFin is the reference potential generated internally  
or a voltage provided externally.  
CVREF  
Code  
00  
Addr. 0x0B; bit 4:3  
Function  
Generated internally  
01  
Reserved  
10  
Internal VREFin() output to pin ACOS*  
External ref. voltage supplied to pin ACOS  
*) No load permitted, buffer required.  
11  
Figure 8: Direction of current flow  
Note  
Table 15: VREF Source Selection  
Current Signals  
For current signals internal reference VREFin is  
adapted to the input current polarity using DCPOS.  
The input resistance is set using RIN (1:0). When All other settings are to be carried out for each indi-  
selecting the input resistance the average potentials vidual track separately. A small x in the register name  
SVDC and CVDC should be between 125 mV and stands for (M)aster, (S)egment and (N)onius respec-  
250 mV to obtain a reasonable offset calibration range. tively.  
iC-MN 25-BIT NONIUS ENCODER  
WITH 3-CH. SAMPLING 13-BIT Sin/D INTERPOLATION  
Rev D1, Page 24/59  
Gain Adjustment  
Offset Calibration  
The gain is set in three stages. The gain range When calibrating the offset the offset reference source  
is first determined for sine and cosine using register must first be selected using REFVOS (1:0). This set-  
GR_x (2:0). Register GFC_x (4:0) can then be used ting is valid for all three tracks. If VDC is selected  
to finely adjust the gain of the cosine track. In the as the offset reference SVDCx is the reference for the  
final stage of the process the amplitude of the sine sine track and CVDCx for the cosine. The VDC refer-  
track is adapted to suit the cosine track using regis- ence enables the offset calibration to be automatically  
ter GFS_x (10:0). With differential input signals the tracked dependent on the DC level of the input signal.  
overall sine gain of one track is thus calculated as If ACO is chosen as the offset reference the voltage at  
1
GAINS_x = GR_x * GFS_x; the total cosine gain is then pin ACOx, divided into /20, acts as a reference. This  
GAINC_x = GR_x * GFC_x.  
enables the offset to be calibrated dependent on the  
supply voltage of the sensor.  
GR_M  
Addr. 0x00; bit 2:0  
GR_S  
Addr. 0x10; bit 2:0  
Addr. 0x20; bit 2:0  
GR_N  
Code  
Coarse gain  
0
1
2
3
4
5
6
7
6.0  
12.4  
16.2  
20.2  
26.0  
31.6  
39.5  
48.0  
Table 16: Gain range sine/cosine  
GFC_M  
GFC_S  
GFC_N  
Code k  
0x00  
Addr. 0x00; bit 7:3  
Addr. 0x10; bit 7:3  
Addr. 0x20; bit 7:3  
k
31  
Fine gain GFC = 6.25  
1
0x01  
1.07  
1.13  
...  
0x02  
...  
Figure 9: Principle offset calibration circuit with se-  
lectable reference sources.  
0x1F  
6.25  
Table 17: Gain factor cosine  
REFVOS  
Addr. 0x0A; bit 5:4  
Type of source  
Code  
GFS_M  
GFS_S  
GFS_N  
Addr. 0x02; bit 2:0  
Addr. 0x01; bit 7:0  
Addr. 0x12; bit 2:0  
Addr. 0x11; bit 7:0  
Addr. 0x22; bit 2:0  
0
1
2
3
Feedback of pin ACO  
Reference V05  
REFVOS = V(ACOx)/20  
REFVOS = 0.5 V  
Reference V025  
REFVOS = 0.25 V  
Tracked source VDC  
REFVOS = SVDCx,  
CVDCx  
Addr. 0x21; bit 7:0  
k
Table 19: Offset reference source  
1984  
Code k  
0x000  
0x001  
0x002  
...  
Fine gain GFS = 6.25  
1
1.0009  
1.0018  
...  
Source VDC is to be used as reference for current  
inputs. The average potentials of sine (SVDCx) and  
cosine (CVDCx) are determined by:  
0x7FF  
6.6245  
Table 18: Gain factor sine  
SVDCx = (1 ks) · V(PSi) + ks · V(NSi)  
iC-MN 25-BIT NONIUS ENCODER  
WITH 3-CH. SAMPLING 13-BIT Sin/D INTERPOLATION  
Rev D1, Page 25/59  
ORC_M  
Addr. 0x06; bit 5:4  
ORC_S  
Addr. 0x16; bit 5:4  
Addr. 0x26; bit 5:4  
and  
ORC_N  
Code  
Range  
CVDCx = (1 kc) · V(PCi) + kc · V(NCi)  
0
1
2
3
maxVOSC_x = 3 * REFVOS  
maxVOSC_x = 6 * REFVOS  
Using MPS_x (9:0) and MPC_x (9:0) ks and kc should  
be configured in such a way that the AC fraction is min-  
imal with both voltages.  
maxVOSC_x = 18 * REFVOS  
maxVOSC_x = 36 * REFVOS  
Table 23: Offset range cosine  
MPS_M  
MPS_S  
MPS_N  
Addr. 0x03; bit 4:0  
Addr. 0x02; bit 7:3  
Addr. 0x13; bit 4:0  
Addr. 0x12; bit 7:3  
Addr. 0x23; bit 4:0  
Addr. 0x22; bit 7:3  
SVDC = (1 ks) · V(PSi) + ks · V(NSi)  
ks = 0.3333  
The achievable angle accuracy following interpolation  
is affected by the internal signal strength and the offset  
calibration step width, depending on the set correction  
range and reference source. By way of example these  
dependencies are shown in the following table, for half  
and full scale signal levels (FS means 6 Vpp).  
Code  
0x000  
0x001  
...  
ks = 0.3336  
...  
Range  
x Source  
maxVOSC_x  
maxVOSS_x  
Cal. Step  
Width (LSB)  
Limitation Of  
0x3FF  
ks = 0.6666  
Angle Accuracy  
@ 100 % (6 Vpp)  
@ 50 % (3 Vpp)  
Table 20: Intermediate voltage sine  
3 x 0.25 V  
6 x 0.25 V  
6 x 0.5 V  
750 mV  
1.5 V  
3 V  
732 µV  
none (>13 bit)  
none (>13 bit)  
MPC_M  
MPC_S  
MPC_N  
Addr. 0x04; bit 6:0  
Addr. 0x03; bit 7:5  
Addr. 0x14; bit 6:0  
Addr. 0x13; bit 7:5  
Addr. 0x24; bit 6:0  
Addr. 0x23; bit 7:5  
CVDC = (1 kc) · V(PCi) + kc · V(NCi)  
kc = 0.3333  
1465 µV  
4396 µV  
8789 µV  
none (>13 bit)  
none (>13 bit)  
0.08°, ca. 12 bit  
0.16°, ca. 11 bit  
18 x 0.5 V  
9 V  
0.16°, ca. 11 bit  
0.32°, ca. 10 bit  
Code  
0x000  
0x001  
...  
Table 24: Offset calibration and influence on angle ac-  
curacy  
kc = 0.3336  
...  
0x3FF  
kc = 0.6666  
The sine and cosine offsets are calibrated by a linear  
voltage divider using OFS_x (10:0) and OFC_x (10:0).  
Table 21: Intermediate voltage cosine  
OFS_M  
OFS_S  
OFS_N  
Addr. 0x06; bit 3:0  
Addr. 0x05; bit 7:1  
Addr. 0x16; bit 3:0  
Addr. 0x15; bit 7:1  
Addr. 0x26; bit 3:0  
Addr. 0x25; bit 7:1  
OFS_x = OffsS_x*maxVOSS_x  
OffsS_x = 0  
The calibration range for the offset of sine and cosine  
is dependent on the source selected by REFVOS and  
is set using ORS_x (1:0) and ORC_x (1:0). The offset  
correction accuracy is influenced with the above.  
ORS_M  
ORS_S  
ORS_N  
Addr. 0x05; bit 0  
Addr. 0x04; bit 7  
Addr. 0x15; bit 0  
Addr. 0x14; bit 7  
Addr. 0x25; bit 0  
Addr. 0x24; bit 7  
Code  
0x000  
0x001  
0x002  
...  
OffsS_x = -0.0009  
OffsS_x = -0.0019  
...  
0x3FF  
0x400  
0x401  
0x402  
...  
OffsS_x = -1  
Code  
Range  
OffsS_x = 0  
0
1
2
3
maxVOSS_x = 3 * REFVOS  
maxVOSS_x = 6 * REFVOS  
maxVOSS_x = 18 * REFVOS  
maxVOSS_x = 36 * REFVOS  
OffsS_x = 0.0009  
OffsS_x = 0.0019  
...  
0x7FF  
OffsS_x = 1  
Table 22: Offset range sine  
Table 25: Offset voltage sine  
iC-MN 25-BIT NONIUS ENCODER  
WITH 3-CH. SAMPLING 13-BIT Sin/D INTERPOLATION  
Rev D1, Page 26/59  
OFC_M  
OFC_S  
OFC_N  
Addr. 0x08; bit 0  
Addr. 0x07; bit 7:0  
Addr. 0x06; bit 7:6  
Addr. 0x18; bit 0  
Addr. 0x17; bit 7:0  
Addr. 0x16; bit 7:6  
Addr. 0x28; bit 0  
Addr. 0x27; bit 7:0  
Addr. 0x26; bit 7:6  
OFC_x = OffsC_x*maxVOSC_x  
OffsC_x = 0  
Phase Correction  
The phase between sine and cosine is calibrated by  
PH_x (9:0). With a phase error of 2.5° or more the am-  
plitude and offset must be readjusted for a track reso-  
lution accuracy of 13 bits.  
PH_M  
PH_S  
PH_N  
Addr. 0x09; bit 2:0  
Addr. 0x08; bit 7:1  
Addr. 0x19; bit 2:0  
Addr. 0x18; bit 7:1  
Addr. 0x29; bit 2:0  
Addr. 0x28; bit 7:1  
Code  
0x000  
0x001  
0x002  
...  
OffsC_x = -0.0009  
OffsC_x = -0.0019  
...  
Code  
0x000  
0x001  
...  
Function  
+ 0 °  
0x3FF  
0x400  
0x401  
0x402  
...  
OffsC_x = -1  
+ 0.0204 °  
...  
OffsC_x = 0  
OffsC_x = 0.0009  
OffsC_x = 0.0019  
...  
0x1FF  
0x200  
0x201  
...  
+ 10.396 °  
- 0 °  
- 0.0204 °  
...  
0x7FF  
OffsC_x = 1  
0x3FF  
- 10.396 °  
Table 26: Offset voltage cosine  
Table 27: Sine/cosine phase correction  
iC-MN 25-BIT NONIUS ENCODER  
WITH 3-CH. SAMPLING 13-BIT Sin/D INTERPOLATION  
Rev D1, Page 27/59  
ANALOG PARAMETERS  
ACOC_M(4:0)  
Addr. 0x0C; bit 4:0  
Signal Level Controller  
Code  
0x00  
0x01  
...  
Setpoint  
By tracking the sensor’s power supply via the con-  
trolled current sources (outputs ACOM, ACOS and  
ACON) iC-MN can keep the sine/cosine track signals  
for the ensuing sine-to-digital converter constant re-  
gardless of temperature and aging effects.  
3.125% * Imax(ACOM)  
6.25% * Imax(ACOM)  
...  
0x1E  
0x1F  
96.875% * Imax(ACOM)  
100% * Imax(ACOM)  
When adjusting the signal conditioning a constant cur-  
rent source is used in place of the controlled current  
source, the set current of which can be adjusted using  
ACOR_M(6:0) or ACOR_x(5:0) (x = S, N). This current  
must be so low as to leave enough reserve for tem-  
perature and aging effects and ensure that no unnec-  
essary power dissipation is generated. However, the  
source current may not be too low so as to permit a  
better signal contrast and improved signal to noise ra-  
tio. Using this current the signal calibration can then be  
performed so that the sine/cosine signals at the sine-  
to-digital converter have a (differential) value of 6 Vpp  
in their calibrated state. Once calibration has proved  
successful the signal level controller can be activated.  
Table 30: Current source setpoint, ACOM output  
ACOT_S(7:6)  
ACOT_N(7:6)  
Addr. 0x1D; bit 0  
Addr. 0x1C; bit 7  
Addr. 0x2D; bit 0  
Addr. 0x2C; bit 7  
Code  
00  
Operating mode  
Quadratic regulation active  
Sum regulation active  
Constant current source mode  
Not permitted  
01  
10  
11  
Table 31: Controller op. mode, ACOS/ACON outputs  
There are three integrated signal level control units in  
iC-MN, all of which are powered by VACO. It is thus  
possible to regulate each track individually or, in opti-  
cal systems with an LED, for example, all three tracks  
using the master signal level controller. If the control  
unit’s working range is exceeded, an error is gener-  
ated.  
ACOR_S(5)  
Addr. 0x1C; bit 5  
ACOR_N(5)  
Addr. 0x2C; bit 5  
Code  
Current range Imax(ACOS), Imax(ACON)  
0
1
5 mA  
10 mA  
Table 32: Current source range, ACOS/ACON outputs  
ACOT_M(8:7)  
Addr. 0x0D; bit 0  
Addr. 0x0C; bit 7  
ACOC_S(4:0)  
ACOC_N(4:0)  
Addr. 0x1C; bit 4:0  
Addr. 0x2C; bit 4:0  
Code  
00  
Operating mode  
Code  
0x00  
0x01  
...  
Setpoint  
Quadratic regulation active*  
Sum regulation active  
Constant current source mode  
Not permitted  
3.125% * Imax(ACOS, ACON)  
6.25% * Imax(ACOS, ACON)  
...  
01  
10  
11  
0x1E  
0x1F  
96.875% * Imax(ACOS, ACON)  
100% * Imax(ACOS, ACON)  
*) Quadratic regulation of V()scq =  
p
(V(PSOUT V(NSOUT))2 + (V(PCOUT V(NCOUT))2  
Table 33: Current source setpoint, ACOS/ACON out-  
put  
Table 28: Controller op. mode, ACOM output  
ACOR_M(6:5)  
Addr. 0x0C; bit 6:5  
Code  
00  
Current range Imax(ACOM)  
5 mA  
01  
10 mA  
25 mA  
50 mA  
10  
11  
Table 29: Current source range, ACOM output  
iC-MN 25-BIT NONIUS ENCODER  
WITH 3-CH. SAMPLING 13-BIT Sin/D INTERPOLATION  
Rev D1, Page 28/59  
Bias Current Source  
required warning temperature Tw, temperature coef-  
The calibration of the bias current source in operation ficients TCs and TCth (see Electrical Characteristics,  
mode TWIB or TEIB is prerequisite for adherence to Section C) and measurement value VTSw(Tcurr) are  
the given electrical characteristics and also instrumen- entered into this calculation:  
tal in the determination of the chip timing (e.g. SCL  
clock frequency). For the calibration of source IBP to  
its target value of 200 µA the voltage across the 5 kΩ  
measurement resistor has to be adjusted to 1 V.  
VTSw(Tcurr) + TCs · (Tw Tcurr  
)
VTth(Tcurr) =  
TCth  
1 +  
· (Tw Tcurr  
)
1+TCth·(T  
T  
)
norm  
curr  
CFGIBP  
Code k  
0x0  
Addr. 0x0D; bit 4:1  
31  
31k  
IBP ∼  
The reference temperature Tnorm is 27 °C. Activation  
threshold voltage VTth(Tcurr) is provided for a high  
impedance measurement (10 M) at output pin T0 and  
must be set by programming CFGTA(4:0) to the calcu-  
lated value.  
100.00 %  
103.3 %  
...  
0x1  
...  
0xF  
193.7 %  
Table 34: Bias current source calibration  
CFGTA  
Addr. 0x0E; bit 1:0  
Addr. 0x0D; bit 7:5  
100+5k  
100  
Code k  
0x00  
0x01  
...  
VTth ∼  
100 %  
105 %  
...  
i C- M N  
IBP  
D I R  
Pa ra m  
TRACMODE  
CALMODE  
Co d e O p. M o d e  
R
5kΩ  
0x0  
0x5  
0x6  
V
TWIB  
TEIB  
0x1F  
255 %  
G
N
D
A
Table 35: Calibration of temperature monitoring  
Signal Noise Filters  
Figure 10: Measurement circuit  
Temperature Sensor  
As regards temperature two settings can be made; ei-  
ther a temperature threshold for an excessive tempera-  
ture warning or an excessive temperature error can be  
set. The excessive temperature error and warning are  
coupled to one another (see Characteristics C07). Cal-  
ibration of the excessive temperature warning in cali-  
bration mode TWIB is described by way of example.  
iC-MN has a noise filter for both the analog output  
drivers and the sine-to-digital converter. These filters  
can be activated by ENF.  
ENF(0)  
Addr. 0x0E; bit 1  
Function  
Code  
0
1
Disabled  
Sin/Cos Output driver noise filter activated  
Table 36: Noise filter for the output drivers  
To set the required warning temperature Tw the tem-  
perature sensor voltage VTSw(Tcurr) at which the warn-  
ing is generated is first determined. Tcurr is the actual  
temperature. To this end a voltage ramp from VDD  
towards GND is applied to pin T1 until pin NERR in-  
dicates the error message. The necessary activation  
threshold voltage VTth(Tcurr) is then calculated. The  
ENF(1)  
Addr. 0x0E; bit 2  
Function  
Code  
0
1
Disabled  
S/D Conversion noise filter activated  
Table 37: Noise filter for the sine-to-digital converter  
iC-MN 25-BIT NONIUS ENCODER  
WITH 3-CH. SAMPLING 13-BIT Sin/D INTERPOLATION  
Rev D1, Page 29/59  
SINE-TO-DIGITAL CONVERSION MODES  
iC-MN has two principle modes of operation. In no- Internal Bit Lengths  
nius modes 2 or 3 tracks are combined by a nonius The used bit length is set for the master, segment  
calculation with synchronization; in multiturn modes and nonius tracks using registers UBL_M, UBL_S and  
the up to 3 tracks are combined to form an absolute UBL_N. From these used bits the internal singleturn  
word via gear box code synchronization.  
data word is then generated, for which purpose syn-  
chronization bits are used. The bit lengths used  
The used and synchronization bit lengths (parameters for synchronization can be set separately via register  
UBL_x and SBL_x) are selectable for both operating SBL_S for the segment track and register SBL_N for  
modes; in multiturn modes it is also possible to output the nonius track. Limitations governing the settable bit  
unsynchronized data from all tracks.  
lengths are summarized in Table 41.  
With both principle operating modes iC-MN offers var-  
ious sine-to-digital conversion modes. With a data re-  
quest via the I/O interface this determines:  
UBL_M  
Code  
Addr. 0x3B; bit 5:2  
Bit length master  
0x00  
0
0x01..0x03 not permitted  
0x04  
...  
4
• The sample time and thus the ”age” of the output  
data  
...  
13  
0x0D  
• The necessary processing time prior to genera-  
tion of the output data word.  
Table 38: Bit length master  
UBL_S  
UBL_N  
Addr. 0x3C; bit 1:0  
Addr. 0x3B; bit 7:6  
Addr. 0x3D; bit 0  
Addr. 0x3C; bit 7:5  
Code  
0x00  
...  
Used bit length  
0
...  
13  
0x0D  
Table 39: Used bit length for segment and nonius  
SBL_S  
SBL_N  
Code  
0x00  
...  
Addr. 0x3C; bit 4:2  
Addr. 0x3D; bit 3:1  
Synchronization bit length  
0
...  
4
0x04  
Table 40: Synchronization segment and nonius  
P
Track  
Count of bits processed Possible bit count  
Master  
UBL_M  
0, 4..13  
0, 4..13  
0, 4..13  
Segment  
Nonius  
UBL_S+SBL_S  
UBL_N+SBL_N  
Table 41: Possible bit counts for  
UBL_M and UBL_x+SBL_x  
iC-MN 25-BIT NONIUS ENCODER  
WITH 3-CH. SAMPLING 13-BIT Sin/D INTERPOLATION  
Rev D1, Page 30/59  
S/D CONVERSION with NONIUS CALCULATION  
For the nonius modes iC-MN has a flash counter which Output Data Verification  
counts the zero crossings of the master track. When It is possible to verify the counted period when a non-  
the system is started this flash counter is preloaded ius calculation has been completed. Possible settings  
with the absolute period information which has been include:  
most recently calculated using the nonius and segment  
tracks (or only the nonius track).  
1. No verification of counted periods  
The output data word always is the flash counter value  
2. Frequency-dependent verification of counted pe-  
synchronized with the master track. Furthermore, it is  
riods. Exceeding the maximum master track sig-  
possible to output synchronized singleturn and multi-  
nal frequency set by FRQ_TH (see Table 46) dis-  
turn position data which can be set using the parame-  
ables the flash counter verification versus nonius  
ter MODE_MT (see page 46).  
calculation. If the limit is again undershot, future  
conversions are again verified.  
MODE_ST  
Addr. 0x3D; bit 7:4  
Operation modes with nonius calculation (Nonius Modes)  
3. Period verification versus nonius calculation is al-  
ways enabled and executed with each conver-  
sion.  
Code  
Description  
Data outp. following S/D conversion of master track  
Period verification disabled  
0x00  
0x01  
0x02  
Frequency-dependent period verification  
Period verification enabled  
Op. Mode Descriptions Of Nonius Modes  
Data output following S/D conversion of all tracks  
Frequency-dependent period verification  
Period verification enabled  
0x03  
0x04  
MODE_ST Codes 0x00, 0x01, 0x02  
With this mode the processing time is largely deter-  
mined by the conversion time of the master track. The  
conversion procedure is as follows:  
Zero-delay data output: result of previously  
triggered S/D conversion  
0x05  
0x06  
0x07  
Period verification disabled  
Frequency-dependent period verification  
Period verification enabled  
1. A data readout request triggers the conversion of  
all selected tracks  
Zero-delay data output: last result of background  
S/D conversion (asynchronous)  
0x08  
0x09  
0x0A  
Period verification disabled  
2. Following conversion of the master track: syn-  
chronization with the internal flash counter and  
output of the synchronized postion value  
Frequency-dependent period verification  
Period verification enabled  
Zero-delay data output: last result of S/D  
conversion triggered by pin T3  
3. During data readout: conversion of the remaining  
tracks and nonius calculation  
0x0B  
Period verification enabled  
Notes  
On changing parameter MODE_ST during  
operation command SOFT_RES should be issued.  
4. Generation of NON_CTR with the next data read-  
out cycle  
Modes 0x08, 0x09, 0x0A are not permitted during  
calibration via Op.Mode’s ANA_x oder DIGx_x.  
Table 42: Nonius modes  
MODE_ST Codes 0x03, 0x04  
The processing time is largely determined by the sum  
of the conversion time of the tracks for conversion. The  
conversion procedure is as follows:  
1. A data readout triggers the complete conversion  
of the set tracks  
2. Following conversion of the master track: syn-  
chronization with the internal flash counter  
3. Following conversion of the remaining tracks: no-  
nius calculation and generation of NON_CTR  
iC-MN 25-BIT NONIUS ENCODER  
WITH 3-CH. SAMPLING 13-BIT Sin/D INTERPOLATION  
Rev D1, Page 31/59  
4. Transmission of the synchronized position value. Principle PPR And Bit Length Dependencies  
The transmitted NON_CTR counts as part of the With a nonius system with three tracks UBL_M must be  
current conversion.  
set so that it is at least as large as the maximum value  
of MAX(UBL_S+SBL_S, UBL_N+SBL_N). If only two  
tracks are used, UBL_S and SBL_S must be set to  
zero. UBL_M must then at least match the maximal  
value of MAX(UBL_N+SBL_N).  
MODE_ST Codes 0x05, 0x06, 0x7  
The processing time is low as "old" data is transmitted,  
the time of sampling is, however, known (NB: The data  
from the first readout is invalid following a SOFT_RES).  
The conversion procedure is as follows:  
The necessary number of signal periods per revolution  
for the individual tracks is then determined by the se-  
lected used bit lengths:  
1. With a data readout: immediate transmission of  
the data from the last readout cycle including the  
relevant NON_CTR  
Track  
Required signal periods  
2UBL_S+UBL_N  
Master  
Segment  
Nonius  
2. With a data readout: start of a new conversion  
and providing of data for the next data readout  
cycle. NON_CTR is output directly at the NERR  
pin.  
2UBL_S+UBL_N 2UBL_N  
2UBL_S+UBL_N 1  
The following tables show the possible settings and  
required number of signal periods. The total physi-  
cal angle resolution in nonius mode is obtained from  
the sum of UBL_M+UBL_S+UBL_N. At the same time  
the bit lengths set for synchronization determine a limit  
up to which a nonius calculation is possible. This limit  
is given in Table 45 as the maximum tolerable phase  
deviation which may occur between the segment and  
master track or nonius and master track (with reference  
to the electrical 360° period of the master signal).  
MODE_ST Codes 0x08, 0x09, 0xA  
The processing time is low and the time of sampling  
not precisely known. The conversion procedure is as  
follows:  
1. Regardless of the data readout: permanent  
background conversion  
2. With a data readout: transmission of current  
data. Each NON_CTR is output directly at the  
NERR pin. In data transmission a NON_CTR er-  
ror is only signaled when the error occurs during  
the relevant nonius calculation.  
Bits/Track  
Signal periods/Turn  
Physical  
resolution a  
)
UBL_S UBL_N Master Segm. Nonius min b  
)
max  
2
3
3
4
4
5
5
6
6
2
2
3
3
4
4
5
5
6
16  
32  
64  
128  
256  
512  
1024  
2048  
4096  
12  
28  
56  
120  
240  
496  
992  
2016  
4032  
15  
31  
63  
127  
255  
511  
1023  
2047  
4095  
2+2+4  
2+2+13  
2+3+13  
3+3+13  
3+4+13  
4+4+13  
4+5+13  
5+5+13  
5+6+13  
6+6+13  
2+3+5  
3+3+5  
3+4+6  
4+4+6  
4+5+7  
5+5+7  
5+6+8  
6+6+8  
MODE_ST Code 0x0B  
This mode can be used in systems in which sampling  
must be synchronized to a frequency determined ex-  
ternally and independent of the data readout cycles.  
The conversion procedure is as follows:  
a) For configuration of the output data length, see Table 51  
b) For the minimum data length SBL_x = 0x02 is assumed  
1. A conversion with nonius synchronization is trig-  
gered via pin T3. NON_CTR is output directly at  
the NERR pin.  
Table 43: Settings for 3-track nonius mode  
2. With a data readout the most recent conversion  
data triggered by pin T3 is transmitted including  
the relevant NON_CTR.  
Bits/Track Signal periods/Turn Physical resolution a  
)
UBL_N  
Master Nonius  
min b  
4+6  
5+7  
6+8  
)
max  
4
5
6
16  
32  
64  
15  
31  
63  
4+13  
5+13  
6+13  
a) For configuration of the output data length, see Table 51  
b) For the minimum data length SBL_x = 0x02 is assumed  
Table 44: Settings for 2-track nonius mode  
iC-MN 25-BIT NONIUS ENCODER  
WITH 3-CH. SAMPLING 13-BIT Sin/D INTERPOLATION  
Rev D1, Page 32/59  
UBL_N/ SBL_N/ Permissible Max. Phase Deviation  
UBL_S SBL_S [given in degree per signal period of 360°]  
Digital Frequency Monitoring  
iC-MN features an integrated frequency monitoring cir-  
cuit for the master track. A signal frequency warning  
threshold can be configured by FRQ_TH.  
2
3
4
5
6
2
3
4
2
3
4
2
3
4
2
3
4
2
3
4
+/- 22.5°  
+/- 33.75°  
+/- 39.38°  
+/- 11.25°  
+/- 16.88°  
+/- 19.69°  
+/- 5.63°  
+/- 8.44°  
+/- 9.84°  
+/- 2.81°  
+/- 4.22°  
+/- 4.92°  
+/- 1.41°  
+/- 2.11°  
+/- 2.46°  
FRQ_TH  
Code  
00  
Addr. 0x43; bit 7:6  
Warning Threshold  
7.625 kHz  
31.25 kHz  
62.5 kHz  
125 kHz  
01  
10  
11  
Table 46: Signal frequency monitoring  
FRQ_TH is used by the frequency-dependent period  
verification feature available for nonius modes (see  
MODE_ST = 0x01, 0x03, 0x06 and 0x09).  
Table 45: Tolerable phase deviation for the master ver-  
sus the nonius or segment track (with refer-  
ence to 360°, electrical)  
The following applies to all modes with nonius synchro-  
nization: if the frequency of the master track is too high  
at power on, FRQ_STUP and FRQ_WDR remain set  
until the period verification was successful below the  
frequency warning threshold. In nonius modes without  
an enabled period verification it must be observed that  
FRQ_STUP remains permanently set and can only be  
reset by SOFT_RES when the warning threshold is un-  
dershot.  
The synchronization principle is summarized in Figure  
11, where ϕ represents the digitized angle of the rele-  
vant track.  
Figure 11: Principle of nonius mode synchroniza-  
tion  
iC-MN 25-BIT NONIUS ENCODER  
WITH 3-CH. SAMPLING 13-BIT Sin/D INTERPOLATION  
Rev D1, Page 33/59  
S/D CONVERSION with MULTITURN SYNCHRONIZATION  
In multiturn modes the output data word always Op. Mode Descriptions Of Multiturn Modes  
matches the current converted and synchronized track  
data. For 1 to 3 selected tracks parameters SBL_S and  
SBL_N adjust the gear box synchronization, whereas MODE_ST Code 0x0C  
the selected used bit lengths (UBL_x) determine the The processing time is largely determined by the sum  
reduction ratio required for the multiturn gear box:  
of the conversion time of the configured tracks. Proce-  
dure of conversion:  
Synchronization  
Gear reduction  
2UBL_M  
Master track Singleturn  
Segment track Master track  
Nonius track Segment track  
1. A data readout request triggers the complete  
conversion of the set tracks  
2UBL_S  
2UBL_N  
2. Gear box synchronization  
One limitation in multiturn mode is that neither an ex-  
ternal multiturn can be configured nor counted mul-  
titurn data output. Parameters MODE_MT and M2S  
must be set to 0. Figure 12 shows the synchronization  
principle, where ϕ represents the digitized angle of the  
relevant track.  
3. Transmission of the output data  
MODE_ST Code 0x0D  
The processing time is low as ”old” data is transmitted,  
the time of sampling is, however, known. The conver-  
sion procedure is as follows:  
1. With a data readout: immediate transmission of  
the data from the last readout cycle  
2. With a data readout: start of a new conversion  
and providing of data for the next readout cycle.  
NB: The data from the first readout is invalid following  
a SOFT_RES.  
MODE_ST Code 0x0E  
The processing time is low and the time of sampling  
not precisely known. The conversion procedure is as  
follows:  
Figure 12: Principle of multiturn synchronisation  
1. Regardless of the data readout: permanent  
background conversion  
MODE_ST  
Addr. 0x3D; bit 7:4  
Operation modes with multiturn synchronization (MT Modes)  
Code  
0x0C  
Description  
2. With a data readout: transmission of current  
data.  
Data output following S/D conversion of all tracks  
with MT synchronization configured via SBL_x  
Data output: result of previously triggered S/D  
conversion  
MODE_ST Code 0x0F  
0x0D  
0x0E  
with MT synchronization configured via SBL_x  
This mode can be used in systems which require that  
asynchronous sampling is independent of the data  
readout timing. The conversion procedure is as fol-  
lows:  
Data output: last result of background S/D  
conversion (asynchronous)  
with MT synchronization configured via SBL_x  
Data output: last result of S/D conversion triggered  
by pin T3  
0x0F  
with MT synchronization configured via SBL_x  
1. A conversion is triggered via pin T3, if applicable  
with gear box code synchronization.  
Notes  
On changing parameter MODE_ST during  
operation command SOFT_RES should be issued.  
2. With a data readout the most recent output data  
triggered by pin T3 is transmitted.  
Table 47: Multiturn modes  
iC-MN 25-BIT NONIUS ENCODER  
WITH 3-CH. SAMPLING 13-BIT Sin/D INTERPOLATION  
Rev D1, Page 34/59  
S/D CONVERSION with DIRECT OUTPUT  
iC-MN functions as a simultaneous sampling, 3- Op. Mode Descriptions Of Direct Output Modes  
channel sine-to-digital converter when the multiturn  
modes are selected with deactivated synchronization.  
When SBL_S = 0 and SBL_N = 0 no track synchro- MODE_ST Code 0x0C  
nization takes place; the data from all three tracks is The processing time is largely determined by the sum  
queued up for output without any further processing.  
of the conversion time of the configured tracks. The  
conversion procedure is as follows:  
1. A data readout request triggers the complete  
conversion of the set tracks  
2. Transmission of the output data  
MODE_ST Code 0x0D  
The processing time is low as ”old” data is transmitted,  
the time of sampling is, however, known (NB: The data  
from the first readout is invalid following a SOFT_RES).  
The conversion procedure is as follows:  
Figure 13: Principle of simultaneous sampling, 3-  
channel S/D conversion with direct data  
output  
1. With a data readout: immediate transmission of  
the data from the last readout cycle  
MODE_ST  
Addr. 0x3D; bit 7:4  
2. With a data readout: start of a new conversion  
and providing of data for the next readout cycle.  
Direct output via MT modes with deactivated  
synchronization  
Code  
Description  
Data output following S/D conversion of all tracks;  
synchronization disabled (SBL_x = 0)  
MODE_ST Code 0x0E  
0x0C  
The processing time is low and the time of sampling  
not precisely known. The conversion procedure is as  
follows:  
Data output: result of previously triggered S/D  
conversion;  
0x0D  
0x0E  
synchronization disabled (SBL_x = 0)  
Data output: last result of background S/D  
conversion (asynchronous);  
1. Regardless of the data readout: permanent  
background conversion  
synchronization disabled (SBL_x = 0)  
Data output: last result of S/D conversion triggered  
by pin T3;  
2. With a data readout: transmission of current  
data.  
0x0F  
synchronization disabled (SBL_x = 0)  
Notes  
On changing parameter MODE_ST during  
operation command SOFT_RES should be issued.  
MODE_ST Code 0x0F  
This mode can be used especially for resolver sys-  
tems, in which 1 to 3 channels need to be sampled in  
synchronism with a specific carrier frequency. An ex-  
ternal trigger signal supplied to pin T3 takes over the  
sampling control and thus decouples it from the data  
readout timing. The conversion procedure is as fol-  
lows:  
Table 48: MT modes used for direct output  
1. A conversion is triggered by pin T3  
2. With a data readout the most recent output data  
triggered by pin T3 is transmitted.  
iC-MN 25-BIT NONIUS ENCODER  
WITH 3-CH. SAMPLING 13-BIT Sin/D INTERPOLATION  
Rev D1, Page 35/59  
TRACK OFFSET CALIBRATION  
SPO_N  
SPO_S  
Addr. 0x3B; bit 1:0  
Depending on the track resolution the offset values of  
the nonius and segment tracks (POV = Phase-Offset-  
Value) must be justified to the left in the SPO_N and  
SPO_S registers. These offsets are added to the con-  
version result of each track prior to synchronization  
and are instrumental in calibrating the track.  
Addr. 0x3A; bit 7:0  
Addr. 0x39; bit 7:5  
Addr. 0x39; bit 4:0  
Addr. 0x38; bit 7:0  
0x0000  
. . .  
Track Offset  
0x1FFF  
datalength defined by UBL_x+SBL_x  
Table 49: Track offsets for nonius and segment  
MSB  
POV_x  
LSB  
POV_x  
SPO_x  
register:  
0
0
0
Note: For nonius synchronization (see MODE_ST) it is  
important that the used tracks within the 2UBL_S+UBL_N  
master track periods have a shared zero crossing  
once. With SPO_S or SPO_N the segment and nonius  
tracks can be shifted to the master track accordingly.  
S: ADR 0x38, bit 0  
N: ADR 0x39, bit 5  
S: ADR 0x39, bit 4  
N: ADR 0x3B, bit 1  
Figure 14: SPO_x (x=S,N)  
iC-MN 25-BIT NONIUS ENCODER  
WITH 3-CH. SAMPLING 13-BIT Sin/D INTERPOLATION  
Rev D1, Page 36/59  
I/O INTERFACE  
TOS  
Code  
00  
Addr. 0x4C; bit 1:0  
Protocol  
Timeout tout  
typ. 16 µs  
Internal clock counts  
iC-MN can transmit position data according to the SSI  
protocol where both data length and error messag-  
ing are configurable. The selected mode of opera-  
tion for sine-to-digital conversion can limit the permissi-  
ble SSI clock frequency (see Operating Conditions on  
page 15). The highest possible SSI clock frequency  
of 4 MHz is permissible for converter modes with an  
immediate data output.  
31-32  
15-16  
3-4  
01  
typ. 8 µs  
10  
typ. 2 µs  
11  
typ. 1 µs  
1-2  
4
fosc  
Notes  
One clock count is equal to  
(see Char. A01)  
Table 50: Timeout  
Figure 15: Example of SSI line signals  
DL_ST  
Addr. 0x3E; bit 4:0  
Output Data Length  
Code  
0x00  
...  
Bit count  
For singleturn data lengths (DL_ST) which are less  
than 13 bits the SSI data word is zero filled. The op-  
tional error bit is always the final bit of the data word.  
8 bit plus zeroes (+1 error bit)*  
...  
0x05  
...  
13 bit (+1 error bit)*  
...  
If enabled by M2S, multiturn data is always transmitted  
upfront the singleturn data. The format option Gray or  
binary code covers the MT and ST data word in its en-  
tirety; filled in zeros and the error bit remain untouched.  
0x11  
25 bit (+1 error bit)*  
Bit counts listed below are valid only for multiturn  
synchronization mode (s.P. 30 ff.)  
0x12  
...  
26 bit (+1 error bit)*  
...  
The output bit count is determined by parameters  
DL_ST, M2S and ESSI:  
0x19  
0x1A  
Notes  
33 bit (+1 error bit)*  
39 bit (+1 error bit)*  
*) When enabled by ESSI = 1  
max(13, DL_ST+ESSI) + MT bits  
Table 51: ST Data length  
Example: DL_ST = 0 (8 Bit); ESSI = 1.  
Result: 8 bits of data + 4 zeros + 1 error bit are trans-  
mitted = 13 bits of data.  
M2S  
Code  
00  
Addr. 0x3F; bit 2:1  
Function  
no output  
01  
MT data output of lowest 4 bits  
MT data output of lowest 8 bits  
Complete output, MT bit count following DL_MT  
10  
11  
Table 52: MT Data output  
iC-MN 25-BIT NONIUS ENCODER  
WITH 3-CH. SAMPLING 13-BIT Sin/D INTERPOLATION  
Rev D1, Page 37/59  
RSSI  
Code  
0
Addr. 0x3F; bit 4  
Output Options  
Ring operation  
Normal output  
If the clock count exceeds the data length, zero bits  
are supplied.  
ESSI  
Addr. 0x3F; bit 5  
Error bit output  
Not included  
Error bit enabled  
Code  
1
Ring operation  
0
1
Notes  
When enabling RSSI with the BiSS C protocol, pin  
SLI reads in data to be output via SLO.  
Table 53: Error bit  
Table 55: Ring operation  
GRAY_SCD  
Addr. 0x3F; bit 7  
Data format  
The behavior of the output data depending on the  
sense of rotation can be altered using pin DIR or via  
register DIR. Both signals are EXOR-gated and switch  
output data from increasing to decreasing values or  
vice versa.  
Code  
0
1
Binary coded  
Gray coded  
Table 54: Data format (covers MT and ST data)  
DIR  
Code  
0
Addr. 0x3D; bit 6  
Code direction  
Not inverted  
Inverted  
1
Table 56: Code direction up/down  
iC-MN 25-BIT NONIUS ENCODER  
WITH 3-CH. SAMPLING 13-BIT Sin/D INTERPOLATION  
Rev D1, Page 38/59  
I/O INTERFACE with EXTENDED FUNCTIONS  
NBISS  
Addr. 0x3F; bit 3  
Protocol  
Protocol  
Code  
For the fast and safe transmission of converter data iC-  
MN’s serial I/O interface has a BiSS C protocol which  
enables bidirectional register communication without  
changing the permanent cyclic data output. In order to  
simplify master implementation at the control unit end  
this protocol does not utilize multicycle data.  
0
1
1
BiSS C protocol (NC_BiSS = 0, RSSI = 1)  
Advanced SSI protocol (NC_BiSS = 0)  
SSI protocol (NC_BiSS = 1)  
Table 57: Interface protocol  
Alternatively, an advanced SSI protocol can be se-  
lected which permits unidirectional register communi-  
cation for the transferral of parameters from the master  
to the slave iC-MN.  
TOS  
Code  
00  
Addr. 0x4C; bit 1:0  
Timeout tout  
typ. 16 µs  
Internal clock counts  
31-32  
15-16  
3-4  
01  
typ. 8 µs  
10  
typ. 2 µs  
11  
typ. 1 µs  
1-2  
4
fosc  
Notes  
One clock count is equal to  
(see Char. A01)  
Table 58: Timeout  
Figure 16: Example of line signals for BiSS C protocol  
Figure 17: Example of line signals for Advanced SSI protocol  
iC-MN 25-BIT NONIUS ENCODER  
WITH 3-CH. SAMPLING 13-BIT Sin/D INTERPOLATION  
Rev D1, Page 39/59  
Output Data Length  
The code direction of the output data word can be al-  
The output bit count is derived from the parameters tered using pin DIR or register DIR. Both signals are  
DL_ST, M2S and DL_MT. In accordance with the se- EXOR-gated and together comprise the internal direc-  
lected protocol two additional bits for the error and tion of rotation signal.  
warning messages are always transmitted.  
DIR  
Code  
0
Addr. 0x3D; bit 6  
The output bit length for singleturn data can be set in-  
dependent of the internal converter resolution. For bit  
lengths which exceed the internal word length the data  
following the LSB is zero filled. If enabled by M2S mul-  
titurn data is always transmitted before singleturn data.  
Direction of rotation  
Not inverted  
Inverted  
1
Table 62: Inversion of code direction  
DL_ST  
Code  
0x00  
...  
Addr. 0x3E; bit 4:0  
Bit count  
For reasons of data security iC-MN provides fixed CRC  
polynomials (see Table 63). The CRC start value can  
be freely selected, thus enabling a PLC to clearly allo-  
cate data to the source (for safety applications). Reg-  
ister communication can be optionally blocked by pa-  
rameter NC_BiSS.  
8 bit +2 bit for E/W  
...  
0x05  
...  
13 bit +2 bit for E/W  
...  
0x11  
25 bit +2 bit for E/W  
Bit counts listed below are valid only for multiturn  
synchronization mode (see P. 30)  
Data  
Channel  
CRC  
HEX Code  
Polynomial  
Calculation  
Start Value  
0x12  
...  
26 bit +2 bit for E/W  
...  
SCD  
0x43  
x6+x1+x0  
x4+x1+x0  
see CID_SCD  
0x0  
CDM, CDS 0x13  
0x19  
0x1A  
33 bit +2 bit for E/W  
39 bit +2 bit for E/W  
Table 63: BiSS CRC polynomials  
Table 59: ST Data length  
CID_SCD  
Code  
0x00  
Addr. 0x4C; bit 7:4  
CRC start value SCD  
M2S  
Code  
00  
Addr. 0x3F; bit 2:1  
Function  
. . .  
CID_SCD  
No output  
0x0F  
01  
MT data output of lowest 4 bits  
MT data output of lowest 8 bits  
Complete output, MT bit count following DL_MT  
10  
Table 64: CRC start value for SCD  
11  
NC_BISS  
Addr. 0x43; bit 2  
Function  
Table 60: MT Data output  
Code  
0
1
BiSS C register communication enabled  
Output Options  
Communication disable  
(no execution of commands, no access to RAM or  
EEPROM  
The Gray or binary code format option covers the sin-  
glecycle word in its entirety (MT and ST data); only  
filled in zeros and the error and warning bits remain  
unaltered.  
Notes  
If the device setup and a set communication disable  
NC_BiSS are to be stored to the EEPROM, the  
preset function can be triggered at pin PRES.  
GRAY_SCD  
Addr. 0x3F; bit 7  
Data format  
Table 65: Communication disable  
Code  
0
1
Binary coded  
Gray coded  
Table 61: Data format (covers MT and ST data)  
iC-MN 25-BIT NONIUS ENCODER  
WITH 3-CH. SAMPLING 13-BIT Sin/D INTERPOLATION  
Rev D1, Page 40/59  
ELC  
Code  
0
Addr. 0x3F; bit 6  
Function (only with BiSS C protocol)  
Safety Application Settings  
It is possible to transmit a life counter value in the sen-  
sor data for safety applications. When the life counter  
is activated, a 6-bit counter value is transmitted in the  
sensor data which is incremented with each new sen-  
sor data readout. The life counter has a range of 1 to  
64.  
Life counter not active  
Life counter enabled  
1
Table 66: Life counter  
Figure 18: Example of line signals for BiSS C protocol with life counter  
the two slaves. Should the busy register not be suffi-  
Busy Register  
iC-MN has a 16-bit busy register. If, for example, two cient, i.e. should iC-MN need longer to convert data  
identically configured iC-MNs are connected up to the than the subsequent slave, iC-MN generates the start  
BiSS master as slaves in a chain, with the help of the bit and marks the data it has output as faulty. This en-  
busy register an internal clock jitter can be avoided sures that the data of the ensuing slave is not lost.  
which could lead to different data conversion times for  
iC-MN 25-BIT NONIUS ENCODER  
WITH 3-CH. SAMPLING 13-BIT Sin/D INTERPOLATION  
Rev D1, Page 41/59  
CONFIGURATION OF DIGITAL DRIVER OUTPUTS  
DSC  
Code  
00  
Addr. 0x48; bit 1:0  
The digital outputs SLO and NSLO can be used as ei-  
ther a push-pull, lowside or highside driver. The mode  
of operation is determined by DTRI. The driving capa-  
bility is set via the short-circuit current parameter.  
Short-circuit current  
50 mA  
01  
20 mA  
10  
4 mA  
11  
1.2 mA  
In order to meet RS422 specifications a short-circuit  
current of 50 mA should be selected as well as to re-  
duce the internal power dissipation. The driving ca-  
pability can be reduced when external line drivers are  
used.  
Table 68: Driver short-circuit current  
DSR  
Addr. 0x48; bit 5:4  
Code  
Slew rate  
Permissible  
transmission frequency  
In order to reduce crosstalk and to improve EMC the  
slew rate can be selected to suit the line length. If  
the edge steepness is reduced to 300 ns the maxi-  
mum permissible transmission frequency is limited to  
ca. 300 kHz if RS422 specifications are to be adhered  
to.  
00  
01  
10  
11  
10 ns  
10 MHz max.  
3 MHz max.  
1 MHz max.  
300 kHz max.  
30 ns  
100 ns  
300 ns  
Table 69: Driver slew-rate  
DTRI  
Code  
00  
Addr. 0x48; bit 3:2  
Operating mode  
Push-pull operation  
01  
Highside driver mode (P channel open drain)  
Lowside driver mode (N channel open drain)  
Not permitted  
10  
11  
Table 67: Driver output mode  
iC-MN 25-BIT NONIUS ENCODER  
WITH 3-CH. SAMPLING 13-BIT Sin/D INTERPOLATION  
Rev D1, Page 42/59  
COMMAND and STATUS REGISTERS  
Execution Of Internal Commands  
command can be used for SSI encoders to later enable  
The command register at address 0x77 can be ac- parameterization, for example.  
cessed fully independent of the internal state of op-  
eration. Depending on the data value written to this Execution Of Protocol Commands  
register the execution of an implemented command is iC-MN supports selected BiSS C protocol commands:  
triggered.  
CMD  
Selected address  
(IDS > 0x00)  
Broadcast address  
(IDS = 0x00)  
MN_CMD  
Code  
Addr. 0x77; bit 2:0  
Command  
W
10  
11  
Execute SOFT_PRES  
Execute CRC_CHECK  
-
-
Description  
0x0  
SOFT_RES  
Soft reset  
(new startup using  
internal config. data)  
Table 71: Implemented protocol commands  
0x1  
WRITE_CONF  
Transfers internal config.  
data to the EEPROM  
Automatic Reset Function  
0x2  
0x3  
SOFT_PRES  
CRC_CHECK  
Calls preset routine  
AUTORES can be used to set whether the command  
SOFT_RES is automatically generated or not if the er-  
ror AM_MIN occurs.  
CRC verification of the  
internal config. data  
0x4  
TOG_BISS  
No function  
Temporal toggle of  
interface protocol:  
BiSS C SSI  
AUTORES  
Addr. 0x44; bit 1:0  
Function  
...0xF  
Code  
00  
No automatic reset  
Table 70: Implemented commands  
01  
SOFT_RES after error AM_MIN, timeout 8 ms  
SOFT_RES after error AM_MIN, timeout 16 ms  
SOFT_RES after error AM_MIN, timeout 32 ms  
10  
11  
The command SOFT_RES resets internal state ma-  
chines, counters, and the status registers. The config-  
uration RAM is not reset here. During the command  
execution a write access to the configuration RAM is  
still possible, whereas the external EEPROM is not ac-  
cessible.  
Table 72: Automatic reset function  
For as long as the amplitude of the master track is too  
low or the AM_MIN error is set, SOFT_RES is active.  
When AM_MIN is no longer set, the timeout config-  
ured using AUTORES expires. It is only after this that  
SOFT_RES is reset and the device subsequently re-  
turns to normal operation.  
If the device is in nonius mode (see page 30), the first  
conversion is used to determine the period and the re-  
sult stored as an initial value for the period fraction of  
the internal flash counter. If an external multiturn de-  
vice is configured (MODE_MT = 00), its data is read  
in and stored as the initial value for the multiturn data  
fraction of the internal flash counter.  
Should an AM_MIN error occur while a command or  
the preset function is being carried out, SOFT_RES is  
only implemented once the command has been termi-  
nated.  
With WRITE_CONF the internal configuration is stored  
to the EEPROM. The CRC (CRC_E2P) is automat-  
ically updated and written to address 0x4E or 0x4F.  
For a description of the preset routine initiated by  
SOFT_PRES see page 50.  
The behavior of the I/O interface with an active  
SOFT_RES depends on the protocol selected. For  
BiSS C a zero is returned as a data value and the error  
and warning bits are set; for SSI the last data value to  
be output is repeated (the error bit is set if configured  
via SSIE). In both cases the error state is indicated at  
pin NERR by a low signal.  
CRC_CHECK starts a CRC verification of the inter-  
nal configuration RAM. During the check the internal  
data bus may not be accessed. Should the check not  
confirm the configuration data as error free, status bit  
EPR_ERR is set.  
Command TOG_BISS only causes the communication  
protocol to switch temporarily (BiSS SSI, or SSI →  
BiSS). RAM parameter NBISS is not altered here. The  
iC-MN 25-BIT NONIUS ENCODER  
WITH 3-CH. SAMPLING 13-BIT Sin/D INTERPOLATION  
Rev D1, Page 43/59  
Status Register  
ROM has been recognized, EPR_ERR remains set  
The status register is reached by a read access to ad- even after SOFT_RES.  
dresses 0x75 to 0x77. In the event of an error the  
relevant bit is set and maintained until the status reg- CMD_CNV and CMD_EXE are signaled on the same  
ister is read out or the command SOFT_RES is per- status bit and not stored, as opposed to the other  
formed (with the exception of status bits EPR_ERR status bits. CMD_CNV is set on the initialization  
and CMD_EXE). The status register can be accessed of a command which requires the internal converter.  
independent of the internal state of operation.  
CMD_EXE is set on commands which employ the in-  
ternal data bus.  
STATUS  
Addr. 0x75; bit 7:0  
R
STATUS  
Addr. 0x77; bit 7:0  
R
Bit  
7
Name  
TH_WRN  
Description of status message  
Excessive temperature warning  
Bit  
7
Name  
Description of status message  
CMD_EXE Command execution in progress, or  
CMD_CNV iC-MN in startup phase  
6
EPR_ERR Configuration error on startup:  
- No EEPROM (flag EPR_NO set)  
6
5
4
3
2
1
0
AN_Min  
AN_Max  
ACN_Min  
Signal error: poor level (nonius track)  
Signal error: clipping (nonius track)  
Control error: range at min. limit  
- Invalid check sum (flag EPR_NV set)  
5
4
3
2
1
FQ_WDR  
Excessive signal frequency on master track*:  
on current readout request  
FQ_STUP Excessive signal frequency on master track*:  
during startup  
ACN_Max Control error: range at max. limit  
AS_Min  
AS_Max  
ACS_Min  
Notes  
Signal error: poor level (segment track)  
Signal error: clipping (segment track)  
Control error: range at min. limit  
NON_CTR Period counter consistency error:  
counted period calculated Nonius position  
Multiturn data consistency error:  
counted multiturn external MT data  
Multiturn communication error:  
- Error bit set  
MT_CTR  
MT_ERR  
Error indication logic: 1 = true, 0 = false  
Table 75: Status register 0x77  
- CRC error  
- No start bit  
- General communication error  
Non-Volatile Diagnosis Memory  
By enabling E2EPR all status messages can be stored  
to the external EEPROM the first time they occur  
(physical EEPROM addresses 0x75 to 0x77).  
0
MT_WRN  
Notes  
Multiturn data indicates warning message  
(BiSS warning bit set)  
*) Relevant for nonius synchronization  
modes (MODE_ST = 0x00 to 0x0B); the  
warning threshold can be set using  
parameter FRQ_TH;  
On a system startup iC-MN reads in the status mes-  
sages already stored in the EEPROM. As soon as an  
error message occurs which has not been noted in the  
external memory the corresponding status register bit  
is transfered to the EEPROM. This way a "cumulative"  
error register is compiled in which all messages are  
stored which occur during operation. Only the current  
errors can be read out via the status register (BiSS ad-  
dresses 0x75 to 0x77).  
Error indication logic: 1 = true, 0 = false  
Table 73: Status register 0x75  
STATUS  
Addr. 0x76; bit 7:0  
R
Bit  
7
Name  
ACS_Max  
Description of status message  
Control error: range at max. limit  
Signal error: poor level (master track)  
Signal error: clipping (master track)  
Control error: range at min. limit  
6
AM_Min  
AM_Max  
ACM_Min  
5
The cumulative errors which are stored at EEPROM  
addresses 0x75 to 0x77 can only be read out via BiSS  
with CFG_E2P > 000 and PROT_E2P = 00 to bank 1,  
address 0x35-0x37 (see page 52 ff. for memory map).  
4
3
ACM_Max Control error: range at max. limit  
2
CT_ERR  
RF_ERR  
Readout cycle repetition to short*  
1
Excessive SSI clock frequency: conversion  
data not valid when latching data for output.  
Note: Once configuration has been completed and be-  
fore the system is delivered the data at the EEPROM  
addresses 0x75 to 0x77 should be initialized with ze-  
roes.  
0
TH_ERR  
Notes  
Excessive temperature error  
*) Relevant for nonius synchronization  
modes MODE_ST = 0x00 to 0x07  
(calculation routines must end before a new  
request is received)  
Error indication logic: 1 = true, 0 = false  
E2EPR  
Addr. 0x41; bit 7  
Description  
Code  
Table 74: Status register 0x76  
0
1
Disabled  
EEPROM savings of cumulative status messages  
enabled  
EPR_ERR indicates that no EEPROM was found on  
system startup (EPR_NO) or that a CRC error was rec-  
ognized for the internal setup (EPR_NV). If no EEP-  
Table 76: Diagnosis memory enable  
iC-MN 25-BIT NONIUS ENCODER  
WITH 3-CH. SAMPLING 13-BIT Sin/D INTERPOLATION  
Rev D1, Page 44/59  
ERROR AND WARNING BIT  
For the error and warning bit output the logic is always featuring open-drain alarm outputs a wired-or bus logic  
low active; a logic zero displays an active error or warn- can be installed.  
ing message. With the exception of an external system  
EXT_ERR  
error message (read in via I/O pin NERR and assigned  
Code  
Description  
to EXT_ERR) all error codes mentioned in the follow-  
ing are stored in the status register should the corre-  
sponding error event occur.  
0
1
No external error  
External component indicating an error to pin  
NERR  
The allocation of error messages to the error and warn-  
ing bit is either fixed or can be varied with the CFGEW  
parameter. The following tables explain the fixed and  
optional visibility.  
Table 79: External error message  
CFGEW  
Adr 0x42, bit(7:0)  
Visibility for error bit  
Ax_MAX, Ax_MIN  
EXT_ERR  
Fixed Allocation Of Error Messages  
Bit  
7
Message  
Visibility via error bit  
Conditions  
None  
EPR_NV*  
EPR_NO  
CMD_CNV**  
CT_ERR  
6
5
TH_ERR  
Enables additional functions, please refer to the  
description given below.  
RF_ERR  
Visible when  
NBISS = 1  
Bit  
Visibility for warning bit  
FQ_WDR  
4
MT_ERR  
MT_CTR  
Visible when  
MODE_MT = 01, 10  
3
Ax_MAX and Ax_MIN  
ACx_MAX and ACx_MIN  
TH_WRN  
NON_CTR  
FQ_STUP  
Visible when  
MODE_ST set for  
nonius synch.  
2
1
0
MT_WRN  
Notes  
*) Reset by command SOFT_RES  
**) CMD_CNV is also visible for warning bit.  
Notes  
x = M, S, N  
Encoding of bit 7...0:  
0 = message enabled, 1 = message disabled  
Table 77: Fixed allocation of messages for error bit in-  
dication  
Table 80: Error and warning bit configuration  
Variable Allocation Of Error Messages  
The visibility of the temperature error can be config-  
ured on the error bit by CFGEW(5) = 0. The occurrence  
of a temperature error then causes:  
Message  
Visibility via error bit  
Visibility via warning  
bit  
MT_WRN  
TH_WRN  
FQ_WDR  
ACx_MAX  
ACx_MIN  
Ax_MAX  
Ax_MIN  
n/a  
n/a  
n/a  
n/a  
n/a  
1. The setpoint of the signal level controller to be  
reduced to the lowest setting  
2. The analog output voltages to switch to VDD/2 at  
outputs PSOUT, NSOUT, PCOUT and NCOUT  
TH_ERR  
EXT_ERR  
Notes  
n/a  
n/a  
3. The RS422 output driving capability to be limited  
to 20 mA.  
= configurable via CFGEW  
x = M, S, N  
The following must also be taken into account:  
Table 78: Variable allocation of error messages for er-  
ror/warning bit indication  
• Error messages which are signaled via the error  
bit of the serial I/O interface are also indicated by  
a low signal at the NERR pin  
EXT_ERR can only be configured to the error bit and  
is not latched by the status register. It permits iC-MN to  
signal an error state of further ICs to the PLC, when the  
messaging IC pulls down the NERR pin. With devices  
• Nonius synchronization errors (NON_CTR) are  
indicated directly at the NERR pin  
iC-MN 25-BIT NONIUS ENCODER  
WITH 3-CH. SAMPLING 13-BIT Sin/D INTERPOLATION  
Rev D1, Page 45/59  
Temperature and signal level errors are indicated of the error bit and the NERR pin can be influenced by  
directly at the NERR pin. These errors are only S2ERR.  
signaled via the error bit if they are active at the  
point when data is accepted into the output shift  
register.  
S2WRN  
Addr. 0x43; bit 2  
Code  
Visibility for warning bit  
0
1
Current messages configured to the warning bit  
As above, or-gated with latched status messages  
which are configured to the warning bit  
All errors which occur during operation are stored in  
the status register regardless of the configuration of  
the error/warning bit (see page 43).  
Table 81: Visibility for warning bit  
S2ERR  
Addr. 0x43; bit 3  
Code  
Visibility for error bit and NERR  
Current messages configured to the error bit  
Visibility Of Latched Status Messages  
0
1
Parameter S2WRN enables status messages config-  
ured to the warning bit using CFGEW and stored in the  
status register to be output to the warning bit. In this  
instance the warning bit is set until the relevant status  
register is read out. Parallel to S2WRN the behavior  
As above, or-gated with latched status messages  
which are configured to the error bit  
Table 82: Visibility for error bit (and NERR pin)  
iC-MN 25-BIT NONIUS ENCODER  
WITH 3-CH. SAMPLING 13-BIT Sin/D INTERPOLATION  
Rev D1, Page 46/59  
MT INTERFACE  
In nonius modes iC-MN can connect to an external  
ST MSB-1  
multiturn sensor via the serial MT interface. Follow-  
ing synchronization of the MT data with the ST data  
the multiturn period counter is set to its initial position.  
ST MSB  
Each further revolution is then logged by the internal  
period counter.  
MT LSB -1  
MT LSB  
Even when the MT interface is not employed, the in-  
ternal 24-bit multiturn period counter can be config-  
ured to complement singleturn position data output by  
multiturn  
data output  
a counted multiturn position (see M2S).  
MT LSB -1  
MT LSB  
Additionally, the MT interface can be configured as a  
parallel two-pin interface to read in a single bit multi-  
turn position accompanied by a synchronization bit. In  
this way coverage of the absolute singleturn position  
can be doubled if additional sensors provide 180 and  
90 degree sector information.  
multiturn  
data output  
+1  
+1  
MT LSB -1  
MT LSB  
multiturn  
data output  
MODE_MT  
Code  
00*  
Addr. 0x40; bit 4:3  
Function  
-1  
-1  
°/ST  
Multiturn position counted internally  
Serial MT interface active (SSI)  
10*  
Figure 19: Principle of MT synchronization for 1 bit  
and 2 bit synchronization signals  
11*  
Parallel MT interface active (2-bit mode):  
Pin MTMA is input for 180° and pin MTSLI input for  
90° sector information  
Notes  
*) NCRC_MT = 0 required  
If MODE_MT is altered during operation, command  
SOFT_RES must be issued (see page 42).  
Table 83: MT Interface operation mode  
With a synchronization bit length of two or more bits  
iC-MN ignores parameter LNT_MT selecting for lead-  
ing or trailing MT data. Synchronization bit lengths of  
3 bit or 4 bit enlarge further the synchronization toler-  
ance between multiturn and singleturn (see Table 85).  
Configuration Of Data Lengths  
The bit length of the internal MT counter and of the  
multiturn data word is set using parameter DL_MT.  
For synchronization purposes the synchronization bit  
length must be set by SBL_MT. Synchronization oc-  
curs between the external multiturn data read in and  
the period information counted internally. At synchro-  
nization bit lengths > 1 bit synchronization can occur  
automatically within the relevant phase tolerances.  
DL_MT  
Code  
0x00  
...  
Addr. 0x3E; bit 7:5  
Multiturn bit count*  
With a single synchronization bit (SBL_MT = 00) no au-  
tomatic synchronization can take place. Here, iC-MN  
cannot recognize whether the external multiturn sen-  
sor provides leading or trailing position data (what may  
vary depending on gear box assembly). This must be  
set manually by parameter LNT_MT.  
8
...  
20  
24  
1
0x0C  
0x0D  
0x0E  
0x0F  
Notes  
4
*) Does not include synchronization bits of the  
external MT sensor.  
Figure 19 shows the principle of MT synchronization  
for ideal signals (without indication of synchronization  
tolerance limits). It shows 2 bit and 1 bit synchroniza-  
tion for leading and trailing signals.  
Table 84: MT data length (and counter depth)  
iC-MN 25-BIT NONIUS ENCODER  
WITH 3-CH. SAMPLING 13-BIT Sin/D INTERPOLATION  
Rev D1, Page 47/59  
SBL_MT  
Addr. 0x41; bit 1:0  
further readouts are attempted and MT_ERR remains  
permanently set.  
Code  
MT synchronization bit  
length  
Synchronization range  
(ST resolution)  
00  
01  
10  
11  
1 bit  
2 bit  
3 bit  
4 bit  
± 90°  
startup  
sequence with  
16 ms timeout  
± 90°  
± 135°  
± 157.5°  
Table 85: MT synchronization bit length  
mt-error-counter ++  
read external  
multiturn  
LNT_MT  
Addr. 0x41; bit 2  
yes  
mt_error-counter < 4  
no  
Code  
Function (single sync. bit, SBL_MT = 0x00)  
serial-communication error?  
yes  
0
1
Trailing  
Leading  
no  
set MT_ERR  
Table 86: Leading/trailing gear box assembly  
sync to flashcounter  
proceed with  
startup-sequence  
proceed with  
Via CHK_MT the device can be configured so that the  
counted multiturn period is verified every 8 ms. An  
error in the multiturn check (the comparison of the  
counted multiturn period and the external multiturn po-  
sition data) is signaled via the error bit (MT_CTR is set  
in the status register, see page 43).  
startup-sequence  
no further multiturn-readouts  
started  
Figure 20: Error handling during start up phase  
normal operation:  
ready for  
sensordata-requests  
CHK_MT  
Addr. 0x40; bit 6  
Function  
Code  
CHK_MT?  
0
1
Verification disabled  
Cyclic verification each 8 ms  
yes  
start timer  
Table 87: Period counter verification  
GRAY_MT  
Addr. 0x41; bit 3  
Data format  
read external  
multiturn  
timer == 8 ms?  
yes  
Code  
0
1
Binary coded  
Gray coded  
sync to flashcounter  
and compare to counted  
multiturn-value  
serial  
communication  
error?  
no  
Table 88: MT Interface data format  
yes  
no  
compare-error?  
yes  
Error Handling  
If a communication error appears when reading in ex-  
ternal multiturn data during the startup phase (such  
as pin MTSLI reading a permanent logic 0 or the exter-  
nal MT sensor not responding), the first conversion and  
request for the external multiturn data are repeated up  
to three times (see Figure 20). If the error persists after  
a fourth attempted readin, the device goes into normal  
operating mode. Conversion requests for the single-  
turn position data are possible, but MT_ERR remains  
permanently set.  
set MT_CTR  
set MT_ERR  
Figure 21: Error handling during normal operation  
with cyclic period counter verification  
M TMA  
M TSL I  
M
S
B
L
S
B
D
L
_
M
T
+
S
B
L
_
M
T
t
o
u
t
The error handling in normal operating mode when  
the multiturn data verification is activated is shown in  
Figure 21. If there is an error in communication no  
Figure 22: Line signals of the serial MT interface  
MODE_MT = 0x10 (SSI)  
iC-MN 25-BIT NONIUS ENCODER  
WITH 3-CH. SAMPLING 13-BIT Sin/D INTERPOLATION  
Rev D1, Page 48/59  
MT Interface with 2-bit mode  
max  
max  
In this mode pin MTMA functions as an additional in-  
put, besides pin MTSLI. The inputs now expect digi-  
tal signals phase shifted by 90°, whereas MTMA reads  
the single bit period information, and MTSLI the shifted  
synchronization bit. The following figure explains the  
principle and the table below gives the necessary set-  
tings.  
sector 0  
sector 1  
MTSLI  
MTMA  
calculated nonius position  
master  
max  
max  
segment  
nonius  
resulting dataword  
2*max  
sector 0  
sector 1  
0
360°  
°/rev  
.
iC-MN  
2 bit sector code (gray coded)  
MTSLI  
MTMA  
0
360°  
MTSLI  
MTMA  
°/rev  
.
0
360°  
°/rev  
Figure 23: Principle of 2-bit mode  
°/rev  
Figure 24: Position of switch points in reference to  
the parameter LNT_MT  
Parameter  
Description  
MODE_MT = 11  
DL_MT = 0x0E  
SBL_MT = 00  
MT interface op. mode: 2-bit mode  
MT data length: 1 bit  
Synchronization bit length: 1 bit  
A typical application example where the 2-bit mode can  
be used for, is a magnetic angle encoder scanning the  
pole wheel by MR sensors. A nonius coded wheel of  
16, 15 and 12 pole pairs yields 32, 30 and 24 sine pe-  
riods per turn on iC-MN’s analog inputs. The nonius  
calculation would not produce absolute angle position  
data over a single revolution since the maximum sin-  
gleturn value is achieved twice. The distinction as to  
which half of the revolution the axis is in can only be  
LNT_MT = 0 or 1 Depending on MTMA signal: leading or  
trailing  
GRAY_MT = 1  
M2S = 11  
MT data format: Gray coded  
Enable for MT plus ST data output  
Table 89: Required settings for 2-bit mode  
The required position of the multiturn and synchro- made using section sensors, two Hall sensors for ex-  
nization bit depends on parameter LNT_MT. Figure 24 ample, whose digital outputs are connected up directly  
shows the required signal positions with leading re- to MTMA and MTSLI. Furthermore, the 2-bit mode can  
spectively trailing operation. The green arrows are in- be used also with systems based on a 2 track nonius  
dicating the permissible relative position tolerances.  
calculation.  
iC-MN 25-BIT NONIUS ENCODER  
WITH 3-CH. SAMPLING 13-BIT Sin/D INTERPOLATION  
Rev D1, Page 49/59  
MT INTERFACE with EXTENDED FUNCTIONS  
SWC_MT  
Addr. 0x41; bit 6  
The serial multiturn interface can be operated in the  
BiSS C protocol which enables multiturn sensor error  
messages to be evaluated (via the error and warning  
bits, each of which are low active) and communica-  
tion to be monitored (evaluation of the CRC bits, see  
Figure 25).  
Code  
CRC polynomial (HEX)  
0
1
0x43  
0x25  
Table 91: MT Interface CRC polynomial  
The error behavior of the multiturn interface has al-  
ready been described in Figures 20 and 21; only a set  
error bit (low) or a CRC error are now also classified  
as a communication error.  
NCRC_MT  
Addr. 0x41; bit 4  
Function  
Code  
0*  
CRC verification active  
Disabled  
1
Note  
*) Only permitted with MODE_MT = 01.  
MODE_MT  
Code  
00  
Addr. 0x40; bit 4:3  
Function  
Table 92: MT Interface CRC verification  
Internal multiturn period counting  
BiSS C protocol  
01  
Notes  
If MODE_MT is altered during operation, command  
SOFT_RES must be issued (see page 42).  
Table 90: MT Interface operation mode  
M TM A  
M TS L I  
A
C
K
S
T
A
R
T
M
S
B
L
S
B
N
E
R
R
N
W
R
N
M
S
B
L
S
B
MT_ E R R +  
MT_ WR N  
D
L
_
M
T
+
S
B
L
_
M
T
C
R
C
(
N
C
R
C
_
M
T
=
0
)
t
o
u
t
Figure 25: Example of the MT interface line signals with BiSS C protocol  
Direct Communication To Multiturn Sensor  
ing the singleturn data. With GET_MT enabled, the  
Making use of the BiSS Interface bus capabilities, iC- external multiturn can then be addressed via BiSS ID  
MN can connect the external multiturn sensor to the 0 and the singleturn via BiSS ID 1. This temporal  
BiSS master controller when GET_MT is enabled. To chain operation eases device parameterization during  
this end pin MA receiving the BiSS master’s clock sig- encoder manufacturing.  
nal is fed through to pin MTMA and the MTSLI pin is  
activated in place of the SLI pin. Upon enabling this  
GET_MT  
Addr. 0x41; bit 5  
Function  
mode the singlecycle timeout must have elapsed and  
an additional init command carried out by the BiSS  
master, before it can run the first register communi-  
cation.  
Code  
0
1
Disabled  
MT sensor communication enabled  
Table 93: Direct BiSS communication enable for MT  
sensor via I/O Interface  
Example: external multiturn sensor built with iC-MN is  
connected to the MT interface of a first iC-MN, prepar-  
iC-MN 25-BIT NONIUS ENCODER  
WITH 3-CH. SAMPLING 13-BIT Sin/D INTERPOLATION  
Rev D1, Page 50/59  
PRESET FUNCTION  
The preset function sets the output position data to a Figure 26; see Figure 27 for multiturn synchronization  
predefined position value and is initiated by a high flank operating mode.  
at pin PRES or by calling the SOFT_PRES command  
(writing 0x02 to the command register, see Table 70).  
If an external EEPROM is available the preset values  
are read in from the preset registers. A preset value of  
zero is otherwise assumed. The current position is de-  
termined. Correction factors for the output (OFFS_ST,  
OFFS_MT) are calculated and stored in the internal  
RAM. With an EEPROM available the entire contents  
of the RAM are written to said EEPROM, thus storing  
the OFFS_ST and OFFS_MT data.  
In the PRES_MT register the multiturn preset values  
are always justified to the right with the LSB (starting  
at address 0x55, bit 0).  
OFFS_MT  
Addr. 0x37; bit 7:0  
Addr. 0x36; bit 7:0  
Addr. 0x35; bit 7:0  
0x000  
. . .  
Multiturn output offset  
0xFFF  
Note: Command SOFT_PRES blocks iC-MN’s internal  
RAM for accesses over a certain time.  
Table 96: Position offset for MT data output  
For the output the OFFS_ST and OFFS_MT values are  
subtracted from the internal synchronized result with  
each conversion (Note: In MODE_ST = 0x05-0x07 and  
0x0D the sensor data is designated faulty after the first  
readout. The readout data is equivalent to the correc-  
tion factor.)  
PRES_MT  
Addr. 0x57; bit 7:0  
Addr. 0x56; bit 7:0  
Addr. 0x55; bit 7:0  
0x000  
. . .  
Preset register multiturn (EEPROM only)  
0xFFF  
OFFS_ST  
Addr. 0x34; bit 6:0  
Addr. 0x33; bit 7:0  
Addr. 0x32; bit 7:0  
Addr. 0x31; bit 7:0  
Addr. 0x30; bit 7:0  
Table 97: Preset value for MT data output  
up to 12 bit period-information  
UBL_S+UBL_N  
up to 13 bit master-information  
UBL_M  
0x00000  
. . .  
physical  
resolution:  
MSB  
period  
LSB  
period  
MSB  
master  
LSB  
master  
Singleturn output offset  
0x7FFFF  
PRES_ST  
register:  
MSB  
ST_DW  
LSB  
ST_DW  
0
0
0
0
0
0
0
0
Table 94: Position offset for ST data output  
ADR 0x54  
bit 6  
ADR 0x53  
bit 3  
ADR 0x53  
bit 2  
ADR 0x51  
bit 6  
datalength defined by DL_ST  
PRES_ST  
Addr. 0x54; bit 6:0  
Addr. 0x53; bit 7:0  
Addr. 0x52; bit 7:0  
Addr. 0x51; bit 7:0  
Addr. 0x50; bit 7:0  
Figure 26: PRES_ST with nonius synchronization  
mode  
up to 39 bit preset-information MSB left aligned  
datalength defined by DL_ST  
0x00000  
. . .  
Preset register singleturn (EEPROM only, see text)  
0x7FFFF  
PRES_ST  
register:  
MSB  
ST_DW  
LSB  
ST_DW  
0
0
0
Table 95: Preset value for ST data output  
ADR 0x54  
bit 6  
ADR 0x50  
bit 0  
The position of the preset value for the singleturn data  
word (ST_DW) in preset register PRES_ST varies de-  
pending on the converter mode (MODE_ST see Table  
42). For nonius synchronization operating mode see  
Figure 27: PRES_ST with multiturn synchronization  
mode  
iC-MN 25-BIT NONIUS ENCODER  
WITH 3-CH. SAMPLING 13-BIT Sin/D INTERPOLATION  
Rev D1, Page 51/59  
STARTUP BEHAVIOR  
Figure 28 shows the startup behavior of iC-MN. After If an error occurs while the EEPROM data is being  
turning on the power supply (power-on reset) iC-MN read (a CRC error or communication error with the  
reads the configuration data from the EEPROM. If the EEPROM), the current readin process is canceled and  
data can be read without error, a timeout of 8 ms is restarted. Following a third failed attempt the readin  
allowed to elapse.  
procedure is ended and the internal iC-MN configura-  
tion registers (addresses 0x00 to 0x4D) initialized with  
If the multiturn interface has been configured for an ex- a zero.  
ternal sensor, the device waits for a longer timeout of  
16 ms to elapse. The multiturn data is then read in and In doing so, NBISS = 0 selects for the BiSS C protocol  
the first conversion performed in order to determine the for the I/O interface enabling BiSS C register commu-  
absolute position (see page 47). iC-MN then goes into nication.  
normal operation.  
If an attempt to read sensor data is made iC-MN would  
reply an 8-bit zero value with set error and warning  
startup  
bits (sequence: start bit 1x high, position 8x zero, er-  
ror/warning 2x zero, CRC 6x high followed by zero bits  
read EEPROM  
(max 3 times on error)  
when the clock signal is continued).  
EEPROM ok?  
Following successful configuration using the I/O inter-  
face command SOFT_RES must be issued in order to  
switch iC-MN to normal operation (see page 42).  
serial-interface active  
for configuration  
(no sensor data request  
MODE_MT = 00  
possible)  
yes  
no  
8 ms timeout  
16 ms timeout  
via command SOFT_RES  
MODE_ST:  
sync_mode is  
nonius?  
yes  
no  
yes  
MODE_MT = 00  
no  
normal operation:  
ready for  
sensor data requests  
first conversion to get  
initial period information  
command execution  
multiturn-startup  
Figure 28: Startup behavior  
iC-MN 25-BIT NONIUS ENCODER  
WITH 3-CH. SAMPLING 13-BIT Sin/D INTERPOLATION  
Rev D1, Page 52/59  
EEPROM INTERFACE  
CFG_E2P  
Adr 0x40; Bit 2:0  
Banks per area  
(64 bytes each)  
CONF EDS USER EEPROM, Typ  
The serial EEPROM interface consists of the two pins  
SCL and SDA and enables read and write access to a  
serial EEPROM (such as a 24C02 with 128 bytes, 5 V  
type with a 3.3 V function). The data in the EEPROM  
is secured by a CRC to the addresses 0x4E and 0x4F.  
Code  
For SSI applications:  
000*  
001  
Bytes  
128  
256  
2
3
-
1
-
-
1 kbit, C01 up  
2 kbit, C02 up  
For BiSS applications with EDS:  
Application Hints  
010  
011  
100  
101  
110  
111  
Notes  
512  
3
3
3
3
3
3
4
4
12  
4
12  
24  
1
9
1
25  
17  
5
4 kbit, C04 up  
8 kbit, C08 up  
8 kbit, C08 up  
16 kbit, C016 up  
16 kbit, C016 up  
16 kbit, C016 up  
To protect the EEPROM against a reversed power sup-  
ply voltage it can be connected to the integrated supply  
switch (pins VDDA and GNDA). The EEPROM speci-  
fications and absolute maximum ratings should com-  
ply to the pin voltages of VDDA, SCL and SDA during  
startup and operation. A protective circuit may be ad-  
visable depending on the EEPROM model.  
1024  
1024  
2048  
2048  
2048  
*) direct addressing mode  
Table 99: Configuration of external memory  
Direct Addressing  
The registers can be accessed via the I/O interface  
and direct addressing (for CFG_E2P = 000). In ac-  
cordance with the BiSS protocol the number of bytes  
addressed is restricted to 128. Accessing addresses  
0x00 to 0x4F reads or writes to iC-MN’s internal RAM  
register. The data from this special address area can  
only be transmitted to the EEPROM by the command  
WRITE_CONF.  
For EEPROM selection the following minimal require-  
ments must be fulfilled: (e. g. Atmel AT24C01B, 128x8)  
• Operation from 3.3 V to 5 V, I2C-Interface  
• Minimal 1024 bit, 128x8  
The registers for addresses 0x50 to 0x70, 0x78 to  
0x7B and 0x7D to 0x7F are in the EEPROM and can  
be accessed byte-wise by a BiSS register access for  
read or write.  
CRC_E2P(1:0)  
CRC_E2P(9:2)  
Addr. 0x4F; bit 7:6  
Addr. 0x4E; bit 7:0  
Code  
0x000  
. . .  
Description  
CRC formed by CRC polynomial 0x409  
The addresses missing in the above are located in iC-  
MN: the status register from 0x75 to 0x77 (read only),  
the MN_CMD register at 0x77 (write only), and the I/O  
interface parameters CID_SCD and TOS at address  
0x7C. The latter has no access limitations and can  
always be read and written to (content is mirrored to  
0x4C).  
0x3FF  
Table 98: EEPROM Data Check Sum  
Memory Map And Register Access  
Depending on the EEPROM size different bank assign-  
ments can be configured using CFG_E2P. There are  
three areas, placed one after the other, which are des-  
ignated for this purpose in the memory:  
Bank-Wise Addressing  
iC-MN also supports bank-wise addressing (for  
CFG_E2P = 000) according to the BiSS Interface C  
Protocol Description. In this mode of configuration iC-  
MN divides the internal address sections into banks of  
64 bytes each. The address sections visible via the I/O  
interface recognizes a ”dynamic” section (addresses  
0x00 to 0x3F) and a ”static” section which is perma-  
nently visible (addresses 0x40 to 0x7F). The static ad-  
dress section is always independent of the bank cur-  
rently selected. Figure 29 illustrates how the banks  
selected by BANKSEL are addressed.  
1. CONF: iC-MN configuration data  
2. EDS : Electronic Data Sheet  
3. USER: OEM data, free user area  
iC-MN 25-BIT NONIUS ENCODER  
WITH 3-CH. SAMPLING 13-BIT Sin/D INTERPOLATION  
Rev D1, Page 53/59  
iC-MN internal  
address-space visible via BiSS  
linear address-  
(CFG_E2P > 000)  
space divided into n  
banks of size 64  
bank n-1  
byte  
(e.g. CFG_E2P > 101; n=32)  
bank 3  
bank 2  
bank 1  
ADR  
ADR  
bank 0  
0x00  
0x00  
0x3F  
0x40  
0x7F  
0x80  
0x3F  
0x40  
BANKSEL  
EDSBANK  
profile ID  
selects  
0xBF  
0xC0  
serial number  
SLAVE-registers  
STATUS  
0xFF  
BiSS-ID  
0x7F  
Figure 29: Principle of bank-wise memory addressing  
PROT_E2P(1:0)  
Range  
Addr. 0x43; bit 1:0  
Register access can be restricted via PROT_E2P (see  
Table 100). PROT_E2P = 10 selects safety level 2, a  
shipping mode with limited access. Shipping 2 can be  
set back to level 1 (shipping 1), for which purpose the  
content of address 0x43 must be written anew.  
RPL*  
RP0  
RP1  
CONF  
r/w  
EDS  
r/w  
USER  
r/w  
STATUS n/a  
r/w for others  
r/w  
r/w  
RP2  
Note  
n/a  
r only  
r/w  
PROT_E2P(1:0)  
Addr. 0x43; bit 1:0  
* Register Protection Level  
Code  
Mode  
Access Limitation  
(see Figure 30 and 31)  
00  
Configuration Mode,  
free access  
RP0  
RP1  
RP2  
RP2  
Table 101: Register Read/Write Protection Levels  
(n/a: iC-MN refuses access to those regis-  
ter addresses.)  
01  
Configuration Mode,  
limited access  
10  
Shipping Mode 1,  
reset to RP1 is possible  
Figure 30 shows the static memory area and Figure 31  
the area which can be altered by BANKSEL. The BiSS  
register access limitations which are generated by pa-  
rameter PROT_E2P are marked ”R/W” for read/write  
access and ”R” for read only. The original site of data  
returned by access to the BiSS register is designated  
11  
Shipping Mode 2,  
reset is not possible  
Table 100: Register Access Control  
Sections CONF, EDS and USER are protected at dif- by ”RAM” for iC-MN’s internal RAM, by ”E2P” for the  
ferent levels in shipping mode for read and write ac- EEPROM and by ”INT” for those of iC-MN’s internal  
cess.  
registers which cannot be preloaded on startup.  
iC-MN 25-BIT NONIUS ENCODER  
WITH 3-CH. SAMPLING 13-BIT Sin/D INTERPOLATION  
Rev D1, Page 54/59  
static part: BiSS addresses 0x3F-0x7F  
register-  
protection-  
addressing scheme  
level  
data  
bank address  
0x40  
content  
mapped to address RP1 RP2 location  
BANKSEL  
EDSBANK  
internal  
0x081  
0x082  
0x083  
0x084  
R/W  
INT  
0x41  
0x42  
0x43  
0x44  
profile ID  
serial number  
0x47  
0x48  
0x087  
0x088  
R
E2P  
SLAVE-registers  
reserved  
0x6F  
0x70  
0x0AF  
0x0B0  
0-31  
R/W  
0x74  
0x75  
0x76  
0x77  
0x78  
0x0B4  
internal  
0x078  
0x04C  
0x07F  
STATUS  
STATUS  
STATUS/MN_CMD  
R/W  
INT  
R
R/W  
R
E2P  
RAM  
E2P  
0x7C  
0x7F  
BISS-ID  
Figure 30: User view: BiSS memory access 0x40 to 0x7F, con-  
tent independent of BANKSEL; CFG_E2P = 000  
bank switched part: BiSS addresses 0x00-0x3F  
register-  
protection-  
addressing scheme  
level  
data  
bank address  
content  
mapped to address RP1 RP2 location  
0x00  
0x000  
0
n/a  
0x3F  
0x00  
parameter values  
with CRC  
0x03F  
0x040  
RAM  
0x0C  
0x04C  
R/W  
n/a  
R/W  
0x0F  
0x10  
0x04F  
0x050  
preset-values  
free  
R/W  
n/a  
0x17  
1
0x057  
0x35  
0x36  
0x37  
0x38  
0x075  
0x076  
0x077  
0x078  
E2P  
STATUS accumulated  
(see E2EPR for  
details)  
n/a  
R
0x3C  
0x04C  
BiSS-ID  
R/W  
RAM  
0x3F  
0x00  
0x01  
0x07F  
0x080  
0x081  
reserved  
EDSBANK, profile ID,  
serial number, SLAVE-  
registers  
R
2
0x2F  
0x30  
0x0AF  
0x0B0  
R/W  
reserved  
E2P  
0x3F  
0x00  
0x0BF  
0x0C0  
3
0x3F  
0x00  
0x3F  
0x0FF  
0x7C0  
0x7FF  
R
or  
R/W  
31  
Figure 31: User view: BiSS memory access 0x00 to 0x3F, con-  
tent switchable with BANKSEL; CFG_E2P = 000  
iC-MN 25-BIT NONIUS ENCODER  
WITH 3-CH. SAMPLING 13-BIT Sin/D INTERPOLATION  
Rev D1, Page 55/59  
APPLICATION NOTES: Configuration As BiSS C-Slave Including EDS (Electronic Data Sheet)  
BiSS Profile 12-12  
Preconditions:  
MODE_ST  
NBISS  
ELC  
0x00-0x0B (Nonius)  
0
0
1. CFG_E2P <> b000. The bank switch function must  
be activated.  
GRAY_SCD  
DL_ST  
DL_MT  
M2S  
0
0x04 (12)  
0x04 (12)  
0x03  
2. EDSBANK = 0x03. No other values possible. Ad-  
dressing via BiSS: Bank: 2, Adr: 0x01 or direct to EEP-  
ROM: Adr: 0x081  
R_MT  
0x0C (12)  
R_ST  
SBL_x  
Notes  
UBL_M+UBL_S+UBL_N  
= 0x00  
UBL_M+UBL_S+UBL_N 12  
3. Setting of profile ID according to the following ta-  
bles; Addressing via BiSS: Bank: 2, Adr: 0x02-0x03 or  
direct to EEPROM: Adr: 0x082-0x083  
Table 105: Setup for BiSS profile 12-12  
BiSS Profile 0-12  
BiSS Profile 12-24  
MODE_ST  
NBISS  
ELC  
0x00-0x0B (Nonius)  
0
0
0x0C-0x0F (Multiturn)  
MODE_ST  
NBISS  
ELC  
0x00-0x0B (Nonius)  
0
0
GRAY_SCD  
DL_ST  
DL_MT  
M2S  
0
GRAY_SCD  
DL_ST  
DL_MT  
M2S  
0
0x04 (12)  
-
0x00  
0x10 (24)  
0x04 (12)  
0x03  
R_MT  
0x00 (0)  
R_MT  
0x0C (12)  
R_ST  
SBL_x  
Notes  
UBL_M+UBL_S+UBL_N  
= 0x00  
UBL_M+UBL_S+UBL_N 12  
R_ST  
SBL_x  
Notes  
UBL_M+UBL_S+UBL_N  
= 0x00  
UBL_M+UBL_S+UBL_N 24  
-
Table 102: Setup for BiSS profile 0-12  
Table 106: Setup for BiSS profile 12-24  
BiSS Profile 0-24  
MODE_ST  
NBISS  
ELC  
GRAY_SCD  
DL_ST  
DL_MT  
M2S  
R_MT  
R_ST  
SBL_x  
Notes  
0x00-0x0B (Nonius)  
0
0
0
0x10 (24)  
-
0x00  
0x00 (0)  
UBL_M+UBL_S+UBL_N  
= 0x00  
UBL_M+UBL_S+UBL_N 24  
0x0C-0x0F (Multiturn)  
BiSS Profile 12-24++  
MODE_ST  
NBISS  
ELC  
0x00-0x0B (Nonius)  
0
0
GRAY_SCD  
DL_ST  
DL_MT  
M2S  
0
0x11(25)  
0x04 (12)  
0x03  
R_MT  
0x0C (12)  
R_ST  
0x19 (25)  
SBL_x  
Notes  
= 0x00  
UBL_M=13, UBL_S=6, UBL_N=6  
Table 103: Setup for BiSS profile 0-24  
Table 107: Setup for BiSS profile 12-24++  
BiSS Profile 0-24++  
MODE_ST  
NBISS  
0x00-0x0B (Nonius)  
0
0x0C-0x0F (Multiturn)  
ELC  
GRAY_SCD  
DL_ST  
0
0
BiSS Profile 24-12  
MODE_ST  
NBISS  
ELC  
0x00-0x0B (Nonius)  
0
0
0x11(25)  
> 0x10 (24)  
< 0x18 (32)  
DL_MT  
M2S  
R_MT  
R_ST  
SBL_x  
Notes  
-
GRAY_SCD  
DL_ST  
DL_MT  
M2S  
0
0x00  
0x04 (12)  
0x0D (24)  
0x03  
0x00 (0)  
0x19 (25)  
= 0x00  
UBL_M=13,  
UBL_N=6  
UBL_M+UBL_S+UBL_N  
R_MT  
0x18 (24)  
UBL_S=6, UBL_M+UBL_S+UBL_N  
=
>
R_ST  
SBL_x  
Notes  
UBL_M+UBL_S+UBL_N  
= 0x00  
UBL_M+UBL_S+UBL_N 12  
DL_ST;  
UBL_M+UBL_S+UBL_N  
24  
Table 104: Setup for BiSS profile 0-24++  
Table 108: Setup for BiSS profile 24-12  
iC-MN 25-BIT NONIUS ENCODER  
WITH 3-CH. SAMPLING 13-BIT Sin/D INTERPOLATION  
Rev D1, Page 56/59  
BiSS Profile 24-24  
Remarks to iC-MN with EDS:  
MODE_ST  
NBISS  
ELC  
0x00-0x0B (Nonius)  
0
0
1. CFG_E2P = b000 (i.e. bank switch function has  
been activated.)  
GRAY_SCD  
DL_ST  
DL_MT  
M2S  
R_MT  
R_ST  
0
0x10 (24)  
0x0D (24)  
0x03  
0x18 (24)  
UBL_M+UBL_S+UBL_N  
= 0x00  
UBL_M+UBL_S+UBL_N 24  
2. EDSBANK must be set 0x03 (no other values are  
possible)  
Addressing via BiSS: Bank: 2, Adr: 0x01  
or direct to EEPROM: Adr: 0x081  
SBL_x  
Notes  
3. Set profile ID.  
Table 109: Setup for BiSS profile 24-24  
Addressierung via BiSS: Bank: 2, Adr: 0x02-  
0x03  
BiSS Profile 24-24++  
or direct to EEPROM: Adr: 0x082-0x083  
MODE_ST  
NBISS  
ELC  
0x00-0x0B (Nonius)  
0
0
GRAY_SCD  
DL_ST  
DL_MT  
M2S  
0
0x11(25)  
0x0D (24)  
0x03  
R_MT  
0x18 (24)  
R_ST  
0x19 (25)  
SBL_x  
Notes  
= 0x00  
UBL_M=13, UBL_S=6, UBL_N=6  
Table 110: Setup for BiSS profile 24-24++  
iC-MN 25-BIT NONIUS ENCODER  
WITH 3-CH. SAMPLING 13-BIT Sin/D INTERPOLATION  
Rev D1, Page 57/59  
APPLICATION NOTES: PLC Operation  
PLC Operation  
ther the supply VDD nor the output pins, which are  
There are PLCs with a remote sense supply which re- also monitored, must fall to below ground potential (pin  
quire longer for the voltage regulation to settle. At the GND); otherwise the device is not configured and the  
same time the PLC inputs can have high-impedance outputs remain permanently set to tristate.  
resistances versus an internal, negative supply voltage  
which define the input potential for open inputs.  
In order to ensure that iC-MN starts with the PLCs  
In this instance iC-MN’s reverse polarity protection fea- mentioned above pull-up resistors can be used in the  
ture can be activated as the outputs are tristate during encoder. Values of 100 kare usually sufficient; it  
the start phase and the resistances in the PLC deter- is, however, recommended that PLC specifications be  
mine the pin potential. During the start phase nei- specifically referred to here.  
iC-MN 25-BIT NONIUS ENCODER  
WITH 3-CH. SAMPLING 13-BIT Sin/D INTERPOLATION  
Rev D1, Page 58/59  
DESIGN REVIEW: Notes On Chip Functions  
iC-MN Y2  
No.  
Function, Parameter/Code  
Description and Application Hints  
No exclusions known at time of printing.  
Table 111: Notes on chip functions regarding iC-MN chip releas Y2  
iC-Haus expressly reserves the right to change its products and/or specifications. An Infoletter gives details as to any amendments and additions made to the  
relevant current specifications on our internet website www.ichaus.de/infoletter; this letter is generated automatically and shall be sent to registered users by  
email.  
Copying – even as an excerpt – is only permitted with iC-Haus approval in writing and precise reference to source.  
iC-Haus does not warrant the accuracy, completeness or timeliness of the specification on this site and does not assume liability for any errors or omissions  
in the materials. The data specified is intended solely for the purpose of product description. No representations or warranties, either express or implied, of  
merchantability, tness for a particular purpose or of any other nature are made hereunder with respect to information/specification or the products to which  
information refers and no guarantee with respect to compliance to the intended use is given. In particular, this also applies to the stated possible applications or  
areas of applications of the product.  
iC-Haus conveys no patent, copyright, mask work right or other trade mark right to this product. iC-Haus assumes no liability for any patent and/or other trade  
mark rights of a third party resulting from processing or handling of the product and/or any other use of the product.  
As a general rule our developments, IPs, principle circuitry and range of Integrated Circuits are suitable and specifically designed for appropriate use in technical  
applications, such as in devices, systems and any kind of technical equipment, in so far as they do not infringe existing patent rights. In principle the range of  
use is limitless in a technical sense and refers to the products listed in the inventory of goods compiled for the 2008 and following export trade statistics issued  
annually by the Bureau of Statistics in Wiesbaden, for example, or to any product in the product catalogue published for the 2007 and following exhibitions in  
Hanover (Hannover-Messe).  
We understand suitable application of our published designs to be state-of-the-art technology which can no longer be classed as inventive under the stipulations  
of patent law. Our explicit application notes are to be treated only as mere examples of the many possible and extremely advantageous uses our products can  
be put to.  
iC-MN 25-BIT NONIUS ENCODER  
WITH 3-CH. SAMPLING 13-BIT Sin/D INTERPOLATION  
Rev D1, Page 59/59  
ORDERING INFORMATION  
Type  
Package  
Order Designation  
iC-MN  
48-pin QFN 7x7 mm  
iC-MN QFN48  
Evaluation Board  
Size 140mm x 100mm  
iC-MN EVAL MN1D  
For technical support, information about prices and terms of delivery please contact:  
iC-Haus GmbH  
Tel.: +49 (61 35) 92 92-0  
Am Kuemmerling 18  
D-55294 Bodenheim  
GERMANY  
Fax: +49 (61 35) 92 92-192  
Web: http://www.ichaus.com  
E-Mail: sales@ichaus.com  
Appointed local distributors: http://www.ichaus.com/sales_partners  

相关型号:

IC-MNQFN48

25-BIT NONIUS ENCODER WITH 3-CH. SAMPLING 13-BIT Sin/D INTERPOLATION
ICHAUS

IC-MP

8-BIT HALL ANGLE ENCODER WITH RATIOMETRIC OUTPUT
ICHAUS

IC-MPDFN10

8-BIT HALL ANGLE ENCODER WITH RATIOMETRIC OUTPUT
ICHAUS

IC-MPEVALMP1D

8-BIT HALL ANGLE ENCODER WITH RATIOMETRIC OUTPUT
ICHAUS

IC-MQ

PROGRAMMABLE 9-BIT Sin/Cos INTERPOLATION IC WITH RS422 DRIVER
ICHAUS

IC-MQEVALMQ1D

PROGRAMMABLE 9-BIT Sin/Cos INTERPOLATION IC WITH RS422 DRIVER
ICHAUS

IC-MQF

PROGRAMMABLE 12-BIT Sin/Cos INTERPOLATION IC WITH RS422 DRIVER
ICHAUS

IC-MQTSSOP20

PROGRAMMABLE 9-BIT Sin/Cos INTERPOLATION IC WITH RS422 DRIVER
ICHAUS

IC-MR

13-BIT S&H SIN/COS INTERPOLATOR WITH CONTROLLER INTERFACES
ICHAUS

IC-MSA

SIN/COS SIGNAL CONDITIONER with AGC and 1Vpp DRIVER
ICHAUS

IC-MSB

SIN/COS SIGNAL CONDITIONER WITH 1Vpp DRIVER
ICHAUS

IC-MSB2

SIN/COS SIGNAL CONDITIONER WITH 1Vpp DRIVER
ICHAUS