ICS85322AMIT [ICSI]

DUAL LVCMOS / LVTTL-TO-DIFFERENTIAL 2.5V / 3.3V LVPECL TRANSLATOR; 双LVCMOS / LVTTL到差分2.5V / 3.3V LVPECL译者
ICS85322AMIT
型号: ICS85322AMIT
厂家: INTEGRATED CIRCUIT SOLUTION INC    INTEGRATED CIRCUIT SOLUTION INC
描述:

DUAL LVCMOS / LVTTL-TO-DIFFERENTIAL 2.5V / 3.3V LVPECL TRANSLATOR
双LVCMOS / LVTTL到差分2.5V / 3.3V LVPECL译者

锁存器 接口集成电路 光电二极管
文件: 总13页 (文件大小:160K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ICS85322I  
DUAL LVCMOS / LVTTL-TO-DIFFERENTIAL  
2.5V / 3.3V LVPECL TRANSLATOR  
Integrated  
Circuit  
Systems, Inc.  
GENERAL DESCRIPTION  
FEATURES  
The ICS85322I is a Dual LVCMOS / LVTTL-to- 2 differential 2.5V/3.3V LVPECL outputs  
ICS  
Differential 2.5V / 3.3V LVPECL translator and a  
member of the HiPerClocks™family of High Per-  
formance Clocks Solutions from ICS. The  
ICS85322I has selectable single ended clock in-  
Selectable CLK0, CLK1 LVCMOS/LVTTL clock inputs  
HiPerClockS™  
CLK0 and CLK1 can accepts the following input levels:  
LVCMOS or LVTTL  
puts.The single ended clock input accepts LVCMOS or LVTTL  
input levels and translate them to 2.5V / 3.3V LVPECL levels.  
The small outline 8-pin SOIC package makes this device ideal  
for applications where space, high performance and low power  
are important.  
Maximum output frequency: 267MHz  
Part-to-part skew: 250ps (maximum)  
3.3V operating supply voltage  
(operating range 3.135V to 3.465V)  
2.5V operating supply voltage  
(operating range 2.375V to 2.625V)  
-40°C to 85°C ambient operating temperature  
BLOCK DIAGRAM  
PIN ASSIGNMENT  
Q0  
nQ0  
CLK0  
Q0  
nQ0  
Q1  
VCC  
1
2
3
4
8
7
6
5
CLK0  
CLK1  
VEE  
Q1  
nQ1  
CLK1  
nQ1  
ICS85322I  
8-Lead SOIC  
3.90mm x 4.92mm x 1.37mm body package  
M Package  
TopView  
85322AMI  
www.icst.com/products/hiperclocks.html  
REV. B OCTOBER 7, 2003  
1
ICS85322I  
DUAL LVCMOS / LVTTL-TO-DIFFERENTIAL  
2.5V / 3.3V LVPECL TRANSLATOR  
Integrated  
Circuit  
Systems, Inc.  
TABLE 1. PIN DESCRIPTIONS  
Number  
Name  
Q0, nQ0  
Q1, nQ1  
VEE  
Type  
Description  
1, 2  
3, 4  
5
Output  
Output  
Power  
Input  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
Negative supply pin.  
6
CLK1  
CLK0  
VCC  
Pullup  
Pullup  
LVCMOS / LVTTL clock input.  
LVCMOS / LVTTL clock input.  
Positive supply pin.  
7
Input  
8
Power  
NOTE: Pullup refers to internal input resistors. See Table 2, Pin Characteristics, for typical values.  
TABLE 2. PIN CHARACTERISTICS  
Symbol  
CIN  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
pF  
Input Capacitance  
Input Pullup Resistor  
Input Pulldown Resistor  
4
RPULLUP  
RPULLDOWN  
51  
51  
K  
KΩ  
85322AMI  
www.icst.com/products/hiperclocks.html  
REV. B OCTOBER 7, 2003  
2
ICS85322I  
DUAL LVCMOS / LVTTL-TO-DIFFERENTIAL  
2.5V / 3.3V LVPECL TRANSLATOR  
Integrated  
Circuit  
Systems, Inc.  
ABSOLUTE MAXIMUM RATINGS  
SupplyVoltage, V  
4.6V  
NOTE: Stresses beyond those listed under Absolute  
Maximum Ratings may cause permanent damage to the  
device.These ratings are stress specifications only.Functional  
operation of product at these conditions or any conditions be-  
yond those listed in the DC Characteristics or AC Character-  
istics is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect product reliability.  
CC  
Inputs, V  
-0.5V to VCC + 0.5 V  
I
Outputs, IO  
Continuous Current  
Surge Current  
50mA  
100mA  
PackageThermal Impedance, θ  
112.7°C/W (0 lfpm)  
-65°C to 150°C  
JA  
StorageTemperature, T  
STG  
TABLE 3A. POWER SUPPLY DC CHARACTERISTICS, VCC = 3.3V 5ꢀ, TA = -40°C TO 85°C  
Symbol Parameter  
Test Conditions  
Minimum  
Typical  
Maximum Units  
VCC  
IEE  
Positive Supply Voltage  
Power Supply Current  
3.135  
3.3  
3.465  
25  
V
mA  
TABLE 3B. LVCMOS / LVTTL DC CHARACTERISTICS, VCC = 3.3V 5ꢀ, TA = -40°C TO 85°C  
Symbol Parameter  
Test Conditions  
Minimum  
Typical  
Maximum Units  
VIH  
VIL  
IIH  
Input High Voltage  
Input Low Voltage  
CLK0, CLK1  
CLK0, CLK1  
2
VCC + 0.3  
V
V
-0.3  
1.3  
5
Input High Current CLK0, CLK1  
Input Low Current CLK0, CLK1  
VCC = VIN = 3.465V  
VCC = VIN = 3.465V  
µA  
µA  
IIL  
-150  
TABLE 3C. LVPECL DC CHARACTERISTICS, VCC = 3.3V 5ꢀ, TA = -40°C TO 85°C  
Symbol  
VOH  
Parameter  
Test Conditions  
VCC = VIN = 3.465V  
VCC = VIN = 3.465V  
Minimum  
VCC - 1.4  
VCC - 2.0  
0.65  
Typical  
Maximum Units  
Output High Voltage; NOTE 1  
Output Low Voltage; NOTE 1  
Peak-to-Peak Output Voltage Swing  
VCC - 1.0  
VCC - 1.7  
0.9  
V
V
V
VOL  
VSWING  
NOTE 1: Outputs terminated with 50to VCC - 2V.  
TABLE 4A. AC CHARACTERISTICS, VCC = 3.3V 5ꢀ, TA = -40°C TO 85°C  
Symbol Parameter  
Test Conditions  
Minimum Typical Maximum Units  
fMAX  
Output Frequency  
267  
1.9  
250  
700  
60  
MHz  
ns  
tPD  
Propagation Delay; NOTE 1  
Part-to-Part Skew; NOTE 2, 3  
Output Rise/Fall Time  
ƒ 267MHz  
0.5  
tsk(pp)  
tR / tF  
odc  
ps  
20ꢀ to 80ꢀ @ 50MHz  
300  
40  
ps  
Output Duty Cycle  
All parameters measured at 133MHz unless noted otherwise.  
NOTE 1: Measured from VCC/2 point of the input to the differential output crossing point.  
NOTE 2: Defined as skew between outputs on different devices operating at the same supply voltages and with equal load  
conditions. Using the same type of inputs on each device, the outputs are measured at the differential cross points.  
NOTE 3: This parameter is defined in accordance with JEDEC Standard 65.  
85322AMI  
www.icst.com/products/hiperclocks.html  
REV. B OCTOBER 7, 2003  
3
ICS85322I  
DUAL LVCMOS / LVTTL-TO-DIFFERENTIAL  
2.5V / 3.3V LVPECL TRANSLATOR  
Integrated  
Circuit  
Systems, Inc.  
TABLE 3D. POWER SUPPLY DC CHARACTERISTICS, VCC = 2.5V 5ꢀ, TA = -40°C TO 85°C  
Symbol Parameter  
Test Conditions  
Minimum  
Typical  
Maximum Units  
VCC  
IEE  
Positive Supply Voltage  
Power Supply Current  
2.375  
2.5  
2.625  
25  
V
mA  
TABLE 3E. LVCMOS / LVTTL DC CHARACTERISTICS, VCC = 2.5V 5ꢀ, TA = -40°C TO 85°C  
Symbol Parameter  
Test Conditions  
Minimum  
1.6  
Typical  
Maximum Units  
VIH  
VIL  
IIH  
Input High Voltage  
Input Low Voltage  
CLK0, CLK1  
CLK0, CLK1  
VCC + 0.3  
V
V
-0.3  
0.9  
5
Input High Current CLK0, CLK1  
Input Low Current CLK0, CLK1  
VCC = VIN = 2.625  
VCC = VIN = 2.625  
µA  
µA  
IIL  
-150  
TABLE 3F. LVPECL DC CHARACTERISTICS, VCC = 2.5V 5ꢀ, TA = -40°C TO 85°C  
Symbol  
VOH  
Parameter  
Test Conditions  
Minimum  
VCC - 1.4  
VCC - 2.0  
0.65  
Typical  
Maximum Units  
Output High Voltage; NOTE 1  
Output Low Voltage; NOTE 1  
Peak-to-Peak Output Voltage Swing  
VCC - 1.0  
VCC - 1.7  
0.9  
V
V
V
VOL  
VSWING  
NOTE 1: Outputs terminated with 50to VCC - 2V.  
TABLE 4B. AC CHARACTERISTICS, VCC = 2.5V 5ꢀ, TA = -40°C TO 85°C  
Symbol Parameter  
Test Conditions  
Minimum Typical Maximum Units  
fMAX  
Output Frequency  
215  
2.1  
250  
700  
60  
MHz  
ns  
tPD  
Propagation Delay; NOTE 1  
Part-to-Part Skew; NOTE 2, 3  
Output Rise/Fall Time  
ƒ 215MHz  
0.7  
tsk(pp)  
tR / tF  
odc  
ps  
20ꢀ to 80ꢀ @ 50MHz  
300  
40  
ps  
Output Duty Cycle  
All parameters measured at 133MHz unless noted otherwise.  
NOTE 1: Measured from VCC/2 point of the input to the differential output crossing point.  
NOTE 2: Defined as skew between outputs on different devices operating at the same supply voltages and with equal load  
conditions. Using the same type of inputs on each device, the outputs are measured at the differential cross points.  
NOTE 3: This parameter is defined in accordance with JEDEC Standard 65..  
85322AMI  
www.icst.com/products/hiperclocks.html  
REV. B OCTOBER 7, 2003  
4
ICS85322I  
DUAL LVCMOS / LVTTL-TO-DIFFERENTIAL  
2.5V / 3.3V LVPECL TRANSLATOR  
Integrated  
Circuit  
Systems, Inc.  
PARAMETER MEASUREMENT INFORMATION  
2V  
2V  
SCOPE  
SCOPE  
VCC  
VCC  
Qx  
Qx  
LVPECL  
LVPECL  
nQx  
nQx  
VEE  
VEE  
-0.5V 0.125V  
-1.3V 0.165V  
3.3V OUTPUT LOAD AC TEST CIRCUIT  
2.5V OUTPUT LOAD AC TEST CIRCUIT  
nQx  
PART 1  
Qx  
CLK0,  
CLK1  
nQ0, nQ1  
nQy  
PART 2  
Q0, Q1  
Qy  
tPD  
tsk(o)  
PART-TO-PART SKEW  
PROPAGATION DELAY  
nQ0, nQ1  
80ꢀ  
tF  
80ꢀ  
Q0, Q1  
VSWING  
20ꢀ  
Pulse Width  
tPERIOD  
Clock  
20ꢀ  
Outputs  
tR  
tPW  
odc =  
tPERIOD  
OUTPUT RISE/FALL TIME  
OUTPUT DUTY CYCLE/PULSE WIDTH/PERIOD  
85322AMI  
www.icst.com/products/hiperclocks.html  
REV. B OCTOBER 7, 2003  
5
ICS85322I  
DUAL LVCMOS / LVTTL-TO-DIFFERENTIAL  
2.5V / 3.3V LVPECL TRANSLATOR  
Integrated  
Circuit  
Systems, Inc.  
APPLICATION INFORMATION  
TERMINATION FOR 3.3V LVPECL OUTPUTS  
50transmission lines. Matched impedance techniques should  
be used to maximize operating frequency and minimize signal  
distortion. Figures 1A and 1B show two different layouts which  
are recommended only as guidelines. Other suitable clock lay-  
outs may exist and it would be recommended that the board  
designers simulate to guarantee compatibility across all printed  
circuit and clock component process variations.  
The clock layout topology shown below is a typical termina-  
tion for LVPECL outputs.The two different layouts mentioned  
are recommended only as guidelines.  
FOUT and nFOUT are low impedance follower outputs that gen-  
erate ECL/LVPECL compatible outputs.Therefore, terminating  
resistors (DC current path to ground) or current sources must  
be used for functionality. These outputs are designed to drive  
3.3V  
Zo = 50  
125Ω  
125Ω  
FOUT  
FIN  
Zo = 50Ω  
Zo = 50Ω  
Zo = 50Ω  
FOUT  
FIN  
50Ω  
50Ω  
VCC - 2V  
1
RTT =  
Zo  
RTT  
(VOH + VOL / VCC – 2) – 2  
84Ω  
84Ω  
FIGURE 1A. LVPECL OUTPUT TERMINATION  
FIGURE 1B. LVPECL OUTPUT TERMINATION  
85322AMI  
www.icst.com/products/hiperclocks.html  
REV. B OCTOBER 7, 2003  
6
ICS85322I  
DUAL LVCMOS / LVTTL-TO-DIFFERENTIAL  
2.5V / 3.3V LVPECL TRANSLATOR  
Integrated  
Circuit  
Systems, Inc.  
TERMINATION FOR 2.5V LVPECL OUTPUT  
Figure 2A and Figure 2B show examples of termination for 2.5V ground level. The R3 in Figure 2B can be eliminated and the  
LVPECL driver.These terminations are equivalent to terminat- termination is shown in Figure 2C.  
ing 50to VCC - 2V. For VCC = 2.5V, the VCC - 2V is very close to  
2.5V  
2.5V  
2.5V  
VCCO=2.5V  
VCCO=2.5V  
R1  
R3  
250  
250  
Zo = 50 Ohm  
Zo = 50 Ohm  
Zo = 50 Ohm  
Zo = 50 Ohm  
+
-
+
-
2,5V LVPECL  
Driver  
2,5V LVPECL  
Driv er  
R1  
50  
R2  
50  
R2  
62.5  
R4  
62.5  
R3  
18  
FIGURE 2A. 2.5V LVPECL DRIVER TERMINATION EXAMPLE  
FIGURE 2B. 2.5V LVPECL DRIVER TERMINATION EXAMPLE  
2.5V  
VCCO=2.5V  
Zo = 50 Ohm  
+
Zo = 50 Ohm  
-
2,5V LVPECL  
Driver  
R1  
50  
R2  
50  
FIGURE 2C. 2.5V LVPECL TERMINATION EXAMPLE  
85322AMI  
www.icst.com/products/hiperclocks.html  
REV. B OCTOBER 7, 2003  
7
ICS85322I  
DUAL LVCMOS / LVTTL-TO-DIFFERENTIAL  
2.5V / 3.3V LVPECL TRANSLATOR  
Integrated  
Circuit  
Systems, Inc.  
POWER CONSIDERATIONS  
This section provides information on power dissipation and junction temperature for the ICS85322I.  
Equations and example calculations are also provided.  
1. Power Dissipation.  
The total power dissipation for the ICS85322I is the sum of the core power plus the power dissipated in the load(s).  
The following is the power dissipation for VCC = 3.3V + 5ꢀ = 3.465V, which gives worst case results.  
NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.  
Power (core)MAX = VCC_MAX * IEE_MAX = 3.465V * 25mA = 86.6mW  
Power (outputs)MAX = 30.2mW/Loaded Output pair  
If all outputs are loaded, the total power is 2 * 30.2mW = 60.4mW  
Total Power_MAX (3.465V, with all outputs switching) = 86.6mW + 60.4mW = 147mW  
2. Junction Temperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the  
device.The maximum recommended junction temperature for HiPerClockSTM devices is 125°C.  
The equation for Tj is as follows: Tj = θJA * Pd_total + TA  
Tj = JunctionTemperature  
θJA = Junction-to-AmbientThermal Resistance  
Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)  
TA = AmbientTemperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θJA must be used. Assuming a  
moderate air flow of 200 linear feet per minute and a multi-layer board, the appropriate value is 103.3°C/W perTable 5 below.  
Therefore, Tj for an ambient temperature of 85°C with all outputs switching is:  
85°C + 0.147W * 103.3°C/W = 100.2°C. This is well below the limit of 125°C.  
This calculation is only an example.Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow,  
and the type of board (single layer or multi-layer).  
TABLE 5. THERMAL RESISTANCE θJA FOR 8-PIN SOIC, FORCED CONVECTION  
θJA byVelocity (Linear Feet per Minute)  
0
200  
128.5°C/W  
103.3°C/W  
500  
115.5°C/W  
97.1°C/W  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
153.3°C/W  
112.7°C/W  
NOTE: Most modern PCB designs use multi-layered boards.The data in the second row pertains to most designs.  
85322AMI  
www.icst.com/products/hiperclocks.html  
REV. B OCTOBER 7, 2003  
8
ICS85322I  
DUAL LVCMOS / LVTTL-TO-DIFFERENTIAL  
2.5V / 3.3V LVPECL TRANSLATOR  
Integrated  
Circuit  
Systems, Inc.  
3. Calculations and Equations.  
The purpose of this section is to derive the power dissipated into the load.  
LVPECL output driver circuit and termination are shown in Figure 3.  
VCC  
Q1  
VOUT  
RL  
50  
VCC - 2V  
FIGURE 3. LVPECL DRIVER CIRCUIT AND TERMINATION  
To calculate worst case power dissipation into the load, use the following equations which assume a 50load, and a termination  
voltage of V - 2V.  
CC  
For logic high, VOUT = V  
= V  
– 1.0V  
OH_MAX  
CC_MAX  
)
= 1.0V  
OH_MAX  
(V  
- V  
CC_MAX  
For logic low, VOUT = V  
= V  
– 1.7V  
OL_MAX  
CC_MAX  
)
= 1.7V  
OL_MAX  
(V  
- V  
CC_MAX  
Pd_H is power dissipation when the output drives high.  
Pd_L is the power dissipation when the output drives low.  
))  
Pd_H = [(V  
– (V  
- 2V))/R ] * (V  
- V  
) = [(2V - (V  
- V  
/R ] * (V  
- V  
) =  
OH_MAX  
CC_MAX  
CC_MAX  
OH_MAX  
CC_MAX  
OH_MAX  
CC_MAX  
OH_MAX  
L
L
[(2V - 1V)/50] * 1V = 20.0mW  
))  
Pd_L = [(V  
– (V  
- 2V))/R ] * (V  
- V  
) = [(2V - (V  
- V  
/R ] * (V  
- V  
) =  
OL_MAX  
CC_MAX  
CC_MAX  
OL_MAX  
CC_MAX  
OL_MAX  
CC_MAX  
OL_MAX  
L
L
[(2V - 1.7V)/50] * 1.7V = 10.2mW  
Total Power Dissipation per output pair = Pd_H + Pd_L = 30.2mW  
85322AMI  
www.icst.com/products/hiperclocks.html  
REV. B OCTOBER 7, 2003  
9
ICS85322I  
DUAL LVCMOS / LVTTL-TO-DIFFERENTIAL  
2.5V / 3.3V LVPECL TRANSLATOR  
Integrated  
Circuit  
Systems, Inc.  
RELIABILITY INFORMATION  
TABLE 6. θJAVS. AIR FLOW TABLE FOR 8 LEAD SOIC  
θJA byVelocity (Linear Feet per Minute)  
0
200  
128.5°C/W  
103.3°C/W  
500  
115.5°C/W  
97.1°C/W  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
153.3°C/W  
112.7°C/W  
NOTE: Most modern PCB designs use multi-layered boards.The data in the second row pertains to most designs.  
TRANSISTOR COUNT  
The transistor count for ICS85322I is: 269  
85322AMI  
www.icst.com/products/hiperclocks.html  
REV. B OCTOBER 7, 2003  
10  
ICS85322I  
DUAL LVCMOS / LVTTL-TO-DIFFERENTIAL  
2.5V / 3.3V LVPECL TRANSLATOR  
Integrated  
Circuit  
Systems, Inc.  
PACKAGE OUTLINE - M SUFFIX FOR 8 LEAD SOIC  
TABLE 7. PACKAGE DIMENSIONS  
Millimeters  
MINIMUN MAXIMUM  
SYMBOL  
N
A
A1  
B
C
D
E
e
8
1.35  
0.10  
0.33  
0.19  
4.80  
3.80  
1.75  
0.25  
0.51  
0.25  
5.00  
4.00  
1.27 BASIC  
H
h
5.80  
0.25  
0.40  
0°  
6.20  
0.50  
1.27  
8°  
L
α
Reference Document: JEDEC Publication 95, MS-012  
85322AMI  
www.icst.com/products/hiperclocks.html  
REV. B OCTOBER 7, 2003  
11  
ICS85322I  
DUAL LVCMOS / LVTTL-TO-DIFFERENTIAL  
2.5V / 3.3V LVPECL TRANSLATOR  
Integrated  
Circuit  
Systems, Inc.  
TABLE 8. ORDERING INFORMATION  
Part/Order Number  
ICS85322AMI  
Marking  
5322AMI  
5322AMI  
Package  
8 lead SOIC  
Count  
96 per tube -40°C to 85°C  
2500 -40°C to 85°C  
Temperature  
ICS85322AMIT  
8 lead SOIC on Tape and Reel  
While the information presented herein has been checked for both accuracy and reliability, Integrated Circuit Systems, Incorporated (ICS) assumes no responsibility for either its use  
or for infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use  
in normal commercial and industrial applications. Any other applications such as those requiring high reliability, or other extraordinary environmental requirements are not  
recommended without additional processing by ICS. ICS reserves the right to change any circuitry or specifications without notice. ICS does not authorize or warrant any ICS product  
for use in life support devices or critical medical instruments.  
85322AMI  
www.icst.com/products/hiperclocks.html  
REV. B OCTOBER 7, 2003  
12  
ICS85322I  
DUAL LVCMOS / LVTTL-TO-DIFFERENTIAL  
2.5V / 3.3V LVPECL TRANSLATOR  
Integrated  
Circuit  
Systems, Inc.  
REVISION HISTORY SHEET  
Description of Change  
Rev  
Table  
Page  
Date  
A
8
6
Added Termination for LVPECL Outputs section.  
5/30/02  
3.3V Output Load Test Circuit Diagram, corrected VEE = -1.3V 0.135V  
to read VEE = -1.3V 0.165V.  
A
B
8/23/02  
10/7/03  
7
2
3
6
7
Updated Output Rise/Fall Time Diagram.  
T2  
Pin Characteristics Table - changed CIN 4pF max. to 4pF typical.  
Absolute Maximum Ratings, updated Inputs ratings.  
Updated 3.3V LVPECL Output Termination Diagrams.  
Added Termination for 2.5V LVPECL Outputs.  
Updated format throughout data sheet.  
85322AMI  
www.icst.com/products/hiperclocks.html  
REV. B OCTOBER 7, 2003  
13  

相关型号:

ICS85322AMLF

TTL/CMOS to PECL Translator, 2 Func, Complementary Output, PDSO8, 3.90 X 4.92 MM, 1.37 MM HEIGHT, LEAD FREE, MS-012, SOIC-8
IDT

ICS85322AMLFT

TTL/CMOS to PECL Translator, 2 Func, Complementary Output, PDSO8, 3.90 X 4.92 MM, 1.37 MM HEIGHT, LEAD FREE, MS-012, SOIC-8
IDT

ICS85322AMT

TTL/CMOS to PECL Translator, 2 Func, Complementary Output, PDSO8, 3.90 X 4.92 MM, 1.37 MM HEIGHT, MS-012, SOIC-8
IDT

ICS85322I

DUAL LVCMOS / LVTTL-TO-DIFFERENTIAL 2.5V / 3.3V LVPECL TRANSLATOR
ICSI

ICS8532AY-01

LOW SKEW, 1-TO-17 DIFFERENTIAL-TO-3.3V LVPECL FANOUT BUFFER
ICSI

ICS8532AY-01LFT

Low Skew Clock Driver, 17 True Output(s), 0 Inverted Output(s), PQFP52, 10 X 10 MM, 1.40 MM HEIGHT, MS-026, LQFP-52
IDT

ICS8532AY-01T

LOW SKEW, 1-TO-17 DIFFERENTIAL-TO-3.3V LVPECL FANOUT BUFFER
ICSI

ICS8532AY-O1T

Clock Driver
IDT

ICS8533-01

LOW SKEW, 1-TO-4 DIFFERENTIAL-TO-3.3V LVPECL FANOUT BUFFER
ICSI

ICS8533-11

LOW SKEW, 1-TO-4, CRYSTAL OSCILLATOR/ DIFFERENTIAL-TO-3.3V LVPECL FANOUT BUFFER
ICSI

ICS8533AG-01

LOW SKEW, 1-TO-4 DIFFERENTIAL-TO-3.3V LVPECL FANOUT BUFFER
ICSI

ICS8533AG-01LF

Low Skew Clock Driver, 4 True Output(s), 0 Inverted Output(s), PDSO20, 6.50 X 4.40 MM, 0.92 MM HEIGHT, LEAD FREE, MS-153, TSSOP-20
IDT