ICS8430-111 [ICSI]

700MHZ, LOW JITTER DIFFERENTIAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER; 700MHZ ,低抖动差分至3.3V的LVPECL频率合成器
ICS8430-111
型号: ICS8430-111
厂家: INTEGRATED CIRCUIT SOLUTION INC    INTEGRATED CIRCUIT SOLUTION INC
描述:

700MHZ, LOW JITTER DIFFERENTIAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER
700MHZ ,低抖动差分至3.3V的LVPECL频率合成器

文件: 总16页 (文件大小:181K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PRELIMINARY  
ICS8430-111  
Integrated  
Circuit  
Systems, Inc.  
700MHZ, LOW JITTER  
DIFFERENTIAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER  
GENERAL DESCRIPTION  
FEATURES  
The ICS8430-111 is a general purpose, dual out- Dual differential 3.3V LVPECL output  
ICS  
put high frequency synthesizer and a member of  
Selectable 14MHz to 27MHz differential CLK, nCLK  
orTEST_CLK input  
HiPerClockS™  
the HiPerClockS™ family of High Performance  
Clock Solutions from ICS. The CLK, nCLK pair  
can accept most standard differential input lev-  
CLK, nCLK accepts any differential input signal:  
LVPECL, LVHSTL, LVDS, SSTL, HCSL  
els. The single ended TEST_CLK input accepts LVCMOS or  
LVTTL input levels and translates them to 3.3V LVPECL levels.  
TheVCO operates at a frequency range of 200MHz to 700MHz.  
With the output configured to divide the VCO frequency by 2,  
output frequency steps as small as 2MHz can be achieved  
using a 16MHz differential or single ended reference clock. Out-  
put frequencies up to 700MHz can be programmed using the  
serial or parallel interfaces to the configuration logic. The low  
jitter and frequency range of the ICS8430-111 makes it an ideal  
clock generator for most clock tree applications.  
TEST_CLK accepts the following input types:  
LVCMOS, LVTTL  
Output frequency range up to 700MHz  
VCO range: 200MHz to 700MHz  
Parallel or serial interface for programming counter  
and output dividers  
Cycle-to-cycle jitter: 25ps (maximum)  
3.3V supply voltage  
0°C to 70°C ambient operating temperature  
Industrial termperature information available upon request  
BLOCK DIAGRAM  
PIN ASSIGNMENT  
VCO_SEL  
CLK_SEL  
TEST_CLK  
0
32 31 30 29 28 27 26 25  
CLK  
1
M5  
M6  
M7  
M8  
N0  
N1  
N2  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
CLK  
nCLK  
TEST_CLK  
CLK_SEL  
VCCA  
÷ 16  
ICS8430-111  
S_LOAD  
S_DATA  
S_CLOCK  
MR  
PLL  
PHASE DETECTOR  
MR  
VEE  
0
VCO  
FOUT0  
nFOUT0  
FOUT1  
nFOUT1  
÷ N  
9
10 11 12 13 14 15 16  
÷ M  
1
÷ 2  
S_LOAD  
S_DATA  
S_CLOCK  
nP_LOAD  
CONFIGURATION  
INTERFACE  
LOGIC  
TEST  
32-Lead LQFP  
7mm x 7mm x 1.4mm package body  
M0:M8  
N0:N2  
Y Package  
TopView  
The Preliminary Information presented herein represents a product in prototyping or pre-production.The noted characteristics are based on initial  
product characterization. Integrated Circuit Systems, Incorporated (ICS) reserves the right to change any circuitry or specifications without notice.  
8430DY-111  
www.icst.com/products/hiperclocks.html  
REV. F JUNE 1, 2005  
1
PRELIMINARY  
ICS8430-111  
Integrated  
Circuit  
Systems, Inc.  
700MHZ, LOW JITTER  
DIFFERENTIAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER  
FUNCTIONAL DESCRIPTION  
the parallel input mode.The relationship between theVCO fre-  
quency, the input frequency and the M divider is defined as  
The ICS8430-111 features a fully integrated PLL and there-  
fore requires no external components for setting the loop  
bandwidth. A differential clock input is used as the input to the  
on-chip oscillator.The output of the oscillator is divided by 16  
prior to the phase detector. A16MHz clock input provides a  
1MHz reference frequency.TheVCO of the PLL operates over  
a range of 200 to 700MHz.The output of the M divider is also  
applied to the phase detector.  
follows:  
fVCO = fIN x M  
The M value and the required values of M0 through M8 are  
shown in Table 3B, Programmable VCO Frequency Function  
Table.Valid M values for which the PLL will achieve lock for a  
16MHz reference are defined as 100 M 350.The frequency  
out is defined as follows:  
fOUT = fVCO = fIN x M  
N
N
The phase detector and the M divider force the VCO output  
frequency to be 2M times the reference frequency by adjust-  
ing the VCO control voltage. Note that for some values of M  
(either too high or too low), the PLL will not achieve lock. The  
output of the VCO is scaled by a divider prior to being sent to  
each of the LVPECL output buffers. The divider provides a  
50% output duty cycle.  
Serial operation occurs when nP_LOAD is HIGH and S_LOAD  
is LOW. The shift register is loaded by sampling the S_DATA  
bits with the rising edge of S_CLOCK. The contents of the  
shift register are loaded into the M divider and N output divider  
when S_LOAD transitions from LOW-to-HIGH. The M divide  
and N output divide values are latched on the HIGH-to-LOW  
transition of S_LOAD. If S_LOAD is held HIGH, data at the  
S_DATA input is passed directly to the M divider and N output  
divider on each rising edge of S_CLOCK.The serial mode can  
be used to program the M and N bits and test bits T1 and T0.  
The internal registers T0 and T1 determine the state of the  
The programmable features of the ICS8430-111 support two  
input modes to program the M divider and N output divider.  
The two input operational modes are parallel and serial. Fig-  
ure 1 shows the timing diagram for each mode. In  
parallel mode the nP_LOAD input is initially LOW.The data on  
inputs M0 through M8 and N0 through N2 is passed directly  
to the M divider and N output divider. On the LOW-to-HIGH  
transition of the nP_LOAD input, the data is latched and the M  
divider remains loaded until the next LOW transition on  
nP_LOAD or until a serial event occurs. As a result, the M  
and N bits can be hardwired to set the M divider and N output  
divider to a specific default state that will automatically occur  
during power-up.The TEST output is LOW when operating in  
T1 T0  
TEST Output  
LOW  
0
0
1
1
0
1
0
1
S_Data, Shift Register Input  
Output of M divider  
CMOS Fout  
SERIAL  
L
OADING  
S_CLOCK  
S_DATA  
S_LOAD  
nP_LOAD  
t
t
H
S
t
S
PARALLEL LOADING  
M, N  
M0:M8, N0:N1  
nP_LOAD  
t
t
H
S
S_LOAD  
Time  
FIGURE 1. PARALLEL & SERIAL LOAD OPERATIONS  
*NOTE: The NULL timing slot must be observed.  
8430DY-111  
www.icst.com/products/hiperclocks.html  
REV. F JUNE 1, 2005  
2
PRELIMINARY  
ICS8430-111  
Integrated  
Circuit  
Systems, Inc.  
700MHZ, LOW JITTER  
DIFFERENTIAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER  
TABLE 1. PIN DESCRIPTIONS  
Number  
Name  
Type  
Description  
1, 2, 3,  
28, 29, 30  
31, 32  
M5, M6, M7,  
M0, M1, M2,  
M3, M4  
Input  
Pulldown  
M divider inputs. Data latched on LOW-to-HIGH transition  
of nP_LOAD input. LVCMOS/LVTTL interface levels.  
4
M8  
Input  
Input  
Pullup  
Pulldown  
Pullup  
5, 6  
N0, N1  
Determines output divider value as defined in Table 3C  
Function Table. LVCMOS/LVTTL interface levels.  
7
N2  
Input  
8, 16  
VEE  
Power  
Negative supply pins.  
Test output which is ACTIVE in the serial mode of operation.  
Output driven LOW in parallel mode. LVCMOS/LVTTL interface levels.  
Core supply pin.  
9
TEST  
VCC  
FOUT1,  
nFOUT1  
VCCO  
FOUT0,  
nFOUT0  
Output  
Power  
Output  
Power  
Output  
10  
11, 12  
13  
Differential output for the synthesizer. 3.3V LVPECL interface levels.  
Output supply pin.  
14, 15  
Differential output for the synthesizer. 3.3V LVPECL interface levels.  
Active High Master Reset. When logic HIGH, the internal dividers  
are reset causing the true outputs FOUTx to go low and the inverted  
17  
MR  
Input  
Pulldown outputs nFOUTx to go high. When logic LOW, the internal dividers  
and the outputs are enabled. Assertion of MR does not affect loaded  
M, N, and T values. LVCMOS / LVTTL interface levels.  
Clocks in serial data present at S_DATA input into the shift register  
on the rising edge of S_CLOCK. LVCMOS/LVTTL interface levels.  
Shift register serial input. Data sampled on the rising edge of  
S_CLOCK. LVCMOS/LVTTL interface levels.  
18  
19  
S_CLOCK  
S_DATA  
Input  
Input  
Pulldown  
Pulldown  
Controls transition of data from shift register into the dividers.  
LVCMOS/LVTTL interface levels.  
Analog supply pin.  
20  
21  
S_LOAD  
VCCA  
Input  
Pulldown  
Power  
Selects between differential clock or test inputs as the PLL reference  
22  
Input  
Pullup  
source. Selects CLK, nCLK inputs when HIGH. Selects TEST_CLK  
when LOW. LVCMOS/LVTTL interface levels.  
CLK_SEL  
23  
24  
25  
TEST_CLK  
CLK  
Input  
Input  
Input  
Pulldown Test clock input. LVCMOS/LVTTL interface levels.  
Pulldown Non-inverting differential clock input.  
nCLK  
Pullup  
Inverting differential clock input.  
Parallel load input. Determines when data present at M8:M0 is  
26  
nP_LOAD  
Input  
Pulldown loaded into the M divider, and when data present at N2:N0 sets  
the N output divider value. LVCMOS/LVTTL interface levels.  
Determines whether synthesizer is in PLL or bypass mode.  
LVCMOS/LVTTL interface levels.  
27  
VCO_SEL  
Input  
Pullup  
NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.  
TABLE 2. PIN CHARACTERISTICS  
Symbol  
CIN  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum Units  
Input Capacitance  
Input Pullup Resistor  
Input Pulldown Resistor  
4
pF  
kΩ  
kΩ  
RPULLUP  
RPULLDOWN  
51  
51  
8430DY-111  
www.icst.com/products/hiperclocks.html  
REV. F JUNE 1, 2005  
3
PRELIMINARY  
ICS8430-111  
Integrated  
Circuit  
Systems, Inc.  
700MHZ, LOW JITTER  
DIFFERENTIAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER  
TABLE 3A. PARALLEL AND SERIAL MODE FUNCTION TABLE  
Inputs  
Conditions  
MR nP_LOAD  
M
N
S_LOAD S_CLOCK S_DATA  
H
X
X
X
X
X
X
Reset. Forces outputs LOW.  
Data on M and N inputs passed directly to the M  
divider and N output divider. TEST output forced LOW.  
L
L
Data Data  
Data Data  
X
X
X
Data is latched into input registers and remains loaded  
until next LOW transition or until a serial event occurs.  
Serial input mode. Shift register is loaded with data on  
S_DATA on each rising edge of S_CLOCK.  
Contents of the shift register are passed to the  
M divider and N output divider.  
L
L
L
L
L
X
L
X
H
H
X
X
X
X
Data  
Data  
L
L
L
H
H
H
X
X
X
X
X
X
L
L
X
Data  
X
M divider and N output divider values are latched.  
Parallel or serial input do not affect shift registers.  
S_DATA passed directly to M divider as it is clocked.  
H
Data  
NOTE: L = LOW  
H = HIGH  
X = Don't care  
= Rising edge transition  
= Falling edge transition  
TABLE 3B. PROGRAMMABLE VCO FREQUENCY FUNCTION TABLE (NOTE 1)  
256  
M8  
0
128  
M7  
0
64  
M6  
1
32  
M5  
1
16  
M4  
0
8
M3  
0
4
M2  
1
2
M1  
0
1
M0  
0
VCO Frequency  
(MHz)  
M Divide  
200  
202  
204  
206  
100  
101  
102  
103  
0
0
1
1
0
0
1
0
1
0
0
1
1
0
0
1
1
0
0
0
1
1
0
0
1
1
1
696  
698  
700  
348  
349  
350  
1
0
1
0
1
1
1
0
0
1
0
1
0
1
1
1
0
1
1
0
1
0
1
1
1
1
0
NOTE 1: These M divide values and the resulting frequencies correspond to an input frequency of 16MHz.  
TABLE 3C. PROGRAMMABLE OUTPUT DIVIDER FUNCTION TABLE  
Input  
N1  
0
Output Frequency (MHz)  
N Divider Value  
N2  
0
N0  
0
Minimum  
100  
50  
Maximum  
2
4
350  
175  
0
0
1
0
1
0
8
25  
87.5  
43.75  
700  
0
1
1
16  
1
12.5  
200  
100  
50  
1
0
0
1
0
1
2
350  
1
1
0
4
175  
1
1
1
8
25  
87.5  
8430DY-111  
www.icst.com/products/hiperclocks.html  
REV. F JUNE 1, 2005  
4
PRELIMINARY  
ICS8430-111  
Integrated  
Circuit  
Systems, Inc.  
700MHZ, LOW JITTER  
DIFFERENTIAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER  
ABSOLUTE MAXIMUM RATINGS  
SupplyVoltage, V  
4.6V  
NOTE: Stresses beyond those listed under Absolute  
Maximum Ratings may cause permanent damage to the  
CC  
Inputs, V  
-0.5V to VCC + 0.5 V  
-0.5V to VCCO + 0.5V  
47.9°C/W (0 lfpm)  
-65°C to 150°C  
I
device.These ratings are stress specifications only.Functional  
operation of product at these conditions or any conditions be-  
yond those listed in the DC Characteristics or AC Character-  
istics is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect product reliability.  
Outputs, VO  
PackageThermal Impedance, θ  
JA  
StorageTemperature, T  
STG  
TABLE 4A. POWER SUPPLY DC CHARACTERISTICS, VCC = VCCA = VCCO = 3.3V 5%, TA = 0°C TO 70°C  
Symbol  
VCC  
Parameter  
Core Supply  
Test Conditions  
Minimum  
3.135  
Typical  
3.3  
Maximum  
3.465  
Units  
V
VCCA  
VCCO  
IEE  
Analog Voltage  
3.135  
3.3  
3.465  
V
Ouput Voltage  
3.135  
3.3  
3.465  
V
Power Supply Current  
Analog Supply Current  
120  
10  
mA  
mA  
ICCA  
TABLE 4B. LVCMOS/LVTTL DC CHARACTERISTICS, VCC = VCCA = VCCO = 3.3V 5%, TA = 0°C TO 70°C  
Symbol  
VIH  
Parameter  
Test Conditions  
Minimum Typical Maximum Units  
Input High Voltage  
Input Low Voltage  
2
VCC + 0.3  
0.8  
V
V
VIL  
-0.3  
M0-M7, N0, N1, MR,  
S_CLOCK, S_DATA, S_LOAD,  
TEST_CLK, nP_LOAD  
M8, N2, CLK_SEL, VCO_SEL  
M0-M7, N0, N1, MR,  
S_CLOCK, S_DATA, S_LOAD,  
TEST_CLK, nP_LOAD  
VCC = VIN = 3.465V  
150  
5
µA  
µA  
µA  
Input  
High Current  
IIH  
V
CC = VIN = 3.465V  
CC = 3.465V,  
IN = 0V  
VCC = 3.465V,  
V
-5  
Input  
Low Current  
V
IIL  
M8, N2, CLK_SEL, VCO_SEL  
TEST; NOTE 1  
-150  
2.6  
µA  
V
VIN = 0V  
Output  
High Voltage  
Output  
Low Voltage  
VOH  
VOL  
TEST; NOTE 1  
0.5  
V
NOTE 1: Outputs terminated with 50Ω to VCCO/2.  
8430DY-111  
www.icst.com/products/hiperclocks.html  
REV. F JUNE 1, 2005  
5
PRELIMINARY  
ICS8430-111  
Integrated  
Circuit  
Systems, Inc.  
700MHZ, LOW JITTER  
DIFFERENTIAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER  
TABLE 4C. DIFFERENTIAL DC CHARACTERISTICS, VCC = VCCA = VCCO = 3.3V 5%, TA = 0°C TO 70°C  
Symbol Parameter  
IIH Input High Current  
Test Conditions  
VIN = VCC = 3.465V  
VIN = VCC = 3.465V  
IN = 0V, VCC = 3.465V  
IN = 0V, VCC = 3.465V  
Minimum Typical Maximum Units  
nCLK  
CLK  
5
µA  
µA  
µA  
µA  
V
150  
nCLK  
CLK  
V
V
-150  
-5  
IIL  
Input Low Current  
VPP  
Peak-to-Peak Input Voltage  
0.15  
1.3  
Common Mode Input Voltage;  
NOTE 1, 2  
VCMR  
VEE + 0.5  
VCC - 0.85  
V
NOTE 1: For single ended applications, the maximum input voltage for CLK, nCLK is VCC + 0.3V.  
NOTE 2: Common mode voltage is defined as VIH.  
TABLE 4D. LVPECL DC CHARACTERISTICS, VCC = VCCA = VCCO = 3.3V 5%, TA = 0°C TO 70°C  
Symbol  
VOH  
Parameter  
Test Conditions  
Minimum  
VCCO - 1.4  
VCCO - 2.0  
0.6  
Typical  
Maximum Units  
Output High Voltage; NOTE 1  
Output Low Voltage; NOTE 1  
Peak-to-Peak Output Voltage Swing  
VCCO - 0.9  
VCCO - 1.7  
1.0  
V
V
V
VOL  
VSWING  
NOTE 1: Outputs terminated with 50Ω to VCCO - 2V. See 3.3V Output Load Test Circuit figure in the  
Parameter Measurement Information section.  
TABLE 5. INPUT FREQUENCY CHARACTERISTICS, VCC = VCCA = VCCO = 3.3V 5%, TA = 0°C TO 70°C  
Symbol Parameter  
Test Conditions  
Minimum Typical Maximum Units  
TEST_CLK; NOTE 1  
14  
14  
27  
27  
50  
MHz  
MHz  
MHz  
fIN  
Input Frequency CLK, nCLK; NOTE 1  
S_CLOCK  
NOTE1: For the differential input and reference frequency range, the M value must be set for the VCO to operate within  
the 200MHz to 700MHz range. Using the minimum input frequency of 14MHz, valid values of M are 115 M 400.  
Using the maximum frequency of 27MHz, valid values of M are 60 M 208.  
8430DY-111  
www.icst.com/products/hiperclocks.html  
REV. F JUNE 1, 2005  
6
PRELIMINARY  
ICS8430-111  
Integrated  
Circuit  
Systems, Inc.  
700MHZ, LOW JITTER  
DIFFERENTIAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER  
TABLE 6. AC CHARACTERISTICS, VCC = VCCA = VCCO = 3.3V 5%, TA = 0°C TO 70°C  
Symbol Parameter  
Test Conditions  
Minimum Typical Maximum Units  
FMAX  
Output Frequency  
700  
25  
MHz  
ps  
ps  
ps  
ps  
ps  
ns  
ns  
ns  
ns  
ns  
ns  
%
fOUT > 87.5MHz  
fOUT < 87.5MHz  
tjit(cc)  
Cycle-to-Cycle Jitter; NOTE 1  
40  
tjit(per)  
tsk(o)  
tR / tF  
Period Jitter, RMS  
9.5  
15  
Output Skew; NOTE 1, 2  
Output Rise/Fall Time  
20% to 80%  
200  
5
700  
M, N to nP_LOAD  
tS  
Setup Time  
Hold Time  
S_DATA to S_CLOCK  
S_CLOCK to S_LOAD  
M, N to nP_LOAD  
5
5
5
tH  
S_DATA to S_CLOCK  
S_CLOCK to S_LOAD  
5
5
N 1  
48  
45  
52  
55  
1
odc  
Output Duty Cycle  
PLL Lock Time  
N = 1  
%
tLOCK  
ms  
See Parameter Measurement Information section.  
NOTE 1:This parameter is defined in accordance with JEDEC Standard 65.  
NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions.  
Measured at the output differential cross points.  
8430DY-111  
www.icst.com/products/hiperclocks.html  
REV. F JUNE 1, 2005  
7
PRELIMINARY  
ICS8430-111  
Integrated  
Circuit  
Systems, Inc.  
700MHZ, LOW JITTER  
DIFFERENTIAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER  
PARAMETER MEASUREMENT INFORMATION  
VCC, VCCA, VCCO = 2V  
VCC  
SCOPE  
Qx  
nCLK  
VPP  
VCMR  
Cross Points  
LVPECL  
CLK  
VEE  
nQx  
VEE = -1.3V 0.165V  
3.3V OUTPUT LOAD AC TEST CIRCUIT  
DIFFERENTIAL INPUT LEVEL  
nFOUTx  
FOUTx  
80%  
tF  
80%  
VSWING  
Clock  
20%  
20%  
nFOUTy  
Outputs  
tR  
FOUTy  
tsk(o)  
OUTPUT RISE/FALL TIME  
OUTPUT SKEW  
VOH  
nFOUTx  
FOUTx  
VREF  
VOL  
1σ contains 68.26% of all measurements  
2σ contains 95.4% of all measurements  
3σ contains 99.73% of all measurements  
4σ contains 99.99366% of all measurements  
6σ contains (100-1.973x10-7)% of all measurements  
tcycle n  
tcycle n+1  
tjit(cc) = tcycle n –tcycle n+1  
1000 Cycles  
Histogram  
Reference Point  
(Trigger Edge)  
Mean Period  
(First edge after trigger)  
PERIOD JITTER  
CYCLE-TO-CYCLE JITTER  
nFOUTx  
FOUTx  
tPW  
tPERIOD  
tPW  
odc =  
x 100%  
tPERIOD  
OUTPUT DUTY CYCLE/PULSE WIDTH/PERIOD  
8430DY-111  
www.icst.com/products/hiperclocks.html  
REV. F JUNE 1, 2005  
8
PRELIMINARY  
ICS8430-111  
Integrated  
Circuit  
Systems, Inc.  
700MHZ, LOW JITTER  
DIFFERENTIAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER  
APPLICATION INFORMATION  
POWER SUPPLY FILTERING TECHNIQUES  
As in any high speed analog circuitry, the power supply pins  
are vulnerable to random noise. The ICS8430-111 provides  
separate power supplies to isolate any high switching  
noise from the outputs to the internal PLL.VCC, VCCA, and VCCO  
should be individually connected to the power supply  
plane through vias, and bypass capacitors should be  
used for each pin. To achieve optimum jitter performance,  
power supply isolation is required. Figure 2 illustrates how  
a 10Ω resistor along with a 10μF and a .01μF bypass  
capacitor should be connected to each VCCA pin.  
3.3V  
VCC  
.01μF  
.01μF  
10Ω  
VCCA  
10 μF  
FIGURE 2. POWER SUPPLY FILTERING  
TERMINATION FOR LVPECL OUTPUTS  
The clock layout topology shown below is a typical termination  
for LVPECL outputs. The two different layouts mentioned are  
recommended only as guidelines.  
drive 50Ω transmission lines. Matched impedance techniques  
should be used to maximize operating frequency and minimize  
signal distortion.There are a few simple termination schemes.  
Figures 3A and 3B show two different layouts which are recom-  
mended only as guidelines. Other suitable clock layouts may  
exist and it would be recommended that the board designers  
simulate to guarantee compatibility across all printed circuit and  
clock component process variations.  
FOUT and nFOUT are low impedance follower outputs that  
generate ECL/LVPECL compatible outputs.Therefore, terminat-  
ing resistors (DC current path to ground) or current sources  
must be used for functionality. These outputs are designed to  
3.3V  
Z
o = 50Ω  
125Ω  
125Ω  
FOUT  
FIN  
Zo = 50Ω  
Zo = 50Ω  
Zo = 50Ω  
FOUT  
FIN  
50Ω  
50Ω  
V
- 2V  
VCCCC - 2V  
1
RTT =  
Zo  
RTT  
84Ω  
84Ω  
((VOH + VOL) / (VCC – 2)) – 2  
FIGURE 3A. LVPECL OUTPUT TERMINATION  
FIGURE 3B. LVPECL OUTPUT TERMINATION  
8430DY-111  
www.icst.com/products/hiperclocks.html  
REV. F JUNE 1, 2005  
9
PRELIMINARY  
ICS8430-111  
Integrated  
Circuit  
Systems, Inc.  
700MHZ, LOW JITTER  
DIFFERENTIAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER  
WIRING THE DIFFERENTIAL INPUT TO ACCEPT SINGLE ENDED LEVELS  
of R1 and R2 might need to be adjusted to position theV_REF in  
Figure 4 shows how the differential input can be wired to accept  
single ended levels. The reference voltage V_REF = VCC/2 is  
generated by the bias resistors R1, R2 and C1.This bias circuit  
should be located as close as possible to the input pin.The ratio  
the center of the input voltage swing. For example, if the input  
clock swing is only 2.5V andVCC = 3.3V, V_REF should be 1.25V  
and R2/R1 = 0.609.  
VCC  
R1  
1K  
Single Ended Clock Input  
V_REF  
CLK  
nCLK  
C1  
0.1u  
R2  
1K  
FIGURE 4. SINGLE ENDED SIGNAL DRIVING DIFFERENTIAL INPUT  
8430DY-111  
www.icst.com/products/hiperclocks.html  
REV. F JUNE 1, 2005  
10  
PRELIMINARY  
ICS8430-111  
Integrated  
Circuit  
Systems, Inc.  
700MHZ, LOW JITTER  
DIFFERENTIAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER  
DIFFERENTIAL CLOCK INPUT INTERFACE  
The CLK /nCLK accepts LVDS, LVPECL, LVHSTL, SSTL, HCSL here are examples only. Please consult with the vendor of the  
and other differential signals.BothVSWING andVOH must meet the driver component to confirm the driver termination requirements.  
VPP and VCMR input requirements. Figures 5A to 5E show inter- For example in Figure 5A, the input termination applies for ICS  
face examples for the HiPerClockS CLK/nCLK input driven by HiPerClockS LVHSTL drivers. If you are using an LVHSTL driver  
the most common driver types.The input interfaces suggested from another vendor, use their termination recommendation.  
3.3V  
3.3V  
3.3V  
1.8V  
Zo = 50 Ohm  
CLK  
Zo = 50 Ohm  
CLK  
Zo = 50 Ohm  
nCLK  
Zo = 50 Ohm  
HiPerClockS  
Input  
LVPECL  
nCLK  
HiPerClockS  
Input  
LVHSTL  
R1  
50  
R2  
50  
ICS  
HiPerClockS  
R1  
50  
R2  
50  
LVHSTL Driver  
R3  
50  
FIGURE 5A. HIPERCLOCKS CLK/NCLK INPUT DRIVEN BY  
ICS HIPERCLOCKS LVHSTL DRIVER  
FIGURE 5B. HIPERCLOCKS CLK/NCLK INPUT DRIVEN BY  
3.3V LVPECL DRIVER  
3.3V  
3.3V  
3.3V  
3.3V  
Zo = 50 Ohm  
3.3V  
R3  
R4  
125  
125  
LVDS_Driver  
Zo = 50 Ohm  
Zo = 50 Ohm  
CLK  
CLK  
R1  
100  
nCLK  
Receiver  
nCLK  
HiPerClockS  
Input  
Zo = 50 Ohm  
LVPECL  
R1  
84  
R2  
84  
FIGURE 5C. HIPERCLOCKS CLK/NCLK INPUT DRIVEN BY  
3.3V LVPECL DRIVER  
FIGURE 5D. HIPERCLOCKS CLK/NCLK INPUT DRIVEN BY  
3.3V LVDS DRIVER  
3.3V  
3.3V  
3.3V  
R3  
125  
R4  
125  
C1  
C2  
LVPECL  
Zo = 50 Ohm  
Zo = 50 Ohm  
CLK  
nCLK  
HiPerClockS  
Input  
R5  
100 - 200  
R6  
100 - 200  
R1  
84  
R2  
84  
R5,R6 locate near the driver pin.  
FIGURE 5E. HIPERCLOCKS CLK/NCLK INPUT DRIVEN BY  
3.3V LVPECL DRIVER WITH AC COUPLE  
8430DY-111  
www.icst.com/products/hiperclocks.html  
REV. F JUNE 1, 2005  
11  
PRELIMINARY  
ICS8430-111  
Integrated  
Circuit  
Systems, Inc.  
700MHZ, LOW JITTER  
DIFFERENTIAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER  
POWER CONSIDERATIONS  
This section provides information on power dissipation and junction temperature for the ICS8430-111.  
Equations and example calculations are also provided.  
1. Power Dissipation.  
The total power dissipation for the ICS8430-111 is the sum of the core power plus the power dissipated in the load(s).  
The following is the power dissipation for VCC = 3.3V + 5% = 3.465V, which gives worst case results.  
NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.  
Power (core)MAX = VCC_MAX * IEE_MAX = 3.465V * 120mA = 415.8mW  
Power (outputs)MAX = 30mW/Loaded Output pair  
If all outputs are loaded, the total power is 2 * 30mW = 60mW  
Total Power_MAX (3.465V, with all outputs switching) = 415.8mW + 60mW = 475.8mW  
2. JunctionTemperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the  
device.The maximum recommended junction temperature for HiPerClockSTM devices is 125°C.  
The equation for Tj is as follows: Tj = θJA * Pd_total + TA  
Tj = JunctionTemperature  
θJA = Junction-to-AmbientThermal Resistance  
Pd_total =Total Device Power Dissipation (example calculation is in section 1 above)  
TA = AmbientTemperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θJA must be used. Assuming a  
moderate air flow of 200 linear feet per minute and a multi-layer board, the appropriate value is 42.1°C/W perTable 7 below.  
Therefore, Tj for an ambient temperature of 70°C with all outputs switching is:  
70°C + 0.476W * 42.1°C/W = 90°C. This is well below the limit of 125°C.  
This calculation is only an example.Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow,  
and the type of board (single layer or multi-layer).  
TABLE 7. THERMAL RESISTANCE θJA FOR 32-PIN LQFP, FORCED CONVECTION  
θJA byVelocity (Linear Feet per Minute)  
0
200  
500  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
67.8°C/W  
55.9°C/W  
50.1°C/W  
47.9°C/W  
42.1°C/W  
39.4°C/W  
NOTE: Most modern PCB designs use multi-layered boards.The data in the second row pertains to most designs.  
8430DY-111  
www.icst.com/products/hiperclocks.html  
REV. F JUNE 1, 2005  
12  
PRELIMINARY  
ICS8430-111  
Integrated  
Circuit  
Systems, Inc.  
700MHZ, LOW JITTER  
DIFFERENTIAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER  
3. Calculations and Equations.  
The purpose of this section is to derive the power dissipated into the load.  
LVPECL output driver circuit and termination are shown in Figure 6.  
VCCO  
Q1  
VOUT  
R L  
50  
VCCO - 2V  
FIGURE 6. LVPECL DRIVER CIRCUIT AND TERMINATION  
To calculate worst case power dissipation into the load, use the following equations which assume a 50Ω load, and a termination  
voltage of V - 2V.  
CCO  
For logic high, VOUT = V  
= V  
– 0.9V  
OH_MAX  
CCO_MAX  
)
= 0.9V  
OH_MAX  
(V  
- V  
CCO_MAX  
For logic low, VOUT = V  
= V  
– 1.7V  
OL_MAX  
CCO_MAX  
)
= 1.7V  
OL_MAX  
(V  
- V  
CCO_MAX  
Pd_H is power dissipation when the output drives high.  
Pd_L is the power dissipation when the output drives low.  
))  
Pd_H = [(V  
– (V  
- 2V))/R ] * (V  
- V  
) = [(2V - (V  
- V  
- V  
/R ] * (V  
- V  
) =  
OH_MAX  
CCO_MAX  
CCO_MAX  
OH_MAX  
CCO_MAX  
OH_MAX  
CCO_MAX  
OH_MAX  
L
L
[(2V - 0.9V)/50Ω) * 0.9V = 19.8mW  
))  
Pd_L = [(V  
– (V  
- 2V))/R ] * (V  
- V  
) = [(2V - (V  
/R ] * (V  
- V  
) =  
OL_MAX  
CCO_MAX  
CCO_MAX  
OL_MAX  
CCO_MAX  
OL_MAX  
CCO_MAX  
OL_MAX  
L
L
[(2V - 1.7V)/50Ω) * 1.7V = 10.2mW  
Total Power Dissipation per output pair = Pd_H + Pd_L = 30mW  
8430DY-111  
www.icst.com/products/hiperclocks.html  
REV. F JUNE 1, 2005  
13  
PRELIMINARY  
ICS8430-111  
Integrated  
Circuit  
Systems, Inc.  
700MHZ, LOW JITTER  
DIFFERENTIAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER  
RELIABILITY INFORMATION  
TABLE 8. θJAVS. AIR FLOW TABLE FOR 32 LEAD LQFP  
θJA byVelocity (Linear Feet per Minute)  
0
200  
500  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
67.8°C/W  
55.9°C/W  
50.1°C/W  
47.9°C/W  
42.1°C/W  
39.4°C/W  
NOTE: Most modern PCB designs use multi-layered boards.The data in the second row pertains to most designs.  
TRANSISTOR COUNT  
The transistor count for ICS8430-111 is: 3960  
8430DY-111  
www.icst.com/products/hiperclocks.html  
REV. F JUNE 1, 2005  
14  
PRELIMINARY  
ICS8430-111  
Integrated  
Circuit  
Systems, Inc.  
700MHZ, LOW JITTER  
DIFFERENTIAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER  
PACKAGE OUTLINE - Y SUFFIX FOR 32 LEAD LQFP  
TABLE 9. PACKAGE DIMENSIONS  
JEDEC VARIATION  
ALL DIMENSIONS IN MILLIMETERS  
BBA  
SYMBOL  
MINIMUM  
NOMINAL  
MAXIMUM  
N
A
32  
1.60  
0.15  
1.45  
0.45  
0.20  
A1  
A2  
b
0.05  
1.35  
0.30  
0.09  
1.40  
0.37  
c
D
9.00 BASIC  
7.00 BASIC  
5.60  
D1  
D2  
E
9.00 BASIC  
7.00 BASIC  
5.60  
E1  
E2  
e
0.80 BASIC  
0.60  
L
0.45  
0°  
0.75  
7°  
q
ccc  
0.10  
Reference Document: JEDEC Publication 95, MS-026  
8430DY-111  
www.icst.com/products/hiperclocks.html  
REV. F JUNE 1, 2005  
15  
PRELIMINARY  
ICS8430-111  
Integrated  
Circuit  
Systems, Inc.  
700MHZ, LOW JITTER  
DIFFERENTIAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER  
TABLE 10. ORDERING INFORMATION  
Part/Order Number  
Marking  
Package  
Shipping Packaging Temperature  
ICS8430DY-111  
ICS8430DY-111T  
ICS8430DY-111  
ICS8430DY-111  
32 Lead LQFP  
32 Lead LQFP  
tray  
0°C to 70°C  
0°C to 70°C  
1000 tape & reel  
The aforementioned trademark, HiPerClockS™ is a trademark of Integrated Circuit Systems, Inc. or its subsidiaries in the United States and/or other countries.  
While the information presented herein has been checked for both accuracy and reliability, Integrated Circuit Systems, Incorporated (ICS) assumes no responsibility for either its use  
or for infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use  
in normal commercial applications. Any other applications such as those requiring extended temperature range, high reliability, or other extraordinary environmental requirements are  
not recommended without additional processing by ICS. ICS reserves the right to change any circuitry or specifications without notice. ICS does not authorize or warrant any ICS  
product for use in life support devices or critical medical instruments.  
8430DY-111  
www.icst.com/products/hiperclocks.html  
REV. F JUNE 1, 2005  
16  

相关型号:

ICS8430-51

600MHZ, LOW JITTER LVCMOS/ LVTTL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER
ICSI

ICS8430-61

500MHZ, CRYSTAL-TO-3.3V DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER
ICSI

ICS8430-61

500MHZ, CRYSTAL-TO-3.3V DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER
ICSI

ICS8430-62

500MHz, Crystal-to-3.3V, 2.5V Differential LVPECL Frequency Synthesizer
IDT

ICS8430-71B

700MHZ, LOW JITTER, CRYSTAL INTERFACE / LVCMOS-TO-3.3V LVPECL FREQUENCY SYNTHESIZER
ICSI

ICS8430002

High-Performance Fractional-N Frequency Synthesizer
IDT

ICS843001

FEMTO CLOCKS CRYSTAL-TO- 3.3V LVPECL CLOCK GENERATOR
ICSI

ICS843001-21

FEMTOCLOCKS? CRYSTAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER
ICSI

ICS843001A21

FEMTOCLOCKS? CRYSTAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER
ICSI

ICS843001A21L

FEMTOCLOCKS? CRYSTAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER
ICSI

ICS843001AG

FEMTO CLOCKS CRYSTAL-TO- 3.3V LVPECL CLOCK GENERATOR
ICSI

ICS843001AG-21

FEMTOCLOCKS? CRYSTAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER
ICSI