ICS8533AG-11LF [IDT]

Low Skew Clock Driver, 8533 Series, 4 True Output(s), 0 Inverted Output(s), PDSO20, 6.50 X 4.40 MM, 0.92 MM HEIGHT, LEAD FREE, MS-153, TSSOP-20;
ICS8533AG-11LF
型号: ICS8533AG-11LF
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

Low Skew Clock Driver, 8533 Series, 4 True Output(s), 0 Inverted Output(s), PDSO20, 6.50 X 4.40 MM, 0.92 MM HEIGHT, LEAD FREE, MS-153, TSSOP-20

驱动 光电二极管 逻辑集成电路
文件: 总16页 (文件大小:429K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATA SHEET  
ICS8533-11  
LOW SKEW, 1-TO-4 CRYSTAL  
OSCILLATOR/DIFFERENTIAL-TO-3.3V LVPECL FANOUT  
GENERAL DESCRIPTION  
ICS  
FEATURES  
The ICS8533-11 is a low skew, high performance  
1-to-4 Crystal Oscillator/Differential-to-3.3V  
LVPECL fanout buffer and a member of the  
HiPerClockS™family of High Performance Clock  
Solutions from ICS.The ICS8533-11 has select-  
4 differential 3.3V LVPECL outputs  
Selectable differential CLK, nCLK or crystal inputs  
HiPerClockS™  
CLK, nCLK pair can accept the following differential  
input levels: LVPECL, LVDS, LVHSTL, SSTL, HCSL  
able differential clock or crystal inputs. The CLK, nCLK pair  
can accept most standard differential input levels. The clock  
enable is internally synchronized to eliminate runt pulses on  
the outputs during asynchronous assertion/deassertion of the  
clock enable pin.  
Maximum output frequency: 650MHz  
Translates any single-ended input signal to 3.3V  
LVPECL levels with resistor bias on nCLK input  
Output skew: 30ps (maximum)  
Part-to-part skew: 150ps (maximum)  
Propagation delay: 2ns (maximum)  
3.3V operating supply  
Guaranteed output and part-to-part skew characteristics  
make the ICS8533-11 ideal for those applications demand-  
ing well defined performance and repeatability.  
0°C to 70°C ambient operating temperature  
Industrial temperature information available upon request  
Lead-Free package fully RoHS compliant  
BLOCK DIAGRAM  
PIN ASSIGNMENT  
D
CLK_EN  
VEE  
CLK_EN  
CLK_SEL  
CLK  
nCLK  
XTAL1  
XTAL2  
nc  
Q0  
1
2
3
4
5
6
7
8
9
10  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
Q
nQ0  
VCC  
Q1  
nQ1  
Q2  
nQ2  
VCC  
Q3  
LE  
CLK  
nCLK  
XTAL1  
0
1
Q0  
nQ0  
XTAL2  
Q1  
nQ1  
CLK_SEL  
nc  
VCC  
Q2  
nQ2  
nQ3  
ICS8533-11  
20-Lead TSSOP  
Q3  
nQ3  
6.5mm x 4.4mm x 0.92 package body  
G Package  
TopView  
IDT™ / ICS™ LOW SKEW, 1-TO-4 CRYSTAL OSCILLATOR/DIFFERENTIAL-TO-3.3V LVPECL FANOUT BUFFER  
ICS8533-11  
1
ICS8533-11  
LOW SKEW, 1-TO-4CRYSTALOSCILLATOR/DIFFERENTIAL-TO-3.3V LVPECL FANOUT BUFFER  
TSD  
TABLE 1. PIN DESCRIPTIONS  
Number  
Name  
Type  
Description  
1
VEE  
Power  
Input  
Negative supply pin.  
Synchronizing clock enable. When HIGH, clock outputs follows clock input.  
When LOW, Q outputs are forced low, nQ outputs are forced high.  
LVCMOS / LVTTL interface levels.  
Clock select input. When LOW, selects CLK, nCLK input.  
When HIGH, selects XTAL input. LVCMOS / LVTTL interface levels.  
2
CLK_EN  
Pullup  
Pulldown  
3
CLK_SEL  
Input  
4
5
CLK  
nCLK  
Input  
Input  
Pulldown Non-inverting differential clock input.  
Pullup Inverting differential clock input.  
Pulldown Crystal oscillator input.  
6
XTAL1  
XTAL2  
nc  
Input  
7
Input  
Pullup  
Crystal oscillator input.  
8, 9  
Unused  
Power  
Output  
Output  
Output  
Output  
No connect.  
10, 13, 18  
11, 12  
14, 15  
16, 17  
19, 20  
VCC  
Positive supply pins.  
nQ3, Q3  
nQ2, Q2  
nQ1, Q1  
nQ0, Q0  
Differential clock outputs. LVPECL interface levels.  
Differential clock outputs. LVPECL interface levels.  
Differential clock outputs. LVPECL interface levels.  
Differential clock outputs. LVPECL interface levels.  
NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin characteristics, for typical values.  
TABLE 2. PIN CHARACTERISTICS  
Symbol  
CIN  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum Units  
Input Capacitance  
Input Pullup Resistor  
4
pF  
K  
KΩ  
RPULLUP  
51  
51  
RPULLDOWN Input Pulldown Resistor  
IDT™ / ICS™ LOW SKEW, 1-TO-4 CRYSTAL OSCILLATOR/DIFFERENTIAL-TO-3.3V LVPECL FANOUT BUFFER  
ICS8533-11  
2
ICS8533-11  
LOW SKEW, 1-TO-4CRYSTALOSCILLATOR/DIFFERENTIAL-TO-3.3V LVPECL FANOUT BUFFER  
TSD  
TABLE 3A. CONTROL INPUT FUNCTION TABLE  
Inputs  
Outputs  
CLK_EN  
CLK_SEL  
Selected Source  
CLK, nCLK  
Q0:Q3  
Disabled; LOW  
Disabled; LOW  
Enabled  
nQ0:nQ3  
0
0
1
1
0
1
0
1
Disabled; HIGH  
Disabled; HIGH  
Enabled  
XTAL1, XTAL2  
CLK, nCLK  
XTAL1, XTAL2  
Enabled  
Enabled  
After CLK_EN switches, the clock outputs are disabled or enabled folowing a rising and falling input clock or  
crystal oscillator edge as shown in Figure 1.  
In the active mode, the state of the outputs are a function of the CLK, nCLK and XTAL1, XTAL2 inputs as described  
in Table 3B.  
Enabled  
Disabled  
nCLK  
CLK  
CLK_EN  
nQ0:nQ3  
Q0:Q3  
FIGURE 1. CLK_EN TIMING  
DIAGRAM  
TABLE 3B. CLOCK INPUT FUNCTION TABLE  
Inputs  
Outputs  
Input to Output Mode  
Polarity  
CLK  
nCLK  
Q0:Q3  
LOW  
HIGH  
LOW  
HIGH  
HIGH  
LOW  
nQ0:nQ3  
HIGH  
LOW  
0
1
Differential to Differential  
Differential to Differential  
Single Ended to Differential  
Single Ended to Differential  
Single Ended to Differential  
Single Ended to Differential  
Non Inverting  
Non Inverting  
Non Inverting  
Non Inverting  
Inverting  
1
0
0
Biased; NOTE 1  
HIGH  
LOW  
1
Biased; NOTE 1  
Biased; NOTE 1  
Biased; NOTE 1  
0
1
LOW  
HIGH  
Inverting  
NOTE 1: Please refer to the Application Information section, "Wiring the Differential Input to Accept Single Ended Levels".  
IDT™ / ICS™ LOW SKEW, 1-TO-4 CRYSTAL OSCILLATOR/DIFFERENTIAL-TO-3.3V LVPECL FANOUT BUFFER  
ICS8533-11  
3
ICS8533-11  
LOW SKEW, 1-TO-4CRYSTALOSCILLATOR/DIFFERENTIAL-TO-3.3V LVPECL FANOUT BUFFER  
TSD  
ABSOLUTE MAXIMUM RATINGS  
SupplyVoltage, V  
4.6V  
NOTE: Stresses beyond those listed under Absolute  
Maximum Ratings may cause permanent damage to the  
device.These ratings are stress specifications only.Functional  
operation of product at these conditions or any conditions be-  
yond those listed in the DC Characteristics or AC Character-  
istics is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect product reliability.  
CC  
Inputs, V  
-0.5V to VCC + 0.5V  
I
Outputs, IO  
Continuous Current  
Surge Current  
50mA  
100mA  
PackageThermal Impedance, θ  
73.2°C/W (0 lfpm)  
-65°C to 150°C  
JA  
StorageTemperature, T  
STG  
TABLE 4A. POWER SUPPLY DC CHARACTERISTICS, VCC = 3.3V 5ꢀ, TA = 0°C TO 70°C  
Symbol Parameter  
Test Conditions  
Minimum  
Typical  
Maximum Units  
VCC  
IEE  
Power Supply Voltage  
Power Supply Current  
3.135  
3.3  
3.465  
50  
V
mA  
TABLE 4B. LVCMOS / LVTTL DC CHARACTERISTICS, VCC = 3.3V 5ꢀ, TA = 0°C TO 70°C  
Symbol  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum Units  
CLK_EN,  
CLK_SEL  
CLK_EN,  
CLK_SEL  
VIH  
Input High Voltage  
2
V
CC + 0.3  
V
V
VIL  
IIH  
Input Low Voltage  
Input High Current  
-0.3  
0.8  
CLK_EN  
CLK_SEL  
CLK_EN  
CLK_SEL  
V
IN = VCC = 3.465V  
5
µA  
µA  
µA  
µA  
VIN = VCC = 3.465V  
150  
VIN = 0V, VCC = 3.465V  
-150  
-5  
IIL  
Input Low Current  
V
IN = 0V, VCC = 3.465V  
TABLE 4C. DIFFERENTIAL DC CHARACTERISTICS, VCC = 3.3V 5ꢀ, TA = 0°C TO 70°C  
Symbol  
Parameter  
Test Conditions  
VCC = VIN = 3.465V  
VCC = VIN = 3.465V  
VCC = 3.465V, VIN = 0V  
VCC = 3.465V, VIN = 0V  
Minimum Typical Maximum Units  
nCLK  
CLK  
5
µA  
µA  
µA  
µA  
V
IIH  
Input High Current  
150  
nCLK  
CLK  
-150  
-5  
IIL  
Input Low Current  
VPP  
Peak-to-Peak Input Voltage  
0.15  
1.3  
Common Mode Input Voltage;  
NOTE 1, 2  
VCMR  
V
EE + 0.5  
VCC - 0.85  
V
NOTE1: For single ended applications the maximum input voltage for CLK and nCLK is VCC + 0.3V.  
NOTE 2: Common mode voltage is defined as VIH.  
IDT™ / ICS™ LOW SKEW, 1-TO-4 CRYSTAL OSCILLATOR/DIFFERENTIAL-TO-3.3V LVPECL FANOUT BUFFER  
ICS8533-11  
4
ICS8533-11  
LOW SKEW, 1-TO-4CRYSTALOSCILLATOR/DIFFERENTIAL-TO-3.3V LVPECL FANOUT BUFFER  
TSD  
TABLE 4D. LVPECL DC CHARACTERISTICS, VCC = 3.3V 5ꢀ, TA = 0°C TO 70°C  
Symbol Parameter Test Conditions  
Minimum  
VCC - 1.4  
VCC - 2.0  
0.6  
Typical  
Maximum Units  
VOH  
Output High Voltage; NOTE 1  
VCC - 1.0  
VCC - 1.7  
1.0  
V
V
V
VOL  
Output Low Voltage; NOTE 1  
VSWING  
Peak-to-Peak Output Voltage Swing  
NOTE 1: Outputs terminated with 50to VCC - 2V.  
TABLE 5. CRYSTAL CHARACTERISTICS  
Parameter  
Test Conditions  
Minimum Typical Maximum Units  
Mode of Oscillation  
Frequency  
Fundamental  
14  
25  
50  
7
MHz  
Equivalent Series Resistance (ESR)  
Shunt Capacitance  
pF  
TABLE 6. AC CHARACTERISTICS, VCC = 3.3V 5ꢀ, TA = 0°C TO 70°C  
Symbol Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
650  
Units  
MHz  
ns  
fMAX  
Output Frequency  
tPD  
Propagation Delay; NOTE 1  
Output Skew; NOTE 2, 5  
Part-to-Part Skew; NOTE 3, 5  
Output Rise/Fall Time  
ƒ650MHz  
1.0  
2.0  
tsk(o)  
tsk(pp)  
tR / tF  
odc  
30  
ps  
150  
ps  
20ꢀ to 80ꢀ @ 50MHz  
300  
47  
700  
ps  
Output Duty Cycle; NOTE 4  
50  
53  
All parameters measured at 500MHz unless noted otherwise.  
The cycle-to-cycle jitter on the input will equal the jitter on the output. The part does not add jitter.  
NOTE 1: Measured from the differential input crossing point to the differential output crossing point.  
NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions.  
Measured at the output differential cross points.  
NOTE 3: Defined as skew between outputs on different devices operating at the same supply voltages  
and with equal load conditions. Using the same type of inputs on each device, the outputs are measured  
at the differential cross points.  
NOTE 4: Measured using CLK. For XTAL input, refer to Application Note.  
NOTE 5: This parameter is defined in accordance with JEDEC Standard 65.  
IDT™ / ICS™ LOW SKEW, 1-TO-4 CRYSTAL OSCILLATOR/DIFFERENTIAL-TO-3.3V LVPECL FANOUT BUFFER  
ICS8533-11  
5
ICS8533-11  
LOW SKEW, 1-TO-4CRYSTALOSCILLATOR/DIFFERENTIAL-TO-3.3V LVPECL FANOUT BUFFER  
TSD  
PARAMETER MEASUREMENT INFORMATION  
2V  
VCC  
SCOPE  
VCC  
Qx  
nCLK  
LVPECL  
VEE  
VPP  
VCMR  
Cross Points  
nQx  
CLK  
VEE  
-1.3V 0.165V  
3.3V OUTPUT LOAD AC TEST CIRCUIT  
DIFFERENTIAL INPUT LEVEL  
nQx  
Qx  
nCLK  
CLK  
nQ0:nQ3  
nQy  
Q0:Q3  
Qy  
tPD  
tsk(o)  
OUTPUT SKEW  
PROPAGATION DELAY  
nQ0:nQ3  
80ꢀ  
tF  
80ꢀ  
Q0:Q3  
VSWING  
20ꢀ  
Pulse Width  
tPERIOD  
Clock  
20ꢀ  
Outputs  
tR  
tPW  
odc =  
tPERIOD  
OUTPUT DUTY CYCLE/PULSE WIDTH/PERIOD  
OUTPUT RISE/FALL TIME  
IDT™ / ICS™ LOW SKEW, 1-TO-4 CRYSTAL OSCILLATOR/DIFFERENTIAL-TO-3.3V LVPECL FANOUT BUFFER  
ICS8533-11  
6
ICS8533-11  
LOW SKEW, 1-TO-4CRYSTALOSCILLATOR/DIFFERENTIAL-TO-3.3V LVPECL FANOUT BUFFER  
TSD  
APPLICATION INFORMATION  
WIRING THE DIFFERENTIAL INPUT TO ACCEPT SINGLE ENDED LEVELS  
of R1 and R2 might need to be adjusted to position theV_REF in  
the center of the input voltage swing. For example, if the input  
clock swing is only 2.5V andVCC = 3.3V, V_REF should be 1.25V  
and R2/R1 = 0.609.  
Figure 2 shows how the differential input can be wired to accept  
single ended levels. The reference voltage V_REF ~ VCC/2 is  
generated by the bias resistors R1, R2 and C1.This bias circuit  
should be located as close as possible to the input pin.The ratio  
VCC  
R1  
1K  
Single Ended Clock Input  
V_REF  
CLK  
nCLK  
C1  
0.1u  
R2  
1K  
FIGURE 2. SINGLE ENDED SIGNAL DRIVING DIFFERENTIAL INPUT  
TERMINATION FOR LVPECL OUTPUTS  
The clock layout topology shown below is a typical termina- 50transmission lines. Matched impedance techniques should  
tion for LVPECL outputs.The two different layouts mentioned be used to maximize operating frequency and minimize signal  
are recommended only as guidelines.  
distortion. Figures 3A and 3B show two different layouts which  
are recommended only as guidelines. Other suitable clock lay-  
outs may exist and it would be recommended that the board  
designers simulate to guarantee compatibility across all printed  
circuit and clock component process variations.  
FOUT and nFOUT are low impedance follower outputs that gen-  
erate ECL/LVPECL compatible outputs.Therefore, terminating  
resistors (DC current path to ground) or current sources must  
be used for functionality. These outputs are designed to drive  
3.3V  
Zo = 50  
125  
125Ω  
FOUT  
FIN  
Zo = 50Ω  
Zo = 50Ω  
Zo = 50Ω  
FOUT  
FIN  
50Ω  
50Ω  
VCC - 2V  
1
RTT =  
Zo  
RTT  
((VOH + VOL) / (VCC – 2)) – 2  
84Ω  
84Ω  
FIGURE 3A. LVPECL OUTPUT TERMINATION  
FIGURE 3B. LVPECL OUTPUT TERMINATION  
IDT™ / ICS™ LOW SKEW, 1-TO-4 CRYSTAL OSCILLATOR/DIFFERENTIAL-TO-3.3V LVPECL FANOUT BUFFER  
ICS8533-11  
7
ICS8533-11  
LOW SKEW, 1-TO-4CRYSTALOSCILLATOR/DIFFERENTIAL-TO-3.3V LVPECL FANOUT BUFFER  
TSD  
DIFFERENTIAL CLOCK INPUT INTERFACE  
The CLK /nCLK accepts LVDS, LVPECL, LVHSTL, SSTL, HCSL here are examples only. Please consult with the vendor of the  
and other differential signals.BothVSWING and VOH must meet the driver component to confirm the driver termination requirements.  
VPP and VCMR input requirements. Figures 4A to 4E show inter- For example in Figure 4A, the input termination applies for ICS  
face examples for the HiPerClockS CLK/nCLK input driven by HiPerClockS LVHSTL drivers.If you are using an LVHSTL driver  
the most common driver types.The input interfaces suggested from another vendor, use their termination recommendation.  
3.3V  
3.3V  
3.3V  
1.8V  
Zo = 50 Ohm  
CLK  
Zo = 50 Ohm  
CLK  
Zo = 50 Ohm  
nCLK  
Zo = 50 Ohm  
HiPerClockS  
Input  
LVPECL  
nCLK  
HiPerClockS  
Input  
LVHSTL  
R1  
50  
R2  
50  
ICS  
HiPerClockS  
R1  
50  
R2  
50  
LVHSTL Driver  
R3  
50  
FIGURE 4A. HIPERCLOCKS CLK/nCLK INPUT DRIVEN BY  
ICS HIPERCLOCKS LVHSTL DRIVER  
FIGURE 4B. HIPERCLOCKS CLK/NCLK INPUT DRIVEN BY  
3.3V LVPECL DRIVER  
3.3V  
3.3V  
3.3V  
3.3V  
Zo = 50 Ohm  
3.3V  
R3  
125  
R4  
125  
LVDS_Driver  
Zo = 50 Ohm  
Zo = 50 Ohm  
CLK  
CLK  
R1  
100  
nCLK  
Receiv er  
nCLK  
HiPerClockS  
Input  
Zo = 50 Ohm  
LVPECL  
R1  
84  
R2  
84  
FIGURE 4C. HIPERCLOCKS CLK/NCLK INPUT DRIVEN BY  
3.3V LVPECL DRIVER  
FIGURE 4D. HIPERCLOCKS CLK/NCLK INPUT DRIVEN BY  
3.3V LVDS DRIVER  
3.3V  
3.3V  
3.3V  
R3  
125  
R4  
125  
C1  
C2  
LVPECL  
Zo = 50 Ohm  
Zo = 50 Ohm  
CLK  
nCLK  
HiPerClockS  
Input  
R5  
100 - 200  
R6  
100 - 200  
R1  
84  
R2  
84  
R5,R6 locate near the driver pin.  
FIGURE 4E. HIPERCLOCKS CLK/NCLK INPUT DRIVEN BY  
3.3V LVPECL DRIVER WITH AC COUPLE  
IDT™ / ICS™ LOW SKEW, 1-TO-4 CRYSTAL OSCILLATOR/DIFFERENTIAL-TO-3.3V LVPECL FANOUT BUFFER  
ICS8533-11  
8
ICS8533-11  
LOW SKEW, 1-TO-4CRYSTALOSCILLATOR/DIFFERENTIAL-TO-3.3V LVPECL FANOUT BUFFER  
TSD  
CRYSTAL INPUT INTERFACE  
A crystal can be characterized for either series or parallel  
mode operation.The ICS8533-11 fanout buffer has a built-in  
crystal oscillator circuit. This interface can accept either a  
series or parallel crystal without additional components as  
shown in Figure 5. The physical location of the crystal should  
be located as close as possible to the XTAL1 and XTAL2 pins.  
The experiments show that using a 19.44MHz crystal results  
in an output frequency of 19.4404746MHz and approximately  
44ꢀ of duty cycle.  
XTAL2  
XTAL1  
C2  
SPARE  
X1  
Cry stal  
C1  
40p  
FIGURE 5. CRYSTAL INPUT INTERFACE  
SCHEMATIC EXAMPLE  
Figure 6 shows a schematic example of the ICS8533-11. In this should be physically located near the power pin. For ICS8533-11,  
example, the XTAL input is selected. The decoupling capacitors the unused clock outputs can be left floating.  
Zo = 50  
+
3.3V  
Zo = 50  
-
R2  
50  
R1  
50  
R11  
1K  
R12  
1K  
U1  
R3  
50  
1
2
3
4
5
6
7
8
9
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
VEE  
Q0  
nQ0  
VCC  
Q1  
nQ1  
Q2  
nQ2  
VCC  
Q3  
CLK_EN  
CLK_SEL  
CLK  
nCLK  
XTAL1  
XTAL2  
NC  
3.3V  
3.3V  
40p - 60pF  
C4  
X1  
NC  
VCC  
3.3V  
C1  
10  
nQ3  
C5  
SPARE  
ICS8533-11  
0.1u  
Zo = 50  
Zo = 50  
+
-
3.3V  
C2  
0.1u  
C3  
0.1u  
R8  
50  
R7  
50  
R9  
50  
FIGURE 6. ICS8533-11 LVPECL BUFFER SCHEMATIC EXAMPLE  
IDT™ / ICS™ LOW SKEW, 1-TO-4 CRYSTAL OSCILLATOR/DIFFERENTIAL-TO-3.3V LVPECL FANOUT BUFFER  
ICS8533-11  
9
ICS8533-11  
LOW SKEW, 1-TO-4CRYSTALOSCILLATOR/DIFFERENTIAL-TO-3.3V LVPECL FANOUT BUFFER  
TSD  
POWER CONSIDERATIONS  
This section provides information on power dissipation and junction temperature for the ICS8533-11.  
Equations and example calculations are also provided.  
1. Power Dissipation.  
The total power dissipation for the ICS8533-11 is the sum of the core power plus the power dissipated in the load(s).  
The following is the power dissipation for VCC = 3.3V + 5ꢀ = 3.465V, which gives worst case results.  
NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.  
Power (core)MAX = VCC_MAX * IEE_MAX = 3.465V * 50mA = 173.3mW  
Power (outputs)MAX = 30.2mW/Loaded Output pair  
If all outputs are loaded, the total power is 4 * 30.2mW = 120.8mW  
Total Power_MAX (3.465V, with all outputs switching) = 173.3mW + 120.8mW = 294.1mW  
2. Junction Temperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the  
device.The maximum recommended junction temperature for HiPerClockSTM devices is 125°C.  
The equation for Tj is as follows: Tj = θJA * Pd_total + TA  
Tj = JunctionTemperature  
θJA = Junction-to-AmbientThermal Resistance  
Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)  
TA = AmbientTemperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θJA must be used. Assuming a  
moderate air flow of 200 linear feet per minute and a multi-layer board, the appropriate value is 66.6°C/W perTable 7 below.  
Therefore, Tj for an ambient temperature of 70°C with all outputs switching is:  
70°C + 0.294W * 66.6°C/W = 89.58°C. This is well below the limit of 125°C.  
This calculation is only an example.Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow,  
and the type of board (single layer or multi-layer).  
TABLE 7. THERMAL RESISTANCE θJA FOR 20-PIN TSSOP, FORCED CONVECTION  
θJA byVelocity (Linear Feet per Minute)  
0
200  
98.0°C/W  
66.6°C/W  
500  
88.0°C/W  
63.5°C/W  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
114.5°C/W  
73.2°C/W  
NOTE: Most modern PCB designs use multi-layered boards.The data in the second row pertains to most designs.  
IDT™ / ICS™ LOW SKEW, 1-TO-4 CRYSTAL OSCILLATOR/DIFFERENTIAL-TO-3.3V LVPECL FANOUT BUFFER  
ICS8533-11  
10  
ICS8533-11  
LOW SKEW, 1-TO-4CRYSTALOSCILLATOR/DIFFERENTIAL-TO-3.3V LVPECL FANOUT BUFFER  
TSD  
3. Calculations and Equations.  
The purpose of this section is to derive the power dissipated into the load.  
LVPECL output driver circuit and termination are shown in Figure 7.  
VCC  
Q1  
VOUT  
RL  
50  
VCC - 2V  
FIGURE 7. LVPECL DRIVER CIRCUIT AND TERMINATION  
To calculate worst case power dissipation into the load, use the following equations which assume a 50load, and a termination  
voltage ofV - 2V.  
CC  
For logic high, VOUT = V  
= V  
– 1.0V  
OH_MAX  
CC_MAX  
)
= 1.0V  
OH_MAX  
(V  
- V  
CC_MAX  
For logic low, VOUT = V  
= V  
– 1.7V  
OL_MAX  
CC_MAX  
)
= 1.7V  
OL_MAX  
(V  
- V  
CC_MAX  
Pd_H is power dissipation when the output drives high.  
Pd_L is the power dissipation when the output drives low.  
))  
Pd_H = [(V  
– (V  
- 2V))/R ] * (V  
- V  
) = [(2V - (V  
- V  
/R ] * (V  
- V  
) =  
OH_MAX  
CC_MAX  
CC_MAX  
OH_MAX  
_MAX  
OH_MAX  
CC_MAX  
OH_MAX  
L
CC  
L
[(2V - 1V)/50] * 1V = 20.0mW  
))  
Pd_L = [(V  
– (V  
- 2V))/R ] * (V  
- V  
) = [(2V - (V  
- V  
/R ] * (V  
- V  
) =  
OL_MAX  
CC_MAX  
CC_MAX  
OL_MAX  
_MAX  
OL_MAX  
CC_MAX  
OL_MAX  
L
CC  
L
[(2V - 1.7V)/50] * 1.7V = 10.2mW  
Total Power Dissipation per output pair = Pd_H + Pd_L = 30.2mW  
IDT™ / ICS™ LOW SKEW, 1-TO-4 CRYSTAL OSCILLATOR/DIFFERENTIAL-TO-3.3V LVPECL FANOUT BUFFER  
ICS8533-11  
11  
ICS8533-11  
LOW SKEW, 1-TO-4CRYSTALOSCILLATOR/DIFFERENTIAL-TO-3.3V LVPECL FANOUT BUFFER  
TSD  
RELIABILITY INFORMATION  
TABLE 8. θJAVS. AIR FLOW TABLE FOR 20 LEAD TSSOP  
θJA byVelocity (Linear Feet per Minute)  
0
200  
98.0°C/W  
66.6°C/W  
500  
88.0°C/W  
63.5°C/W  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
114.5°C/W  
73.2°C/W  
NOTE: Most modern PCB designs use multi-layered boards.The data in the second row pertains to most designs.  
TRANSISTOR COUNT  
The transistor count for ICS8533-11 is: 428  
IDT™ / ICS™ LOW SKEW, 1-TO-4 CRYSTAL OSCILLATOR/DIFFERENTIAL-TO-3.3V LVPECL FANOUT BUFFER  
ICS8533-11  
12  
ICS8533-11  
LOW SKEW, 1-TO-4CRYSTALOSCILLATOR/DIFFERENTIAL-TO-3.3V LVPECL FANOUT BUFFER  
TSD  
PACKAGE OUTLINE - G SUFFIX FOR 20 LEAD TSSOP  
TABLE 9. PACKAGE DIMENSIONS  
Millimeters  
SYMBOL  
MIN  
MAX  
N
A
20  
--  
1.20  
0.15  
1.05  
0.30  
0.20  
6.60  
A1  
A2  
b
0.05  
0.80  
0.19  
0.09  
6.40  
c
D
E
6.40 BASIC  
0.65 BASIC  
E1  
e
4.30  
4.50  
L
0.45  
0°  
0.75  
8°  
α
aaa  
--  
0.10  
Reference Document: JEDEC Publication 95, MS-153  
IDT™ / ICS™ LOW SKEW, 1-TO-4 CRYSTAL OSCILLATOR/DIFFERENTIAL-TO-3.3V LVPECL FANOUT BUFFER  
ICS8533-11  
13  
ICS8533-11  
LOW SKEW, 1-TO-4CRYSTALOSCILLATOR/DIFFERENTIAL-TO-3.3V LVPECL FANOUT BUFFER  
TSD  
TABLE 10. ORDERING INFORMATION  
Part/Order Number  
Marking  
Package  
Count  
72 per tube  
2500  
Temperature  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
ICS8533AG-11  
ICS8533AG-11T  
ICS8533AG-11LF  
ICS8533AG-11  
ICS8533AG-11  
ICS8533AG11L  
20 Lead TSSOP  
20 Lead TSSOP on Tape and Reel  
20 Lead "Lead-Free" TSSOP  
72 per tube  
20 Lead "Lead-Free" TSSOP on  
Tape and Reel  
ICS8533AG-11LFT  
ICS8533AG11L  
2500  
0°C to 70°C  
While the information presented herein has been checked for both accuracy and reliability, Integrated Circuit Systems, Incorporated (ICS) assumes no responsibility for either its use or  
for infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal  
commercial applications. Any other applications such as those requiring extended temperature range, high reliability, or other extraordinary environmental requirements are not recom-  
mended without additional processing by ICS. ICS reserves the right to change any circuitry or specifications without notice. ICS does not authorize or warrant any ICS product for use in  
life support devices or critical medical instruments.  
IDT™ / ICS™ LOW SKEW, 1-TO-4 CRYSTAL OSCILLATOR/DIFFERENTIAL-TO-3.3V LVPECL FANOUT BUFFER  
ICS8533-11  
14  
ICS8533-11  
LOW SKEW, 1-TO-4CRYSTALOSCILLATOR/DIFFERENTIAL-TO-3.3V LVPECL FANOUT BUFFER  
TSD  
REVISION HISTORY SHEET  
Description of Change  
Rev  
D
Table  
Page  
Date  
3
3
Revised Figure 1, CLK_EN Timing Diagram.  
Revised Figure 1, CLK_EN Timing Diagram.  
10/18/01  
11/2/01  
D
Deleted Crystal Oscillator Circuit Frequency Fine Tuning section from  
datasheet.  
Shortened Crystal Characteristics table.  
ESR row, values have changed from 50Min, 80Max. to 70Max.  
Added Termination for LVPECL Outputs section.  
D
D
8-10  
5
12/11/01  
T5  
1/11/02  
5/28/02  
10/3/02  
D
D
8
6
Output Load Test Circuit diagram - corrected VEE equation to read,  
VEE = -1.3V 0.165V from VEE = -1.3V 0.135V.  
T2  
2
4
4
Pin Characteristics Table - changed CIN from 4pF max. to 4pF typical.  
Absolute Maximum Ratings - revised Output rating.  
T4B  
LVCMOS DC Characteristics Table - changed VIH max. from 3.765V to  
VCC + 0.3V.  
5
5
5
7
7
8
9
LVPECL DC CHaracteristics Table - changed VSWING max. from 0.85V to 1.0V.  
Crystal Characteristics Table - changed ESR from 70max. to 50max.  
AC Characteristics Table - deleted oscTOL row from table.  
Updated Single Ended Signal Driving Differential Input Diagram.  
Updated LVPECL Output Termination Diagrams.  
T4D  
T5  
E
E
10/30/03  
12/14/04  
Added Differential Clock Input Interface section.  
Added Crystal section.  
9
1
14  
Added Schematic Example.  
Features Section - added Lead-Free bullet.  
Ordering Information Table - added "Lead-Free" part number.  
T10  
IDT™ / ICS™ LOW SKEW, 1-TO-4 CRYSTAL OSCILLATOR/DIFFERENTIAL-TO-3.3V LVPECL FANOUT BUFFER  
ICS8533-11  
15  
31
CRYSTALOSCILLATOR/DIFFERENTIAL-TO-3.3VLVPECL FANOUT BUFFER  
Innovate with IDT and accelerate your future networks. Contact:  
www.IDT.com  
For Sales  
800-345-7015  
408-284-8200  
Fax: 408-284-2775  
For Tech Support  
clockhelp@idt.com  
408-284-8200  
Corporate Headquarters  
Integrated Device Technology, Inc.  
6024 Silver Creek Valley Road  
San Jose, CA 95138  
United States  
800 345 7015  
Asia Pacific and Japan  
Integrated Device Technology  
Singapore (1997) Pte. Ltd.  
Reg. No. 199707558G  
435 Orchard Road  
#20-03 Wisma Atria  
Singapore 238877  
Europe  
IDT Europe, Limited  
Prime House  
Barnett Wood Lane  
Leatherhead, Surrey  
United Kingdom KT22 7DE  
+44 1372 363 339  
+408 284 8200 (outside U.S.)  
+65 6 887 5505  
© 2006 Integrated Device Technology, Inc. All rights reserved. Product specifications subject to change without notice. IDT and the IDT logo are trademarks of Integrated Device  
Technology, Inc. Accelerated Thinking is a service mark of Integrated Device Technology, Inc. All other brands, product names and marks are or may be trademarks or registered  
trademarks used to identify products or services of their respective owners.  
Printed in USA  
XX-XXXX-XXXXX  

相关型号:

ICS8533AG-11LFT

Low Skew Clock Driver, 8533 Series, 4 True Output(s), 0 Inverted Output(s), PDSO20, 6.50 X 4.40 MM, 0.92 MM HEIGHT, ROHS COMPLIANT, MS-153, TSSOP-20
IDT

ICS8533AG-11T

LOW SKEW, 1-TO-4, CRYSTAL OSCILLATOR/ DIFFERENTIAL-TO-3.3V LVPECL FANOUT BUFFER
ICSI

ICS8533AGI-01

DIFFERENTIAL-TO-3.3V LVPECL FANOUT BUFFER 3.3V operating supply
IDT

ICS8533AGI-01LF

DIFFERENTIAL-TO-3.3V LVPECL FANOUT BUFFER 3.3V operating supply
IDT

ICS8533AGI-01LFT

DIFFERENTIAL-TO-3.3V LVPECL FANOUT BUFFER 3.3V operating supply
IDT

ICS8533AGI-01T

DIFFERENTIAL-TO-3.3V LVPECL FANOUT BUFFER 3.3V operating supply
IDT

ICS8533AGI-31LF

Clock Generator, 650MHz, PDSO20, 6.50 X 4.40 MM, 0.925 MM HEIGHT, ROHS COMPLIANT, MO-153, TSSOP-20
IDT

ICS8533AGI-31T

Clock Generator, 650MHz, PDSO20, 6.50 X 4.40 MM, 0.925 MM HEIGHT, MO-153, TSSOP-20
IDT

ICS8533I-01

DIFFERENTIAL-TO-3.3V LVPECL FANOUT BUFFER 3.3V operating supply
IDT

ICS8534-01

LOW SKEW, 1-TO-22 DIFFERENTIAL-TO-3.3V LVPECL FANOUT BUFFER
ICSI

ICS8534-01

LOW SKEW, 1-TO-22 DIFFERENTIAL-TO-3.3V LVPECL FANOUT BUFFER
IDT

ICS8534AY-01

LOW SKEW, 1-TO-22 DIFFERENTIAL-TO-3.3V LVPECL FANOUT BUFFER
ICSI