ICS85354AKT [ICSI]

DUAL 2:1/1:2 DIFFERENTIAL -TO-LVPECL/ECL MULTIPLEXER; 双2 : 1/1 : 2差分 - 至LVPECL / ECL复用器
ICS85354AKT
型号: ICS85354AKT
厂家: INTEGRATED CIRCUIT SOLUTION INC    INTEGRATED CIRCUIT SOLUTION INC
描述:

DUAL 2:1/1:2 DIFFERENTIAL -TO-LVPECL/ECL MULTIPLEXER
双2 : 1/1 : 2差分 - 至LVPECL / ECL复用器

复用器 逻辑集成电路
文件: 总16页 (文件大小:222K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PRELIMINARY  
ICS85354  
Integrated  
Circuit  
Systems, Inc.  
D
UAL 2:1/1:2  
DIFFERENTIAL  
-TO-LVPECL/ECL MULTIPLEXER  
GENERAL DESCRIPTION  
FEATURES  
The ICS85354 is a 2:1/1:2 Multiplexer and a mem- Dual 2:1/1:2 MUX  
ICS  
ber of the HiPerClockSTM family of high perfor-  
3 LVPECL outputs  
HiPerClockS™  
mance clock solutions from ICS.The 2:1 Multiplexer  
allows one of 2 inputs to be selected onto one out-  
put pin and the 1:2 MUX switches one input to one  
3 differential clock inputs  
CLKx pair can accept the following differential input levels:  
LVPECL, LVDS, CML  
of two outputs.This device may be useful for multiplexing multi-  
rate Ethernet Phys which have 100Mbit and 1000Mbit transmit/  
receive pairs onto an optical SFP module which has a single  
trasmit/receive pair. Please refer to the Application Block dia-  
gram on page 2 of the data sheet.  
Maximum output frequency: 3GHz  
Part-to-part skew: 85ps (typical)  
Additive jitter, RMS: 0.03ps (typical)  
Propagation delay: 330ps (typical)  
The ICS85354 is optimized for applications requiring very high  
performance and has a maximum operating frequency in excess  
of 2GHz.The device is packaged in a small, 3mm x 3mmVFQFN  
package, making it ideal for use on space-constrained boards.  
LVPECL mode operating voltage supply range:  
VCC = 2.375V to 3.465V, VEE = 0V  
ECL mode operating voltage supply range:  
VCC = 0V, VEE = -3.465V to -2.375V  
-40°C to 85°C ambient operating temperature  
BLOCK DIAGRAM  
PIN ASSIGNMENT  
CLK_SELA  
16 15 14 13  
CLKA0  
nCLKA0  
0
QB0  
1
2
12 CLKA0  
11 nCLKA0  
10 CLKA1  
QA  
nQA  
nQB0  
CLKA1  
nCLKA1  
QB1  
3
4
1
nQB1  
9
nCLKA1  
5
6
7
8
CLKB  
nCLKB  
QB0  
nQB0  
ICS85354  
QB1  
nQB1  
16-Lead VFQFN  
3mm x 3mm x 0.95 package body  
K Package  
CLK_SELB  
TopView  
The Preliminary Information presented herein represents a product in prototyping or pre-production.The noted characteristics are based on initial  
product characterization. Integrated Circuit Systems, Incorporated (ICS) reserves the right to change any circuitry or specifications without notice.  
85354AK  
www.icst.com/products/hiperclocks.html  
REV. B JUNE 8, 2004  
1
PRELIMINARY  
ICS85354  
Integrated  
Circuit  
Systems, Inc.  
D
UAL 2:1/1:2  
DIFFERENTIAL  
-TO-LVPECL/ECL MULTIPLEXER  
A TYPICAL APPLICATION FOR THE ICS85354  
Used to connect a multi-rate PHY with the Tx/Rx pins of an  
SFP Module.  
Problem Addressed: How to mape the 2 Tx/Rx pairs of the  
multi-rate PHY to the single Tx/Rx pair on the SFP Module.  
MULTI-RATE PHY  
SFP MODULE  
Tx  
100BaseFX  
1000BaseX  
Rx  
Rx  
Tx  
?
Tx  
Rx  
MODE 1, 100BASEX CONNECTED TO SFP  
All lines are differential pairs, but drawn as single-ended to  
simplify the drawing.  
Bold red lines  
signal path.  
are active connections highlighting the  
CLK_SELA = 0  
M
ULTI-RATE PHY  
SFP MODULE  
CLKA0  
CLKA1  
Tx  
Rx  
0
QA  
Rx  
1
100BaseFX  
CLKB  
Tx  
QB0  
QB1  
CLK_SELB = 0  
Tx  
Rx  
ICS85354  
1000BaseX  
85354AK  
www.icst.com/products/hiperclocks.html  
REV. B JUNE 8, 2004  
2
PRELIMINARY  
ICS85354  
Integrated  
Circuit  
Systems, Inc.  
D
UAL 2:1/1:2  
DIFFERENTIAL  
-
TO-LVPECL/ECL MULTIPLEXER  
MODE 2, 1000BASEX CONNECTED TO SFP  
All lines are differential pairs, but drawn as single-ended to  
simplify the drawing.  
Bold red lines  
the signal path.  
are active connections highlighting  
CLK_SELA = 1  
M
ULTI-RATE PHY  
SFP MODULE  
CLKA0  
CLKA1  
Tx  
Rx  
0
QA  
Rx  
1
100BaseFX  
CLKB  
Tx  
QB0  
QB1  
CLK_SELB = 1  
Tx  
Rx  
ICS85354  
1000BaseX  
85354AK  
www.icst.com/products/hiperclocks.html  
REV. B JUNE 8, 2004  
3
PRELIMINARY  
ICS85354  
Integrated  
Circuit  
Systems, Inc.  
D
UAL 2:1/1:2  
DIFFERENTIAL  
-TO-LVPECL/ECL MULTIPLEXER  
TABLE 1. PIN DESCRIPTIONS  
Number  
1, 2  
Name  
Type  
Output  
Description  
QB0, nQB0  
Differential output pair. LVPECL/ECL interface levels.  
Differential output pair. LVPECL/ECL interface levels.  
3, 4  
QB1, nQB1 Output  
5
CLKB  
Input  
Input  
Pulldown Non-inverting LVPECL/ECL differential clock input.  
Pullup/  
6
nCLKB  
Inverting differential LVPECL clock input. VCC/2 default when left floating.  
Pulldown  
Clock select pin for QBx outputs. When HIGH, selects QB1, nQB1  
Pulldown outputs. When LOW, selects QB0, nQB0 outputs.  
LVCMOS/LVTTL interface levels.  
7
CLK_SELB  
Input  
8
VEE  
Power  
Input  
Input  
Input  
Negative supply pin.  
Pullup/  
9
nCLKA1  
CLKA1  
nCLKA0  
Inverting differential LVPECL clock input. VCC/2 default when left floating.  
Pulldown  
10  
11  
Pulldown Non-inverting LVPECL differential clock input.  
Pullup/  
Inverting differential LVPECL clock input. VCC/2 default when left floating.  
Pulldown  
12  
13  
CLKA0  
VCC  
Input  
Pulldown Non-inverting LVPECL differential clock input.  
Positive supply pin.  
Power  
Clock select pin for QA outputs. When HIGH, selects QA output.  
Pulldown  
14  
CLK_SELA  
nQA, QA  
Input  
When LOW, selects nQA output. LVCMOS/LVTTL interface levels.  
15, 16  
Output  
Differential output pair. LVPECL/ECL interface levels.  
NOTE: Pulldown and Pullup refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.  
TABLE 2. PIN CHARACTERISTICS  
Symbol Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
RPULLDOWN Input Pulldown Resistor  
37.5  
K  
Pullup/Pulldown Resistors  
37.5  
KΩ  
RVCC/2  
TABLE 3A. CONTROL INPUT FUNCTION TABLE, BANK A  
Bank A  
Control Inputs  
Outputs  
CLK_SELA  
QA, nQA  
0
1
Selects CLKA0, nCLKA0  
Selects CLKA1, nCLKA1  
TABLE 3B. CONTROL INPUT FUNCTION TABLE, BANK B  
Bank B  
Control Inputs  
Outputs  
CLK_SELB  
QB0, nQB0  
QB1, nQB1  
Low  
0
1
Follows CLKB input  
Low  
Follows CLKB input  
85354AK  
www.icst.com/products/hiperclocks.html  
REV. B JUNE 8, 2004  
4
PRELIMINARY  
ICS85354  
Integrated  
Circuit  
Systems, Inc.  
D
UAL 2:1/1:2  
DIFFERENTIAL  
-TO-LVPECL/ECL MULTIPLEXER  
ABSOLUTE MAXIMUM RATINGS  
SupplyVoltage, VCC  
NOTE: Stresses beyond those listed under Absolute  
Maximum Ratings may cause permanent damage  
to the device. These ratings are stress specifi-  
cations only. Functional operation of product at  
these conditions or any conditions beyond those  
listed in the DC Characteristics or AC Character-  
istics is not implied. Exposure to absolute maxi-  
mum rating conditions for extended periods may  
affect product reliability.  
4.6V (LVPECL mode, VEE = 0)  
-4.6V (ECL mode, VCC = 0)  
-0.5V to VCC + 0.5 V  
Negative Supply Voltage, VEE  
Inputs, VI (LVPECL mode)  
Inputs, VI (ECL mode)  
0.5V to VEE - 0.5V  
Outputs, IO  
Continuous Current  
Surge Current  
50mA  
100mA  
OperatingTemperature Range, TA -40°C to +85°C  
StorageTemperature,TSTG -65°C to 150°C  
PackageThermal Impedance, θJA 51.5°C/W (0 lfpm)  
(Junction-to-Ambient)  
TABLE 4A. POWER SUPPLY DC CHARACTERISTICS, VCC = 2.375V TO 3.465V, VEE = 0V OR VCC = 0V, VEE = -3.465V TO -2.375V  
Symbol Parameter  
VCC Positive Supply Voltage  
IEE Power Supply Current  
Test Conditions  
Minimum  
3.135  
Typical  
3.3  
Maximum Units  
3.465  
2.625  
V
V
2.375  
2.5  
38  
mA  
TABLE 4B. LVCMOS / LVTTL DC CHARACTERISTICS, VCC = 2.375V TO 3.465V  
Symbol Parameter  
Test Conditions  
VCC = 2.5V or 3.3V  
VCC = 2.5V or 3.3V  
Minimum Typical Maximum Units  
VIH  
VIL  
Input High Voltage CLK_SELx  
2
0
VCC + 0.3  
0.8  
V
V
Input Low Voltage  
CLK_SELx  
V
CC = VIN = 3.465V,  
CC = VIN = 2.625V  
CC = 3.465  
2.625V, VIN = 0V  
CLK_SELA,  
CLK_SELB  
IIH  
IIL  
Input High Current  
150  
µA  
µA  
V
V
CLK_SELA,  
CLK_SELB  
Input Low Current  
-150  
85354AK  
www.icst.com/products/hiperclocks.html  
REV. B JUNE 8, 2004  
5
PRELIMINARY  
ICS85354  
Integrated  
Circuit  
Systems, Inc.  
D
UAL 2:1/1:2  
DIFFERENTIAL  
-TO-LVPECL/ECL MULTIPLEXER  
TABLE 4C. LVPECL DC CHARACTERISTICS, VCC = 3.3V, VEE = 0V  
-40°C  
25°C  
Typ  
85°C  
Symbol Parameter  
Units  
Min  
Typ  
Max  
Min  
Max  
Min  
Typ  
Max  
Output High Voltage;  
NOTE 1  
Output Low Voltage;  
NOTE 1  
Peak-to-Peak  
Input Voltage  
Input High Voltage  
Common Mode Range;  
NOTE 2, 3  
VOH  
VOL  
VPP  
VCC-1.125 VCC-1.025  
VCC-1.895 VCC-1.755  
VCC-0.92 VCC-1.075 VCC-1.005  
VCC-0.93  
VCC-1.005  
VCC-0.97  
VCC-0.935  
V
V
VCC-1.62 VCC-1.875  
VCC-1.78  
800  
VCC-1.685  
1200  
VCC-1.86  
150  
VCC-1.765  
800  
VCC-1.67  
1200  
150  
1.2  
800  
1200  
VCC  
150  
1.2  
mV  
VCMR  
VCC  
1.2  
VCC  
V
CLKAx,  
Input  
CLKB  
IIH  
150  
150  
150  
µA  
High Current nCLKAx,  
nCLKB  
CLKAx,  
CLKB  
nCLKAx,  
nCLKB  
-10  
-10  
-10  
µA  
µA  
Input  
Low Current  
IIL  
-150  
-150  
-150  
Input and output parameters vary 1:1 with VCC. VCC can vary +0.165V to -0.925V.  
NOTE 1: Outputs terminated with 50to VCC - 2V.  
NOTE 2: Common mode voltage is defined as VIH.  
NOTE 3: For single-ended applications, the maximum input voltage for CLKAx, nCLKAx and CLKB, nCLKB  
is VCC + 0.3V.  
TABLE 4D. ECL DC CHARACTERISTICS, VEE = -3.465V TO -2.375V, VCC = 0V  
-40°C  
Typ Max  
25°C  
Typ Max  
85°C  
Typ Max  
Symbol Parameter  
Units  
Min  
-1.125  
-1.895  
150  
Min  
-1.075  
-1.875  
150  
Min  
-1.005  
-1.86  
150  
-1.025  
-1.755  
800  
-0.92  
-1.62  
1200  
-1.005  
-1.78  
800  
-0.93  
-1.685  
1200  
-0.97  
-1.765  
800  
-0.935  
-1.67  
1200  
V
V
VOH  
VOL  
VPP  
Output High Voltage; NOTE 1  
Output Low Voltage; NOTE 1  
Peak-to-Peak Input Voltage  
mV  
Input High Voltage  
Common Mode Range; NOTE 2, 3  
VEE+1.2V  
VEE+1.2V  
VEE+1.2V  
V
VCMR  
IIH  
VCC  
150  
VCC  
150  
VCC  
150  
Input  
CLKAx, CLKB  
µA  
High Current nCLKAx, nCLKB  
-10  
-10  
-10  
µA  
µA  
CLKAx, CLKB  
Input  
Low Current  
IIL  
-150  
-150  
-150  
nCLKAx, nCLKB  
Input and output parameters vary 1:1 with VCC.  
NOTE 1: Outputs terminated with 50to VCC - 2V.  
NOTE 2: Common mode voltage is defined as VIH.  
NOTE 3: For single-ended applications, the maximum input voltage for CLKAx, nCLKAx and CLKB, nCLKB  
is VCC + 0.3V.  
85354AK  
www.icst.com/products/hiperclocks.html  
REV. B JUNE 8, 2004  
6
PRELIMINARY  
ICS85354  
Integrated  
Circuit  
Systems, Inc.  
D
UAL 2:1/1:2  
DIFFERENTIAL  
-TO-LVPECL/ECL MULTIPLEXER  
TABLE 5. AC CHARACTERISTICS, VCC = 2.375V TO 3.465V, VEE = 0V OR VCC = 0V, VEE = -3.465V TO -2.375V  
Symbol Parameter Conditions Minimum Typical Maximum Units  
fMAX  
Output Frequency  
3
GHz  
ps  
tPD  
Propagation Delay; NOTE 1  
Part-to-Part Skew; NOTE 3, 4  
330  
85  
tsk(pp)  
ps  
Buffer Additive Phase Jitter, RMS;  
refer to Additive Phase Jitter section  
tjit  
0.03  
ps  
MUX Isolation  
55  
dB  
ps  
tR/tF  
Output Rise/Fall Time  
20% to 80%  
170  
All parameters are measured 1GHz unless otherwise noted.  
NOTE 1: Measured from the differential input crossing point to the differential output crossing point.  
NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions.  
Measured at the output differential cross points.  
NOTE 3: Defined as skew between outputs on different devices operating at the same supply voltages  
and with equal load conditions. Using the same type of inputs on each device, the outputs are measured  
at the differential cross points.  
NOTE 4: This parameter is defined in accordance with JEDEC Standard 65.  
85354AK  
www.icst.com/products/hiperclocks.html  
REV. B JUNE 8, 2004  
7
PRELIMINARY  
ICS85354  
Integrated  
Circuit  
Systems, Inc.  
D
UAL 2:1/1:2  
DIFFERENTIAL  
-TO-LVPECL/ECL MULTIPLEXER  
PARAMETER MEASUREMENT INFORMATION  
2V  
VCC  
SCOPE  
VCC  
Qx  
nCLKA0, nCLKA1  
nCLKB  
LVPECL  
VEE  
VPP  
VCMR  
Cross Points  
CLKA0, CLKA1  
CLKB  
nQx  
VEE  
-0.375V to -1.465V  
OUTPUT LOAD AC TEST CIRCUIT  
DIFFERENTIAL INPUT LEVEL  
nCLKA0,  
nCLKA1  
nCLKB  
nQx  
PART 1  
Qx  
CLKA0,  
CLKA1  
CLKB  
nQA,  
nQB0,  
nQB1  
nQy  
PART 2  
Qy  
QA,  
QB0,  
QB1  
tPD  
tsk(pp)  
PROPAGATION DELAY  
PART-TO-PART SKEW  
80%  
tF  
80%  
VSWING  
20%  
Clock  
20%  
Outputs  
tR  
OUTPUT RISE/FALL TIME  
85354AK  
www.icst.com/products/hiperclocks.html  
REV. B JUNE 8, 2004  
8
PRELIMINARY  
ICS85354  
Integrated  
Circuit  
Systems, Inc.  
D
UAL 2:1/1:2  
DIFFERENTIAL  
-TO-LVPECL/ECL MULTIPLEXER  
APPLICATION INFORMATION  
WIRING THE DIFFERENTIAL INPUT TO ACCEPT SINGLE ENDED LEVELS  
Figure 1 shows how the differential input can be wired to accept  
single ended levels. The reference voltage V_REF = VCC/2 is  
generated by the bias resistors R1, R2 and C1.This bias circuit  
should be located as close as possible to the input pin.The ratio  
of R1 and R2 might need to be adjusted to position theV_REF in  
the center of the input voltage swing. For example, if the input  
clock swing is only 2.5V andVCC = 3.3V, V_REF should be 1.25V  
and R2/R1 = 0.609.  
VCC  
R1  
1K  
Single Ended Clock Input  
V_REF  
CLKx  
nCLKx  
C1  
0.1u  
R2  
1K  
FIGURE 1. SINGLE ENDED SIGNAL DRIVING DIFFERENTIAL INPUT  
TERMINATION FOR 3.3V LVPECL OUTPUTS  
The clock layout topology shown below is a typical termina-  
tion for LVPECL outputs.The two different layouts mentioned  
are recommended only as guidelines.  
50transmission lines. Matched impedance techniques should  
be used to maximize operating frequency and minimize signal  
distortion. Figures 2A and 2B show two different layouts which  
are recommended only as guidelines. Other suitable clock lay-  
outs may exist and it would be recommended that the board  
designers simulate to guarantee compatibility across all printed  
circuit and clock component process variations.  
FOUT and nFOUT are low impedance follower outputs that gen-  
erate ECL/LVPECL compatible outputs.Therefore, terminating  
resistors (DC current path to ground) or current sources must  
be used for functionality. These outputs are designed to drive  
3.3V  
Zo = 50  
125  
125Ω  
FOUT  
FIN  
Z
o = 50Ω  
Zo = 50Ω  
FOUT  
FIN  
50Ω  
50Ω  
Zo = 50Ω  
VCC - 2V  
1
RTT =  
Zo  
RTT  
((VOH + VOL) / (VCC – 2)) – 2  
84Ω  
84Ω  
FIGURE 2A. LVPECL OUTPUT TERMINATION  
FIGURE 2B. LVPECL OUTPUT TERMINATION  
85354AK  
www.icst.com/products/hiperclocks.html  
REV. B JUNE 8, 2004  
9
PRELIMINARY  
ICS85354  
Integrated  
Circuit  
Systems, Inc.  
D
UAL 2:1/1:2  
DIFFERENTIAL  
-TO-LVPECL/ECL MULTIPLEXER  
TERMINATION FOR 2.5V LVPECL OUTPUT  
Figure 3A and Figure 3B show examples of termination for 2.5V ground level. The R3 in Figure 3B can be eliminated and the  
LVPECL driver.These terminations are equivalent to terminat- termination is shown in Figure 3C.  
ing 50to VCC - 2V. For VCC = 2.5V, the VCC - 2V is very close to  
2.5V  
2.5V  
2.5V  
VCCO=2.5V  
VCCO=2.5V  
R1  
250  
R3  
250  
Zo = 50 Ohm  
Zo = 50 Ohm  
Zo = 50 Ohm  
Zo = 50 Ohm  
+
-
+
-
2,5V LVPECL  
Driver  
2,5V LVPECL  
Driv er  
R1  
50  
R2  
50  
R2  
62.5  
R4  
62.5  
R3  
18  
FIGURE 3A. 2.5V LVPECL DRIVER  
T
ERMINATION  
E
XAMPLE  
F
IGURE 3B. 2.5V LVPECL DRIVER  
T
ERMINATION  
E
XAMPLE  
2.5V  
VCCO=2.5V  
Zo = 50 Ohm  
+
-
Zo = 50 Ohm  
2,5V LVPECL  
Driver  
R1  
50  
R2  
50  
FIGURE 3C. 2.5V LVPECL TERMINATION EXAMPLE  
85354AK  
www.icst.com/products/hiperclocks.html  
REV. B JUNE 8, 2004  
10  
PRELIMINARY  
ICS85354  
Integrated  
Circuit  
Systems, Inc.  
D
UAL 2:1/1:2  
DIFFERENTIAL  
-TO-LVPECL/ECL MULTIPLEXER  
DIFFERENTIAL CLOCK INPUT INTERFACE  
The CLK /nCLK accepts LVDS, LVPECL, LVHSTL, SSTL, HCSL here are examples only. Please consult with the vendor of the  
and other differential signals.BothVSWING andVOH must meet the driver component to confirm the driver termination requirements.  
VPP and VCMR input requirements. Figures 4A to 4E show inter- For example in Figure 4A, the input termination applies for ICS  
face examples for the HiPerClockS CLK/nCLK input driven by HiPerClockS LVHSTL drivers. If you are using an LVHSTL driver  
the most common driver types.The input interfaces suggested from another vendor, use their termination recommendation.  
3.3V  
3.3V  
3.3V  
1.8V  
Zo = 50 Ohm  
CLK  
Zo = 50 Ohm  
CLK  
Zo = 50 Ohm  
nCLK  
HiPerClockS  
Input  
Zo = 50 Ohm  
LVPECL  
nCLK  
HiPerClockS  
Input  
R1  
50  
R2  
50  
LVHSTL  
ICS  
HiPerClockS  
R1  
50  
R2  
50  
LVHSTL Driver  
R3  
50  
FIGURE 4A. HIPERCLOCKS CLK/nCLK INPUT DRIVEN BY  
ICS HIPERCLOCKS LVHSTL DRIVER  
FIGURE 4B. HIPERCLOCKS CLK/nCLK INPUT DRIVEN BY  
3.3V LVPECL DRIVER  
3.3V  
3.3V  
3.3V  
3.3V  
Zo = 50 Ohm  
3.3V  
R3  
125  
R4  
125  
LVDS_Driver  
Zo = 50 Ohm  
Zo = 50 Ohm  
CLK  
CLK  
R1  
100  
nCLK  
Receiv er  
nCLK  
HiPerClockS  
Input  
Zo = 50 Ohm  
LVPECL  
R1  
84  
R2  
84  
FIGURE 4C. HIPERCLOCKS CLK/nCLK INPUT DRIVEN BY  
3.3V LVPECL DRIVER  
FIGURE 4D. HIPERCLOCKS CLK/nCLK INPUT DRIVEN BY  
3.3V LVDS DRIVER  
3.3V  
3.3V  
3.3V  
R3  
125  
R4  
125  
C1  
C2  
LVPECL  
Zo = 50 Ohm  
Zo = 50 Ohm  
CLK  
nCLK  
HiPerClockS  
Input  
R5  
100 - 200  
R6  
100 - 200  
R1  
84  
R2  
84  
R5,R6 locate near the driver pin.  
FIGURE 4E. HIPERCLOCKS CLK/NCLK INPUT DRIVEN BY  
3.3V LVPECL DRIVER WITH AC COUPLE  
85354AK  
www.icst.com/products/hiperclocks.html  
REV. B JUNE 8, 2004  
11  
PRELIMINARY  
ICS85354  
Integrated  
Circuit  
Systems, Inc.  
D
UAL 2:1/1:2  
DIFFERENTIAL  
-TO-LVPECL/ECL MULTIPLEXER  
POWER CONSIDERATIONS  
This section provides information on power dissipation and junction temperature for the ICS85354.  
Equations and example calculations are also provided.  
1. Power Dissipation.  
The total power dissipation for the ICS85354 is the sum of the core power plus the power dissipated in the load(s).  
The following is the power dissipation for VCC = 3.465V, which gives worst case results.  
NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.  
Power (core)MAX = VCC_MAX * IEE_MAX = 3.465V * 38mA = 131.7mW  
Power (outputs)MAX = 27.83mW/Loaded Output pair  
If all outputs are loaded, the total power is 4 * 27.83mW = 111.3mW  
Total Power_MAX (3.465, with all outputs switching) = 131.7mW + 111.3mW = 243mW  
2. Junction Temperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the  
device.The maximum recommended junction temperature for HiPerClockSTM devices is 125°C.  
The equation for Tj is as follows: Tj = θJA * Pd_total + TA  
Tj = JunctionTemperature  
θJA = Junction-to-AmbientThermal Resistance  
Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)  
TA = AmbientTemperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θJA must be used. Assuming a  
moderate air flow of 0 linear feet per minute and a multi-layer board, the appropriate value is 51.5°C/W perTable 6 below.  
Therefore, Tj for an ambient temperature of 85°C with all outputs switching is:  
85°C + 0.243W * 51.5°C/W = 97.5°C. This is well below the limit of 125°C.  
This calculation is only an example.Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow,  
and the type of board (single layer or multi-layer).  
TABLE 6. THERMAL RESISTANCE θJA FOR 16-PIN VFQFN, FORCED CONVECTION  
θJA by Velocity (Linear Feet per Minute)  
0
Multi-Layer PCB, JEDEC Standard Test Boards  
51.5°C/W  
85354AK  
www.icst.com/products/hiperclocks.html  
REV. B JUNE 8, 2004  
12  
PRELIMINARY  
ICS85354  
Integrated  
Circuit  
Systems, Inc.  
D
UAL 2:1/1:2  
DIFFERENTIAL  
-
TO-LVPECL/ECL MULTIPLEXER  
3. Calculations and Equations.  
The purpose of this section is to derive the power dissipated into the load.  
LVPECL output driver circuit and termination are shown in Figure 5.  
VCC  
Q1  
VOUT  
RL  
50  
VCC - 2V  
FIGURE 5. LVPECL DRIVER CIRCUIT AND TERMINATION  
To calculate worst case power dissipation into the load, use the following equations which assume a 50load, and a termination  
voltage of V - 2V.  
CC  
For logic high, VOUT = V  
= V  
– 1.005V  
OH_MAX  
CC_MAX  
)
= 1.005  
OH_MAX  
(V  
- V  
CC_MAX  
For logic low, VOUT = V  
= V  
– 1.78V  
OL_MAX  
CC_MAX  
)
= 1.78V  
OL_MAX  
(V  
- V  
CC_MAX  
Pd_H is power dissipation when the output drives high.  
Pd_L is the power dissipation when the output drives low.  
))  
Pd_H = [(V  
– (V  
- 2V))/R ] * (V  
- V  
) = [(2V - (V  
- V  
/R ] * (V  
- V  
) =  
OH_MAX  
CC_MAX  
CC_MAX  
OH_MAX  
CC_MAX  
OH_MAX  
CC_MAX  
OH_MAX  
L
L
[(2V - 1.005V)/50] * 1.005V = 20mW  
))  
Pd_L = [(V  
– (V  
- 2V))/R ] * (V  
- V  
) = [(2V - (V  
- V  
/R ] * (V  
- V  
) =  
OL_MAX  
CC_MAX  
CC_MAX  
OL_MAX  
CC_MAX  
OL_MAX  
CC_MAX  
OL_MAX  
L
L
[(2V - 1.78V)/50] * 1.78V = 7.83mW  
Total Power Dissipation per output pair = Pd_H + Pd_L = 27.83mW  
85354AK  
www.icst.com/products/hiperclocks.html  
REV. B JUNE 8, 2004  
13  
PRELIMINARY  
ICS85354  
Integrated  
Circuit  
Systems, Inc.  
D
UAL 2:1/1:2  
DIFFERENTIAL  
-TO-LVPECL/ECL MULTIPLEXER  
RELIABILITY INFORMATION  
TABLE 7. θJAVS. AIR FLOW TABLE FOR 16 LEAD VFQFN  
θJA by Velocity (Linear Feet per Minute)  
0
Multi-Layer PCB, JEDEC Standard Test Boards  
51.5°C/W  
TRANSISTOR COUNT  
The transistor count for ICS85354 is: 210  
85354AK  
www.icst.com/products/hiperclocks.html  
REV. B JUNE 8, 2004  
14  
PRELIMINARY  
ICS85354  
Integrated  
Circuit  
Systems, Inc.  
D
UAL 2:1/1:2  
DIFFERENTIAL  
-TO-LVPECL/ECL MULTIPLEXER  
PACKAGE OUTLINE - K SUFFIX FOR 16 LEAD VFQFN  
TABLE 8. PACKAGE DIMENSIONS  
JEDEC VARIATION  
ALL DIMENSIONS IN MILLIMETERS  
SYMBOL  
MINIMUM  
MAXIMUM  
N
A
16  
0.80  
0
1.0  
A1  
A3  
b
0.05  
0.25 Reference  
0.18  
0.30  
e
0.50 BASIC  
ND  
NE  
D
4
4
3.0  
D2  
E
0.25  
1.25  
3.0  
E2  
L
0.25  
0.30  
1.25  
0.50  
Reference Document: JEDEC Publication 95, MO-220  
85354AK  
www.icst.com/products/hiperclocks.html  
REV. B JUNE 8, 2004  
15  
PRELIMINARY  
ICS85354  
Integrated  
Circuit  
Systems, Inc.  
D
UAL 2:1/1:2  
DIFFERENTIAL  
-TO-LVPECL/ECL MULTIPLEXER  
TABLE 9. ORDERING INFORMATION  
Part/Order Number  
ICS85354AK  
Marking  
Package  
Count  
120 per Tube  
3500  
Temperature  
-40°C to 85°C  
-40°C to 85°C  
354A  
354A  
16 Lead VFQFN  
16 Lead VFQFN on Tape and Reel  
ICS85354AKT  
The aforementioned trademark, HiPerClockS™ is a trademark of Integrated Circuit Systems, Inc. or its subsidiaries in the United States and/or other countries.  
While the information presented herein has been checked for both accuracy and reliability, Integrated Circuit Systems, Incorporated (ICS) assumes no responsibility for either its use  
or for infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use  
in normal commercial and industrial applications. Any other applications such as those requiring high reliability or other extraordinary environmental requirements are not  
recommended without additional processing by ICS. ICS reserves the right to change any circuitry or specifications without notice. ICS does not authorize or warrant any ICS product  
for use in life support devices or critical medical instruments.  
85354AK  
www.icst.com/products/hiperclocks.html  
REV. B JUNE 8, 2004  
16  

相关型号:

ICS85356

2:1, DIFFERENTIAL-TO-3.3V DUAL LVPECL / ECL CLOCK MULTIPLEXER
ICSI

ICS85356AGI

2:1, DIFFERENTIAL-TO-3.3V DUAL LVPECL / ECL CLOCK MULTIPLEXER
ICSI

ICS85356AGILF

2:1, DIFFERENTIAL-TO-3.3V DUAL LVPECL / ECL CLOCK MULTIPLEXER
ICSI

ICS85356AGILF

Low Skew Clock Driver, 85356 Series, 2 True Output(s), 0 Inverted Output(s), PDSO20, 6.50 X 4.40 MM, 0.92 MM HEIGHT, ROHS COMPLIANT, MO-153, TSSOP-20
IDT

ICS85356AGILFT

2:1, DIFFERENTIAL-TO-3.3V DUAL LVPECL / ECL CLOCK MULTIPLEXER
ICSI

ICS85356AGILFT

Low Skew Clock Driver, 85356 Series, 2 True Output(s), 0 Inverted Output(s), PDSO20, 6.50 X 4.40 MM, 0.92 MM HEIGHT, ROHS COMPLIANT, MO-153, TSSOP-20
IDT

ICS85356AGIT

2:1, DIFFERENTIAL-TO-3.3V DUAL LVPECL / ECL CLOCK MULTIPLEXER
ICSI

ICS85356AGLF

Low Skew Clock Driver, 1 True Output(s), 0 Inverted Output(s), PDSO20, 6.50 X 4.40 MM, 0.92 MM HEIGHT, MO-153, TSSOP-20
IDT

ICS85356AGT

Low Skew Clock Driver, 1 True Output(s), 0 Inverted Output(s), PDSO20, 6.50 X 4.40 MM, 0.92 MM HEIGHT, MO-153, TSSOP-20
IDT

ICS85356AM

Low Skew Clock Driver, PDSO20, SOIC-20
IDT

ICS85356AMI

2:1, DIFFERENTIAL-TO-3.3V DUAL LVPECL / ECL CLOCK MULTIPLEXER
ICSI

ICS85356AMILF

Low Skew Clock Driver, 2 True Output(s), 0 Inverted Output(s), PDSO20, 7.50 X 12.80 MM, 2.30 MM HEIGHT, SOIC-20
IDT