ICS8533AG-01LFT [IDT]

Low Skew Clock Driver, 8533 Series, 4 True Output(s), 0 Inverted Output(s), PDSO20, 6.50 X 4.40 MM, 0.92 MM HEIGHT, ROHS COMPLIANT, MS-153, TSSOP-20;
ICS8533AG-01LFT
型号: ICS8533AG-01LFT
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

Low Skew Clock Driver, 8533 Series, 4 True Output(s), 0 Inverted Output(s), PDSO20, 6.50 X 4.40 MM, 0.92 MM HEIGHT, ROHS COMPLIANT, MS-153, TSSOP-20

驱动 光电二极管 逻辑集成电路
文件: 总17页 (文件大小:271K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ICS8533-01  
LOW SKEW, 1-TO-4  
DIFFERENTIAL-TO-3.3V LVPECL FANOUT BUFFER  
GENERAL DESCRIPTION  
FEATURES  
The ICS8533-01 is a low skew, high performance 1-to-4 Four differential 3.3V LVPECL outputs  
Differential-to-3.3V LVPECL Fanout Buffer. The ICS8533-  
Selectable differential CLK, nCLK or LVPECL clock inputs  
01 has two selectable clock inputs. The CLK, nCLK pair  
can accept most standard differential input levels. The  
PCLK, nPCLK pair can accept LVPECL, CML, or SSTL  
input levels. The clock enable is internally synchronized to  
eliminate runt pulses on the outputs during asynchronous  
assertion/deassertion of the clock enable pin. Guaranteed  
output and part-to-part skew characteristics make the  
ICS8533-01 ideal for those applications demanding well  
defined performance and repeatability.  
CLK, nCLK pair can accept the following differential  
input levels: LVDS, LVPECL, LVHSTL, SSTL, HCSL  
PCLK, nPCLK supports the following input types:  
LVPECL, CML, SSTL  
Maximum output frequency: 650MHz  
Translates any single-ended input signal to 3.3V  
LVPECL levels with resistor bias on nCLK input  
Output skew: 30ps (maximum)  
Part-to-part skew: 150ps (maximum)  
Propagation delay: 1.4ns (maximum)  
Additive phase jitter, RMS: 0.06ps (typical)  
3.3V operating supply  
0°C to 70°C ambient operating temperature  
Lead-Free packages available  
Industrial temperature information available upon request  
BLOCK DIAGRAM  
PIN ASSIGNMENT  
1
2
3
4
5
6
7
8
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
Q0  
VEE  
CLK_EN  
CLK_SEL  
CLK  
nCLK  
PCLK  
nPCLK  
nc  
D
CLK_EN  
nQ0  
VCC  
Q1  
nQ1  
Q2  
nQ2  
VCC  
Q3  
Q
LE  
CLK  
nCLK  
PCLK  
0
1
Q0  
nQ0  
nPCLK  
Q1  
nQ1  
9
10  
nc  
VCC  
CLK_SEL  
nQ3  
Q2  
nQ2  
ICS8533-01  
20-Lead TSSOP  
Q3  
nQ3  
6.5mm x 4.4mm x 0.92mm package body  
G Package  
Top View  
8533AG-01  
www.idt.com  
REV. F AUGUST 4, 2010  
1
ICS8533-01  
LOW SKEW, 1-TO-4  
DIFFERENTIAL-TO-3.3V LVPECL FANOUT BUFFER  
TABLE 1. PIN DESCRIPTIONS  
Number  
Name  
Type  
Description  
1
VEE  
Power  
Input  
Negative supply pin.  
Synchronizing clock enable. When HIGH, clock outputs follow clock input.  
When LOW, Q outputs are forced low, nQ outputs are forced high.  
LVCMOS / LVTTL interface levels.  
Clock select input. When HIGH, selects differential PCLK, nPCLK inputs.  
When LOW, selects CLK, nCLK inputs. LVCMOS / LVTTL interface levels.  
2
CLK_EN  
Pullup  
Pulldown  
3
CLK_SEL  
Input  
4
5
CLK  
nCLK  
Input  
Input  
Pulldown Non-inverting differential clock input.  
Pullup Inverting differential clock input.  
Pulldown Non-inverting differential LVPECL clock input.  
6
PCLK  
Input  
7
nPCLK  
nc  
Input  
Pullup  
Inverting differential LVPECL clock input.  
No connect.  
8, 9  
Unused  
Power  
Output  
Output  
Output  
Output  
10, 13, 18  
11, 12  
14, 15  
16, 17  
19, 20  
VCC  
Positive supply pins.  
nQ3, Q3  
nQ2, Q2  
nQ1, Q1  
nQ0, Q0  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.  
TABLE 2. PIN CHARACTERISTICS  
Symbol  
CIN  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
pF  
Input Capacitance  
Input Pullup Resistor  
4
RPULLUP  
51  
51  
kΩ  
RPULLDOWN Input Pulldown Resistor  
kΩ  
8533AG-01  
www.idt.com  
REV. F AUGUST 4, 2010  
2
ICS8533-01  
LOW SKEW, 1-TO-4  
DIFFERENTIAL-TO-3.3V LVPECL FANOUT BUFFER  
TABLE 3A. CONTROL INPUT FUNCTION TABLE  
Inputs  
Outputs  
CLK_EN  
CLK_SEL  
Selected Source  
CLK, nCLK  
Q0:Q3  
Disabled; LOW  
Disabled; LOW  
Enabled  
nQ0:nQ3  
Disabled; HIGH  
Disabled; HIGH  
Enabled  
0
0
1
1
0
1
0
1
PCLK, nPCLK  
CLK, nCLK  
PCLK, nPCLK  
Enabled  
Enabled  
After CLK_EN switches, the clock outputs are disabled or enabled following a rising and falling input clock edge  
as shown in Figure 1.  
In the active mode, the state of the outputs are a function of the CLK , nCLK and PCLK, nPCLK inputs as described  
in Table 3B.  
Enabled  
Disabled  
nCLK, nPCLK  
CLK, PCLK  
CLK_EN  
nQ0:nQ3  
Q0:Q3  
FIGURE 1. CLK_EN TIMING DIAGRAM  
TABLE 3B. CLOCK INPUT FUNCTION TABLE  
Inputs  
Outputs  
Input to Output Mode  
Polarity  
CLK or PCLK  
nCLK or nPCLK  
Q0:Q3  
LOW  
HIGH  
LOW  
HIGH  
HIGH  
LOW  
nQ0:nQ3  
HIGH  
LOW  
0
1
Differential to Differential  
Differential to Differential  
Single Ended to Differential  
Single Ended to Differential  
Single Ended to Differential  
Single Ended to Differential  
Non Inverting  
Non Inverting  
Non Inverting  
Non Inverting  
Inverting  
1
0
0
Biased; NOTE 1  
HIGH  
LOW  
1
Biased; NOTE 1  
Biased; NOTE 1  
Biased; NOTE 1  
0
1
LOW  
HIGH  
Inverting  
NOTE 1: Please refer to the Application Information section, "Wiring the Differential Input to Accept Single Ended Levels".  
8533AG-01  
www.idt.com  
REV. F AUGUST 4, 2010  
3
ICS8533-01  
LOW SKEW, 1-TO-4  
DIFFERENTIAL-TO-3.3V LVPECL FANOUT BUFFER  
ABSOLUTE MAXIMUM RATINGS  
Supply Voltage, V  
4.6V  
NOTE: Stresses beyond those listed under Absolute  
Maximum Ratings may cause permanent damage to the  
device. These ratings are stress specifications only. Functional  
operation of product at these conditions or any conditions be-  
yond those listed in the DC Characteristics or AC Character-  
istics is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect product reliability.  
CC  
Inputs, V  
-0.5V to VCC + 0.5V  
I
Outputs, IO  
Continuous Current  
Surge Current  
50mA  
100mA  
Package Thermal Impedance, θ  
73.2°C/W (0 lfpm)  
-65°C to 150°C  
JA  
Storage Temperature, T  
STG  
TABLE 4A. POWER SUPPLY DC CHARACTERISTICS, VCC = 3.3V 5ꢀ, TA = 0°C TO 70°C  
Symbol Parameter  
Test Conditions  
Minimum  
Typical  
Maximum Units  
VCC  
IEE  
Positive Supply Voltage  
Power Supply Current  
3.135  
3.3  
3.465  
50  
V
mA  
TABLE 4B. LVCMOS / LVTTL DC CHARACTERISTICS, VCC = 3.3V 5ꢀ, TA = 0°C TO 70°C  
Symbol Parameter  
Test Conditions  
Minimum  
Typical  
Maximum Units  
VIH  
VIL  
Input High Voltage  
2
VEE + 0.3  
V
Input Low Voltage  
-0.3  
0.8  
5
V
CLK_EN  
CLK_SEL  
CLK_EN  
CLK_SEL  
V
IN = VCC = 3.465V  
µA  
µA  
µA  
µA  
IIH  
Input High Current  
VIN = VCC = 3.465V  
150  
VIN = 0V, VCC = 3.465V  
-150  
-5  
IIL  
Input Low Current  
V
IN = 0V, VCC = 3.465V  
TABLE 4C. DIFFERENTIAL DC CHARACTERISTICS, VCC = 3.3V 5ꢀ, TA = 0°C TO 70°C  
Symbol Parameter Test Conditions  
Minimum Typical Maximum Units  
nCLK  
CLK  
V
CC = VIN = 3.465V  
5
µA  
µA  
µA  
µA  
V
IIH  
Input High Current  
VCC = VIN = 3.465V  
150  
nCLK  
CLK  
V
V
CC = 3.465V, VIN = 0V  
CC = 3.465V, VIN = 0V  
-150  
-5  
IIL  
Input Low Current  
VPP  
Peak-to-Peak Input Voltage  
0.15  
1.3  
Common Mode Input Voltage;  
NOTE 1, 2  
VCMR  
VEE + 0.5  
VCC - 0.85  
V
NOTE 1: For single ended applications, the maximum input voltage for CLK and nCLK is VCC + 0.3V.  
NOTE 2: Common mode voltage is defined as VIH.  
8533AG-01  
www.idt.com  
REV. F AUGUST 4, 2010  
4
ICS8533-01  
LOW SKEW, 1-TO-4  
DIFFERENTIAL-TO-3.3V LVPECL FANOUT BUFFER  
TABLE 4D. LVPECL DC CHARACTERISTICS, VCC = 3.3V 5ꢀ, TA = 0°C TO 70°C  
Symbol Parameter  
Test Conditions  
VCC = VIN = 3.465V  
VCC = VIN = 3.465V  
CC = 3.465V, VIN = 0V  
Minimum  
Typical  
Maximum Units  
PCLK  
150  
5
µA  
µA  
µA  
µA  
V
IIH Input High Current  
nPCLK  
PCLK  
V
-5  
-150  
IIL  
Input Low Current  
nPCLK  
VCC = 3.465V, VIN = 0V  
VPP  
Peak-to-Peak Input Voltage  
0.3  
1
VCMR  
VOH  
Common Mode Input Voltage; NOTE 1, 2  
Output High Voltage; NOTE 3  
VEE + 1.5  
VCC - 1.4  
VCC - 2.0  
0.6  
VCC  
V
VCC - 0.9  
VCC - 1.7  
1.0  
V
VOL  
Output Low Voltage; NOTE 3  
V
VSWING  
Peak-to-Peak Output Voltage Swing  
V
NOTE 1: Common mode voltage is defined as VIH.  
NOTE 2: For single ended applications the maximum input voltage for PCLK and nPCLK is VCC + 0.3V.  
NOTE 3: Outputs terminated with 50Ω to VCC - 2V.  
TABLE 5. AC CHARACTERISTICS, VCC = 3.3V 5ꢀ, TA = 0°C TO 70°C  
Symbol Parameter  
Test Conditions  
Minimum Typical Maximum Units  
fMAX  
Output Frequency  
650  
1.4  
30  
MHz  
ns  
tPD  
Propagation Delay; NOTE 1  
Output Skew; NOTE 2, 4  
ƒ650MHz  
1.0  
tsk(o)  
tsk(pp)  
ps  
Part-to-Part Skew; NOTE 3, 4  
150  
ps  
Buffer Additive Phase Jitter, RMS;  
refer to Additive Phase Jitter section,  
NOTE 5  
tjit  
0.06  
ps  
tR / tF  
odc  
Output Rise/Fall Time  
Output Duty Cycle  
20ꢀ to 80ꢀ @ 50MHz  
300  
47  
700  
53  
ps  
All parameters measured at 500MHz unless noted otherwise.  
The cycle to cycle jitter on the input will equal the jitter on the output. The part does not add jitter.  
NOTE 1: Measured from the differential input crossing point to the differential output crossing point.  
NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions.  
Measured at output differential cross points.  
NOTE 3: Defined as skew between outputs on different devices operating at the same supply voltages  
and with equal load conditions. Using the same type of inputs on each device, the outputs are measured  
at the differential cross points.  
NOTE 4: This parameter is defined in accordance with JEDEC Standard 65.  
NOTE 5: Driving only one input clock.  
8533AG-01  
www.idt.com  
REV. F AUGUST 4, 2010  
5
ICS8533-01  
LOW SKEW, 1-TO-4  
DIFFERENTIAL-TO-3.3V LVPECL FANOUT BUFFER  
ADDITIVE PHASE JITTER  
the 1Hz band to the power in the fundamental. When the re-  
quired offset is specified, the phase noise is called a dBc value,  
which simply means dBm at a specified offset from the funda-  
mental. By investigating jitter in the frequency domain, we get a  
better understanding of its effects on the desired application over  
the entire time record of the signal. It is mathematically possible  
to calculate an expected bit error rate given a phase noise plot.  
The spectral purity in a band at a specific offset from the funda-  
mental compared to the power of the fundamental is called the  
dBc Phase Noise. This value is normally expressed using a  
Phase noise plot and is most often the specified plot in many  
applications. Phase noise is defined as the ratio of the noise  
power present in a 1Hz band at a specified offset from the fun-  
damental frequency to the power value of the fundamental. This  
ratio is expressed in decibels (dBm) or a ratio of the power in  
0
-10  
-20  
-30  
-40  
Input/Output Additive Phase Jitter  
at 156.25MHz = 0.06ps (typical)  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-120  
-130  
-140  
-150  
160  
-
-170  
-180  
-
190  
1k  
10k  
100k  
1M  
10M  
100M  
OFFSET FROM CARRIER FREQUENCY (HZ)  
As with most timing specifications, phase noise measurements vice meets the noise floor of what is shown, but can actually be  
have issues. The primary issue relates to the limitations of the lower. The phase noise is dependant on the input source and  
equipment. Often the noise floor of the equipment is higher than measurement equipment.  
the noise floor of the device. This is illustrated above. The de-  
8533AG-01  
www.idt.com  
REV. F AUGUST 4, 2010  
6
ICS8533-01  
LOW SKEW, 1-TO-4  
DIFFERENTIAL-TO-3.3V LVPECL FANOUT BUFFER  
PARAMETER MEASUREMENT INFORMATION  
2V  
VCC  
SCOPE  
VCC  
Qx  
nPCLK, nCLK  
PCLK, CLK  
VEE  
LVPECL  
VEE  
VPP  
VCMR  
Cross Points  
nQx  
-1.3V 0.165  
3.3V OUTPUT LOAD AC TEST CIRCUIT  
DIFFERENTIAL INPUT LEVEL  
nPCLK,  
nCLK  
nQx  
Qx  
PCLK,  
CLK  
nQ0:nQ3  
nQy  
Q0:Q3  
Qy  
tPD  
tsk(o)  
OUTPUT SKEW  
PROPAGATION DELAY  
nQ0:nQ3  
Q0:Q3  
80ꢀ  
tF  
80ꢀ  
VSWING  
20ꢀ  
Pulse Width  
Clock  
20ꢀ  
tPERIOD  
Outputs  
tR  
tPW  
odc =  
tPERIOD  
OUTPUT RISE/FALL TIME  
OUTPUT DUTY CYCLE/PULSE WIDTH/PERIOD  
www.idt.com  
8533AG-01  
REV. F AUGUST 4, 2010  
7
ICS8533-01  
LOW SKEW, 1-TO-4  
DIFFERENTIAL-TO-3.3V LVPECL FANOUT BUFFER  
APPLICATION INFORMATION  
WIRING THE DIFFERENTIAL INPUT TO ACCEPT SINGLE ENDED LEVELS  
Figure 2 shows how the differential input can be wired to accept of R1 and R2 might need to be adjusted to position the V_REF in  
single ended levels. The reference voltage V_REF = VCC/2 is the center of the input voltage swing. For example, if the input  
generated by the bias resistors R1, R2 and C1. This bias circuit clock swing is only 2.5V and VCC = 3.3V, V_REF should be 1.25V  
should be located as close as possible to the input pin. The ratio and R2/R1 = 0.609.  
VCC  
R1  
1K  
CLK_IN  
+
V_REF  
-
C1  
0.1uF  
R2  
1K  
FIGURE 2. SINGLE ENDED SIGNAL DRIVING DIFFERENTIAL INPUT  
TERMINATION FOR LVPECL OUTPUTS  
The clock layout topology shown below is a typical termina-  
tion for LVPECL outputs. The two different layouts mentioned  
are recommended only as guidelines.  
50Ω transmission lines. Matched impedance techniques should  
be used to maximize operating frequency and minimize signal  
distortion. Figures 3A and 3B show two different layouts which  
are recommended only as guidelines. Other suitable clock lay-  
outs may exist and it would be recommended that the board  
designers simulate to guarantee compatibility across all printed  
circuit and clock component process variations.  
FOUT and nFOUT are low impedance follower outputs that gen-  
erate ECL/LVPECL compatible outputs. Therefore, terminating  
resistors (DC current path to ground) or current sources must  
be used for functionality. These outputs are designed to drive  
3.3V  
Zo = 50Ω  
125Ω  
125Ω  
FOUT  
FIN  
Zo = 50Ω  
Zo = 50Ω  
FOUT  
FIN  
50Ω  
50Ω  
Z
o = 50Ω  
VCC - 2V  
1
RTT =  
Zo  
RTT  
84Ω  
84Ω  
((VOH + VOL) / (VCC – 2)) – 2  
FIGURE 3A. LVPECL OUTPUT TERMINATION  
FIGURE 3B. LVPECL OUTPUT TERMINATION  
8533AG-01  
www.idt.com  
REV. F AUGUST 4, 2010  
8
ICS8533-01  
LOW SKEW, 1-TO-4  
DIFFERENTIAL-TO-3.3V LVPECL FANOUT BUFFER  
DIFFERENTIAL CLOCK INPUT INTERFACE  
The CLK /nCLK accepts LVDS, LVPECL, LVHSTL, SSTL, HCSL examples only. Please consult with the vendor of the driver  
and other differential signals. Both VSWING and VOH must meet component to confirm the driver termination requirements. For  
the VPP and VCMR input requirements. Figures 4A to 4E show example in Figure 4A, the input termination applies for LVHSTL  
interface examples for the CLK/nCLK input driven by the most drivers. If you are using an LVHSTL driver from another  
common driver types. The input interfaces suggested here are vendor, use their termination recommendation.  
3.3V  
3.3V  
3.3V  
1.8V  
Zo = 50 Ohm  
CLK  
Zo = 50 Ohm  
CLK  
Zo = 50 Ohm  
nCLK  
Zo = 50 Ohm  
HiPerClockS  
Input  
LVPECL  
nCLK  
HiPerClockS  
Input  
LVHSTL  
R1  
50  
R2  
50  
ICS  
HiPerClockS  
R1  
50  
R2  
50  
LVHSTL Driver  
R3  
50  
FIGURE 4A. CLK/NCLK INPUT DRIVEN BY  
LVHSTL DRIVER  
FIGURE 4B. CLK/NCLK INPUT DRIVEN BY  
3.3V LVPECL DRIVER  
3.3V  
3.3V  
3.3V  
3.3V  
Zo = 50 Ohm  
3.3V  
R3  
125  
R4  
125  
LVDS_Driver  
Zo = 50 Ohm  
Zo = 50 Ohm  
CLK  
CLK  
R1  
100  
nCLK  
Receiv er  
nCLK  
HiPerClockS  
Input  
Zo = 50 Ohm  
LVPECL  
R1  
84  
R2  
84  
FIGURE 4C. CLK/NCLK INPUT DRIVEN BY  
3.3V LVPECL DRIVER  
FIGURE 4D. CLK/NCLK INPUT DRIVEN BY  
3.3V LVDS DRIVER  
3.3V  
3.3V  
3.3V  
R3  
125  
R4  
125  
C1  
LVPECL  
Zo = 50 Ohm  
Zo = 50 Ohm  
CLK  
C2  
nCLK  
HiPerClockS  
Input  
R5  
100 - 200  
R6  
100 - 200  
R1  
84  
R2  
84  
R5,R6 locate near the driver pin.  
FIGURE 4E. CLK/NCLK INPUT DRIVEN BY  
3.3V LVPECL DRIVER WITH AC COUPLE  
8533AG-01  
www.idt.com  
REV. F AUGUST 4, 2010  
9
ICS8533-01  
LOW SKEW, 1-TO-4  
DIFFERENTIAL-TO-3.3V LVPECL FANOUT BUFFER  
LVPECL CLOCK INPUT INTERFACE  
The PCLK /nPCLK accepts LVPECL, CML, SSTL and other are examples only. If the driver is from another vendor, use  
differential signals. Both VSWING and VOH must meet the VPP their termination recommendation. Please consult with the  
and VCMR input requirements. Figures 5A to 5F show interface vendor of the driver component to confirm the driver  
examples for the PCLK/nPCLK input driven by the most termination requirements.  
common driver types. The input interfaces suggested here  
3.3V  
3.3V  
3.3V  
3.3V  
3.3V  
R1  
50  
R2  
50  
Zo = 50 Ohm  
Zo = 50 Ohm  
CML  
Zo = 50 Ohm  
Zo = 50 Ohm  
PCLK  
PCLK  
nPCLK  
R1  
100  
nPCLK  
HiPerClockS  
HiPerClockS  
PCLK/nPCLK  
PCLK/nPCLK  
CML Built-In Pullup  
FIGURE 5A. PCLK/nPCLK INPUT DRIVEN  
FIGURE 5B. PCLK/nPCLK INPUT DRIVEN  
BY AN OPEN COLLECTOR CML DRIVER  
BY A BUILT-IN PULLUP CML DRIVER  
3.3V  
3.3V  
3.3V  
3.3V  
3.3V  
3.3V  
R3  
125  
R4  
125  
R3  
84  
R4  
84  
C1  
C2  
Zo = 50 Ohm  
Zo = 50 Ohm  
3.3V LVPECL  
Zo = 50 Ohm  
Zo = 50 Ohm  
PCLK  
PCLK  
nPCLK  
HiPerClockS  
PCLK/nPCLK  
nPCLK  
HiPerClockS  
Input  
LVPECL  
R5  
100 - 200  
R6  
100 - 200  
R1  
125  
R2  
125  
R1  
84  
R2  
84  
FIGURE 5C. PCLK/nPCLK INPUT DRIVEN  
BY A 3.3V LVPECL DRIVER  
FIGURE 5D. PCLK/nPCLK INPUT DRIVEN  
BY A 3.3V LVPECL DRIVER WITH AC COUPLE  
3.3V  
2.5V  
3.3V  
3.3V  
3.3V  
2.5V  
Zo = 50 Ohm  
R3  
1K  
R4  
1K  
R3  
120  
R4  
120  
C1  
C2  
LVDS  
SSTL  
Zo = 60 Ohm  
Zo = 60 Ohm  
PCLK  
PCLK  
R5  
100  
nPCLK  
nPCLK  
Zo = 50 Ohm  
HiPerClockS  
PCLK/nPCLK  
HiPerClockS  
PCLK/nPCLK  
R1  
1K  
R2  
1K  
R1  
120  
R2  
120  
FIGURE 5E. PCLK/nPCLK INPUT DRIVEN  
BY AN SSTL DRIVER  
FIGURE 5F. PCLK/nPCLK INPUT DRIVEN  
BY A 3.3V LVDS DRIVER  
8533AG-01  
www.idt.com  
REV. F AUGUST 4, 2010  
10  
ICS8533-01  
LOW SKEW, 1-TO-4  
DIFFERENTIAL-TO-3.3V LVPECL FANOUT BUFFER  
POWER CONSIDERATIONS  
This section provides information on power dissipation and junction temperature for the ICS8533-01.  
Equations and example calculations are also provided.  
1. Power Dissipation.  
The total power dissipation for the ICS8533-01 is the sum of the core power plus the power dissipated in the load(s).  
The following is the power dissipation for VCC = 3.3V + 5% = 3.465V, which gives worst case results.  
NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.  
Power (core)MAX = VCC_MAX * IEE_MAX = 3.465V * 50mA = 173.3mW  
Power (outputs)MAX = 30mW/Loaded Output pair  
If all outputs are loaded, the total power is 4 * 30mW = 120mW  
Total Power_MAX (3.465V, with all outputs switching) = 173.3mW + 120mW = 293.3mW  
2. Junction Temperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the  
device. The maximum recommended junction temperature for the devices is 125°C.  
The equation for Tj is as follows: Tj = θJA * Pd_total + TA  
Tj = Junction Temperature  
θJA = Junction-to-Ambient Thermal Resistance  
Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)  
TA = Ambient Temperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θJA must be used. Assuming a  
moderate air flow of 200 linear feet per minute and a multi-layer board, the appropriate value is 66.6°C/W per Table 6 below.  
Therefore, Tj for an ambient temperature of 70°C with all outputs switching is:  
70°C + 0.293W * 66.6°C/W = 89.5°C. This is well below the limit of 125°C.  
This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow,  
and the type of board (single layer or multi-layer).  
TABLE 6. THERMAL RESISTANCE θJA FOR 20-PIN TSSOP, FORCED CONVECTION  
θJA by Velocity (Linear Feet per Minute)  
0
200  
98.0°C/W  
66.6°C/W  
500  
88.0°C/W  
63.5°C/W  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
114.5°C/W  
73.2°C/W  
NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.  
8533AG-01  
www.idt.com  
REV. F AUGUST 4, 2010  
11  
ICS8533-01  
LOW SKEW, 1-TO-4  
DIFFERENTIAL-TO-3.3V LVPECL FANOUT BUFFER  
3. Calculations and Equations.  
The purpose of this section is to derive the power dissipated into the load.  
LVPECL output driver circuit and termination are shown in Figure 6.  
VCC  
Q1  
VOUT  
RL  
50  
VCC - 2V  
FIGURE 6. LVPECL DRIVER CIRCUIT AND TERMINATION  
To calculate worst case power dissipation into the load, use the following equations which assume a 50Ω load, and a termination  
voltage of V - 2V.  
CC  
For logic high, VOUT = V  
= V  
– 0.9V  
OH_MAX  
CC_MAX  
)
= 0.9V  
OH_MAX  
(V  
- V  
CC_MAX  
For logic low, VOUT = V  
= V  
– 1.7V  
OL_MAX  
CC_MAX  
)
= 1.7V  
OL_MAX  
(V  
- V  
CC_MAX  
Pd_H is power dissipation when the output drives high.  
Pd_L is the power dissipation when the output drives low.  
))  
Pd_H = [(V  
– (V  
- 2V))/R ] * (V  
- V  
) = [(2V - (V  
- V  
- V  
/R ] * (V  
- V  
) =  
OH_MAX  
CC_MAX  
CC_MAX  
OH_MAX  
CC_MAX  
OH_MAX  
CC_MAX  
OH_MAX  
L
L
[(2V - 0.9V)/50Ω] * 0.9V = 19.8mW  
))  
Pd_L = [(V  
– (V  
- 2V))/R ] * (V  
- V  
) = [(2V - (V  
/R ] * (V  
- V  
) =  
OL_MAX  
CC_MAX  
CC_MAX  
OL_MAX  
CC_MAX  
OL_MAX  
CC_MAX  
OL_MAX  
L
L
[(2V - 1.7V)/50Ω] * 1.7V = 10.2mW  
Total Power Dissipation per output pair = Pd_H + Pd_L = 30mW  
8533AG-01  
www.idt.com  
REV. F AUGUST 4, 2010  
12  
ICS8533-01  
LOW SKEW, 1-TO-4  
DIFFERENTIAL-TO-3.3V LVPECL FANOUT BUFFER  
RELIABILITY INFORMATION  
TABLE 7. θJAVS. AIR FLOW TABLE FOR 20 LEAD TSSOP  
θJA by Velocity (Linear Feet per Minute)  
0
200  
98.0°C/W  
66.6°C/W  
500  
88.0°C/W  
63.5°C/W  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
114.5°C/W  
73.2°C/W  
NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.  
TRANSISTOR COUNT  
The transistor count for ICS8533-01 is: 404  
8533AG-01  
www.idt.com  
REV. F AUGUST 4, 2010  
13  
ICS8533-01  
LOW SKEW, 1-TO-4  
DIFFERENTIAL-TO-3.3V LVPECL FANOUT BUFFER  
PACKAGE OUTLINE - G SUFFIX FOR 20 LEAD TSSOP  
TABLE 8. PACKAGE DIMENSIONS  
Millimeters  
Minimum Maximum  
SYMBOL  
N
A
20  
--  
1.20  
0.15  
1.05  
0.30  
0.20  
6.60  
A1  
A2  
b
0.05  
0.80  
0.19  
0.09  
6.40  
c
D
E
6.40 BASIC  
0.65 BASIC  
E1  
e
4.30  
4.50  
L
0.45  
0°  
0.75  
8°  
α
aaa  
--  
0.10  
Reference Document: JEDEC Publication 95, MS-153  
8533AG-01  
www.idt.com  
REV. F AUGUST 4, 2010  
14  
ICS8533-01  
LOW SKEW, 1-TO-4  
DIFFERENTIAL-TO-3.3V LVPECL FANOUT BUFFER  
TABLE 9. ORDERING INFORMATION  
Part/Order Number  
8533AG-01  
Marking  
Package  
Shipping Packaging Temperature  
ICS8533AG-01  
ICS8533AG-01  
ICS8533A01LN  
ICS8533A01LN  
ICS8533A01LF  
ICS8533A01LF  
20 lead TSSOP  
tube  
0°C to 70°C  
0°C to70°C  
0°C to 70°C  
0°C to70°C  
0°C to 70°C  
0°C to70°C  
8533AG-01T  
20 lead TSSOP  
2500 tape & reel  
tube  
8533AG-01LN  
8533AG-01LNT  
8533AG-01LF  
8533AG-01LFT  
20 lead "Lead Free/Annealed" TSSOP  
20 lead "Lead Free/Annealed" TSSOP  
20 lead "Lead Free" TSSOP  
20 lead "Lead Free" TSSOP  
2500 tape & reel  
tube  
2500 tape & reel  
NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.  
While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology, Inc. (IDT) assumes no responsibility for either its use or for infringement of  
any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial and industrial  
applications. Any other applications such as those requiring high reliability, or other extraordinary environmental requirements are not recommended without additional processing by IDT. IDT reserves  
the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support devices or critical medical instruments.  
8533AG-01  
www.idt.com  
REV. F AUGUST 4, 2010  
15  
ICS8533-01  
LOW SKEW, 1-TO-4  
DIFFERENTIAL-TO-3.3V LVPECL FANOUT BUFFER  
REVISION HISTORY SHEET  
Description of Change  
VPP values changed from 0.1 Min. to 0.15 Min.  
Rev  
Table  
4C  
Page  
4
Date  
VCMR values changed from 0.13 Min., 1.3 Max. to 1.5 Min, VCC Max.  
4D  
5
5
5
Deleted VIH and VIL rows.  
B
5/22/01  
tR values changed from 100 Min. to 300 Min, and added 700 Max.  
tF values changed from 100 Min., 600 Max. to 300 Min. to 700 Max.  
For tR and tF rows changed test conditions from 30ꢀ to 70ꢀ to 20ꢀ to 80ꢀ.  
tjit(cc) values changed 150 Max. to 0 Max.  
B
B
5
5
5
Deleted tS and tH rows.  
6/4/01  
V
PP values changed from 0.15 Min., 1.3 Max. to 0.3 Min., 1 Max.  
VCMR values changed from 1.5 Min., to VEE + 1.5 Min.  
VIH values changed from 3.765 Max. to VCC + 0.3 Max.  
4D  
6/28/01  
4B  
5
4
5
C
10/15/01  
Deleted tjit(cc) row.  
C
C
C
6, 7  
3
Revised Parameter Measurement diagrams.  
Updated Figure 1, CLK_EN Timing Diagram.  
Added Termination for LVPECL Outputs section.  
Output Load Test Circuit diagram - corrected VEE equation to read,  
10/18/01  
11/1/01  
5/28/02  
8
C
D
6
10/03/02  
10/12/03  
VEE = -1.3V 0.165V from VEE = -1.3V 0.135V.  
1
2
Added RMS Jitter to Features section.  
T2  
Pin Characteristics Table - changed CIN 4pF max. to 4pF typical.  
Changed Outputs Absolute Maximum Rating.  
LVPECL Table - changed VSWING 0.85V max. to 1.0V max.  
AC Characteristics Table - added RMS jitter.  
Added Additive Phase Jitter Section.  
4
T4D  
T5  
5
5
6
8
Updated LVPECL Output Termination diagrams.  
Added Differential Clock Input Interface.  
9
10  
Added LVPECL Clock Input Interface.  
Updated format throughout data sheet.  
D
D
T9  
15  
Added Lead Free Annealed part number to Ordering Information table.  
2/9/04  
10  
15  
5
Updated LVPECL Clock Input Interface section.  
6/17/04  
T9  
T4D  
Ordering Information Table - added Lead Free part number.  
LVPECL DC Characteristics Table -corrected VOH max. from VCC - 1.0V to  
VCC- 0.9V.  
E
F
11 - 12 Power Considerations - corrected power dissipation to reflect VOH max in  
Table 4D.  
4/12/07  
8/4/10  
T9  
T9  
15  
Ordering Information Table - added lead-free note.  
Updated datasheet's header/footer with IDT from ICS.  
Removed ICS prefix from Part/Order Number column.  
Added Contact Page.  
15  
17  
8533AG-01  
www.idt.com  
REV. F AUGUST 4, 2010  
16  
ICS8533-01  
LOW SKEW, 1-TO-4  
DIFFERENTIAL-TO-3.3V LVPECL FANOUT BUFFER  
We’ve Got Your Timing Solution.  
6024 Silver Creek Valley Road  
San Jose, CA 95138  
Sales  
Tech Support  
netcom@idt.com  
800-345-7015 (inside USA)  
+408-284-8200 (outside USA)  
Fax: 408-284-2775  
© 2010 Integrated Device Technology, Inc. All rights reserved. Product specifications subject to change without notice. IDT, the IDT logo, ICS and HiPerClockS are trademarks of Integrated Device Technology, Inc.  
Accelerated Thinking is a service mark of Integrated Device Technology, Inc. All other brands, product names and marks are or may be trademarks or registered trademarks used to identify products or services of  
their respective owners.  
Printed in USA  
8533AG-01  
www.idt.com  
REV. F AUGUST 4, 2010  
17  

相关型号:

ICS8533AG-01LNT

Low Skew Clock Driver, 4 True Output(s), 0 Inverted Output(s), PDSO20, 6.50 X 4.40 MM, 0.92 MM HEIGHT, LEAD FREE/ANNEALED, MS-153, TSSOP-20
IDT

ICS8533AG-01T

LOW SKEW, 1-TO-4 DIFFERENTIAL-TO-3.3V LVPECL FANOUT BUFFER
ICSI

ICS8533AG-11

LOW SKEW, 1-TO-4, CRYSTAL OSCILLATOR/ DIFFERENTIAL-TO-3.3V LVPECL FANOUT BUFFER
ICSI

ICS8533AG-11LF

Low Skew Clock Driver, 8533 Series, 4 True Output(s), 0 Inverted Output(s), PDSO20, 6.50 X 4.40 MM, 0.92 MM HEIGHT, LEAD FREE, MS-153, TSSOP-20
IDT

ICS8533AG-11LFT

Low Skew Clock Driver, 8533 Series, 4 True Output(s), 0 Inverted Output(s), PDSO20, 6.50 X 4.40 MM, 0.92 MM HEIGHT, ROHS COMPLIANT, MS-153, TSSOP-20
IDT

ICS8533AG-11T

LOW SKEW, 1-TO-4, CRYSTAL OSCILLATOR/ DIFFERENTIAL-TO-3.3V LVPECL FANOUT BUFFER
ICSI

ICS8533AGI-01

DIFFERENTIAL-TO-3.3V LVPECL FANOUT BUFFER 3.3V operating supply
IDT

ICS8533AGI-01LF

DIFFERENTIAL-TO-3.3V LVPECL FANOUT BUFFER 3.3V operating supply
IDT

ICS8533AGI-01LFT

DIFFERENTIAL-TO-3.3V LVPECL FANOUT BUFFER 3.3V operating supply
IDT

ICS8533AGI-01T

DIFFERENTIAL-TO-3.3V LVPECL FANOUT BUFFER 3.3V operating supply
IDT

ICS8533AGI-31LF

Clock Generator, 650MHz, PDSO20, 6.50 X 4.40 MM, 0.925 MM HEIGHT, ROHS COMPLIANT, MO-153, TSSOP-20
IDT

ICS8533AGI-31T

Clock Generator, 650MHz, PDSO20, 6.50 X 4.40 MM, 0.925 MM HEIGHT, MO-153, TSSOP-20
IDT