ICS8533-11 [ICSI]

LOW SKEW, 1-TO-4, CRYSTAL OSCILLATOR/ DIFFERENTIAL-TO-3.3V LVPECL FANOUT BUFFER; 低偏移, 1到4 ,晶体振荡器/差分至3.3V的LVPECL扇出缓冲器
ICS8533-11
型号: ICS8533-11
厂家: INTEGRATED CIRCUIT SOLUTION INC    INTEGRATED CIRCUIT SOLUTION INC
描述:

LOW SKEW, 1-TO-4, CRYSTAL OSCILLATOR/ DIFFERENTIAL-TO-3.3V LVPECL FANOUT BUFFER
低偏移, 1到4 ,晶体振荡器/差分至3.3V的LVPECL扇出缓冲器

振荡器 晶体振荡器
文件: 总15页 (文件大小:138K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ICS8533-11  
LOW SKEW, 1-TO-4, CRYSTAL OSCILLATOR/  
DIFFERENTIAL-TO-3.3V LVPECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Incꢀ  
GENERAL DESCRIPTION  
FEATURES  
The ICS8533-11 is a low skew, high performance  
4 differential 3.3V LVPECL outputs  
1-to-4 Crystal Oscillator/Differential-to-3.3V  
Selectable CLK, nCLK or crystal inputs  
HiPerClockS™  
LVPECL fanout buffer and a member of the  
HiPerClockS™ family of High Performance Clock  
Solutions from ICS. The ICS8533-11 has select-  
CLK, nCLK pair can accept the following differential input  
levels: LVDS, LVPECL, LVHSTL, SSTL, HCSL  
able differential clock or crystal inputs. The CLK, nCLK pair  
can accept most standard differential input levels. The clock  
enable is internally synchronized to eliminate runt pulses on  
the outputs during asynchronous assertion/deassertion of the  
clock enable pin.  
Maximum output frequency up to 650MHz  
Translates any single-ended input signal to 3.3V  
LVPECLlevels with resistor bias on nCLK input  
Output skew: 30ps (maximum)  
Guaranteed output and part-to-part skew characteristics  
make the ICS8533-11 ideal for those applications demand-  
ing well defined performance and repeatability.  
Part-to-part skew: 150ps (maximum)  
Propagation delay: 2ns (maximum)  
3.3V operating supply  
0°C to 70°C ambient operating temperature  
Industrial temperature information available upon request  
BLOCK DIAGRAM  
PIN ASSIGNMENT  
VEE  
CLK_EN  
CLK_SEL  
CLK  
Q0  
1
2
3
4
5
6
7
8
9
10  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
D
CLK_EN  
nQ0  
VCC  
Q1  
nQ1  
Q2  
nQ2  
VCC  
Q3  
Q
LE  
CLK  
nCLK  
XTAL1  
XTAL2  
0
1
nCLK  
XTAL1  
XTAL2  
nc  
nc  
VCC  
Q0  
nQ0  
Q1  
nQ1  
CLK_SEL  
nQ3  
Q2  
nQ2  
ICS8533-11  
20-Lead TSSOP  
6.5mm x 4.4mm x 0.92 Package Body  
Q3  
nQ3  
G Package  
Top View  
8533AG-11  
www.icst.com/products/hiperclocks.html  
REV. D JULY 16, 2001  
1
ICS8533-11  
LOW SKEW, 1-TO-4, CRYSTAL OSCILLATOR/  
DIFFERENTIAL-TO-3.3V LVPECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Incꢀ  
TABLE 1. PIN DESCRIPTIONS  
Number  
Name  
Type  
Description  
1
VEE  
Power  
Input  
Negative supply pin. Connect to ground.  
Synchroning clock enable. When HIGH, clock outputs follows clock  
input. When LOW, Q outputs are forced low, nQ outputs are forced  
high. LVCMOS / LVTTL interface levels.  
Clock select input. When LOW, selects CLK, nCLK input.  
When HIGH, selects XTAL input. LVCMOS / LVTTL interface levels.  
2
CLK_EN  
Pullup  
Pulldown  
3
CLK_SEL  
Input  
4
5
CLK  
nCLK  
Input  
Input  
Pulldown Non-inverting differential clock input.  
Pullup Inverting differential clock input.  
Pulldown Crystal oscillator input.  
6
XTAL1  
XTAL2  
nc  
Input  
7
Input  
Pullup  
Crystal oscillator input.  
8, 9  
Unused  
Power  
Output  
Output  
Output  
Output  
No connect.  
10, 13, 18  
11, 12  
14, 15  
16, 17  
19, 20  
VCC  
Positive supply pins. Connect to 3.3V.  
Differential clock outputs. LVPECL interface levels.  
Differential clock outputs. LVPECL interface levels.  
Differential clock outputs. LVPECL interface levels.  
Differential clock outputs. LVPECL interface levels.  
nQ3, Q3  
nQ2, Q2  
nQ1, Q1  
nQ0, Q0  
NOTE: Pullup and Pulldown refers to internal input resistors. See Table 2, Pin characteristics, for typical values.  
TABLE 2. PIN CHARACTERISTICS  
Symbol  
Parameter  
Test Conditions  
Minimum Typical Maximum Units  
CLK, nCLK  
4
4
pF  
pF  
CIN  
Input Capacitance  
Input Pullup Resistor  
CLK_EN, CLK_SEL  
RPULLUP  
51  
51  
K  
KΩ  
RPULLDOWN  
Input Pulldown Resistor  
REV. D JULY 16, 2001  
2
ICS8533-11  
LOW SKEW, 1-TO-4, CRYSTAL OSCILLATOR/  
DIFFERENTIAL-TO-3.3V LVPECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Incꢀ  
TABLE 3A. CONTROL INPUT FUNCTION TABLE  
Inputs  
Outputs  
CLK_EN  
CLK_SEL  
Selected Source  
CLK, nCLK  
Q0 thru Q3  
Disabled; LOW  
Disabled; LOW  
Enabled  
nQ0 thru nQ3  
Disabled; HIGH  
Disabled; HIGH  
Enabled  
0
0
1
1
0
1
0
1
XTAL1, XTAL2  
CLK, nCLK  
XTAL1, XTAL2  
Enabled  
Enabled  
After CLK_EN switches, the clock outputs are disabled or enabled folowing a rising and falling input clock or  
crystal oscillator edge as shown in Figure 1.  
In the active mode, the state of the outputs are a function of the CLK, nCLK and XTAL1, XTAL2 inputs as described  
in Table 3B.  
Enabled  
Disabled  
nCLK  
CLK  
CLK_EN  
nQ0 - nQ3  
Q0 - Q3  
FIGURE 1 - CLK_EN TIMING DIAGRAM  
TABLE 3B. CLOCK INPUT FUNCTION TABLE  
Inputs  
Outputs  
Input to Output Mode  
Polarity  
CLK  
nCLK  
Q0 thru Q3  
LOW  
nQ0 thru nQ3  
HIGH  
0
1
Differential to Differential  
Differential to Differential  
Single Ended to Differential  
Single Ended to Differential  
Single Ended to Differential  
Single Ended to Differential  
Non Inverting  
Non Inverting  
Non Inverting  
Non Inverting  
Inverting  
1
0
HIGH  
LOW  
0
Biased; NOTE 1  
LOW  
HIGH  
1
Biased; NOTE 1  
HIGH  
LOW  
Biased; NOTE 1  
Biased; NOTE 1  
0
1
HIGH  
LOW  
LOW  
HIGH  
Inverting  
NOTE 1:Please refer to the Application Information section on page 10, Figure 12, which discusses wiring the differential  
input to accept single ended levels.  
8533AG-11  
www.icst.com/products/hiperclocks.html  
REV. D JULY 16, 2001  
3
ICS8533-11  
LOW SKEW, 1-TO-4, CRYSTAL OSCILLATOR/  
DIFFERENTIAL-TO-3.3V LVPECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Incꢀ  
ABSOLUTE MAXIMUM RATINGS  
Supply Voltage, VCCx  
Inputs, VI  
4.6V  
-0.5V to VCC + 0.5V  
-0.5V to VCC + 0.5V  
Outputs, VO  
Package Thermal Impedance, θJA  
Storage Temperature, TSTG  
73.2°C/W (0lfpm)  
-65°C to 150°C  
Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These  
ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those  
listed in the DC Characteristics or AC Characteristics is not implied. Exposure to absolute maximum rating conditions for  
extended periods may affect product reliability.  
TABLE 4A. POWER SUPPLY DC CHARACTERISTICS, VCC = 3.3V±5%, TA = 0°C TO 70°C  
Symbol  
VCC  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum Units  
Power Supply Voltage  
Power Supply Current  
3.135  
3.3  
3.465  
50  
V
IEE  
mA  
TABLE 4B. LVCMOS / LVTTL DC CHARACTERISTICS, VCC = 3.3V±5%, TA = 0°C TO 70°C  
Symbol  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum Units  
CLK_EN,  
CLK_SEL  
CLK_EN,  
CLK_SEL  
VIH  
Input High Voltage  
2
3.765  
0.8  
V
V
VIL  
IIH  
Input Low Voltage  
Input High Current  
-0.3  
CLK_EN  
CLK_SEL  
CLK_EN  
CLK_SEL  
V
IN = VCC = 3.465V  
5
µA  
µA  
µA  
µA  
VIN = VCC = 3.465V  
150  
VIN = 0V, VCC = 3.465V  
-150  
-5  
IIL  
Input Low Current  
V
IN = 0V, VCC = 3.465V  
TABLE 4C. DIFFERENTIAL DC CHARACTERISTICS, VCC = 3.3V±5%, TA = 0°C TO 70°C  
Symbol  
Parameter  
Test Conditions  
VCC = VIN = 3.465V  
VCC = VIN = 3.465V  
VCC = 3.465V, VIN = 0V  
VCC = 3.465V, VIN = 0V  
Minimum Typical Maximum Units  
nCLK  
CLK  
5
µA  
µA  
µA  
µA  
V
IIH  
Input High Current  
150  
nCLK  
CLK  
-150  
-5  
IIL  
Input Low Current  
VPP  
Peak-to-Peak Input Voltage  
0.15  
1.3  
Common Mode Input Voltage;  
NOTE 1, 2  
VCMR  
VEE + 0.5  
VCC - 0.85  
V
NOTE1: For single ended applications the maximum input voltage for CLK and nCLK is VCC + 0.3V.  
NOTE 2: Common mode voltage is defined as VIH.  
REV. D JULY 16, 2001  
4
ICS8533-11  
LOW SKEW, 1-TO-4, CRYSTAL OSCILLATOR/  
DIFFERENTIAL-TO-3.3V LVPECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Incꢀ  
TABLE 4D. LVPECL DC CHARACTERISTICS, VCC = 3.3V±5%, TA = 0°C TO 70°C  
Symbol  
VOH  
Parameter  
Test Conditions  
Minimum  
VCC - 1.4  
VCC - 2.0  
0.6  
Typical  
Maximum Units  
Output High Voltage; NOTE 1  
Output Low Voltage; NOTE 1  
Peak-to-Peak Output Voltage Swing  
VCC - 1.0  
VCC - 1.7  
0.85  
V
V
V
VOL  
VSWING  
NOTE 1: Outputs terminated with 50to VCC - 2V.  
TABLE 5. CRYSTAL CHARACTERISTICS  
Parameter  
Test Conditions  
Minimum Typical Maximum Units  
Mode of Oscillation  
Frequency Tolerance  
Frequency Stability  
Drive Level  
Fundamental  
-50  
50  
ppm  
ppm  
mW  
-100  
100  
0.1  
Equivalent Series Resistance (ESR)  
Shunt Capacitance  
Series Pin Inductance  
Operating Temperature Range  
Aging  
50  
80  
7
pF  
3
0
7
nH  
70  
5
°C  
Per year @ 25°C  
-5  
14  
ppm  
MHz  
Frequency Range  
25  
TABLE 6. AC CHARACTERISTICS, VCC = 3.3V±5%, TA = 0°C TO 70°C  
Symbol  
fMAX  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
650  
Units  
MHz  
ns  
Maximum Input Frequency  
Propagation Delay; NOTE 1  
Output Skew; NOTE 2, 5  
Part-to-Part Skew; NOTE 3, 5  
Output Rise Time  
tPD  
ƒ650MHz  
1.0  
2.0  
tsk(o)  
tsk(pp)  
tR  
30  
ps  
150  
ps  
20% to 80% @ 50MHz  
20% to 80% @ 50MHzz  
300  
300  
47  
700  
ps  
tF  
Output Fall Time  
700  
ps  
odc  
Output Duty Cycle; NOTE 4  
Crystal Oscillator Tollerance  
50  
53  
%
oscTOL  
TBD  
ppm  
All parameters measured at 500MHz unless noted otherwise.  
The cycle-to-cycle jitter on the input will equal the jitter on the output. The part does not add jitter.  
NOTE 1: Measured from the differential input crossing point to the differential output crossing point.  
NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions.  
Measured at the output differential cross points.  
NOTE 3: Defined as skew between outputs on different devices operating at the same supply voltages  
and with equal load conditions. Using the same type of inputs on each device, the outputs are measured  
at the differential cross points.  
NOTE 4: Measured using CLK. For XTAL input, refer to Application Note.  
NOTE 5: This parameter is defined in accordance with JEDEC Standard 65.  
8533AG-11  
www.icst.com/products/hiperclocks.html  
REV. D JULY 16, 2001  
5
ICS8533-11  
LOW SKEW, 1-TO-4, CRYSTAL OSCILLATOR/  
DIFFERENTIAL-TO-3.3V LVPECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Incꢀ  
PARAMETER MEASUREMENT INFORMATION  
VCC  
SCOPE  
Qx  
LVPECL  
VCC = 2V  
nQx  
VEE =-1.3V ± 0.135V  
FIGURE 2 - OUTPUT LOAD TEST CIRCUIT  
VCC  
CLK  
VPP  
VCMR  
Cross Points  
nCLK  
VEE  
FIGURE 3 - DIFFERENTIAL INPUT LEVEL  
REV. D JULY 16, 2001  
6
ICS8533-11  
LOW SKEW, 1-TO-4, CRYSTAL OSCILLATOR/  
DIFFERENTIAL-TO-3.3V LVPECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Incꢀ  
Qx  
nQx  
Qy  
nQy  
tsk(o)  
FIGURE 4 - OUTPUT SKEW  
80%  
80%  
VSWING  
20%  
20%  
Clock Inputs  
and Outputs  
tR  
tF  
FIGURE 5 - INPUT AND OUTPUT RISING/FALL TIME  
CLK  
nCLK  
Q0 - Q3  
nQ0 - nQ3  
tPD  
FIGURE 6 - PROPAGATION DELAY  
CLK, Q0 - Q3  
nCLK, nQ0 - nQ3  
Pulse Width  
tPERIOD  
tPW  
odc =  
tPERIOD  
FIGURE 7 - odc & tPERIOD  
8533AG-11  
www.icst.com/products/hiperclocks.html  
REV. D JULY 16, 2001  
7
ICS8533-11  
LOW SKEW, 1-TO-4, CRYSTAL OSCILLATOR/  
DIFFERENTIAL-TO-3.3V LVPECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Incꢀ  
APPLICATION IINFORMATION  
CRYSTAL OSCILLATOR CIRCUIT FREQUENCY FINE TUNING  
A crystal can be characterized for either series or parallel mode operation. The ICS8533-11 and ICS8535-11 fanout buffers have  
built-in crystal oscillator circuits that can accept either a series or parallel crystal without additional components. The frequency  
accuracy provided by this configuration is sufficient for most computer applications.  
For applications requiring highly accurate clock frequencies, the output frequency can be fine tuned by inserting a small series  
capacitor C1 at the XTAL1 input (Pin 6 for ICS8533-11) as shown in Figure 8. This fine tuning approach can be applied in either  
parallel or series crystal. The C1 value depends on the crystal type, frequency and the board layout. The parallel crystal fine  
tuning results in smaller ppm and better performance. It is difficult to provide the precise value of C1. This section provides  
recommended series capacitor C1 values to start with. This example uses 18pF parallel crystals.  
Figure 9shows the suggested series capacitor value for a parallel crystal. For a 16.666 MHz crystal, the recommended C1 value is  
about 33pF.  
Figure 10 shows frequency accuracy versus series capacitance for 19.44MHz, 16.666MHz and 15MHz crystals. As seen from this  
figure, a 24pF, 33pF and 43pF series capacitor is used to achieve the lowest ppm error for 19.44MHz, 16.666MHz and 15MHz  
respectively.  
Figure 11 shows the experiment results of crystal oscillator frequency drift due to temperature variation.  
U1  
XTAL2  
X1  
C1  
XTAL1  
FIGURE 8 - CRYSTAL INTERFACE WITH SERIES CAPACITOR C1.  
REV. D JULY 16, 2001  
8
ICS8533-11  
LOW SKEW, 1-TO-4, CRYSTAL OSCILLATOR/  
DIFFERENTIAL-TO-3.3V LVPECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Incꢀ  
60  
14.318  
50  
40  
30  
20  
10  
0
15.000  
16.666  
19.440  
20.000  
24.000  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
Crystal Frequency (MHz)  
FIGURE 9 - SUGGESTED SERIES CAPACITOR C1 FOR PARALLEL CRYSTAL  
100  
80  
60  
40  
20  
19.44MHz  
16.666MHz  
15.00MHz  
0
0
10  
20  
30  
40  
50  
60  
-20  
-40  
-60  
-80  
-100  
Series Capacitor, C1 (pF)  
FIGURE 10 - FREQUENCY ACCURACY FOR PARALLEL CRYSTAL USING SERIES CAPACITOR C1  
8533AG-11  
www.icst.com/products/hiperclocks.html  
REV. D JULY 16, 2001  
9
ICS8533-11  
LOW SKEW, 1-TO-4, CRYSTAL OSCILLATOR/  
DIFFERENTIAL-TO-3.3V LVPECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Incꢀ  
60  
40  
20  
0
19.44MHz  
16.666MHz  
0
10  
20  
30  
40  
50  
60  
70  
80  
-20  
-40  
-60  
Temperature (deg. C)  
FIGURE 11 - CRYSTAL OSCILLATOR CRCUIT FREQUENCY DRIFTED DUE TO TEMPERATURE VARIATION  
WIRING THE DIFFERENTIAL INPUT TO ACCEPT SINGLE ENDED LEVELS  
Figure 12 shows how the differential input can be wired to accept single ended levels. The reference voltage V_REF ~ VCC/2 is  
generated by the bias resistors R1, R2 and C1. This bias circuit should be located as close as possible to the input pin. The ratio of  
R1 and R2 might need to be adjusted to position the V_REF in the center of the input voltage swing. For example, if the input clock  
swing is only 2.5V and VCC = 3.3V, V_REF should be 1.25V and R2/R1 = 0.609.  
VCC  
R1  
1K  
CLK_IN  
+
V_REF  
-
C1  
0.1uF  
R2  
1K  
FIGURE 12: SINGLE ENDED SIGNAL DRIVING DIFFERENTIAL INPUT  
REV. D JULY 16, 2001  
10  
ICS8533-11  
LOW SKEW, 1-TO-4, CRYSTAL OSCILLATOR/  
DIFFERENTIAL-TO-3.3V LVPECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Incꢀ  
POWER CONSIDERATIONS  
This section provides information on power dissipation and junction temperature for the ICS8533-11.  
Equations and example calculations are also provided.  
1. Power Dissipation.  
The total power dissipation for the ICS8533-11 is the sum of the core power plus the power dissipated in the load(s).  
The following is the power dissipation for VCC = 3.3V + 5% = 3.465V, which gives worst case results.  
NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.  
Power (core)MAX = VCC_MAX * IEE_MAX = 3.465V * 50mA = 173.3mW  
Power (outputs)MAX = 30.2mW/Loaded Output pair  
If all outputs are loaded, the total power is 4 * 30.2mW = 120.8mW  
Total Power_MAX (3.465V, with all outputs switching) = 173.3mW + 120.8mW = 294.1mW  
2. Junction Temperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the  
device. The maximum recommended junction temperature for HiPerClockSTM devices is 125°C.  
The equation for Tj is as follows: Tj = θJA * Pd_total + TA  
Tj = Junction Temperature  
θJA = junction-to-ambient thermal resistance  
Pd_total = Total device power dissipation (example calculation is in section 1 above)  
TA =Ambient Temperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θJA must be used. Assuming a  
moderate air flow of 200 linear feet per minute and a multi-layer board, the appropriate value is 66.6°C/W per Table 6 below.  
Therefore, Tj for an ambient temperature of 70°C with all outputs switching is:  
70°C + 0.294W * 66.6°C/W = 89.58°C. This is well below the limit of 125°C  
This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow,  
and the type of board (single layer or multi-layer).  
Table 7. Thermal Resistance qJA for 20-pin TSSOP, Forced Convection  
qJA by Velocity (Linear Feet per Minute)  
0
200  
500  
Single-Layer PCB, JEDEC Standard Test Boards 114.5°C/W  
98.0°C/W  
88.0°C/W  
Multi-Layer PCB, JEDEC Standard Test Boards  
73.2°C/W  
66.6°C/W  
63.5°C/W  
NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.  
8533AG-11  
www.icst.com/products/hiperclocks.html  
REV. D JULY 16, 2001  
11  
ICS8533-11  
LOW SKEW, 1-TO-4, CRYSTAL OSCILLATOR/  
DIFFERENTIAL-TO-3.3V LVPECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Incꢀ  
3. Calculations and Equations.  
The purpose of this section is to derive the power dissipated into the load.  
LVPECL output driver circuit and termination are shown in Figure 8.  
VCC  
Q1  
VOUT  
RL  
50  
VCC - 2V  
FIGURE 13 - LVPECL DRIVER CIRCUIT AND TERMINATION  
To calculate worst case power dissipation into the load, use the following equations which assume a 50load, and a termination  
voltage of V - 2V.  
CC  
Pd_H is power dissipation when the output drives high.  
Pd_L is the power dissipation when the output drives low.  
Pd_H = [(V  
Pd_L = [(V  
(V  
- 2V))/R ] * (V  
- V  
)
OH_MAX  
CC_MAX  
CC_MAX  
OH_MAX  
L
(V  
- 2V))/R ] * (V  
- V  
)
OL_MAX  
CC_MAX  
CC_MAX  
OL_MAX  
L
For logic high, V = V  
= V  
– 1.0V  
OUT  
OH_MAX  
CC_MAX  
Using V  
= 3.465, this results in V  
= 2.465V  
= 1.765V  
CC_MAX  
OH_MAX  
For logic low, V = V  
= V  
– 1.7V  
OUT  
OL_MAX  
CC_MAX  
Using V  
= 3.465, this results in V  
OL_MAX  
CC_MAX  
Pd_H = [(2.465V - (3.465V - 2V))/50] * (3.465V - 2.465V) = 20mW  
Pd_L = [(1.765V - (3.465V - 2V))/50] * (3.465V - 1.765V) = 10.2mW  
Total Power Dissipation per output pair = Pd_H + Pd_L = 30.2mW  
REV. D JULY 16, 2001  
12  
ICS8533-11  
LOW SKEW, 1-TO-4, CRYSTAL OSCILLATOR/  
DIFFERENTIAL-TO-3.3V LVPECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Incꢀ  
RELIABILITY INFORMATION  
TABLE 8. θJAVS. AIR FLOW TABLE  
qJA by Velocity (Linear Feet per Minute)  
200  
0
500  
Single-Layer PCB, JEDEC Standard Test Boards 114.5°C/W  
98.0°C/W  
88.0°C/W  
Multi-Layer PCB, JEDEC Standard Test Boards 73.2°C/W  
66.6°C/W  
63.5°C/W  
NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.  
TRANSISTOR COUNT  
The transistor count for ICS8533-11 is: 428  
8533AG-11  
www.icst.com/products/hiperclocks.html  
REV. D JULY 16, 2001  
13  
ICS8533-11  
LOW SKEW, 1-TO-4, CRYSTAL OSCILLATOR/  
DIFFERENTIAL-TO-3.3V LVPECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Incꢀ  
PACKAGE OUTLINE - G SUFFIX  
TABLE 9. PACKAGE DIMENSIONS  
Millimeters  
SYMBOL  
MIN  
MAX  
N
A
20  
--  
1.20  
0.15  
1.05  
0.30  
0.20  
6.60  
A1  
A2  
b
0.05  
0.80  
0.19  
0.09  
6.40  
c
D
E
6.40 BASIC  
0.65 BASIC  
E1  
e
4.30  
4.50  
L
0.45  
0°  
0.75  
8°  
α
aaa  
--  
0.10  
Reference Document: JEDEC Publication 95, MS-153  
REV. D JULY 16, 2001  
14  
ICS8533-11  
LOW SKEW, 1-TO-4, CRYSTAL OSCILLATOR/  
DIFFERENTIAL-TO-3.3V LVPECL FANOUT BUFFER  
Integrated  
Circuit  
Systems, Incꢀ  
TABLE 10. ORDERING INFORMATION  
Part/Order Number  
Marking  
Package  
Count  
72 per tube  
2500  
Temperature  
0°C to 70°C  
0°C to 70°C  
ICS8533AG-11  
ICS8533AG-11T  
ICS8533AG-11  
ICS8533AG-11  
20 lead TSSOP  
20 lead TSSOP on Tape and Reel  
While the information presented herein has been checked for both accuracy and reliability, Integrated Circuit Systems, Incorporated (ICS) assumes no responsibility for either its use or  
for infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal  
commercial applications. Any other applications such as those requiring extended temperature range, high reliability, or other extraordinary environmental requirements are not recom-  
mended without additional processing by ICS. ICS reserves the right to change any circuitry or specifications without notice. ICS does not authorize or warrant any ICS product for use in  
life support devices or critical medical instruments.  
8533AG-11  
www.icst.com/products/hiperclocks.html  
REV. D JULY 16, 2001  
15  

相关型号:

ICS8533AG-01

LOW SKEW, 1-TO-4 DIFFERENTIAL-TO-3.3V LVPECL FANOUT BUFFER
ICSI

ICS8533AG-01LF

Low Skew Clock Driver, 4 True Output(s), 0 Inverted Output(s), PDSO20, 6.50 X 4.40 MM, 0.92 MM HEIGHT, LEAD FREE, MS-153, TSSOP-20
IDT

ICS8533AG-01LFT

Low Skew Clock Driver, 8533 Series, 4 True Output(s), 0 Inverted Output(s), PDSO20, 6.50 X 4.40 MM, 0.92 MM HEIGHT, ROHS COMPLIANT, MS-153, TSSOP-20
IDT

ICS8533AG-01LNT

Low Skew Clock Driver, 4 True Output(s), 0 Inverted Output(s), PDSO20, 6.50 X 4.40 MM, 0.92 MM HEIGHT, LEAD FREE/ANNEALED, MS-153, TSSOP-20
IDT

ICS8533AG-01T

LOW SKEW, 1-TO-4 DIFFERENTIAL-TO-3.3V LVPECL FANOUT BUFFER
ICSI

ICS8533AG-11

LOW SKEW, 1-TO-4, CRYSTAL OSCILLATOR/ DIFFERENTIAL-TO-3.3V LVPECL FANOUT BUFFER
ICSI

ICS8533AG-11LF

Low Skew Clock Driver, 8533 Series, 4 True Output(s), 0 Inverted Output(s), PDSO20, 6.50 X 4.40 MM, 0.92 MM HEIGHT, LEAD FREE, MS-153, TSSOP-20
IDT

ICS8533AG-11LFT

Low Skew Clock Driver, 8533 Series, 4 True Output(s), 0 Inverted Output(s), PDSO20, 6.50 X 4.40 MM, 0.92 MM HEIGHT, ROHS COMPLIANT, MS-153, TSSOP-20
IDT

ICS8533AG-11T

LOW SKEW, 1-TO-4, CRYSTAL OSCILLATOR/ DIFFERENTIAL-TO-3.3V LVPECL FANOUT BUFFER
ICSI

ICS8533AGI-01

DIFFERENTIAL-TO-3.3V LVPECL FANOUT BUFFER 3.3V operating supply
IDT

ICS8533AGI-01LF

DIFFERENTIAL-TO-3.3V LVPECL FANOUT BUFFER 3.3V operating supply
IDT

ICS8533AGI-01LFT

DIFFERENTIAL-TO-3.3V LVPECL FANOUT BUFFER 3.3V operating supply
IDT