IC-MPEVALMP1D [ICHAUS]

8-BIT HALL ANGLE ENCODER WITH RATIOMETRIC OUTPUT; 提供比例输出8位HALL角度编码器
IC-MPEVALMP1D
型号: IC-MPEVALMP1D
厂家: IC-HAUS GMBH    IC-HAUS GMBH
描述:

8-BIT HALL ANGLE ENCODER WITH RATIOMETRIC OUTPUT
提供比例输出8位HALL角度编码器

输出元件 编码器
文件: 总22页 (文件大小:1471K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
iC-MP 8-BIT HALL ANGLE ENCODER  
WITH RATIOMETRIC OUTPUT  
Rev B1, Page 1/22  
FEATURES  
APPLICATIONS  
Hall sensor array with automatic signal control  
Differential scanning for excellent magnetic stray field  
tolerance  
Contactless potentiometer  
Absolute 360° angle sensor  
Magnetic rotary encoders  
Real-time tracking interpolation of up to 256 angle steps,  
permitting up to 12,000 rpm  
Ratiometric output with 0.5 V to 4.5 V or 0 V to 5 V and  
selectable full-scale angle of 90, 180, 270 or 360 degrees  
Programmable zero position  
Fast, serial absolute angle data output  
Easy daisy chaining of multiple sensors: all analog/digital  
outputs can be used in buses  
Loss-of-magnet and excessive frequency indication via error  
output  
PACKAGES  
Non-volatile setup provided by 3x reconfigurable Zener zap  
ROM  
5 V single-supply operation  
Power-saving standby function  
Operational temperature range of -40 to +125 °C  
Space-saving 10-pin DFN package measuring 4 mm x 4 mm  
DFN10 4 x 4 mm  
BLOCK DIAGRAM  
VDD  
VZAP  
MA  
8
B
I
T
B
B
P
S
I
N
N
C
O
S
SLO  
SLI  
B
B
P
C
O
S
N
S
I
N
H
A
L
L
S
E
N
S
O
R
S
A
M
P
S
I
N
/
D
I
G
Z
A
P
P
I
N
G
S
E
R
I
A
L
I
N
T
E
R
F
A
C
E
NERR  
2
2
S
I
N
+
C
O
S
S
I
G
N
A
L
C
O
N
V
E
R
S
I
O
N
C
O
N
T
R
O
L
L
O
G
I
C
I
/
O
I
N
T
E
R
F
A
C
E
PSMO  
PSMI  
LAO  
i
C
-
M
P
P
O
W
E
R
S
A
V
E
M
O
D
E
B
I
A
S
/
V
R
E
F
D
/
A
C
O
N
V
E
R
T
E
R
GND  
C
0
9
0
7
1
5
Copyright © 2010 iC-Haus  
http://www.ichaus.com  
iC-MP 8-BIT HALL ANGLE ENCODER  
WITH RATIOMETRIC OUTPUT  
Rev B1, Page 2/22  
DESCRIPTION  
iC-MP consists of a quadruple Hall sensor array sine/cosine signals. The absolute position angle is  
which has been optimized for the magnetic mea- output via the serial interface together with a bit indi-  
surement of an axis angle. The array permits error- cating an error. The maximum resolution of 8 bits is  
tolerant adjustment of the magnet, reducing the time maintained up to revolutions of 12,000 rpm.  
and effort required assembly. The integrated signal  
conditioning unit provides a differential sine/cosine The absolute angle is converted back to a linear ana-  
signal at its outputs. The sensor generates one sine log output voltage using the internal D/A converter.  
cycle per full rotation of the magnet, enabling the The analog output voltage range can be programmed  
angle to be clearly determined. At the same time to be either rail to rail or 10 % to 90 % of the supply  
the internal amplitude control unit produces a regu- voltage. The angular range of the analog signal is  
lated output amplitude of 2 Vpp, regardless of vari- configurable to 90°, 180°, 270° or 360°.  
ations in the magnetic field strength, supply voltage  
and temperature. Furthermore, error signals are pro- iC-MP can be easily cascaded, enabling scanning of  
vided which report any magnet loss and an exces- multiple axes. In Fast Scanning Mode all devices  
sively high RPM speed.  
connected in a queue are read consecutively. In Slow  
Scanning Mode (Power Save Mode) each individual  
With the aid of the integrated 8-bit sine-to-digital device is booted up before the serial data or analog  
converter the axis angle is determined from the output voltage is put on the common bus.  
iC-MP 8-BIT HALL ANGLE ENCODER  
WITH RATIOMETRIC OUTPUT  
Rev B1, Page 3/22  
CONTENTS  
PACKAGES  
4
5
5
6
8
OPERATING MODES  
11  
12  
PROGRAMMING MODE  
ABSOLUTE MAXIMUM RATINGS  
THERMAL DATA  
ENERR . . . . . . . . . . . . . . . . . . . . . 14  
Calculating the position offset . . . . . . . . . 14  
CRCID . . . . . . . . . . . . . . . . . . . . . . 15  
ELECTRICAL CHARACTERISTICS  
SENSOR PRINCIPLE  
FAST SCANNING MODE  
SLOW SCANNING MODE  
APPLICATION CIRCUITS  
16  
18  
20  
HALL SENSOR POSITION AND INTERNAL  
ANALOG SIGNALS  
8
9
Stand-alone example . . . . . . . . . . . . . 20  
LINEAR ANALOG OUTPUT (LAO)  
SERIAL OUTPUT (SLO)  
TEST MODES  
21  
21  
10 DESIGN REVIEW: Notes On Chip Functions  
iC-MP 8-BIT HALL ANGLE ENCODER  
WITH RATIOMETRIC OUTPUT  
Rev B1, Page 4/22  
PACKAGES  
PIN CONFIGURATION DFN10  
PIN FUNCTIONS  
No. Name Function  
1 PSMI Power Save Mode Input  
2 GND Ground  
3 PSMO Power Save Mode Output  
1
2
10  
9
4 LAO  
5 MA  
6 SLO  
7 SLI  
Linear Analog Output  
Serial Clock Input  
Serial Data Output  
Serial Data Input  
3
8
iC-MP  
...  
...yyww  
4
7
8 VZAP Zapping Voltage Input  
9 VDD +5 V Supply Voltage  
5
6
10 NERR Error Message Output (low active)  
/ Serial ROM Data Output  
TP  
Thermal Pad  
The thermal pad must be connected to ground potential on the PCB.  
Orientation of the logo ( MP CODE ...) is subject to alteration.  
iC-MP 8-BIT HALL ANGLE ENCODER  
WITH RATIOMETRIC OUTPUT  
Rev B1, Page 5/22  
ABSOLUTE MAXIMUM RATINGS  
These ratings do not imply operating conditions; functional operation is not guaranteed. Beyond these ratings device damage may occur.  
Item Symbol  
No.  
Parameter  
Conditions  
Unit  
Min.  
-0.3  
-20  
Max.  
6
G001 V()  
G002 I()  
G003 V()  
Supply Voltage at VDD  
Current in VDD  
V
mA  
V
20  
Voltage at pins PSMI, PSMO, LAO,  
MA, SLO, SLI, NERR  
-0.3  
VDD +  
0.3  
G004 V()  
G005 I()  
Voltage at pin VZAP  
-0.3  
-10  
8
V
Current in pins PSMI, PSMO, LAO,  
MA, SLO, SLI, NERR, VZAP  
10  
mA  
G006 I()  
Current in pins PSMI, PSMO, LAO,  
MA, SLO, SLI, NERR, VZAP  
Pulse width < 10µs  
-100  
100  
mA  
G007 Vd()  
G008 Tj  
ESD Susceptibility at all pins  
Junction Temperature  
HBM, 100 pF discharged through 1.5 k  
2
kV  
°C  
°C  
-40  
-40  
125  
125  
G009 Ts  
Storage Temperature Range  
THERMAL DATA  
Operating conditions: VDD = 5 V ±10 %  
Item Symbol  
No.  
Parameter  
Conditions  
Unit  
Min. Typ. Max.  
-40 125  
T01 Ta  
Operation Ambient Temperature Range  
Thermal Resistance, Chip to Ambient  
°C  
T02 Rthja  
Package mounted on PCB, thermal pad at  
approx. 2 cm² cooling area  
40  
K/W  
All voltages are referenced to ground unless otherwise stated.  
All currents flowing into the device pins are positive; all currents flowing out of the device pins are negative.  
iC-MP 8-BIT HALL ANGLE ENCODER  
WITH RATIOMETRIC OUTPUT  
Rev B1, Page 6/22  
ELECTRICAL CHARACTERISTICS  
Operating Conditions: VDD = 5 V ±10 % , Tj = -40 ... 125 °C, unless otherwise stated  
Item Symbol  
No.  
Parameter  
Conditions  
Unit  
Min.  
Typ.  
Max.  
General  
001 VDD  
002 I(VDD)  
Supply Voltage  
4.5  
5
8
5.5  
12  
V
mA  
µA  
V
Supply Current in VDD  
PSMI = lo, other pins open  
PSMI = hi  
003 I(VDD)sb Standby Supply Current  
200  
4.1  
3.9  
004 VDDon  
005 VDDoff  
006 VDDhys  
Power-On Threshold  
Power-Down Threshold  
Hysteresis  
Increasing voltage VDD  
Decreasing voltage VDD  
VDDhys = VDDon - VDDoff  
3.0  
2.6  
200  
V
mV  
ms  
007  
ton()1  
Turn-On Delay Following  
Power-On  
Time to data valid after enabling,  
VDD: VDDoff VDDon  
Time to data valid after standby,  
PSMI: hi lo  
VDD = 0 V; I() = 1 mA  
VDD = 0 V; I() = 4 mA  
I() = -4 mA  
1
008  
ton()2  
Turn-On Delay Following Standby  
900  
1.6  
1.6  
-0.3  
µs  
V
009 Vc()hi  
010 Vc()hi  
011 Vc()lo  
Clamp Voltage hi at  
PSMI, MA, SLI, NERR  
0.3  
0.3  
Clamp Voltage hi at  
PSMO, LAO, SLO  
V
Clamp Voltage lo at  
-1.5  
V
PSMI, PSMO, LAO, MA, SLO,  
SLI, NERR, VDD, VZAP  
Hall Sensor Array  
101 Hext  
Operating Magnetic Field  
Strength  
At surface of chip  
20  
50  
100  
kA/m  
102 RPM  
103 ferr()  
104 fmag()  
105 dsens  
106 xpac  
107 φpac  
108 hpac  
Permissible RPM Speed  
Excessive Frequency Alarm  
Magnetic Field Frequency  
Diameter of Hall Sensor Array  
Chip Placement Tolerance  
Chip Tilt Angle  
12 000  
rpm  
kHz  
Hz  
ENERR(1) = 1; NERR: hi lo  
1
2
200  
mm  
mm  
DEG  
µm  
Versus DFN10 package outlines  
Versus DFN10 package outlines  
-0.2  
-3  
0.2  
3
Distance Surface of Package to DFN10 package  
Surface of Chip  
400  
Sine-To-Digital Converter  
301 RES  
302 HYS  
303 AAabs  
Converter Resolution  
Per 360 degree  
8
bit  
Converter Hysteresis  
1.4  
DEG  
DEG  
Absolute Angle Accuracy  
Magnet with 4 mm in diameter, axis centered to  
chip  
-3  
-1  
3
1
D/A Converter And Ratiometric Output LAO  
401  
RES()  
D/A Converter Resolution  
MODE(1:0) = 00 (range 360°)  
MODE(1:0) = 01 (range 270°)  
MODE(1:0) = 10 (range 180°)  
MODE(1:0) = 11 (range 90°)  
8
7.5  
7
bit  
bit  
bit  
bit  
6
402 Iload()  
Permissible Output Current  
mA  
403  
dV0()hi  
Output Voltage hi, Rail-To-Rail  
dV0()hi = V(VDD) - V(LAO), MODE(3) = 0;  
I() = -1 mA  
I() = 0 mA  
170  
85  
mV  
mV  
404  
dV0()lo  
Output Voltage lo, Rail-To-Rail  
MODE(3) = 0;  
I() = 1 mA  
170  
85  
mV  
mV  
I() = 0 mA  
405 dV1()hi  
406 dV1()lo  
407 Ilk()  
Output Voltage hi, 10/90% Range MODE(3) = 1; I() = -1...+1 mA  
Output Voltage lo, 10/90% Range MODE(3) = 1; I() = -1...+1 mA  
85  
5
95  
15  
5
%VDD  
%VDD  
µA  
Leakage Current  
Slew Rate hi  
V(LAO) = 0...VDD, PSMI = hi  
V(LAO): 20% 80% of range  
V(LAO): 80% 20% of range  
-5  
2
408 SR()hi  
409 SR()lo  
V/µs  
Slew Rate lo  
2
V/µs  
Zapping Input VZAP  
501 Vt1()hi  
502 Vt1()lo  
Voltage Threshold hi vs. GND  
Voltage Threshold lo vs. GND  
2
V
V
0.8  
iC-MP 8-BIT HALL ANGLE ENCODER  
WITH RATIOMETRIC OUTPUT  
Rev B1, Page 7/22  
ELECTRICAL CHARACTERISTICS  
Operating Conditions: VDD = 5 V ±10 % , Tj = -40 ... 125 °C, unless otherwise stated  
Item Symbol  
No.  
Parameter  
Conditions  
Unit  
Min.  
Typ.  
Max.  
400  
1.3  
503 Vt1()hys  
504 Vt2()hi  
Threshold Hysteresis  
Vt1()hys = Vt1()hi Vt1()lo  
Vt2()hi = V() - VDD,  
230  
mV  
V
Voltage Threshold hi vs. VDD  
VDD = 5 V ±5%, Tj = 10 ... 40 °C  
505 Vt2()lo  
Voltage Threshold lo vs. VDD  
Vt2()lo = V() - VDD;  
0.7  
V
VDD = 5 V ±5%, Tj = 10 ... 40 °C  
506 Vt2()hys  
507 Vzap()  
508 Izap()  
Threshold Hysteresis  
Vt2()hys = Vt2()hi Vt2()lo  
20  
150  
7.5  
90  
mV  
V
Permissible Zapping Voltage  
Required Zapping Current  
VDD = 5 V ±5%, Tj = 10 ... 40 °C  
7.3  
7.4  
VDD = 5 V ±5%, Tj = 10 ... 40 °C  
mA  
Serial Interface and Power Save Mode Inputs: MA, SLI, PSMI  
601 Vt()hi  
602 Vt()lo  
603 Vt()hys  
604 Ipu()  
Input Threshold Voltage hi  
Input Threshold Voltage lo  
Input Hysteresis  
2
V
V
0.8  
230  
Vt()hys = Vt()hi Vt()lo  
V() = 0...VDD 1 V  
mV  
µA  
Input Pull-up Current  
-240  
0.080  
-120  
5
-10  
10  
605 fclk(MA)  
Permissible Clock Frequency at Normal mode  
MA  
MHz  
606 tzap(MA) Permissible Zapping Cycle at MA Programming mode,  
VDD = 5 V ±5%, Tj = 10 ... 40 °C  
Time from MA last edge to SLO lo hi  
Serial Interface and Power Save Mode Outputs: SLO, PSMO  
4.5  
5.5  
15  
µs  
µs  
607 tout(MA)  
Interface Timeout  
701 Vs()hi  
702 Vs()lo  
703 Isc()hi  
704 Isc()lo  
705 tr()  
Saturation Voltage hi  
Saturation Voltage lo  
Short-Circuit Current hi  
Short-Circuit Current lo  
Rise Time  
Vs()hi = VDD V(), I() = -4 mA  
I() = 4 mA  
0.4  
0.4  
-10  
90  
V
V
V() = 0 V  
-90  
10  
mA  
mA  
ns  
ns  
V() = VDD  
CL() = 50 pF, V(): 20 80%  
CL() = 50 pF, V(): 80 20%  
60  
706 tf()  
Fall Time  
60  
I/O Interface NERR  
801 Vs()lo  
802 Ilk()  
Saturation Voltage lo  
Leakage Current  
I() = 4 mA  
0.4  
5
V
V() = 0...VDD, PSMI = hi  
V() = VDD  
-5  
µA  
mA  
803 Isc()lo  
Short-Circuit Current lo  
4.5  
90  
Test Signals at NERR, LAO, PSMO (iC-Haus device test only)  
902 VREF  
Reference Voltage at LAO  
Op. mode: Test 2  
Op. mode: Test 0  
45  
50  
2
55  
%VDD  
Vpp  
904 Vpp(PSIN) Pos. Sine Sensor AC Signal  
at NERR  
905 Vdc(PSIN) Pos. Sine Sensor DC Signal  
at NERR  
Op. mode: Test 0  
Op. mode: Test 0  
Op. mode: Test 0  
Op. mode: Test 1  
Op. mode: Test 1  
Op. mode: Test 1  
VREF  
2
V
Vpp  
V
906 Vpp(PCOS) Pos. Cosine Sensor AC Signal  
at LAO  
907 Vdc(PCOS) Pos. Cosine Sensor DC Signal  
at LAO  
VREF  
2
908 Vpp(NSIN) Neg. Sine Sensor AC Signal  
at NERR  
Vpp  
V
909 Vdc(NSIN) Neg. Sine Sensor DC Signal  
at NERR  
VREF  
2
910 Vpp(NCOS)Neg. Cosine Sensor AC Signal  
at LAO  
Vpp  
V
911 Vdc(NCOS) Neg. Cosine Sensor DC Signal Op. mode: Test 1  
at LAO  
VREF  
912 dVoff()  
Diff. Sine and Cosine Signal  
Offsets  
dVoff() = V(PSIN) V(NSIN),  
-50  
50  
mV  
dVoff() = V(PCOS) V(NCOS)  
913 VR()  
Sine/Cosine AC Signal Ratio  
VR() = V(PSIN) / V(PCOS),  
VR() = V(NSIN) / V(NCOS)  
0.95  
1.05  
iC-MP 8-BIT HALL ANGLE ENCODER  
WITH RATIOMETRIC OUTPUT  
Rev B1, Page 8/22  
SENSOR PRINCIPLE  
coder system or a contactless potentiometer. A dia-  
metrically magnetized, cylindrical permanent magnet  
made of neodymium iron boron (NdFeB) or samarium  
cobalt (SmCo) generates optimum sensor signals. The  
diameter of the magnet should be in the range of 3 mm  
to 6 mm.  
The iC-MP has four Hall sensors adapted for angle  
determination and to convert the magnetic field into  
a measurable Hall voltage. Only the z-component of  
the magnetic field is evaluated, whereby the field lines  
pass through two opposing Hall sensors in the oppo-  
site direction. Figure 1 shows an example of field vec-  
tors.  
The arrangement of the Hall sensors is selected so  
that the mounting of the magnets relative to iC-MP is  
extremely tolerant. Two Hall sensors combined provide  
a differential Hall signal. When the magnet is rotated  
around the longitudinal axis, sine and cosine output  
z
y
+Bz  
B
x
-Bz  
Figure 1: Sensor principle  
C151107-1  
In conjunction with a rotating permanent magnet, the voltages are produced which can be used to determine  
iC-MP module can be used to create a complete en- angles.  
HALL SENSOR POSITION AND INTERNAL ANALOG SIGNALS  
The Hall sensors are placed in the center of the DFN10 In order to calculate the angle position of a diametri-  
package at 90° to one another and arranged in a circle cally polarized magnet placed above the device a dif-  
with a diameter of 2 mm as shown in Figure 2.  
ference in signal is formed between opposite pairs of  
Hall sensors, resulting in the sine being VSIN = VPSIN  
-
VNSIN and the cosine VCOS = VPCOS - VNCOS. The zero  
angle position of the magnet is marked by the resulting  
cosine voltage value being at a maximum and the sine  
voltage value at zero.  
P in 1 M a rk  
1
1 0  
9
P
S
I
N
PCO S  
2
3
4
5
8
This is the case when the south pole of the magnet is  
exactly above the PCOS sensor and the north pole is  
above sensor NCOS, as shown in Figure 3. Sensors  
PSIN and NSIN are placed along the pole boundary so  
that neither generate a Hall signal.  
7
N
C
O
S
NSI N  
6
( t o p vie w)  
C
0
4
0
1
1
0
-
1
Figure 2: Position of the Hall sensors  
When the magnet is rotated counterclockwise the  
When a magnetic south pole comes close to the sur- poles then also cover the PSIN and NSIN sensors, re-  
face of the package the resulting magnetic field has a sulting in the sine and cosine signals shown in Figure  
positive component in the +z direction (i.e. from the top 4 being produced. The signals are internal but can be  
of the package) and the individual Hall sensors each made externally available for test purposes (see chap-  
generate their own positive signal voltage.  
ter ’TEST MODES’).  
iC-MP 8-BIT HALL ANGLE ENCODER  
WITH RATIOMETRIC OUTPUT  
Rev B1, Page 9/22  
(t o p v ie w)  
1
2
1 0  
9
1
2
3
4
5
1 0  
S
N
9
8
7
1
2
3
4
5
10  
9
3
4
5
8
7
6
6
α > 0  
8
α = 0  
0
7
V
= V  
- V  
PC OS N COS  
6
V
= V - V  
NS IN  
CO S  
SIN  
PS IN  
+ 2 V  
(
T
o
p
v
i
e
w
)
C0260809-1  
-
9
0
°
9
0
°
1
8
0
°
2
7
0
°
3
6
0
°
Figure 3: Zero position of the magnet  
α
-
2
V
C
0
2
6
0
8
0
9
-
1
Figure 4: Pattern of the internal analog sensor sig-  
nals with the angle of rotation  
LINEAR ANALOG OUTPUT (LAO)  
The LAO pin provides a linear analog output voltage  
representing the actual position. The output voltage  
can be either rail to rail or within a range of 10% to  
90% of the supply voltage VDD, depending on the pro-  
grammed configuration. In 10%-to-90% mode a short-  
circuit with VDD or GND is recognizable.  
The zero position therefore begins at the minimum volt-  
age (either GND or 10% of VDD) and reaches its max-  
imum (either VDD or 90% of VDD) at the selected an-  
gular range limit (90°, 180°, 270° or 360°), depending  
on the chosen configuration.  
LAO is tristate when the device is disabled.  
Figure 5: Linear analog output voltage  
iC-MP 8-BIT HALL ANGLE ENCODER  
WITH RATIOMETRIC OUTPUT  
Rev B1, Page 10/22  
SERIAL OUTPUT (SLO)  
T1  
T2  
T3  
T4  
T5  
tout  
MA  
SLO  
ACK START  
D7  
D1  
D0  
NERR CRC3  
CRC0 STOP  
Figure 6: Serial data timing  
D0 to D7 make up the absolute position data with re- second device (slave 2) outputs the position latched at  
spect to the programmed position offset (OFFSET1 xor T1 at pin SLO.  
OFFSET2 xor OFFSET3).  
The absolute position data (D0-D7) is binary coded.  
The position data and the error bit (NERR) are CRC  
The absolute position is latched by a low to high tran-  
protected. The CRC polynomial is X4+X+1 = 0x13.  
sition at MA (see T1).  
CRC_ Value = CRCID;  
CRC_ Poly = 0x13;  
//CR C star t value,  
//Parameter CRCID D (45: 42 )  
//CR C Poly noma  
After an acknowledge (T2) at SLO iC-MP requests pro-  
cessing time until the start condition (T3) is sent. Pro-  
cessing time must be provided in Slow Scanning Mode  
during startup.  
S
e
n
s
_
D
a
t
a
=
D
+
N
E
R
R
;
/
/
P
r
o
t
e
c
t
e
d
S
e
n
s
o
r
D
a
t
a
9
b
i
t
f
o
r
(
i
=
0
;
i
<
8
;
i
+
+
)
{
i
f
(
(
C
R
C
_
V
a
l
u
e
&
0
x
1
0
0
)
!
=
(
S
e
n
s
_
D
a
t
a
&
0
x
1
0
0
)
)
C
R
C
_
V
a
l
u
e
=
(
C
R
C
_
V
a
l
u
e
<
<
1
)
^
C
R
C
_
P
o
l
y
;
With rising edge T4 at the clock pin the most significant  
bit (D7) is placed on the serial data line SLO. After T5  
has elapsed the controller can stop clocking at MA and  
the device is ready to latch a new position after a time-  
out (tout). If the controller continues to clock in a daisy  
chain in Fast Scanning Mode after T5 has elapsed, the  
e
l
s
e
C
R
C
_
V
a
l
u
e
=
(
C
R
C
_
V
a
l
u
e
<
<
1
)
;
Se ns_Dat a = Sens_D ata << 1;  
}
Figure 7: Example CRC calculation  
F
a
s
t
S
c
a
n
n
i
n
g
M
o
d
e
P SM I  
M A  
t
o
u
t
S
L
O
A
C
K
S
T
A
R
T
D
7
C
R
C
0
S
T
O
P
Figure 8: Timing in Fast Scanning Mode  
P S MI  
M A  
t
>
5
0
µ
s
S
l
o
w
S
c
a
n
n
i
n
g
M
o
d
e
t
o
u
t
S
L
O
A
C
K
S
T
A
R
T
D
7
C
R
C
0
S
T
O
P
t
£
t
O
N
(
)
2
Figure 9: Timing in Slow Scanning Mode  
iC-MP 8-BIT HALL ANGLE ENCODER  
WITH RATIOMETRIC OUTPUT  
Rev B1, Page 11/22  
OPERATING MODES  
V( VD D ) > VD D on  
Sta rtup  
Po we r- On R eset  
V (V ZA P) < V 1t() lo  
V( VZ AP ) > V 1t( )hi  
E nte r  
En ter  
N orma l Mode  
Pr ogr ammi ng Mode  
SL I= 0; P SMI= 0  
S
L
I
=
1
;
P
S
M
I
=
0
V
(
V
Z
A
P
)
=
V
D
D
VV (( VV ZZ AA PP )) == VV zz aa pp (( ))  
WWrr ii tt ee RR OO MM  
V( VZ AP ) = V D D  
R ead R O M  
F as t Mo de  
(O pe ra te )  
S lo w Mo de  
(Op erat e)  
W
r
i
t
e
R
A
M
t
o
u
t
(
M
A
)
Sl ow Mode  
Sl eep  
P
S
M
I
=
1
P
S
M
I
=
1
S
l
e
e
p
Figure 10: Operation Modes  
Figure 10 shows the different modes of iC-MP. There  
are two major modes of operation:  
the chapter on ’PROGRAMMING MODE’ for further  
details. There are three minor modes:  
– Read ROM:  
Normal Mode:  
iC-MP’s Zener zap ROM structure is read.  
Readout position data and error bit. Normal mode is  
subdivided into two minor modes of operation:  
– Fast Scanning Mode:  
– Write RAM:  
iC-MP’s internal registers can be temporarily  
programmed for test purposes.  
iC-MP is always activated.  
– Slow Scanning Mode (Power Save Mode):  
iC-MP goes into Slow Mode Sleep following the  
first transmission of sensor data via the serial  
interface.  
– Write ROM:  
iC-MP’s zapping structure is programmed.  
A Power-On Reset is required after a Read ROM and  
Write ROM instruction. Each state is quit by a Power-  
Programming Mode:  
iC-MP can be configured in programming mode. See On Reset.  
iC-MP 8-BIT HALL ANGLE ENCODER  
WITH RATIOMETRIC OUTPUT  
Rev B1, Page 12/22  
PROGRAMMING MODE  
When pulling the VZAP pin to high during startup, Write RAM Mode (V(VZAP) = VDD):  
the programming mode is entered (see ’OPERATING  
MODES’). In this mode there are three different cate-  
gories of operation:  
In Write RAM Mode the iC-MP reacts as in Write  
ROM Mode but there is no zapping of the Zener zap  
diodes. This mode can be used to temporarily pro-  
gram iC-MP (non-permanent) for test purpose.  
Read ROM (V(VZAP) = VDD):  
Write ROM Mode (V(VZAP) = Vzap(), according to  
ELEC.CHAR., no. 507):  
In Read ROM Mode the content of the Zener zap  
diodes is read out. A Read ROM operation over-  
writes iC-MP’s RAM content.  
In Write ROM Mode each Zener zap diode is burned  
(= zapped) immediately on the rising edge of MA.  
See Figure 13 for details. For the conditions of oper-  
ation of Write ROM Mode, see ELEC.CHAR., ’Zap-  
ping Input VZAP’.  
1
fc l k ()  
tpr >  
th > 0m s  
tp r  
t > 50µ s  
PSMI  
VZA P= Vtl( )hi  
th  
VDD  
tp r  
MA  
S
T
A
R
T
S
L
I
X
D
0
X
D
1
D
5
0
X
D
5
1
X
N
E
R
R
Figure 11: Serial timing of Read ROM Mode  
t
>
4
0
µ
s
1
fc l k ( )  
t
p
r
>
t
h
>
0
m
s
t > 50 µ s  
th  
t
p
r
P
S
M
I
t
>
4
0
µ
s
V
Z
A
P
=
V
t
l
(
)
h
i
VD D  
MA  
t
p
r
D0  
X
D 1  
X
D 50  
X
D
5
1
S
T
A
R
T
S
L
I
X
X
X
X
X
N
E
R
R
Figure 12: Serial timing of Write RAM Mode  
iC-MP 8-BIT HALL ANGLE ENCODER  
WITH RATIOMETRIC OUTPUT  
Rev B1, Page 13/22  
th > 0m s  
tz ap( )  
t > 50µ s  
PSMI  
V Z A P = V t( )z a p  
th  
VDD  
tz a p ()  
MA  
D0  
X
D1  
X
D50  
X
D51  
S TA RT  
SLI  
X
X
X
X
X
NER R  
Figure 13: Serial timing of Write ROM Mode  
RO M  
Z a p pi n g Dio d e s  
R
A
M
Figure 13 shows the serial timing of a Write ROM op-  
eration (burning the Zener zap diodes). The bit stream  
is described in Table 4. Each Zener zap diode can be  
programmed once with a logic of ’1’. The default value  
of the Zener zap diodes is a logic ’0’ (with the excep-  
tion of ZTEST(1:0)). The resulting parameter (OFF-  
SET, MODE and ENERR) are generated by an xor op-  
eration of the three sets of bits (see Figure 15).  
O FF SET1  
O FF SET2  
O FF SET3  
=1  
=1  
=1  
OF F SE T  
MO DE  
1
0
0
n
F
M OD E 1  
M OD E 2  
M OD E 3  
V DD  
+ 5 V  
+ 7 V  
V ZAP  
1
0
0
n
F
1
0
µ
F
+
P
r
o
g
r
a
m
m
i
n
g
Boa r d  
M A  
S LI  
iC -M P  
Serial  
Interface  
EN ER R 1  
EN ER R 2  
EN ER R 3  
NE RR  
P SMI  
E NE R R  
0 V  
G
N
D
Figure 14: In-circuit programming  
CR CI D  
Z TE S T  
T ES T  
C RC ID  
Z TES T  
A 100 nF ceramic block capacitor must be placed on  
the board directly between iC-MP’s VZAP and GND  
pins. A 10 µF capacitor must also be present at the  
end of the programming line as close to the connec-  
tor as possible (see Figure 14). During programming,  
up to 90 mA flow from pin VZAP to pin GND, making  
it necessary to ensure proper PCB layout to minimize  
voltage drops.  
Figure 15: ROM construction  
iC-MP 8-BIT HALL ANGLE ENCODER  
WITH RATIOMETRIC OUTPUT  
Rev B1, Page 14/22  
D(51:0)  
7:0  
Parameter  
Description  
ENERR  
OFFSET1(7:0)  
MODE1(3:0)  
Offset of the first set  
The parameter ENERR indicates two kind of errors. If  
the magnetic field strength is at low a ’Loss of Mag-  
net’ is generated. An ’Excessive Frequency Alarm’ is  
generated when the revolution per minute is to high.  
Parameter ENERR handles the various error types.  
11:8  
Mode of the first set,  
see Table 5 and 6  
13:12  
ENERR1(1:0)  
Error mask of the first  
set, see Table 8  
21:14  
25:22  
OFFSET2(7:0)  
MODE2(3:0)  
Offset of the second set  
Mode of the second set,  
see Table 5 and 6  
ENERR1(1:0)  
ENERR2(1:0)  
ENERR3(1:0)  
D(13:12)  
D(27:26)  
D(41:40)  
27:26  
ENERR2(1:0)  
Error mask of the  
second set, see Table 8  
Code  
00  
Error  
No Error  
35:28  
39:36  
OFFSET3(7:0)  
MODE3(3:0)  
Offset of the third set  
Mode of the third set,  
see Table 5 and 6  
01  
Loss of Magnet*  
41:40  
ENERR3(1:0)  
Error mask of the third  
set, see table 8  
10  
Excessive Frequency Alarm  
Excessive Frequency Alarm or Loss of Magnet*  
11  
45:42  
47:46  
CRCID(3:0)  
ZTEST(1:0)  
CRC ID  
*) see ’DESIGN REVIEW’  
Zener zap diodes, for  
iC-Haus test purposes  
only  
Table 8: Error masks  
51:48  
TEST(3:0)  
See ’TEST MODES’  
Calculating the position offset  
Table 4: Programming Datastream  
Before iC-MP outputs the actual position via the serial  
interface or the linear analog output (LAO), an offset is  
added internally. This offset consists of the following  
parameters:  
MODE1(1:0)  
D(9:8)  
D(23:22)  
D(37:36)  
Full Scale Angle  
360°  
MODE2(1:0)  
MODE3(1:0)  
OFFSET = OFFSET1 xor OFFSET2 xor OFFSET3  
Code  
00  
The offset is programmed in several stages (see Fig-  
ure 16). It is important that the direction of rotation is  
programmed prior to this (MODE Bit 2). To determine  
the actual configured offset, all three offset parameters  
must be read out. After these parameters have been  
xored the actual offset is determined:  
01  
270°  
10  
180°  
11  
90°  
Table 5: Linear Analog Output - Mode Bit 1:0  
MODE1(2)  
D(10)  
D(24)  
D(38)  
Actual Offset = OFFSET1 xor OFFSET2 xor OFFSET3  
MODE2(2)  
MODE3(2)  
To calculate the new offset the actual position at the  
required offset is required. The formula used to calcu-  
late this new offset is as follows:  
Code  
Rotation  
0
1
CW*  
CCW*  
*) CW = clockwise, CCW = counter-clockwise  
New Offset = 256 - Actual Position + Actual Offset  
Table 6: Mode Bit 2  
MODE1(3)  
MODE2(3)  
MODE3(3)  
Code  
D(11)  
D(25)  
D(39)  
Range  
0
(0 % - 100 %) * VDD  
(10 % - 90 %) * VDD  
1
Table 7: Linear Analog Output - Mode Bit 3  
iC-MP 8-BIT HALL ANGLE ENCODER  
WITH RATIOMETRIC OUTPUT  
Rev B1, Page 15/22  
CRCID  
S tar t  
The CRCID parameter contains the CRC start value.  
Configuring the CRC starting value enables a data  
value to be clearly assigned to a slave, as the CRC  
check fails with a faulty configuration of the master or  
an exchange sequence. For example, the controller  
assigns a start value for each slave and writes these  
to the CRCID slave parameter.  
S et: MOD Ex ( bi t 2)  
f i nal l y  
For CRC calculation, see ’SERIAL OUTPUT (SLO)’.  
OFFS E T1  
Re ad out: OFFS E T2  
OFFS E T3  
R ead out  
ac tu al pos i t i on  
C al cul a te ac tu al  
pos i t i on o ff set  
C al cul a te ne w  
pos i t i on o ff set  
OFFS E T1  
Se t par am: OFFSE T2  
OFFS E T3  
E nd  
Figure 16: Principle of offset calculation  
iC-MP 8-BIT HALL ANGLE ENCODER  
WITH RATIOMETRIC OUTPUT  
Rev B1, Page 16/22  
FAST SCANNING MODE  
VZAP  
PSMI  
FAST SCANNING  
VDD  
VDD  
VDD  
VZAP  
VZAP  
VZAP  
MP0  
MP0  
MP0  
Hall Angle Encoder  
XFS3  
Hall Angle Encoder  
XFS2  
Hall Angle Encoder  
XFS1  
PSMI  
PSMI  
PSMI  
PSMO  
SLO  
PSMO  
SLO  
PSMO  
SLO  
B
B
B
SLI  
SLI  
SLI  
SLI  
MA  
MA  
MA  
R1  
2.2k  
NERR  
LAO  
NERR  
LAO  
NERR  
LAO  
SLAVE 3  
SLAVE 2  
SLAVE 1  
GND  
GND  
GND  
MA  
NERR  
LAO(2:0)  
0
1
2
LAO(2:0)  
SLO  
Figure 17: Fast Scanning Mode  
In Fast Scanning Mode all devices are active at the page 17). Parameter CRCID can be used for improved  
same time. With a start condition at MA the abso- differentiation of the individual data words. See ’PRO-  
lute position of all devices is latched and all absolute GRAMMING MODE’.  
positions are transferred as one long data word (see  
iC-MP 8-BIT HALL ANGLE ENCODER  
WITH RATIOMETRIC OUTPUT  
Rev B1, Page 17/22  
iC-MP 8-BIT HALL ANGLE ENCODER  
WITH RATIOMETRIC OUTPUT  
Rev B1, Page 18/22  
SLOW SCANNING MODE  
VZAP  
PSMI  
VDD  
VDD  
VDD  
VZAP  
VZAP  
VZAP  
MP0  
MP0  
MP0  
SLOW SCANNING  
Hall Angle Encoder  
XSS3  
Hall Angle Encoder  
XSS2  
Hall Angle Encoder  
XSS1  
R1  
2.2k  
PSMI  
PSMI  
PSMI  
PSMO  
SLO  
PSMO  
SLO  
PSMO  
SLO  
B
B
B
SLI  
SLI  
SLI  
SLI  
MA  
MA  
MA  
NERR  
LAO  
NERR  
LAO  
NERR  
LAO  
SLAVE 3  
SLAVE 2  
SLAVE 1  
GND  
GND  
GND  
MA  
NERR  
LAO  
SLO  
Figure 18: Slow Scanning Mode  
In Slow Scanning Mode only one device is activated in tiation of the individual data words. See ’PROGRAM-  
a chain. This device transmits its absolute position on MING MODE’.  
the SLO bus and the analog output voltage to the LAO The chain is reset by a logic high at the PSMI pin (see  
bus. After an timeout at SLI, the next device is enabled page 19).  
(PSMO hi lo). The devices needs some time after  
activation to find the actual position.  
Application hints:  
Parameter CRCID can be used for improved differen- See ’DESIGN REWIEW’.  
iC-MP 8-BIT HALL ANGLE ENCODER  
WITH RATIOMETRIC OUTPUT  
Rev B1, Page 19/22  
iC-MP 8-BIT HALL ANGLE ENCODER  
WITH RATIOMETRIC OUTPUT  
Rev B1, Page 20/22  
APPLICATION CIRCUITS  
Stand-alone example  
Figure 19 shows an example circuit for stand-alone op-  
eration of iC-MP. The device is in Fast Scanning Mode.  
If the device is also to be programmed, pins PSMI, SLI  
and VZAP should be connected to GND by a pull-down  
resistor (e.g. 2.2 k).  
VD D  
i C- MP  
P S MI  
G ND  
P S MO  
L AO  
MA  
N ER R  
VD D  
VZ AP  
SL I  
1µ F  
B
S
L
O
H
a
l
l
A
n
g
l
e
E
n
c
o
d
e
r
Li near  
A nal og O utput  
Figure 19: Circuit for stand-alone operation  
iC-MP 8-BIT HALL ANGLE ENCODER  
WITH RATIOMETRIC OUTPUT  
Rev B1, Page 21/22  
TEST MODES  
iC-MP has several test settings which make internal Test modes can be triggered by programming the pa-  
reference quantities and the amplified, differential Hall rameter TEST (D(51:48)). The individual test modes  
voltages of the sensor pairs accessible at external pins are listed in the following table.  
for measurement purposes. This signals enables a See ’ELECTRICAL CHARACTERISTICS’.  
chip/package to be adjusted in relation to the magnet.  
Op. Mode  
TEST(3:0)  
Pin NERR  
analog  
-
PSIN  
NSIN  
GAIN  
Pin LAO  
Pin PSMO  
Comments  
digital  
NERR  
-
-
-
Normal  
Test 0  
Test 1  
Test 2  
Notes  
0ddd  
1000  
1001  
1010  
LAO  
PSMO  
PSMO  
PSMO  
PSMO  
PCOS  
NCOS  
VREF  
d = don’t care  
Table 9: Test modes  
DESIGN REVIEW: Notes On Chip Functions  
iC-MP Y  
No.  
1
Function, Parameter/Code  
Description and Application Notes  
Slow Scanning Mode  
(without a magnet):  
Serial Interface Mode is discontinued without a magnet  
- The start bit is not available  
- The daisy chain is stopped  
Table 10: Notes on chip functions regarding iC-MP chip releas Y  
iC-Haus expressly reserves the right to change its products and/or specifications. An Infoletter gives details as to any amendments and additions made to the  
relevant current specifications on our internet website www.ichaus.de/infoletter; this letter is generated automatically and shall be sent to registered users by  
email.  
Copying – even as an excerpt – is only permitted with iC-Haus approval in writing and precise reference to source.  
iC-Haus does not warrant the accuracy, completeness or timeliness of the specification on this site and does not assume liability for any errors or omissions  
in the materials. The data specified is intended solely for the purpose of product description. No representations or warranties, either express or implied, of  
merchantability, tness for a particular purpose or of any other nature are made hereunder with respect to information/specification or the products to which  
information refers and no guarantee with respect to compliance to the intended use is given. In particular, this also applies to the stated possible applications or  
areas of applications of the product.  
iC-Haus conveys no patent, copyright, mask work right or other trade mark right to this product. iC-Haus assumes no liability for any patent and/or other trade  
mark rights of a third party resulting from processing or handling of the product and/or any other use of the product.  
As a general rule our developments, IPs, principle circuitry and range of Integrated Circuits are suitable and specifically designed for appropriate use in technical  
applications, such as in devices, systems and any kind of technical equipment, in so far as they do not infringe existing patent rights. In principle the range of  
use is limitless in a technical sense and refers to the products listed in the inventory of goods compiled for the 2008 and following export trade statistics issued  
annually by the Bureau of Statistics in Wiesbaden, for example, or to any product in the product catalogue published for the 2007 and following exhibitions in  
Hanover (Hannover-Messe).  
We understand suitable application of our published designs to be state-of-the-art technology which can no longer be classed as inventive under the stipulations  
of patent law. Our explicit application notes are to be treated only as mere examples of the many possible and extremely advantageous uses our products can  
be put to.  
iC-MP 8-BIT HALL ANGLE ENCODER  
WITH RATIOMETRIC OUTPUT  
Rev B1, Page 22/22  
ORDERING INFORMATION  
Type  
Package  
DFN10  
Order Designation  
iC-MP  
iC-MP DFN10  
Evaluation Board  
iC-MP EVAL MP1D  
For technical support, information about prices and terms of delivery please contact:  
iC-Haus GmbH  
Tel.: +49 (61 35) 92 92-0  
Am Kuemmerling 18  
D-55294 Bodenheim  
GERMANY  
Fax: +49 (61 35) 92 92-192  
Web: http://www.ichaus.com  
E-Mail: sales@ichaus.com  
Appointed local distributors: http://www.ichaus.com/sales_partners  

相关型号:

IC-MQ

PROGRAMMABLE 9-BIT Sin/Cos INTERPOLATION IC WITH RS422 DRIVER
ICHAUS

IC-MQEVALMQ1D

PROGRAMMABLE 9-BIT Sin/Cos INTERPOLATION IC WITH RS422 DRIVER
ICHAUS

IC-MQF

PROGRAMMABLE 12-BIT Sin/Cos INTERPOLATION IC WITH RS422 DRIVER
ICHAUS

IC-MQTSSOP20

PROGRAMMABLE 9-BIT Sin/Cos INTERPOLATION IC WITH RS422 DRIVER
ICHAUS

IC-MR

13-BIT S&H SIN/COS INTERPOLATOR WITH CONTROLLER INTERFACES
ICHAUS

IC-MSA

SIN/COS SIGNAL CONDITIONER with AGC and 1Vpp DRIVER
ICHAUS

IC-MSB

SIN/COS SIGNAL CONDITIONER WITH 1Vpp DRIVER
ICHAUS

IC-MSB2

SIN/COS SIGNAL CONDITIONER WITH 1Vpp DRIVER
ICHAUS

IC-MSB2EVALMSB1D

SIN/COS SIGNAL CONDITIONER WITH 1Vpp DRIVER
ICHAUS

IC-MSB2TSSOP20

SIN/COS SIGNAL CONDITIONER WITH 1Vpp DRIVER
ICHAUS

IC-MSBEVALMSB1D

SIN/COS SIGNAL CONDITIONER WITH 1Vpp DRIVER
ICHAUS

IC-MSBTSSOP20

SIN/COS SIGNAL CONDITIONER WITH 1Vpp DRIVER
ICHAUS