IC-MSA [ICHAUS]

SIN/COS SIGNAL CONDITIONER with AGC and 1Vpp DRIVER; SIN / COS信号调理器,带有AGC和1Vpp典型DRIVER
IC-MSA
型号: IC-MSA
厂家: IC-HAUS GMBH    IC-HAUS GMBH
描述:

SIN/COS SIGNAL CONDITIONER with AGC and 1Vpp DRIVER
SIN / COS信号调理器,带有AGC和1Vpp典型DRIVER

驱动
文件: 总29页 (文件大小:718K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
iC-MSA SIN/COS SIGNAL  
CONDITIONER with AGC and 1Vpp DRIVER  
Rev A1, Page 1/29  
FEATURES  
APPLICATIONS  
PGA inputs for differential and single-ended sensor signals up  
to 20 kHz  
Selectable adaptation to voltage or current signals  
Flexible signal assignment due to input multiplexers  
Sine/Cosine signal conditioning for offset, amplitude and  
phase  
Programmable sensor interface  
for optical and magnetic position  
sensors  
Linear gauges and incremental  
encoders  
Linear scales  
Separate index signal conditioning  
Short-circuit-proof and reverse polarity tolerant output drivers  
(1 Vpp to 100 )  
Stabilized output signal levels due to automatic gain control  
Signal and system monitoring with configurable alarm output  
Supply voltage monitoring with integrated switches for  
reversed-polarity-safe systems  
PACKAGES  
Excessive temperature protection with sensor calibration  
I2C multi-master interface  
Supply from 4.3 to 5 V, operation within -40 °C to +115 °C  
Verifyable chip release code  
Pin compatible with iC-MSB  
TSSOP20-TP  
BLOCK DIAGRAM  
VDDS  
GNDS  
VDD  
REVERSE POLARITY  
PROTECTION  
GND  
ERR  
SCL  
MONITORING  
Tw Toff  
SERIAL I2C  
INTERFACE  
CONFIGURATION  
REGISTER  
PwrOn  
iC-MSA  
SDA  
PGA INPUT  
SIGNAL PATH MUX  
CALIBRATION  
AUTOMATIC GAIN  
CONTROL  
ANALOG DRIVER  
OUTPUT  
X1  
X2  
X3  
X4  
X5  
X6  
PZ  
NZ  
PC  
NC  
PS  
NS  
I/V  
x
CH0  
-
I/V  
I/V  
I/V  
I/V  
I/V  
x
x
x
CH2  
-
x
+
-
x
x
ADJ  
+
CH1  
-
x
x
Copyright © 2013 iC-Haus  
http://www.ichaus.com  
iC-MSA SIN/COS SIGNAL  
CONDITIONER with AGC and 1Vpp DRIVER  
Rev A1, Page 2/29  
DESCRIPTION  
iC-MSA is a signal conditioner with line drivers for signals which controls the gain of all channels. Tem-  
sine/cosine sensors which are used to determine po- perature and aging effects can be compensated for  
sitions in linear and angular encoders, for example.  
and the set signal amplitude is maintained with ab-  
solute accuracy. At the same time the control cir-  
Programmable instrumentation amplifiers with se- cuitry monitors both whether the sensor is functioning  
lectable gain levels permit differential or referenced correctly and whether it is properly connected; signal  
input signals; at the same time the modes of op- loss due to wire breakage, short circuiting, dirt or ag-  
eration differentiate between high and low input ing, for example, is recognized when control thresh-  
impedance. This adaptation of the iC to voltage or olds are reached and indicated at alarm output ERR.  
current signals enables MR sensor bridges or photo-  
sensors to be directly connected up to the device.  
iC-MSA is protected against a reversed power supply  
voltage; the integrated voltage switch for loads of up  
The integrated signal conditioning unit allows signal to 20 mA extends this protection to cover the overall  
amplitudes and offset voltages to be calibrated accu- system. The analog output drivers are directly cable-  
rately and also any phase error between the sine and compatible and tolerant to false wiring; if supply volt-  
cosine signals to be corrected. Separate zero signal age is connected up to these pins, the device is not  
conditioning settings can be made for the gain and destroyed.  
offset; data is then output either as an analog or a  
differential square-wave signal (low/high level analo- The device configuration and calibration parameters  
gous to the sine/cosine amplitude).  
are CRC protected and stored in an external EEP-  
ROM; they are loaded automatically via the I2C in-  
For the stabilization of the output levels a signal is terface once the supply voltage has been connected  
generated from the conditioned and calibrated input up.  
iC-MSA SIN/COS SIGNAL  
CONDITIONER with AGC and 1Vpp DRIVER  
Rev A1, Page 3/29  
CONTENTS  
PACKAGING INFORMATION  
4
SIGNAL PATH MULTIPLEXING  
SIGNAL CONDITIONING CH1, CH2  
20  
PIN CONFIGURATION TSSOP20-TP . . . .  
4
21  
ABSOLUTE MAXIMUM RATINGS  
THERMAL DATA  
5
5
Gain Settings CH1, CH2 . . . . . . . . . . . . 21  
Offset Calibration CH1, CH2 . . . . . . . . . 22  
Phase Correction CH1 vs. CH2 . . . . . . . . 22  
ELECTRICAL CHARACTERISTICS  
PROGRAMMING  
6
SIGNAL CONDITIONING CH0  
23  
10  
Gain Settings CH0 . . . . . . . . . . . . . . . 23  
Offset Calibration CH0 . . . . . . . . . . . . . 23  
SERIAL CONFIGURATION INTERFACE  
(EEPROM)  
13  
AUTOMATIC SIGNAL GAIN CONTROL and  
Example of CRC Calculation Routine . . . . . 13  
EEPROM Selection . . . . . . . . . . . . . . 13  
I2C Slave Mode (ENSL = 1) . . . . . . . . . . 14  
SIGNAL MONITORING  
24  
25  
ERROR MONITORING AND ALARM OUTPUT  
Alarm Output: I/O pin ERR . . . . . . . . . . 25  
Excessive Temperature Warning . . . . . . . 25  
Driver Shutdown . . . . . . . . . . . . . . . . 25  
Error Protocol . . . . . . . . . . . . . . . . . . 25  
BIAS SOURCE AND TEMPERATURE  
SENSOR CALIBRATION  
15  
16  
OPERATING MODES  
Calibration Op. Modes . . . . . . . . . . . . . 16  
Special Device Test Functions . . . . . . . . 16  
Signal Filter . . . . . . . . . . . . . . . . . . . 16  
REVERSE POLARITY PROTECTION  
APPLICATION HINTS  
26  
27  
TEST MODE  
INPUT CONFIGURATIONS  
17  
18  
PLC Operation . . . . . . . . . . . . . . . . . 27  
Connecting MR sensor bridges for  
safety-related applications . . . . . . . . 27  
Current Signals . . . . . . . . . . . . . . . . . 18  
Voltage Signals . . . . . . . . . . . . . . . . . 18  
Motor feedback encoder with iC-MSA,  
iC-MSB and single EEPROM . . . . . . 28  
iC-MSA SIN/COS SIGNAL  
CONDITIONER with AGC and 1Vpp DRIVER  
Rev A1, Page 4/29  
PACKAGING INFORMATION  
PIN CONFIGURATION TSSOP20-TP  
PIN FUNCTIONS  
No. Name Function  
1 X1  
2 X2  
3 X3  
4 X4  
Signal Input 1 (Index +)  
Signal Input 2 (Index -)  
Signal Input 3  
Signal Input 4  
5 VDDS1) Switched Supply Output and Internal  
Analog Supply Voltage  
(reverse-polarity-proof, load 20 mA  
max.)  
6 GNDS1) Switched Ground  
(reverse-polarity-proof)  
7 X5  
8 X6  
Signal Input 5  
Signal Input 6  
9 N.C.  
10 SDA  
Not Connected  
Serial Configuration Interface,  
data line  
11 SCL  
Serial Configuration Interface,  
clock line  
12 NC  
13 PC  
14 NS  
15 PS  
16 GND  
17 VDD  
18 NZ  
19 PZ  
Neg. Cosine Output  
Pos. Cosine Output  
Neg. Sine Output  
Pos. Sine Output  
Ground  
+4.3 V to +5.5 V Supply Voltage  
Neg. Index Output  
Pos. Index Output  
Error Signal (In/Out),  
Test Mode Trigger Input  
20 ERR  
TP2)  
Thermal Pad (TSSOP20-TP)  
1) It is advicable to connect a bypass capacitor of at least 100 nF close to the chip’s analog supply terminals.  
2) To improve heat dissipation the thermal pad of the package (bottom side) should be joined to an extended copper area which must have GNDS potential.  
iC-MSA SIN/COS SIGNAL  
CONDITIONER with AGC and 1Vpp DRIVER  
Rev A1, Page 5/29  
ABSOLUTE MAXIMUM RATINGS  
These ratings do not imply operating conditions; functional operation is not guaranteed. Beyond these ratings device damage may occur.  
Item Symbol  
No.  
Parameter  
Conditions  
Unit  
Min.  
Max.  
G001 V()  
Voltage at VDD, GND, PC, NC, PS, NS,  
PZ, NZ  
-6  
6
V
G002 V()  
G003 V()  
Voltage at ERR  
-6  
8
6
V
V
Pin-To-Pin Voltage between VDD,  
GND, PC, NC, PS, NS, PZ, NZ, ERR  
G004 V()  
Voltage at X1...X6, SCL, SDA  
-0.3  
VDDS +  
0.3  
V
G005 I(VDD)  
G006 I()  
Current in VDD  
-100  
-50  
100  
50  
mA  
mA  
mA  
Current in VDDS, GNDS  
G007 I()  
Current in X1...X6, SCL, SDA, ERR,  
PC, NC, PS, NS, PZ, NZ  
-20  
20  
G008 Vd()  
G009 Ptot  
G010 Tj  
ESD Susceptibility at all pins  
Permissible Power Dissipation  
Junction Temperature  
HBM 100 pF discharged through 1.5 k  
2
kV  
mW  
°C  
TSSOP20-TP  
400  
150  
150  
-40  
-40  
G011 Ts  
Storage Temperature Range  
°C  
THERMAL DATA  
VDD = 4.3...5.5 V  
Item Symbol  
No.  
Parameter  
Conditions  
Unit  
Min. Typ. Max.  
-40 115  
T01 Ta  
Operating Ambient Temperature Range TSSOP20-TP  
°C  
T02 Rthja  
Thermal Resistance Chip to Ambient TSSOP20-TP surface mounted to PCB  
according to JEDEC 51  
35  
K/W  
All voltages are referenced to Pin GNDS unless otherwise stated.  
All currents flowing into the device pins are positive; all currents flowing out of the device pins are negative.  
iC-MSA SIN/COS SIGNAL  
CONDITIONER with AGC and 1Vpp DRIVER  
Rev A1, Page 6/29  
ELECTRICAL CHARACTERISTICS  
Operating conditions: VDD = 4.3...5.5 V, Tj = -40...125 °C, IBN calibrated to 200 µA, reference point GNDS, unless otherwise stated.  
Item Symbol  
No.  
Parameter  
Conditions  
Unit  
Min.  
Typ.  
Max.  
Total Device  
001  
VDD  
Permissible Supply Voltage  
Load current I(VDDS) < -10 mA  
Tj = 27 °C, no load  
4.3  
4.5  
5.5  
5.5  
V
V
002 I(VDD)  
003 I(VDDS)  
004 Vcz()hi  
005 Vc()hi  
Supply Current in VDD  
25  
50  
0
mA  
mA  
V
Permissible Load Current VDDS  
Clamp Voltage hi at all pins  
-20  
11  
1.5  
Clamp Voltage hi at inputs  
SCL, SDA  
Vc()hi = V() V(VDDS), I() = 1 mA  
Vc()hi = V() V(VDDS), I() = 4 mA  
I() = -4 mA  
0.4  
0.3  
V
006 Vc()hi  
007 Vc()lo  
Clamp Voltage hi at inputs  
X1...X6  
1.2  
V
Clamp Voltage lo at all pins  
-1.2  
-1  
-0.3  
1
V
008 Irev(VDD) Reverse-Polarity Current VDD vs. V(VDD) = 5.5 V...4.3 V  
mA  
GND  
Signal Conditioning, Inputs X3...X6  
101  
102  
Vin()sig  
Iin()sig  
Permissible Input Voltage Range  
Permissible Input Current Range  
RIN12(3:0) = 0x01  
RIN12(3:0) = 0x09  
0.75  
0
VDDS  
1.5  
VDDS  
V
V
RIN12(0) = 0, BIAS12 = 0  
RIN12(0) = 0, BIAS12 = 1  
-300  
10  
-10  
300  
µA  
µA  
103 Iin()  
104  
Input Current  
RIN12(3:0) = 0x01  
-10  
10  
µA  
Rin()  
Input Resistance vs. VREFin  
Tj = 27 °C;  
RIN12(3:0) = 0x09  
RIN12(3:0) = 0x00  
RIN12(3:0) = 0x02  
RIN12(3:0) = 0x04  
RIN12(3:0) = 0x06  
16  
1.1  
1.6  
2.2  
3.2  
20  
1.6  
2.3  
3.2  
4.6  
24  
2.1  
3.0  
4.2  
6.0  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
105 TCRin()  
Temperature Coefficient Rin  
0.15  
%/K  
106  
VREFin12 Reference Voltage  
RIN12(0) = 0, BIAS12 = 1  
RIN12(0) = 0, BIAS12 = 0  
1.35  
2.25  
1.5  
2.5  
1.65  
2.75  
V
V
107  
G12  
Gain Factors  
GC2 = 0x80;  
RIN12(3:0) = 0x01, GR12 and AGCGF1 = min.  
RIN12(3:0) = 0x01, GR12 and AGCGF1 = max.  
0.8  
116  
RIN12(3:0) = 0x09, GR12 and AGCGF1 = min.  
RIN12(3:0) = 0x09, GR12 and AGCGF1 = max.  
0.2  
29  
108 Gdiff  
109 Gabs  
Differential Gain Accuracy  
Absolute Gain Accuracy  
calibration range 11 bit  
-0.5  
-1  
0.5  
1
LSB  
LSB  
calibration range 11 bit, guaranteed monotony  
110  
Vin()diff  
Recommended Differential Input  
Voltage  
Vin()diff = V(CHPx) - V(CHNx),  
RIN12(3) = 0  
10  
40  
500  
2000  
mVpp  
mVpp  
RIN12(3) = 1  
111 Vin()os  
112  
Input Offset Voltage  
refered to side of input  
0
20  
µV  
VOScal  
Offset Calibration Range  
referenced to the selected source (VOS12);  
ORx = 00  
ORx = 01  
ORx = 10  
ORx = 11  
±100  
±200  
±600  
±1200  
%V()  
%V()  
%V()  
%V()  
113 VOSdiff Differential Linearity Error of  
calibration range 11 bit  
-0.5  
-1  
0.5  
1
LSB  
Offset Correction  
114 VOSint Integral Linearity Error of Offset calibration range 11 bit  
LSB  
Correction  
115 PHIkorr  
Phase Error Calibration Range  
CH1 versus CH2  
±10.4  
°
116 PHIdiff  
Differential Linearity Error of  
Phase Calibration  
calibration range 10 bit  
-0.5  
-1  
0.5  
1
LSB  
117 PHIint  
Integral Linearity Error of Phase calibration range 10 bit  
Calibration  
LSB  
kHz  
119 fin()max  
Permissible Input Frequency  
20  
iC-MSA SIN/COS SIGNAL  
CONDITIONER with AGC and 1Vpp DRIVER  
Rev A1, Page 7/29  
ELECTRICAL CHARACTERISTICS  
Operating conditions: VDD = 4.3...5.5 V, Tj = -40...125 °C, IBN calibrated to 200 µA, reference point GNDS, unless otherwise stated.  
Item Symbol  
No.  
Parameter  
Conditions  
Unit  
Min.  
Typ.  
Max.  
120 fhc()  
Input Amplifier Cut-off Frequency  
(-3dB)  
100  
kHz  
Signal Conditioning, Inputs X1, X2  
201  
Vin()sig  
Permissible Input Voltage Range  
RIN0(3:0) = 0x01  
RIN0(3:0) = 0x09  
0.75  
0
VDDS  
1.5  
VDDS  
V
V
202  
Iin()sig  
Permissible Input Current Range  
RIN0(0) = 0, BIAS0 = 0  
RIN0(0) = 0, BIAS0 = 1  
-300  
10  
-10  
300  
µA  
µA  
203 Iin()  
Input Current  
RIN0(3:0) = 0x01  
-10  
95  
10  
µA  
%
204 Vout(X2)  
Output Voltage at X2  
BIASEX = 10, I(X2) = 0, referenced to VRE-  
Fin12  
100  
28  
105  
205 Vin(X2)  
206 Rin(X2)  
Permissible Input Voltage at  
Input Resistance at X2  
BIASEX = 11  
0.5  
20  
VDDS  
2  
35  
V
BIASEX = 11, RIN0(3:0) = 0x01, RIN12(3:0) =  
0x01  
kΩ  
207  
Rin()  
Input Resistance vs. VREFin  
Tj = 27 °C;  
RIN0(3:0) = 0x09  
RIN0(3:0) = 0x00  
RIN0(3:0) = 0x02  
RIN0(3:0) = 0x04  
RIN0(3:0) = 0x06  
16  
1.1  
1.6  
2.2  
3.2  
20  
1.6  
2.3  
3.2  
4.6  
24  
2.1  
3.0  
4.2  
6.0  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
208 TCRin()  
Temperature Coefficient Rin  
0.15  
%/K  
209  
VREFin0 Reference Voltage  
RIN0(0) = 0, BIAS0 = 1  
RIN0(0) = 0, BIAS0 = 0  
1.35  
2.25  
1.5  
2.5  
1.65  
2.75  
V
V
210  
G0  
Gain Factors  
GC0 = 0x80;  
RIN0(3:0) = 0x01, GR0 and AGCGF1 = min.  
RIN0(3:0) = 0x01, GR0 and AGCGF1 = max.  
0.8  
116  
RIN0(3:0) = 0x09, GR0 and AGCGF1 = min.  
RIN0(3:0) = 0x09, GR0 and AGCGF1 = max.  
0.2  
29  
211 Gdiff  
212 Gabs  
Differential Gain Accuracy  
Absolute Gain Accuracy  
calibration range 5 bit  
-0.5  
-1  
0.5  
1
LSB  
LSB  
calibration range 5 bit, guaranteed monotony  
213  
Vin()diff  
Recommended Differential Input  
Voltage  
Vin()diff = V(CHP0) - V(CHN0),  
RIN0(3:0) = 0x01  
10  
40  
500  
2000  
mVpp  
mVpp  
RIN0(3:0) = 0x09  
214 Vin()os  
215  
Input Offset Voltage  
referred to side of input  
0
75  
µV  
VOScal  
Offset Calibration Range  
referenced to the selected source (REFVOS);  
OR0 = 00  
OR0 = 01  
OR0 = 10  
OR0 = 11  
±100  
±200  
±600  
±1200  
%V()  
%V()  
%V()  
%V()  
216 VOSdiff Differential Linearity Error of  
calibration range 6 bit  
-0.5  
-1  
0.5  
1
LSB  
Offset Correction  
217 VOSint Integral Linearity Error of Offset calibration range 6 bit  
LSB  
Correction  
Signal Filter  
301  
4000  
10  
kHz  
°
fg  
Cut-off Frequency  
Phase Shift  
302  
fin 500 kHz for sine/cosine  
phi  
Index Pulse Comparator Output PZ, NZ  
401 Vpk()  
Output Amplitude With Automatic EAZ = 1, AGCOFF = 0, ADJ = 0x32  
Gain Control  
225  
225  
250  
1
275  
mV  
402 SR()  
Output Slew Rate  
EAZ = 1  
V/µs  
Line Driver Outputs PS, NS, PC, NC, PZ, NZ  
501  
Vpk()max Permissible Output Amplitude  
VDD = 4.5 V, DC level = VDD / 2,  
RL = 50 vs. VDD / 2  
300  
275  
mV  
mV  
502 Vpk()  
Output Amplitude With Automatic AGCOFF = 0, ADJ (5:0) = 0x32  
Gain Control  
250  
iC-MSA SIN/COS SIGNAL  
CONDITIONER with AGC and 1Vpp DRIVER  
Rev A1, Page 8/29  
ELECTRICAL CHARACTERISTICS  
Operating conditions: VDD = 4.3...5.5 V, Tj = -40...125 °C, IBN calibrated to 200 µA, reference point GNDS, unless otherwise stated.  
Item Symbol  
No.  
Parameter  
Conditions  
Unit  
Min.  
Typ.  
Max.  
503 fg  
Cut-off Frequency  
Offset Voltage  
CL = 250 pF  
500  
kHz  
µV  
504 Vos  
505 Isc()  
506 Ilk()  
±200  
30  
Short-circuit Current  
Tristate Leakage Current  
pin shorten to VDD or GND  
tristate or reversed supply  
10  
-1  
50  
1
mA  
µA  
Automatic Signal Gain Controller  
601 tset()  
Automatic Gain Settling Time  
square control active, AGCGF1: 0x40 0x80  
CH1 gain/GR12, AGCGF1 = 0x10  
2
ms  
602 Gt()min  
Control Range Monitoring 1:  
lower limit  
1.2  
603 Gt()max  
604 Vt()min  
605 Vt()max  
Control Range Monitoring 2:  
upper limit  
CH1 gain/GR12, AGCGF1 = 0xF0  
referenced to Vscq()  
16.6  
40  
Signal Level Monitoring 1:  
lower limit  
%Vpp  
%Vpp  
Signal Level Monitoring 2:  
upper limit  
referenced to Vscq()  
130  
Test Current ERR  
701 I(ERR)  
Permissible Test Current  
test mode activated  
0
1
mA  
Bias Current Source and Reference Voltages  
801 IBN()  
802 VPAH  
Bias Current Source  
MODE(3:0) = 0x01, I(NC) vs. VDDS  
referenced to GND  
180  
45  
200  
50  
220  
55  
µA  
%VDD  
mV  
Reference Voltage VPAH  
Reference Voltage V05  
Reference Voltage V025  
803 V05  
450  
500  
50  
550  
804 V025  
%V05  
Power-Down-Reset  
901 VDDon  
Turn-on Threshold  
(power-on release)  
increasing voltage at VDD vs. GND  
decreasing voltage at VDD vs. GND  
VDDhys = VDDon VDDoff  
3.7  
3.2  
0.3  
4
4.3  
3.8  
V
V
V
902 VDDoff  
Turn-off Threshold  
(power-down reset)  
3.5  
903 VDDhys  
Clock Oscillator  
A01 fclk()  
Threshold Hysteresis  
Internal Clock Frequency  
MODE(3:0) = 0x0A, fclk(NS)  
vs. GND, I() = 4 mA  
120  
160  
200  
0.4  
kHz  
Error Signal Input/Output, Pin ERR  
B01 Vs()lo  
B02  
Saturation Voltage lo  
Short-circuit Current lo  
V
Isc()  
vs. GND; V(ERR) VDD  
4
2
mA  
mA  
V(ERR) > VTMon  
B03 Vt()hi  
B04 Vt()lo  
B05 Vt()hys  
B06 Ipu()  
Input Threshold Voltage hi  
Input Threshold Voltage lo  
Input Hysteresis  
vs. GND  
2
V
V
vs. GND  
0.8  
300  
-400  
Vt()hys = Vt()hi Vt()lo  
V() = 0...VDD 1 V, EPU = 1  
EPU = 0  
500  
-300  
500  
mV  
µA  
kΩ  
V
Input Pull-up Current  
Input Pull-Up Resistor  
Pull-up Voltage  
-200  
0.4  
B07 Rpu()  
B08 Vpu()  
B09 VTMon  
Vpu() = VDD - V(), I() = -5 µA, EPU = 1  
Test Mode Activation Threshold increasing voltage at ERR  
VDD +  
1.5  
V
B10 VTMoff  
Test Mode Disabling Threshold  
decreasing voltage at ERR  
VDD +  
0.5  
V
B11 VTMhys  
B12 Ilk()  
Test Mode Hysteresis  
Leakage Current  
VTMhys = VTMon VTMoff  
tristate or reversed supply voltage  
0.15  
-1  
0.3  
-10  
V
-50  
µA  
Supply Switch and Reverse Polarity Protection VDDS, GNDS  
C01  
Vs()  
Saturation Voltage  
VDDS vs. VDD  
Vs(VDDS) = VDD V(VDDS)  
I(VDDS) = -10 mA...0 mA  
I(VDDS) = -20 mA...-10 mA  
150  
250  
mV  
mV  
C02  
Vs()  
Saturation Voltage  
GNDS vs. GND  
Vs(GNDS) = V(GNDS) GND  
I(GNDS) = 0 mA...10 mA  
150  
250  
mV  
mV  
I(GNDS) = 10 mA...20 mA  
C03 C()  
Backup Capacitor Analog Supply  
VDDS vs. GNDS  
100  
nF  
iC-MSA SIN/COS SIGNAL  
CONDITIONER with AGC and 1Vpp DRIVER  
Rev A1, Page 9/29  
ELECTRICAL CHARACTERISTICS  
Operating conditions: VDD = 4.3...5.5 V, Tj = -40...125 °C, IBN calibrated to 200 µA, reference point GNDS, unless otherwise stated.  
Item Symbol  
No.  
Parameter  
Conditions  
Unit  
Min.  
Typ.  
Max.  
Serial Configuration Interface SCL, SDA  
D01 Vs()lo  
D02 Isc()  
Saturation Voltage lo  
Short-circuit Current lo  
I() = 4 mA  
400  
80  
2
mV  
mA  
V
4
D03 Vt()hi  
D04 Vt()lo  
D05 Vt()hys  
D06 Ipu()  
D07 Vpu()  
Input Threshold Voltage hi  
Input Threshold Voltage lo  
Input Hysteresis  
0.8  
300  
-600  
V
Vt()hys = Vt()hi Vt()lo  
V() = 0...VDDS 1 V  
500  
mV  
µA  
V
Input Pull-up Current  
-300  
-60  
0.4  
Input Pull-up Voltage  
Vpu() = VDDS V(), I() = -5 µA  
D08  
fclk(SCL) Clock Frequency at SCL  
ENFAST = 0  
ENFAST = 1  
60  
240  
80  
320  
100  
400  
kHz  
kHz  
D09  
tbusy()cfg Duration of Startup Configuration  
IBN not calibated, EEPROM access without  
read failure, time to outputs operational;  
ENFAST = 0  
40  
25  
55  
35  
ms  
ms  
ENFAST = 1  
D10  
D11  
tbusy()err End Of I2C Communication;  
IBN not calibrated;  
Time Until I2C Slave Is Enabled V(SDA) = 0 V  
4
indef.  
45  
12  
ms  
ms  
ms  
ms  
V(SCL) = 0 V or arbitration lost  
no EEPROM  
CRC ERROR  
135  
285  
95  
td()  
Start Of Master Activity On I2C  
Protocol Error  
SCL without clock signal: V(SCL) = constant;  
IBN not calibrated  
IBN calibrated to 200 µA  
25  
64  
80  
80  
240  
120  
µs  
µs  
D12 td()i2c  
Delay for I2C-Slave-Mode Enable no EEPROM, V(SDA) = 0 V  
4
6.2  
ms  
Temperature Monitoring  
E01  
E02 TCs  
E03  
VTs  
Temperature Sensor Voltage  
VTs() = VDDS V(PS), Tj = 27 °C,  
600  
650  
-1.8  
700  
mV  
Calibration Mode 3, no load  
Temp. Co. of Temperature Sen-  
sor Voltage  
mV/K  
VTth  
Temperature Warning Activation  
Threshold  
VTth() = VDDS V(NS), Tj = 27 °C,  
Calibration Mode 3, no load;  
CFGTA(3:0) = 0x00  
260  
470  
310  
550  
360  
630  
mV  
mV  
CFGTA(3:0) = 0x0F  
E04 TCth  
Temp. Co. Temperature Warning  
Activation Threshold  
0.06  
%/K  
E05 Thys  
Temperature Warning Hysteresis  
4
4
12  
12  
20  
20  
°C  
°C  
E06 T  
Relative Shutdown Temperature T = Toff Twarn  
iC-MSA SIN/COS SIGNAL  
CONDITIONER with AGC and 1Vpp DRIVER  
Rev A1, Page 10/29  
PROGRAMMING  
Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Page 11 Signal Conditioning CH1, CH2 (X3...X6) . . Page 21  
GR12:  
VOS12:  
OR1:  
OF1:  
OR2:  
OF2:  
PH12:  
GC2:  
Gain Range CH1, CH2 (coarse)  
Offset Reference Source CH1, CH2  
Offset Range CH1 (coarse)  
Offset Factor CH1 (fine)  
Offset Range CH2 (coarse)  
Offset Factor CH2 (fine)  
Configuration Interface . . . . . . . . . . . . . . . . . . . Page 13  
ENFAST:  
ENSL:  
I2C Fast Mode Enable  
I2C Slave Mode Enable  
DEVID:  
Device ID of EEPROM providing the  
chip configuration data (e.g. 0x50)  
CRC of chip configuration data  
(address range 0x40 to 0x5E)  
Chip Release  
Phase Correction CH1 vs. CH2  
Gain Correction CH2 (fine)  
CHKSUM:  
Signal Conditioning CH0 (X1, X2) . . . . . . . . . Page 23  
CHPREL:  
NTRI:  
GC0:  
GR0:  
VOS0:  
OR0:  
OF0:  
Gain Correction CH0 (fine)  
Gain Range CH0 (coarse)  
Offset Reference Source CH0  
Offset Range CH0 (coarse)  
Offset Factor CH0 (fine)  
Tristate Function and  
Op. Mode Change  
Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Page 15  
CFGIBN:  
CFGTA:  
Bias Calibration  
Temperature Sensor Calibration  
Signal Level Controller . . . . . . . . . . . . . . . . . . . . Page 24  
AGCOFF:  
ADJ:  
Setup of AGC  
AGC Setpoint  
Operation Modes . . . . . . . . . . . . . . . . . . . . . . . . . . Page 16  
MODE:  
ENF:  
Operation Mode  
Signal Filtering  
Error Monitoring and Alarm Output . . . . . . Page 25  
EMTD:  
EPH:  
Minimal Alarm Indication Time  
Alarm Input/Output Logic  
Test Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Seite 17  
TMODE: Test Mode Functions  
EPU:  
EMASKA:  
Alarm Output Pull-Up Enable  
Error Mask For Alarm Indication (pin  
ERR)  
Input Configuration and  
Signal Path Multiplexer . . . . . . . . . . . . . . . . . . . Page 18  
EMASKE:  
EMASKO:  
Error Mask For Protocol (EEPROM)  
Error Mask For Driver Shutdown  
INMODE:  
RIN12:  
Diff./Single-Ended Input Mode  
I/V Mode and Input Resistance CH1,  
CH2  
ERR1:  
ERR2:  
ERR3:  
Error Protocol: First Error  
Error Protocol: Last Error  
Error Protocol: History  
BIAS12:  
RIN0:  
BIAS0:  
MUXIN:  
Reference Voltage CH1, CH2  
I/V Mode and Input Resistance CH0  
Reference Voltage CH0  
Input-To-Channel Assignment:  
X3...X6 to CH1, CH2  
PDMODE:  
AGCGF1:  
Driver Activation After Cycling Power  
AGC Gain Fine CH1 (read-only)  
INVZ:  
EAZ:  
BIASEX:  
BYP  
Index Signal Inversion  
Index Comparator Enable  
Input Reference Selection  
Input-to-output Feedthrough  
iC-MSA SIN/COS SIGNAL  
CONDITIONER with AGC and 1Vpp DRIVER  
Rev A1, Page 11/29  
OVERVIEW  
Addr  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Configuration Interface  
0x40  
ENFAST  
DEVID(6:0)  
Calibration  
0x41  
CFGIBN(3:0)  
CFGTA(3:0)  
Operation Modes  
0x42 NTRI  
1
0
MODE(3:0)  
Input Configuration and Signal Path Multiplexer  
0x43  
0x44  
EAZ  
0
0
0
0
1
INVZ  
0
INMODE  
MUXIN(1:0)  
0
0
0
0
0
Signal Level Controller  
0x45 AGCOFF  
Signal Conditioning CH1, CH2  
0
ADJ(5:0)  
0x46  
0x47  
0x48  
0x49  
0x4A  
0x4B  
0x4C  
0x4D  
0x4E  
0x4F  
0
0
0
0
0
0
0
1
0
0
1
0
GR12(2:0)  
0
0
0
0
0
0
0
0
OR1(0)  
OF1(6:0)  
OR1(1)  
OF2(1:0)  
OR2(1:0)  
OF1(10:7)  
OF2(9:2)  
PH12(6:0)  
1
OF2(10)  
BIASEX(1:0)  
ENF BIAS12  
BYP  
1
PH12(9:7)  
RIN12(3:0)  
VOS12(1:0)  
GC2(7:0)  
Signal Conditioning CH0  
0x50  
0x51  
0x52  
GC0(7:0)  
-
GR0(2:0)  
OR0(1:0)  
OF0(5:0)  
0x53  
0
BIAS0  
VOS0(1:0)  
RIN0(3:0)  
Error Monitoring and Alarm Output  
0x54  
0x55  
0x56  
0x57  
0x58  
0x59  
0x5A  
EMASKA(6:0)  
TMODE(1:0)  
EMTD(2:0)  
EPH  
EPU  
EMASKO(6:0)  
EMASKE(3:0)  
PDMODE  
ENSL  
EMASKE(6:4)  
EEPROM: not defined  
/ RAM: AGCGF1(10:3) (read-only)  
not defined  
OEM Data  
OEM Data  
0x5B..  
0x5E  
Check Sum  
/ Chip Release  
0x5F  
EEPROM: CHKSUM(7:0) / ROM: CHPREL(7:0)  
iC-MSA SIN/COS SIGNAL  
CONDITIONER with AGC and 1Vpp DRIVER  
Rev A1, Page 12/29  
OVERVIEW  
Addr  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Error Register  
0x60  
0x61  
0x62  
0x63  
Notes  
ERR1(6:0)  
ERR2(5:0)  
ERR3(3:0)  
ERR2(6)  
ERR3(6:4)  
Register entries specified 0 or 1 mean a mandatory programming.  
Table 4: Register layout  
iC-MSA SIN/COS SIGNAL  
CONDITIONER with AGC and 1Vpp DRIVER  
Rev A1, Page 13/29  
SERIAL CONFIGURATION INTERFACE (EEPROM)  
The serial configuration interface consists of the two Example of CRC Calculation Routine  
pins SCL and SDA and enables read and write access  
to an EEPROM with I2C interface. The readout speed  
can be adjusted using register bit ENFAST.  
unsigned char ucDataStream  
int iCRCPoly 0x11D ;  
unsigned char ucCRC=0;  
int 0;  
= 0;  
=
i
=
ENFAST  
Code  
0
Adr 0x40, bit 7  
ucCRC = 1; / / s t a r t value ! ! !  
Function  
for ( iReg  
= 0; iReg <31; iReg ++)  
{
Regular clock rate, f(SCL) approx. 80 kHz  
High clock rate, f(SCL) approx. 320 kHz  
ucDataStream  
for ( i =0; i <=7; i ++)  
i f ( (ucCRC & 0x80 ) != ( ucDataStream & 0x80 ) )  
ucCRC = (ucCRC << 1) iCRCPoly ;  
else  
ucCRC = (ucCRC << 1 ) ;  
ucDataStream ucDataStream << 1;  
= ucGetValue ( iReg ) ;  
1
{
Notes  
For in-circuit programming bus lines SCL and SDA  
require pull-up resistors.  
For line capacitances to 170 pF, adequate values  
are:  
4.7 kwith clock frequency 80 kHz  
2 kwith clock frequency 320 kHz  
^
=
}
}
The pull-up resistors may not be less than 1.5 k.  
To separate the signals a ground line between SCL  
and SDA is recommended.  
iC-MSA requires a supply voltage during EEPROM  
programming (5 V to VDD).  
EEPROM Selection  
The following minimal requirements must be fulfilled:  
• Operation from 3.3 to 5 V, I2C interface  
Table 5: Config. Interface Clock Frequency  
• Minimal 1024 bit, 128x8  
Once the supply has been switched on (power down  
reset) the iC-MSA outputs are high impedance (tris-  
tate) until a valid configuration is read out from the  
EEPROM using device ID 0x50.  
(address range used is 0x40 to 0x7F)  
• Support of Page Write with Pages of at least 4  
bytes. Otherwise error events can not be saved  
to the EEPROM (EMASKE(9:0) = 0x000).  
Bit errors in the 0x40 to 0x5E memory section are  
pinpointed by the CRC deposited in register CHK-  
SUM(7:0) (address 0x5F; the CRC polynomial used is  
"1 0001 1101").  
• Device ID 0x50 "101 0000", no occupation of  
0x57 (A2...A0 = 0). Otherwise iC-MSA is not ac-  
cessible in I2C slave mode via 0x57 (ENSL = 0).  
Recommended devices:  
M24C01W, ST M24C02 (2K), ROHM BR24L01A-W,  
BR24L02-W  
Atmel AT24C01B, ST  
Should no valid configuration data being available (in-  
correct CRC value or EEPROM missing), the readin  
process is repeated; the system aborts following a  
fourth faulty attempt and iC-MSA switches to I2C slave  
mode.  
For devices loading valid configuration data from the  
EEPROM, the register bit ENSL decides for enabling  
the I2C slave function.  
ENSL  
Code  
0
Adr 0x17, bit 3  
Function  
Normal operation  
1
I2C Slave Mode Enable (Device ID 0x57)  
Table 6: Config. Interface Mode  
The device ID for the EEPROM can be entered in reg-  
ister DEVID(6:0) (address 0x40), from which iC-MSA  
will take its configuration after exiting test mode (see  
page 17). The DEVID(6:0) stored therein is then ac-  
cepted.  
iC-MSA SIN/COS SIGNAL  
CONDITIONER with AGC and 1Vpp DRIVER  
Rev A1, Page 14/29  
I2C Slave Mode (ENSL = 1)  
Register  
Read access in I2C slave mode (ENSL = 1)  
Content  
In this mode iC-MSA behaves like an I2C slave with the  
device ID 0x57 and the configuration interface permits  
write and read accesses to iC-MSA’s internal registers.  
Address  
0x00-0x03 Current error memory  
0x04-0x3F Not available  
0x40-0x58 Configuration: register addresses 0x40-0x58  
0x59  
0x5A  
AGCGF1(10:3)  
Not available  
For chip release verification purposes an identification  
value is stored under ROM address 0x5F; a write ac-  
cess to this address is not permitted.  
0x5B-0x5E OEM data: register addresses 0x5B-0x5E  
0x5F Chip release (ROM)  
0x60-0x63 Configuration: register addresses 0x60-0x63  
0x64-0x77 Not available  
CHPREL  
Code  
Adr 0x5F, bit 7:0 (ROM)  
Chip Release  
0x78  
Configuration: register address 0x58  
0x10  
iC-MSA  
0x79-0x7A Not available  
0x7B-0x7E OEM data: register addresses 0x5B-0x5E  
Table 7: Chip Release  
0x7F  
Chip release (ROM)  
NTRI  
Code  
0
Adr 0x42, bit 7  
Table 9: RAM Read Access  
Function  
Output drivers disabled  
Register  
Address  
0x40  
Write access in I2C slave mode (ENSL = 1)  
Access and conditions  
1
Setting the operating mode, output drivers active  
NTRI is evaluated only during I2C slave mode.  
Notes  
Changes possible, no restrictions  
0x41  
Changes possible (wrong entries for CFGIBN can  
limit functions)  
Table 8: Tristate Function And Op. Mode Change  
0x42  
Bit 7 = 0 (NTRI): changes to bits (6:0) permitted  
A change of operating mode follows only on writing  
Bit 7 = 1 (NTRI); when doing so changes to bits  
(6:0) are not permitted.  
0x43-0x56 Changes possible, no restrictions  
0x57  
Bit 3 = 1 (ENSL):  
changes to bits (7:4) and (2:0) permitted  
0x58  
Changes possible, no restrictions  
0x59-0x5A Not available  
0x5B-0x5E Changes possible, no restrictions  
others  
No changes permitted  
Table 10: RAM Write Access  
iC-MSA SIN/COS SIGNAL  
CONDITIONER with AGC and 1Vpp DRIVER  
Rev A1, Page 15/29  
BIAS SOURCE AND TEMPERATURE SENSOR CALIBRATION  
Bias Source Calibration  
The necessary activation threshold voltage VTth(T1) is  
The calibration of the bias current source in operation then calculated. The required warning temperature T2,  
mode Calibration 1 (Tab. 13) is prerequisite for adher- temperature coefficients TCs and TCth (see Electrical  
ence to the given electrical characteristics and also in- Characteristics, Section E) and measurement value  
strumental in the determination of the chip timing (e.g. VTs(T1) are entered into this calculation:  
SCL clock frequency). For setup purposes the IBN  
value is measured using a 10 kresistor by pin VDDS  
connected to pin NC. The setpoint is 200 µA which is  
equivalent to a measurement voltage of 2 V.  
VTs(T1) + TCs · (T2 T1)  
VTth(T1) =  
1 + TCth · (T2 T1)  
CFGIBN  
Code k  
0x0  
Adr 0x41, bit 7:4  
Example: For T2 = T1 + 100 K, VTth(T1) must be pro-  
grammed to 443 mV.  
31  
39k  
31  
39k  
IBN ∼  
Code k  
0x8  
IBN ∼  
100 %  
103 %  
107 %  
111 %  
115 %  
119 %  
124 %  
129 %  
79 %  
81 %  
84 %  
86 %  
88 %  
91 %  
94 %  
97 %  
0x1  
0x9  
Activation threshold voltage VTth(T1) is provided for a  
high impedance measurement (10 M) at output pin  
NS (measurement versus VDDS) and must be set by  
programming CFGTA(3:0) to the calculated value.  
0x2  
0xA  
0xB  
0xC  
0xD  
0xE  
0xF  
0x3  
0x4  
0x5  
0x6  
Example: Altering VTth(T1) from 310 mV (measured  
with CFGTA(3:0)= 0x0) to 443 mV is equivalent to  
143 %, the closest value for CFGTA is 0x9;  
0x7  
Table 11: Bias Current Source Calibration  
CFGTA  
Code k  
0x0  
Adr 0x41, bit 3:0  
65+3k  
VTth ∼  
65  
65+3k  
65  
Code k  
0x8  
VTth ∼  
140 %  
145 %  
150 %  
155 %  
160 %  
165 %  
170 %  
175 %  
Temperature Sensor  
The temperature monitor is calibrated in operating  
mode Calibration Mode 3.  
100 %  
105 %  
110 %  
115 %  
120 %  
125 %  
130 %  
135 %  
0x1  
0x9  
0x2  
0xA  
0xB  
0xC  
0xD  
0xE  
0xF  
0x3  
To set the required warning temperature T2 the tem-  
perature sensor voltage VTs at which the warning is  
generated is first determined. To this end a volt-  
age ramp from VDDS towards GNDS is applied to  
pin PS until pin ERR triggers an error message (for  
EMASKA = 0x20 and EMTD = 0x00).  
0x4  
0x5  
0x6  
0x7  
Notes  
With CFGTA = 0xF Toff is 80 °C typ.,  
with CFGTA = 0x0 Toff is 155 °C typ.  
Example: VTs(T1) is ca. 650 mV, measured from  
VDDS versus PS, with T1 = 25 °C;  
Table 12: Calibration of Temperature Monitoring  
iC-MSA SIN/COS SIGNAL  
CONDITIONER with AGC and 1Vpp DRIVER  
Rev A1, Page 16/29  
OPERATING MODES  
In order to calibrate iC-MSA, compensate for the input to the various operating modes; the line drivers and  
signals and test iC-MSA the mode of operation must protection against reverse polarity facility are only ac-  
be changed. The output function changes according tive in normal mode.  
MODE(3:0)  
BYP  
Addr. 0x42; bit 3:0  
Addr. 0x4D; bit 5  
Code  
0x00  
Operating Mode  
Normal operation  
Calibration 1  
Pin PS  
PS  
Pin NS  
NS  
Pin PC  
PC  
Pin NC  
NC  
Pin PZ  
PZ  
Pin NZ  
NZ  
Pin ERR  
ERR  
ERR  
0x01  
TANA0(2)  
PCH1  
VREFI0  
NCH1  
VPD  
VREFI12  
PCH2  
IBN  
PZI  
NZI  
0x02  
Calibration 2  
NCH2  
CGUCK  
NC_out  
NC_out  
0x03  
iC-Haus Test 1  
iC-Haus Test 2  
iC-Haus Test 3  
VPAH  
IPF  
V05  
IERR  
IERR  
ERR  
0x04  
PS_out  
PS_out  
NS_out  
NS_out  
PC_out  
PC_out  
PZ_out  
PZ_out  
NZ_out  
NZ_out  
0x05  
0x06  
iC-Haus Test 4, BYP = 0  
iC-Haus Test 4, BYP = 1  
TANA12(0) TANA12(1) TANA12(2) TANA12(3) TANA12(4) TANA12(5) IERR  
X4  
X6  
X3  
X5  
X1  
X2  
0x07  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
Calibration 3  
VTs  
VTth  
ERR  
Saturation low  
SCL, SDA and ERR low  
TP  
iC-Haus Test 5  
CLK6  
IDDQ-Test  
All PU/PD resistors, oscillator and supply voltage deactivated  
Table 13: Selection of Operating Modes  
Calibration Op. Modes  
Signal Filter  
In Calibration Mode 1 the user can measure the BIAS iC-MSA has a noise limiting signal filter to filter the con-  
current (IBN), input amplifier reference potential VREFI ditioned analog signals. This can be activated using  
and the analog signals from channel 0 following signal ENF.  
conditioning (PCH0 and NCH0).  
ENF  
Code  
0
Adr 0x4E, bit 7  
In Calibration Mode 2 the conditioned signals from  
channels 1 and 2 are output (PCH1, NCH1, PCH2 and  
NCH2).  
In Calibration Mode 3 the internal temperature moni-  
toring signals are provided.  
Function  
Noise limiter deactivated  
Noise limiter activated  
1
Table 14: Signal Filtering  
Special Device Test Functions  
IDDQ-Test, Saturation Low, Saturation High, and Test  
1 to 5 are test modes for iC-Haus device tests. With an  
activated bypass (BYP = 1), mode iC-Haus Test 4 per-  
mits the direct feedthrough of X1 - X6 input signals to  
the output pins; in this instance the output impedance  
is high-ohmic. Furthermore, if the input voltage divider  
is selected (by RINx = 1- -1), it reduces the signal am-  
plitudes to approx. 7/8.  
iC-MSA SIN/COS SIGNAL  
CONDITIONER with AGC and 1Vpp DRIVER  
Rev A1, Page 17/29  
TEST MODE  
iC-MSA switches to test mode if a voltage larger cessible at the device ID filed to DEVID(6:0) of address  
than VTMon is applied to pin ERR (precondition: 0x40.  
TMODE(0) = 1). In response iC-MSA transmits its con- In TMODE = 0x03 the EEPROM is read completely; in  
figuration settings as current-modulated data using I/O all other cases only the address range 0x40 to 0x61 is  
pin ERR after re-reading the EEPROM. If the voltage read to keep the configuration time for device testing  
at pin ERR falls below VTMoff test mode is terminated short.  
and data transmission aborted.  
TMODE  
Addr 0x55, bit 7:6  
Code  
Function during test  
mode  
Function following test  
mode  
The clock rate for the data output is determined by EN-  
FAST. Two clock rates can be selected: 780 ns for EN-  
FAST = 1 or 3.125 µs for ENFAST = 0 (see Elec. Char.  
D08 for clock frequency and tolerances).  
00  
01  
Normal operation  
Transmission of  
EEPROM data, address EEPROM  
range 0x5B-0x7F and  
0x00-0x3F  
Normal operation  
Repeated read out of  
Data is output in Manchester code via two clock pulses  
per bit. To this end the lowside current source switches  
between a Z state (OFF = 0 mA) and an L state (ON =  
2 mA).  
10  
11  
Normal operation  
Repeated read out of  
EEPROM  
Transmission of  
Repeated read out of  
EEPROM data, address EEPROM  
range 0x40-0x7F and  
0x00-0x3F  
The bit information lies in the direction of the current  
source switch:  
Zero bit: change of state Z L (OFF to ON)  
Table 15: Test Mode Functions  
One bit: Change of state L Z (ON to OFF)  
VP  
U23-B  
VP LM393  
VP  
7
8
6
5
VP  
VP  
C21  
100nF  
C22  
100nF  
-
U22-S  
AD8029  
VN  
U23-S  
LM393  
GND  
7
Transmission consists of a start bit (a one bit), 8 data  
bits and a pause interval in Z state (the timing is iden-  
tical with an EEPROM access via the I2C interface).  
+
4
4
JP4  
R24  
470  
ERR  
max. 5V  
VDD  
M22  
C24  
IRLML6401  
VP  
R26  
100pF  
Example: byte value = 1000 1010  
Transmission including the start bit: 1 1000 1010  
In Manchester code: LZ LZZL ZLZL LZZL LZZL  
100k  
R23  
2K  
C26  
R28  
51k  
U22-A  
U23-A  
LM393  
100nF  
R25  
2k  
2
D21  
LL4148  
-
M21  
6
2
3
DATA_ON  
AD8029  
NDIS  
-
2N7002  
3
1
DATA_OUT  
+
8
+
R21  
475k  
8
4
R27  
100k  
U21  
LM285  
VP  
5
C25  
100nF  
R22  
365k  
Decoding of the data stream:  
VDD  
C23  
100nF  
dra_mq1d_error_schem  
ZZZZZZ LZ LZ ZL ZL ZL LZ ZL LZ ZL ZZZZZZ  
Pause 1 1 0 0 0 1 0 1 0 Pause  
Figure 1: Example circuit for the decoding and con-  
version of the current-modulated signals  
to logic levels.  
If test mode is quit with TMODE = 0x00, iC-MSA con-  
tinues operation without any interruption.  
If test mode is quit with TMODE > 0x00, then iC-MSA  
again reads out its configuration from the EEPROM ac-  
iC-MSA SIN/COS SIGNAL  
CONDITIONER with AGC and 1Vpp DRIVER  
Rev A1, Page 18/29  
INPUT CONFIGURATIONS  
INMODE  
Addr 0x43, bit 2  
All input stages are configured as instrumentation am-  
Code  
Function  
plifiers and thus directly suitable for differential input  
0
Differential input signals  
Single-ended input signals *  
signals. Referenced input signals can be processed  
as an option; in this mode input X2 acts as a reference.  
1
Note  
* Input X2 is reference for all inputs.  
Both current and voltage signals can be processed as  
input signals, selected using RIN12(0) and RIN0(0).  
Table 16: Input Signal Mode  
RIN12  
RIN0  
Code  
–000  
–010  
–100  
–110  
1—1  
0—1  
Addr 0x4E, bit 3:0  
Addr 0x53, bit 3:0  
Nominal Rin() Intern Rui()  
I/V Mode  
1.7 kΩ  
2.5 kΩ  
3.5 kΩ  
4.9 kΩ  
20 kΩ  
1.6 kΩ  
2.3 kΩ  
3.2 kΩ  
4.6 kΩ  
5 kΩ  
current input  
current input  
current input  
current input  
voltage input 4:1*  
voltage input 1:1  
high  
1 MΩ  
impedance  
Notes  
For single-ended signals identical settings of RIN0  
and RIN12 are required.  
Figure 2: Signal conditioning input circuit.  
*) VREFin is the voltage divider’s footpoint; input  
currents may be positive or negative (Vin > VREFin,  
or Vin < VREFin).  
Current Signals  
Table 17: I/V Mode and Input Resistance  
In I Mode an input resistor Rin() becomes active at  
each input pin, converting the current signal into a volt-  
age signal. Input resistance Rin() consists of a pad  
wiring resistor and resistor Rui() which is linked to the  
adjustable bias voltage source VREFin(). The follow-  
ing table shows the possible selections, with Rin() giv-  
ing the typical resulting input resistance (see Electrical  
Characteristics for tolerances).  
BIAS12  
BIAS0  
Code  
0
Addr 0x4E, bit 6  
Addr 0x53, bit 6  
Function  
VREFin = 2.5 V  
for low-side current sinks (e.g. photodiodes with  
common anode at GNDS)  
1
VREFin = 1.5 V  
for high-side currrent-sources (e.g. photodiodes  
with common cathode at VDDS)  
for voltage sources versus ground  
(e.g. iC-SM2, Wheatstone sensor bridges)  
for voltage sources with low-side reference  
(e.g. iC-LSHB, when using BIASEX = 11)  
NB. The input circuit is not suitable for back-to-back  
photodiodes.  
Table 18: Reference Voltage  
Voltage Signals  
In V Mode an optional voltage divider can be selected  
which reduces unacceptably large input amplitudes to  
ca. 25%. The circuitry is equivalent to the resistor  
chain in I Mode; the pad wiring resistor is considerably  
larger here, however.  
BIASEX  
Code  
00  
Addr 0x4D, bit 7:6  
VREFin  
internal  
internal  
external  
Pin function of X2  
Input Index- (negative zero signal)  
Output of VREFin12*  
10  
11  
Input for external reference**:  
V(X2) replaces VREFin  
Notes  
*) Do not load, buffering recommended  
**) See Elec. Char. Nos. 205 and 206  
For sensors whose offset calibration is to be propor-  
tional to an external DC voltage source the reference  
source can be selected using BIASEX; for all other  
sensors BIASEX should be set to ’00’.  
Table 19: Input Reference Selection  
iC-MSA SIN/COS SIGNAL  
CONDITIONER with AGC and 1Vpp DRIVER  
Rev A1, Page 19/29  
5V  
VDDS= 4.25 V  
VDDS= 4.25 V  
4V  
VCM 3.75 V  
3V  
2.75 V  
+IN  
VCM 2.625 V  
VCM  
+IN  
2V  
-IN  
-IN  
VIN 1 V max.  
VIN 250 mV max.  
VCM 1.125 V  
1V  
VCM 0.75 V  
1 V  
GNDS 0.25 V  
V-Mode 1:1  
V-Mode 4:1  
VREFin 1.5 V  
VREFin 1.5 V or 2.5 V  
NB: VREFin is referenced to GNDS.  
Figure 3: Permissible common mode range and maximum input signal for lowest gain (GR12 = 0x0,  
GF1, GF2 = 0x00); left side: voltage input 1:1, right side: voltage input 4:1.  
5V  
VDDS= 4.25 V  
VDDS= 4.25 V  
4V  
VCM 3.75 V  
VCM 3.75 V  
VCM 3.75 V  
VIN 1 V max.  
3V  
2V  
1V  
2.75 V  
+IN  
VCM  
VCM 2.25 V  
VCM 2.25 V  
-IN  
VCM 1.75 V  
1.75 V  
VCM 0.75 V  
VCM 0.75 V  
1 V  
GNDS 0.25 V  
V-Mode 4:1  
VREFex 0.5 V  
(BIASEX = 11)  
V-Mode 4:1  
VREFex 0.75 V  
(BIASEX = 11)  
V-Mode 4:1  
V-Mode 4:1  
VREFex 1.5 V  
(BIASEX = 11)  
- or -  
VREFex 2.5 V  
(BIASEX = 11)  
- or -  
VREFin 1.5 V  
VREFin 2.5 V  
NB: VREFex and VREFin are referenced to GNDS.  
Figure 4: Permissible common mode range for voltage input 4:1 in dependancy to the reference voltage.  
iC-MSA SIN/COS SIGNAL  
CONDITIONER with AGC and 1Vpp DRIVER  
Rev A1, Page 20/29  
SIGNAL PATH MULTIPLEXING  
Figure 5: Multiplexer Schematics  
The signals for index channel CH0 are connected up to EAZ permits the activation of an analog comparator for  
pins X1 and X2. Pins X3 to X6 are allocated to internal index channel CH0.  
channels CH1 and CH2 via MUXIN. INMODE can be  
EAZ  
Code  
0
Addr 0x43, bit 7  
activated for referenced input signals; this then selects  
X2 as the reference input.  
Function  
Comparator bypass  
Comparator active  
1
MUXIN  
Code  
00  
Addr 0x43, bit 1:0  
PCH1i  
X4  
NCH1i  
PCH2i  
X3  
NCH2i  
X5  
Table 22: Index Output  
X6  
X6  
X5  
X3  
01  
X4  
X5  
X5  
10  
X4  
X3  
X6  
For output purposes INVZ allows the index signal  
phase to be inverted.  
11  
X4  
X5  
X6  
Table 20: Input Multiplexer for INMODE = 0  
INVZ  
Code  
0
Addr 0x43, bit 3  
PZ_out  
NZ_out  
NCH0o  
PCH0o  
PCH0o  
MUXIN  
Addr 0x43, bit 1:0  
1
NCH0o  
Code  
-0  
PCH1i  
X4  
NCH1i  
PCH2i  
X3  
NCH2i  
X2  
X2  
X2  
Table 23: Index Signal Inversion  
-1  
X4  
X5  
X2  
Table 21: Input Multiplexer for INMODE = 1  
iC-MSA SIN/COS SIGNAL  
CONDITIONER with AGC and 1Vpp DRIVER  
Rev A1, Page 21/29  
SIGNAL CONDITIONING CH1, CH2  
GR12  
Addr 0x46, bit 2:0  
AGC on (AGCOFF = 0)  
0.20 .. 2.77  
The voltage signals necessary for the conditioning of  
channels 1 and 2 can be measured in operation mode  
Calibration 2.  
Code  
AGC off (AGCOFF = 1)  
0x0  
0.75  
1.27  
1.89  
2.65  
3.73  
4.77  
6.24  
7.83  
0x1  
0.34 .. 4.69  
0x2  
0.51 .. 7.03  
Gain Settings CH1, CH2  
The gain is set in four stages:  
0x3  
0.71 .. 9.82  
0x4  
1.01 .. 13.8  
0x5  
1.28 .. 17.7  
1. The automatic gain control is shut down (set register  
AGCOFF to a value of 1).  
0x6  
1.68 .. 23.2  
0x7  
2.11 .. 29.1  
2. The gain range is selected so that the differential  
signal amplitude of CH1 is closest to 1 Vpp (signal Px  
vs. Nx, see Figure below).  
Table 24: Gain Range CH1, CH2 with voltage divider  
inputs (RIN12=0x9)  
3. The automatic gain control is turned on (set register  
AGCOFF to a value of 0) and adjust ADJ to obtain a  
signal amplitude of 1 Vpp for CH1.  
GR12  
Code  
0x0  
Addr 0x46, bit 2:0  
AGC on (AGCOFF = 0)  
0.80 .. 11.1  
AGC off (AGCOFF = 1)  
2.98  
5.06  
7.58  
10.6  
14.9  
19.1  
25.0  
31.3  
0x1  
1.36 .. 18.8  
4. The CH2 signal amplitude can then be adjusted rel-  
ative to the CH1 signal amplitude via gain correction  
ratio GC2.  
0x2  
2.04 .. 28.1  
0x3  
2.85 .. 39.3  
0x4  
4.02 .. 55.4  
0x5  
5.14 .. 70.8  
AGC gain range reserve can be checked by the value  
of read-only register AGCGF1 which represents the 8  
most significant bits of the current automatic gain set-  
ting for channel 1.  
0x6  
6.73 .. 92.6  
0x7  
8.44 .. 116  
Table 25: Gain Range CH1, CH2 (RIN12=0x9)  
NB: automatic gain control is halted during AGCGF1  
readout and will continue automatically afterwards.  
GC2  
Addr 0x4F, bit 7:0  
Ratio  
Code  
0x00  
0x01  
0.8292  
0.8304  
20GC2128  
2047  
...  
0x80  
1.00  
20GC2128  
0.25 Vp  
0.25 Vp  
1 Vpp  
2047  
...  
0xFE  
0xFF  
1.2025  
1.2043  
iC-MSA  
Table 26: Gain Correction Ratio CH2/CH1  
Px  
Vpeak-to-peak  
R0  
Vpk(Px)  
Nx  
Vpk(Nx)  
AGCGF1  
Value  
Addr 0x59, bit 7:0  
AGC reserve  
GND  
0xF0  
alarm (±0.0 dB)  
0x80  
0.27 .. 3.7 (±11.4 dB)  
0.33 .. 3.0 (±9.5 dB)  
0.50 .. 2.0 (±6.0 dB)  
0.67 .. 1.5 (±3.5 dB)  
alarm (±0.0 dB)  
0x5E...92  
0x4B...B4  
0x33...CD  
0x10  
Figure 6: Definition of 1 Vpp signal. Termination R0  
must be high-ohmic during all Test and  
Calibration modes.  
Table 27: Minimum AGC Reserve (read only)  
iC-MSA SIN/COS SIGNAL  
CONDITIONER with AGC and 1Vpp DRIVER  
Rev A1, Page 22/29  
OF1  
Addr 0x4A, bit 3:0; Addr 0x49, bit 7:1  
Offset Calibration CH1, CH2  
OF2  
Addr 0x4C, bit 0; Addr 0x4B, bit 7:0; Addr 0x4A, bit  
7:6  
In order to calibrate the offset the reference source  
must first be selected using VOS12. Two fixed volt-  
ages and one dependent source are available for this  
purpose.  
Code  
Factor  
Code  
0x400  
0x401  
...  
Factor  
0
0x000  
0
0x001  
...  
+ 0.00098  
+ Code / 1023  
0.00098  
(Code - 1024)  
VOS12  
Code  
0x0  
Addr 0x4E, bit 5:4  
Type of source  
/ 1023  
0x3FF  
+ 1  
0x7FF  
1  
Feedback of sensor supply voltage: VDDS  
for supply-dependent differential voltage signals  
for Wheatstone sensor bridges  
Table 30: Offset Factors CH1, CH2  
0x1, 0x2  
0x3  
Fixed reference: V05 of 500 mV, V025 of 250 mV  
for single-ended or differential signals  
(regulated sensor or waveform generator)  
Phase Correction CH1 vs. CH2  
The phase shift between CH1 and CH2 can be ad-  
justed using parameter PH12. Following phase cal-  
ibration other calibration parameters may have to be  
adjusted again (those as gain ratio, intermediate po-  
tentials and offset voltages).  
not permitted  
Table 28: Offset Reference Source CH1, CH2  
The calibration range for the CH1/CH2 offset is depen-  
dent on the selected VOS12 source and is set using  
OR1 and OR2. Both sine and cosine signals are then  
calibrated using factors OF1 and OF2. The calibration  
target is reached when the DC fraction of the differen-  
tial signals PCHx versus NCHx is zero.  
PH12  
Code  
0x000  
0x001  
...  
Addr 0x4D, bit 2:0; Addr 0x4C, bit 7:1  
Correction angle  
0 °  
Code  
0x200  
0x201  
...  
Correction angle  
0 °  
+ 0.0204 °  
0.0204 °  
10.42 ° ·  
+ 10.42 ° ·  
PH12 /511  
(PH12 - 512) /511  
OR1  
OR2  
Code  
0x0  
Addr 0x49, bit 0; Addr 0x48, bit 7  
0x1FF  
+ 10.42 °  
0x3FF  
10.42 °  
Addr 0x4A, bit 5:4  
Range  
x1  
Table 31: Phase Correction CH1 vs. CH2  
0x1  
x2  
0x2  
x6  
0x3  
x12  
Table 29: Offset Range CH1, CH2  
iC-MSA SIN/COS SIGNAL  
CONDITIONER with AGC and 1Vpp DRIVER  
Rev A1, Page 23/29  
SIGNAL CONDITIONING CH0  
GC0  
Addr 0x50, bit 7:0  
Ratio  
The voltage signals needed to calibrate channel 0 are  
available in Calibration Mode 1.  
Code  
0x00  
0x01  
0.8292  
0.8304  
20GC0128  
Gain Settings CH0  
2047  
...  
The CH0 gain is set in the following stages:  
0x80  
1.00  
20GC0128  
2047  
...  
0xFE  
1.2025  
1.2043  
1. Adjust CH1 and CH2.  
0xFF  
Table 34: Gain Correction Ratio CH0/CH1  
2. Set gain range GR0 to the same value as GR12.  
Offset Calibration CH0  
3. GC0 then permits fine gain ratio adjustment relative  
to CH1.  
To calibrate the offset the source of supply must first  
be selected using VOS0 (see Offset Calibration CH1  
and CH2 for further information).  
GR0  
Code  
0x0  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
Addr 0x51, bit 2:0  
AGC on (AGCOFF = 0)  
0.20 .. 2.77  
VOS0  
Code  
0x0  
Addr 0x53, bit 5:4  
Source  
AGC off (AGCOFF = 1)  
0.75  
1.27  
1.89  
2.65  
3.73  
4.77  
6.24  
7.83  
0.05 · V(VDDS)  
0.5 V  
0.34 .. 4.69  
0x1  
0.51 .. 7.03  
0x2  
0.25 V  
0.71 .. 9.82  
0x3  
not permitted  
1.01 .. 13.8  
1.28 .. 17.7  
Table 35: Offset Reference Source CH0  
1.68 .. 23.2  
2.11 .. 29.1  
OR0  
Code  
0x0  
Addr 0x52, bit 1:0  
Range  
x1  
Table 32: Gain Range CH0 with voltage divider inputs  
(RIN0=0x9)  
0x1  
x2  
0x2  
x6  
0x3  
x12  
GR0  
Code  
0x0  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
Addr 0x51, bit 2:0  
AGC on (AGCOFF = 0)  
0.80 .. 11.1  
AGC off (AGCOFF = 1)  
Table 36: Offset Range CH0  
2.98  
5.06  
7.58  
10.6  
14.9  
19.1  
25.0  
31.3  
1.36 .. 18.8  
OF0  
Code  
0x00  
0x01  
...  
Addr 0x52, bit 7:2  
2.04 .. 28.1  
Factor  
0
Code  
0x20  
0x21  
...  
Factor  
2.85 .. 39.3  
4.02 .. 55.4  
0
5.14 .. 70.8  
+ 0.0322  
+ OF0 /31  
+ 1  
0.0322  
(OF0 - 32 ) /31  
1  
6.73 .. 92.6  
8.44 .. 116  
0x1F  
0x3F  
Table 33: Gain Range CH0 (RIN0=0x9)  
Table 37: Offset Factor CH0  
iC-MSA SIN/COS SIGNAL  
CONDITIONER with AGC and 1Vpp DRIVER  
Rev A1, Page 24/29  
AUTOMATIC SIGNAL GAIN CONTROL and SIGNAL MONITORING  
AGCOFF  
Addr 0x45, bit 7  
Via its automatic gain control iC-MSA can keep the out-  
put signals for the ensuing sine-to-digital conversion  
constant regardless of changes in input signal level.  
Code  
Function  
0
1
Sine/cosine square control  
AGC turned off  
Both the controller operating range and input signal  
amplitude for the controller are monitored and can be  
enabled for error messaging.  
Table 38: Controller Operating Mode  
ADJ  
Code  
0x00  
0x01  
Addr 0x45, bit 5:0  
Square control AGCOFF = 0  
Vpp() ca. 300 mV (60 %)  
Vpp() ca. 305 mV (61 %)  
77  
...  
Vpp() 300 mV 77(0.625Code)  
0x32  
...  
Vpp() ca. 500 mV (98 %)  
...  
0x3F  
Vpp() ca. 600 mV (120 %)  
Table 39: Vpp Setpoint For Square Control  
Figure 7: Signal level monitoring with square control  
(example for AGCOFF = 0, ADJ = 0x32;  
see Elec. Char. Nos.604 and 605 regard-  
ing Vt()min resp. Vt()max).  
iC-MSA SIN/COS SIGNAL  
CONDITIONER with AGC and 1Vpp DRIVER  
Rev A1, Page 25/29  
ERROR MONITORING AND ALARM OUTPUT  
EPH  
Addr 0x55, bit 2  
State on error  
active low  
The following table gives the errors which can both be  
recognized by iC-MSA and enabled either for messag-  
ing, output shutdown or protocol in the EEPROM.  
Code  
State w/o error  
0
high impedance,  
with input function for a  
low-active system error;  
Mask EMASKA stipulates that errors should be sig-  
1
high impedance  
active low  
naled at pin ERR, mask EMASKO determines whether  
the line drivers are to be shutdown or not (with  
PDMODE defining reactivation) and mask EMASKE  
Table 41: I/O Logic, Alarm Output ERR  
governs the storage of error events in the EEPROM.  
EMTD  
Addr 0x55, bit 5:3  
Code  
Indication Time  
0 ms  
Code  
0x4  
0x5  
0x6  
0x7  
Indication Time  
50 ms  
EMASKA  
EMASKO  
EMASKE  
Bit  
Addr 0x54, bit 6:0  
0x0  
0x1  
0x2  
0x3  
Addr 0x56, bit 6:0  
12.5 ms  
25 ms  
62.5 ms  
75 ms  
Addr 0x58, bit 2:0; Addr 0x57, bit 7:4  
Error Event  
37.5 ms  
87.5 ms  
6*  
Configuration error (SDA or SCL pin error, no Ack  
signal from EEPROM or invalid check sum);  
EMASKO(6) = 1 (ROM bit): The line drivers remain  
high impedance (tristate) when cycling power.  
Table 42: Min. Indication Time, Alarm Output ERR  
5
4
3
2
1
0
Excessive temperature warning  
External system error  
EPU  
Code  
0
Addr 0x57, bit 2  
Function  
Control error 2: range at max. limit  
Control error 1: range at min. limit  
Signal error 2: clipping  
No internal pull-up  
1
Internal 300 µA pull-up current source active  
Signal error 1: loss of signal (poor differential  
amplitude**, wrong s/c phase)  
Table 43: Pull-Up Enable, Alarm Output ERR  
Excessive Temperature Warning  
EMASKA  
Error Mask Alarm Output ERR  
Exceeding the temperature warning threshold Tw (cor-  
responds to T2, refer to Tempeprature Sensor, page  
15) can be signaled at pin ERR or used to shut down  
the line drivers (via mask EMASKO). The temperature  
warning is cleared when the temperature falls below  
1
Enable: event changes state of pin ERR  
(if EMASKO does not disable the output function).  
0
Disable: event does not affect pin ERR.  
Error Mask Driver Shutdown  
EMASKO  
1
Enable: event resets pin ACO to the 5 mA range,  
tristates the line driver outputs and pin ERR (i.e.  
low-active error messages can not be displayed)  
Tw -Thys  
.
0
Disable: output functions remain active  
Error Mask EEPROM Savings  
Enable: event will be latched  
Notice: If the temperature shutdown threshold Toff  
=
EMASKE  
Tw + T is exceeded, the line drivers are shut down  
independently of EMASKO. For T refer to Elec.  
Char. E06.  
1
0
Disable: event will not be latched  
Notes  
*) Pin ERR can not pull low on configuration error,  
use high-active error logic instead (EPH = 1);  
**) Also due to excessive input signals or internal  
signal clipping.  
Driver Shutdown  
Table 40: Error Masking  
PDMODE  
Addr 0x58, bit 6  
Code  
Function  
0
1
Line driver active when no error persists  
Line driver active after power-on  
Alarm Output: I/O pin ERR  
Pin ERR is operated by a current-limited open drain  
output driver and has an internal pull-up which can be  
shutdown. The ERR pin also acts as an input for exter-  
nal system error messaging and for switching iC-MSA  
Table 44: Driver Activation  
to test mode for which a voltage of greater than VTMon Error Protocol  
must be applied. Interpretation of external system er- Out of the errors pinpointed by EMASKE both the first  
ror messaging and the phase length of the message (under ERR1) and last error (under ERR2) which occur  
output can be set using EPH; the minimum signaling after the iC-MSA is turned on are stored in the EEP-  
duration for internal errors is adjusted using EMTD.  
ROM.  
iC-MSA SIN/COS SIGNAL  
CONDITIONER with AGC and 1Vpp DRIVER  
Rev A1, Page 26/29  
ERR1  
Addr 0x60, bit 6:0  
The EEPROM also has a memory area in which all  
ERR2  
Addr 0x62, bit 0; Addr 0x61, bit 7:2  
Addr 0x63, bit 2:0; Addr 0x62, bit 7:4  
Error Event  
occurring errors can be stored (ERR3). Only the fact  
that an error has occurred can be recorded, with no  
information as to the time and frequency of that error  
ERR3  
Bit  
6:0  
Assignation according to EMASKE  
given. The EEPROM memory can be used to statisti-  
cally evaluate the causes of system failure, for exam-  
Code  
Function  
ple.  
0
1
No event  
Registered error event  
Table 45: Error Protocol  
REVERSE POLARITY PROTECTION  
The line drivers in iC-MSA are protected against re- are also reverse polarity protected: PC, NC, PS, NS,  
verse polarity and short-circuiting. A defective device PZ, NZ, ERR, VDD, and GND (as long as GNDS is  
cable or one wrongly connected cause damage neither only loaded versus VDDS). The maximum voltage dif-  
to iC-MSA nor to the components protected against re- ference between the pins should not be greater than  
verse polarity by VDDS and GNDS. The following pins 6 V, the exception here being pin ERR.  
iC-MSA SIN/COS SIGNAL  
CONDITIONER with AGC and 1Vpp DRIVER  
Rev A1, Page 27/29  
APPLICATION HINTS  
PLC Operation  
There are PLCs with a remote sense supply which require longer for the voltage regulation to settle. At the same  
time the PLC inputs can have high-impedance resistances versus an internal, negative supply voltage which  
define the input potential for open inputs.  
In this instance iC-MSA’s reverse polarity protection feature can be activated as the outputs are tristate during the  
start phase and the resistances in the PLC determine the pin potential. During the start phase neither the supply  
VDD nor the output pins, which are also monitored, must fall to below ground potential (pin GND); otherwise the  
device is not configured and the outputs remain permanently set to tristate.  
In order to ensure that iC-MSA starts with the PLCs mentioned above pull-up resistors can be used in the en-  
coder. Values of 100 kare usually sufficient; it is, however, recommended that PLC specifications be specifically  
referred to here.  
Connecting MR sensor bridges for safety-related applications  
For safety-related applications iC-MSA requires an external overvoltage protection of supply VDD (Zener diode  
with fuse, for instance) and external pull-down resistors at the inputs X3 to X6 towards GNDS (of up to 100 k).  
F1  
+5V  
C1  
100nF  
C2  
100nF  
R6  
R5  
4.7kS 4.7kS  
D1  
5.6V  
VP  
SCL  
VDDS  
VDD  
SCL  
ERR  
I2C  
24xx  
ERR  
SDA  
SDA  
VN  
iC-MSA  
AUTOMATIC  
GAIN  
CONTROL  
PZ  
NZ  
PC  
NC  
PS  
NS  
RL  
100S  
MR0  
X1  
X2  
+
-
INPUT ZERO  
MR1  
RL  
100S  
X3  
X5  
+
-
R1  
R2  
INPUT COS  
100kS 100kS  
MR2  
X4  
X6  
+
RL  
100S  
-
R3  
R4  
100kS 100kS  
INPUT SIN  
GNDS  
GND  
0V  
TVS diode array  
Figure 8: Example circuit for safety-related applications with iC-MSA.  
iC-MSA SIN/COS SIGNAL  
CONDITIONER with AGC and 1Vpp DRIVER  
Rev A1, Page 28/29  
Motor feedback encoder with iC-MSA, iC-MSB and single EEPROM  
In this application iC-MSB is fed with typically 2048 CPR sine and cosine signals, and an index signal. A constant  
signal level is achieved by controlling the sensor’s LED current. iC-MSA is utilized to provide C/D commutation  
signals, typically with 1 CPR, at a constant amplitude. At higher rotation speed the sine/cosine amplifier cut-off-  
frequency is exceeded and iC-MSB increases the LED current. In order to keep the low frequency signals of C/D  
constant, iC-MSA automatically reduces the gain.  
iC-MSA and iC-MSB are multi-master I2C capable and feature non-overlapping configuration register addresses.  
Thus, both devices can share a single EEPROM providing individual configuration data.  
+5V  
C2  
100nF  
C1  
1μF  
C3  
100nF  
R6  
2.2k  
R5  
2.2k  
R1  
1k  
VP  
D2  
VDDS  
VDD  
SCL  
SDA  
SCL  
24xx  
I2C  
Reverse  
Polarity  
Protection  
ERR  
PS  
SDA  
ERR  
VN  
iC-MSB  
PSIN  
X4  
X6  
+
-
NS  
PC  
NSIN  
X3  
X5  
+
-
PCOS  
iC-TL85  
D3  
R9  
47  
NC  
PZ  
NCOS  
PZ  
X1  
X2  
+
-
Disc  
SIGNAL  
LEVEL  
ACO  
NZ  
NZ  
VN  
C7  
100nF  
VCC  
CONTROL  
iC-PD3948  
GNDS  
GND  
VREF  
DPZ  
PZ  
NZ  
VRSC  
VRDC  
DPC  
C6  
C5  
C4  
100nF  
100nF  
1μF  
TVS-Diode-Array  
DNC  
PSIN  
NSIN  
VDDS  
VDD  
SCL  
SDA  
I2C  
Reverse  
ERR  
PS  
PCOS  
NCOS  
Polarity  
Protection  
DNCOS  
DPSIN  
DPCOS  
DNSIN  
iC-MSA  
PC  
X4  
X6  
PC  
NC  
+
DPD  
-
NS  
PC  
NC  
PD  
X3  
X5  
PD  
ND  
+
-
DND  
NC  
PZ  
ND  
X1  
X2  
+
-
DNZ  
GND  
AUTOMATIC  
GAIN  
NZ  
CONTROL  
GNDS  
GND  
Figure 9: Example circuit with iC-MSA, iC-MSB and single EEPROM.  
iC-Haus expressly reserves the right to change its products and/or specifications. An info letter gives details as to any amendments and additions made to the  
relevant current specifications on our internet website www.ichaus.de/infoletter; this letter is generated automatically and shall be sent to registered users by  
email.  
Copying – even as an excerpt – is only permitted with iC-Haus’ approval in writing and precise reference to source.  
iC-Haus does not warrant the accuracy, completeness or timeliness of the specification and does not assume liability for any errors or omissions in these  
materials.  
The data specified is intended solely for the purpose of product description. No representations or warranties, either express or implied, of merchantability, tness  
for a particular purpose or of any other nature are made hereunder with respect to information/specification or the products to which information refers and no  
guarantee with respect to compliance to the intended use is given. In particular, this also applies to the stated possible applications or areas of applications of  
the product.  
iC-Haus conveys no patent, copyright, mask work right or other trade mark right to this product. iC-Haus assumes no liability for any patent and/or other trade  
mark rights of a third party resulting from processing or handling of the product and/or any other use of the product.  
iC-MSA SIN/COS SIGNAL  
CONDITIONER with AGC and 1Vpp DRIVER  
Rev A1, Page 29/29  
ORDERING INFORMATION  
Type  
Package  
Order Designation  
iC-MSA TSSOP20 with thermal pad iC-MSA TSSOP20-TP  
For technical support, information about prices and terms of delivery please contact:  
iC-Haus GmbH  
Tel.: +49 (61 35) 92 92-0  
Am Kuemmerling 18  
D-55294 Bodenheim  
GERMANY  
Fax: +49 (61 35) 92 92-192  
Web: http://www.ichaus.com  
E-Mail: sales@ichaus.com  
Appointed local distributors: http://www.ichaus.com/sales_partners  

相关型号:

IC-MSB

SIN/COS SIGNAL CONDITIONER WITH 1Vpp DRIVER
ICHAUS

IC-MSB2

SIN/COS SIGNAL CONDITIONER WITH 1Vpp DRIVER
ICHAUS

IC-MSB2EVALMSB1D

SIN/COS SIGNAL CONDITIONER WITH 1Vpp DRIVER
ICHAUS

IC-MSB2TSSOP20

SIN/COS SIGNAL CONDITIONER WITH 1Vpp DRIVER
ICHAUS

IC-MSBEVALMSB1D

SIN/COS SIGNAL CONDITIONER WITH 1Vpp DRIVER
ICHAUS

IC-MSBTSSOP20

SIN/COS SIGNAL CONDITIONER WITH 1Vpp DRIVER
ICHAUS

IC-MSBTSSOP20-TP

SIN/COS SIGNAL CONDITIONER WITH 1Vpp DRIVER
ICHAUS

IC-MU

Magnetic off-axis absolute position encoder
ICHAUS

IC-MU_13

OFF-AXIS NONIUS ENCODER WITH INTEGRATED HALL SENSORS
ICHAUS

IC-MZ

DIFFERENTIAL HALL SWITCH
ICHAUS

IC-MZDFN10

DIFFERENTIAL HALL SWITCH
ICHAUS

IC-MZ_11

DIFFERENTIAL HALL SWITCH
ICHAUS